Category Paving the Way for Apollo 11

THE SPIDER

Apollo 9 was to be the ‘D’ mission – a lunar module manned flight demonstration in Earth orbit. The payload for the AS-504 launch vehicle was CSM-104 and LM-3. As they were to operate independently, the spacecraft were given radio call-signs. The blue wrapping of the command module for its shipment to the Cape had given it the appearance of a sweet, so it was named ‘Gumdrop’. The arachnid-like configuration of the lunar module prompted the name ‘Spider’.

The launch was scheduled for 28 February 1969 and the countdown was begun at 03:00:00 GMT on 27 February with 28 hours on the clock, but 30 minutes into the planned 3-hour hold at T-16 hours the clock was recycled to T-42 hours in order to enable the crew of James McDivitt, David Scott and Rusty Schweickart to recover from a mild respiratory infection. The count picked up at 07:30:00 on 1 March and the vehicle lifted off from Pad 39A on time at 16:00:00 GMT on 3 March.

The ascent was nominal and at S-IVB cutoff at T+664.66 seconds the deviations were +2.86 ft/sec in velocity and -0.17 nautical mile in altitude, with the result that the initial orbit was almost perfect at 100 nautical miles. At 002:41:16.0 the S-IVB released the CSM, which moved clear, turned end over end to aim its apex at the top of the LM and moved back in. At 003:01:59.3 it docked at the first attempt, marking the first use of this apparatus. Once the tunnel between the two spacecraft had been pressurised, the crew opened the apex hatch of the command module to confirm that all the latches on the docking ring had engaged, and after lines had been connected to supply power to the dormant LM the hatch was reinstalled. On a command issued by the CSM at 004:08:09 the S-IVB released the docked combination.

Preparing the CSM-104 and LM-3 spacecraft for the Apollo 9 mission.

Apollo 9’s S-IVB with the Lunar Module ‘Spider’ exposed.

After the spacecraft was clear, the S-IVB reignited its engine at 004:45:55.5 to raise an apogee of 1,672 nautical miles. Then, after a period of coasting to allow the engine to cool down, it initiated a final burn at 006:07:19.3 to achieve a velocity of 31,620 ft/sec which would send it into solar orbit.

Meanwhile, at 005:59:01.1 a 5.2-second burn by the service propulsion system raised the spacecraft’s orbit to 111 x 128 nautical miles. Three further manoeuvres on the second day in space measured the oscillatory response of the docked vehicles to obtain data designed to improve the autopilot’s response in this configuration, and also burned off the CSM’s propellant to increase the fidelity of manoeuvres which it would later perform in Earth orbit to rehearse what a mission would do in lunar orbit.

On the third day in space, Schweickart entered the LM to check out its systems. McDivitt joined him 50 minutes later. At about 045:52, shortly after the landing gear was deployed, McDivitt advised Mission Control that Schweickart had twice been sick – this illness would have an impact on the EVA planned for later in the mission. At 046:28 the astronauts made a 5-minute TV transmission from inside the LM. The descent engine was ignited at 049:41:34.5 for a 371.5-second burn in which the autopilot controlled the attitude of the docked vehicles and the astronauts manually throttled the engine to full thrust. The LM was deactivated at 051:00. Several hours later, a service propulsion system burn achieved an almost circular orbit of 125.9 x 131.0 nautical miles in preparation for the rendezvous sequence.

The EVA plan had called for Schweickart to exit the LM’s forward hatch, transfer to the command module hatch, and then return. But owing to his bouts of nausea the spacewalk was cut back from 2 hours 15 minutes to just 39 minutes, to be made on a single daylight pass. The LM was depressurised at 072:45, and the hatch opened at 072:46. Schweickart initiated his egress at 72:59:02, feet first and face up, and was completely out by 073:07. He was wearing the Extravehicular Mobility Unit suit and Portable Life Support System backpack which astronauts were to wear on the lunar surface. A 25-foot nylon safety tether precluded him drifting away. For stability, he inserted his feet into a pair of ‘golden slippers’ on the ‘porch’ of the descent stage. Meanwhile, at 073:02:00 Scott opened the side hatch of the command module and poked his head and shoulders out to monitor Schweickart. Although the transfer to the command module hatch had been cancelled, Schweickart was able to make an abbreviated study of translation and body-attitude-control using handrails affixed to the upper part of the LM. Before ingressing, Schweickart shot 16-mm movie footage of Scott’s activities, and 70-mm Hasselblad pictures of the exterior of both vehicles. Although the EVA was brief and did not involve a period of orbital darkness, it was sufficient to certify the suit and backpack for use on the lunar surface. The LM was repressurised at 073:53, and the CSM several minutes later. After a TV transmission from the LM that started at 074:58:03 and lasted 15 minutes, it was deactivated and McDivitt and Schweickart rejoined Scott.

On the fifth flight day McDivitt and Schweickart were back in the LM by 088:55 in order to prepare that ship for a period of free flight and an active rendezvous. At 092:22 the CSM oriented the pair into the attitude required for undocking. This was attempted at 092:38, but the latches did not fully release until 092:39:36. This was to be the first time that astronauts flew a spacecraft that was incapable of returning to Earth if an emergency were to arise – they relied on Scott to rescue them. Once free, the LM pirouetted while Scott made a visual inspection. At 093:02:54 the CSM used the thrusters of its reaction control system to make a separation manoeuvre. Over the next 6.3 hours, the LM undertook a series of manoeuvres which set up and executed a rendezvous. In the process, the descent propulsion system was fired under different control regimes and with the throttle being varied, after which the descent stage was jettisoned and the rendezvous was performed by the ascent stage. Terminal phase braking began at 098:30:03, and was followed by a period of station-keeping, then formation flying to facilitate mutual photography prior to docking at 099:02:26. McDivitt and Schweickart then transferred back to the CSM. The ascent stage was jettisoned at 101:22:45.0, and half an hour later ignited its main engine and fired it to depletion to enter a 126.6 x 3,760.9-nautical mile orbit.

The remainder of the mission was less hectic, being devoted mainly to conducting multispectral photography to prepare for the Skylab space station. At 169:30:00.4 the service propulsion system was fired in a 24.9-second burn which established the conditions for a nominal de-orbit. Unfavorable weather in the planned recovery area prompted a postponement of the de-orbit by one revolution, and it was performed at 240:31:14.8. The service module was jettisoned a few minutes later. The command module flew the entry profile under the control of its primary guidance system, and splashed into the Atlantic at 17:00:54 on 13 March about 2.7 nautical miles from the target. It settled in the ideal apex-up flotation attitude, and within an hour the crew were onboard USS Guadalcanal.

DRESS REHEARSAL

With Apollo 9 having successfully tested the LM in Earth orbit, the next issue was whether to fly the ‘F’ mission or to push on and attempt the lunar landing. In fact, it would be impossible for LM-4 to attempt the ‘G’ mission, as the software to conduct the powered descent was still under development. Furthermore, owing to propellant restrictions in the ascent stage of this somewhat overweight LM it would be unable to lift off and rendezvous. Tom Stafford, the Apollo 10 commander, argued against his crew waiting for LM-5 to become available. ‘‘There are too many ‘unknowns’ up there,’’ he noted. ‘‘We can’t get rid of the risk element for the men who will land on the Moon but we can minimise it; our job is to find out everything we can in order that only a small amount of ‘unknown’ is left.’’

On 24 March 1969 NASA stated that Apollo 10 would fly the ‘F’ mission. The original idea had called for the LM merely to undock, enter a slightly different orbit, rendezvous and redock, but in December 1968 the Mission Planning and Analysis Division at the Manned Spacecraft Center had urged putting the descent propulsion system through a high-fidelity rehearsal in which the LM would lower its perilune sufficiently to test the ability of the landing radar to detect and lock onto the surface. Howard Tindall also proposed that the LM should initiate the powered descent and then execute an early abort by ‘fire in the hole’ staging, but his colleagues convinced him that this would be too adventurous. One aspect of the decision to go ahead with the ‘F’ mission was to evaluate the tracking and communications of two vehicles in lunar orbit. In essence, it had been decided to exploit the fortuitous relaxation in schedule pressure and improve on Apollo 8 by performing a rehearsal to the point at which a later LM would initiate its powered descent.

The finally agreed plan called for the LM to separate from the CSM in the circular lunar parking orbit, enter an elliptical orbit having a perilune of about 50,000 feet located just east of the prime landing site, execute a low pass and then jettison the descent stage to make the rendezvous.

In April 1969 the site selectors met to decide the prime target for the first Apollo landing. The photographs of ALS-1 taken by Apollo 8 indicated the presence of a smooth blanket of light-toned material that softened or masked the landscape, and a study of the craters showed that the regolith was quite thick, which in turn implied a considerable age. The fact that the site was atypical of the maria made it unattractive for dating the maria, so it was rejected. This left ALS-2 in the southwestern part of Mare Tranquillitatis as the prime target. In early May, Jack Schmitt put it to Tom Stafford that the launch of Apollo 10 be slipped 24 hours from the proposed date so that the low-perilune pass over ALS-2 could be made in illumination matching that of a mission attempting to land there. This would enable high-resolution pictures to be taken of the site and the landmarks on the approach route. Stafford was receptive. Schmitt approached George Low, who asked Chris Kraft, who sought the advice of the flight control specialists – there were issues in favour and against. When the case was put to Sam Phillips he rescheduled the launch.

AS-505 had been installed on Pad 39B on 11 March, and Apollo 10 lifted off on schedule at 16:49:00 GMT on 18 May 1969 with Tom Stafford, John Young and Gene Cernan.

When the S-IVB cutoff at T + 703.76 seconds, the deviations were -0.23 ft/sec in velocity and -0.08 nautical miles in altitude. After translunar injection, CSM-106 ‘Charlie Brown’ separated, turned around and docked with LM-4 ‘Snoopy’, then the pair were released by the stage. The S-IVB then used propulsive venting to adopt a path that would fly past the Moon and enter solar orbit. At 026:32:56.8 the service propulsion system made a 49.2-ft/sec burn to match a July lunar landing trajectory. At 075:55:54.0 the spacecraft entered an initial lunar orbit of 60.2 x 170.0 nautical miles. Two revolutions later, this was refined to 59.2 x 61.0 nautical miles. During a 30-minute colour TV transmission the astronauts showed off the lunar surface. They reported the colour of the surface to be less grey than was described by Apollo 8. In particular, Mare Serenitatis appeared ‘‘tan’’, whereas Mare Tranquillitatis appeared ‘‘dark brown’’.

After undocking at 098:29:20, the vehicles took up station 30 feet apart while Young inspected the LM, and then the CSM moved off. A 27.4-second burn by the descent propulsion system at 099:46:01.6 placed the LM into a descent orbit with its perilune 15 degrees east of ALS-2. The landing radar was tested while passing over that site at an altitude of 47,400 feet an hour later. The pictures taken were of greater resolution than those transmitted by the Lunar Orbiters. Unfortunately, the 16-mm

This oblique view looking northwest across the crater Maskelyne was taken by the Apollo 10 Lunar Module ‘Snoopy’ as it flew low over Mare Tranquillitatis towards the ALS-2 target.

movie camera failed. A descent propulsion system burn at 100:58:25.9 put the LM into an orbit of 12.1 x 190.1 nautical miles to arrange a ‘lead angle’ equivalent to that which would occur at cutoff of an ascent from the lunar surface. At 102:44:49, during preparations to start the rendezvous with the CSM, the LM started to wallow off slowly in yaw and then stopped, and several seconds later it initiated a rapid roll accompanied by small pitch and yaw rates. Subsequent analysis revealed that this anomalous motion was due to human error. The control mode of the abort guidance system had inadvertently been returned to AUTO instead of the Attitude HOLD mode for staging. In AUTO, the abort guidance system steered the LM to enable the rendezvous radar to acquire the CSM, which at this point was not in accordance with the plan. The required attitude was re-established by the commander taking manual control. The descent stage was jettisoned at 102:45:16.9, and 10 minutes later an ascent propulsion system burn achieved an orbit of 11.0×46.5 nautical miles. This matched the insertion orbit for a mission returning from the surface. The LM had the active role in the rendezvous, and docked at 106:22:02. Two hours later the ascent stage was jettisoned, and during the next revolution the ascent propulsion system was fired to depletion in order to place the vehicle into solar orbit.

At 137:39:13.7, after 31 lunar revolutions, the CSM made the transearth injection. The aim was so accurate that it required only a 2.2-ft/sec refinement 3 hours prior to shedding the service module to centre the trajectory in the ‘corridor’ for atmospheric entry. The capsule splashed into the Pacific 1.3 nautical miles off target at 16:52:23 on 26 May and adopted the apex-up flotation attitude. The astronauts were aboard USS Princeton within the hour.

While Apollo 10 was in transit to the Moon, AS-506 was rolled out to Pad 39A in preparation for the Apollo 11 mission. After the pictures taken during the low pass over ALS-2 were examined, it was confirmed as the prime site for Apollo 11. ALS-3 in Sinus Medii was 2 day’s terminator travel westward and would be the backup. If the launch had to be delayed beyond the date for ALS-3, then the target would be ALS-5 in Oceanus Procellarum. In the post-flight debriefing, Tom Stafford pointed out that although the ALS-2 aim point was acceptable, the western end of the ellipse was much rougher. He advised Neil Armstrong that if he were to find himself at the far end of the ellipse and did not have the hover time to manoeuvre among the small craters and boulders to select a spot on which to land, then he would have to ‘‘shove off” – by which Stafford meant abort.

END GAME

A week before Apollo 11 was due to launch, people began to congregate at the Cape communities of Titusville, Cocoa Beach, Satellite Beach and Melbourne. They came from all around the world in order to be able to tell their grandchildren they were present when men set off to try to land on the Moon. By 15 July hotels and motels allowed late-comers to install camp beds in lounges and lobbies, but most people spent the night on the beaches and by the roadside, generating the worst congestion

in Florida’s history. With the notable exception of alarm clocks, which rapidly sold out, shops were able to supply the hoards. As it was to be a dawn launch, the parties ran through the night.

When AS-506 lifted off at 09:32:00 local time on 16 July on a mission to accept President Kennedy’s challenge of landing a man on the Moon before the decade was out, it was estimated that there were about a million people present and 1,000 times as many watching on ‘live’ television.

No-one could be certain that the objective would be achieved, but the way had certainly been well paved.

[1] He did not infer from the absence of detail in the shadows that the Moon was airless, nor did he suggest the presence of open water.

[2] In fact, one of the few names introduced by van Langren to have survived is Langrenus, by which he honoured his own family.

[3] Selene was the Greek moon-goddess.

[4] Like Herschel and Schroter, von Gruithuisen believed the Moon to be inhabited, and after using a small telescope he reported in 1824 his discovery of a city in the equatorial zone near the meridian; but this was later shown to be merely a group of shallow ridges that were visible only when the Sun was low on the local horizon.

[5] For over half a century, geologists had argued about how the Coon Butte crater formed – and this was for a structure that was accessible to in-situ examination. Could there be any hope of resolving the issue of the lunar craters, which could only be peered at from afar!?

[6] On transfer to NASA, the Langley Aeronautical Laboratory became the Langley Research Center, the Ames Aeronautical Laboratory became the Ames Research Center, the Lewis Flight Propulsion Laboratory became the Lewis Research Center and the High-Speed Flight Station became the Flight Research Center.

[7] On 3 December 1958 Eisenhower ordered that JPL be transferred to NASA. This took effect on 1 January 1959, although only under contract, since the facility was owned by Caltech, which NASA paid. In September 1959 the Pentagon voluntarily yielded the Army Ballistic Missile Agency since the military had decided it did not require the Saturn launch vehicle; it would develop the Titan III instead. On 21 October 1959 NASA announced that it was to gain von Braun’s rocket team. On 1 July 1960 the Army Ballistic Missile Agency became the Marshall Space Flight Center.

[8] Physicists James van Allen, Homer Newell, Charles Sonett and Lloyd Berkner were notable early members of the ‘sky science’ community.

[9] Colloquia were held quarterly at different venues on the West Coast through to May 1963.

[10] As would later be realised, Mare Moscoviense fills the floor of a 300-km-diameter crater and Tsiolkovsky covers a portion of the floor of a crater which has a prominent central peak.

[11] The name Ranger set a trend for lunar projects with the names Surveyor and Prospector; in contrast to Mariner for planetary missions – that is ‘land’ names as against ‘sea’ names.

[12] Later, launch operations would be made a separate field centre.

[13] In early 1962 the entire NASA launch organisation was restructured.

[14] The Soviet spacecraft fell silent on 27 February 1961, at a distance of 2З million km from Earth. A launch on 4 February had stranded a similar spacecraft in parking orbit, but its role was disguised by naming it Sputnik 7.

[15] Surface science was only one of the objectives; there were the investigations to be made during the terminal approach, and achieving these would mark an acceptable compromise on the first mission.

[16] They were Lieutenant Commander Alan Bartlett Shepard Jr, Lieutenant Malcolm Scott Carpenter and Lieutenant Commander Walter Marty Schirra Jr from the Navy; Lieutenant Colonel John Herschel Glenn Jr from the Marines; and Captain Virgil Ivan ‘Gus’ Grissom, Captain Donald Kent ‘Deke’ Slayton and Captain Leroy Gordon Cooper Jr from the Air Force.

[17] This reasoning would resurface when John F. Kennedy asked for a worthy challenge.

[18] In a reorganisation on 8 December 1959, the Office of Space Flight Development had become the Office of Space Flight Programs.

[19] In fact, NASA could have launched Shepard several weeks ahead of Gagarin’s flight. If this had been done, Kennedy may well not have issued the challenge of landing a man on the Moon before the decade was out. The fact that Shepard’s flight had been only suborbital whereas Gagarin’s was orbital, would probably not have mattered, since the world’s first ‘spaceman’ would have been an American. The fact that America ‘lost’ both the first satellite and the first man into space could be said to be directly responsible for the race to the Moon. It serves to illustrate that history is not an irresistible tide, it can be extremely sensitive to the outcome of singular events.

[20] Earth imparts a gravitational acceleration of 32.2 ft/sec2.

[21] Newell also wished to maximise the amount of science on manned flights in Earth orbit.

[22] Despite Gold’s assertion that the dust would react only slowly upon being loaded, reporters would remain fascinated by the possibility that a lander would rapidly become submerged by it!

[23] The crater made by Ranger 8 was photographed by Lunar Orbiter 2, and found to be about 13.5 metres in diameter with a mound at its centre.

[24] The converter was installed at JPL, not at Goldstone.

[25] The crater made by Ranger 9 was photographed by Apollo 16 in 1972. At 14 metres in diameter, it was similar to that of its predecessor.

[26] The delay in the Centaur stage was in part due to problems with the configuration of its propellant tanks, but also because the Marshall Space Flight Center was busy with the Saturn launch vehicles. In early 1962, therefore, the Centaur had been transferred to the Lewis Research Center.

[27] In the case of Lunar Orbiter, the wide-angle images would be referred to as medium (M) frames and the narrow-angle images as high-resolution (H) frames.

[28] In fact, Bimat was similar to the Polaroid process.

[29] In particularly, the Planetology Subcommittee called for the Lunar Orbiter Block II to undertake selenodesy, gamma-ray, X-ray, magnetometry, microwave and non-imaging radar studies from orbit.

[30] This was because on a direct ascent the translunar injection point was necessarily near the latitude of the launch site, and for a launch from Florida this was north of the equatorial plane on a southerly heading, which meant that by the time the spacecraft reached lunar distance it would be south of the equatorial plane.

[31] The Manned Space Flight Network was operated under the direction of the Goddard Space Flight Center in support of the Manned Spacecraft Center.

[32] In fact, stereoscopic analysis of the Lunar Orbiter pictures proved difficult due to the manner in which they were scanned in narrow strips for transmission, as this gave the impression of the surface as being corrugated.

[33] Whereas in summer the Moon reaches its ‘full’ phase south of the equator, in winter it does so north of the equator, and since for the early Surveyors the landing sites were well to the west of the lunar meridian with arrival soon after local sunrise in winter months the translunar injection had to be made from south of the Earth’s equator. The restartable Centaur facilitated this by using its first burn to achieve a parking orbit and, once south of the equator, using its second burn to head for the Moon.

[34] During a solar eclipse, when the Moon occults the Sun to terrestrial observers, the irregular profile of the lunar limb often allows light from small sections of the solar disk to be viewed during totality, giving rise to a phenomenon known as Baily’s Beads after the British astronomer Francis Baily who first noted them during an annular eclipse on 15 May 1836.

[35] The term ‘psia’ means pounds of force per square inch on an ‘absolute’ scale measured relative to zero. If a pressure gauge is calibrated to read zero in space, then at sea level on Earth it would read 14.7 psi, which is sea-level atmospheric pressure. A value specified in psia is therefore relative to vacuum, rather than a differential relative to the pressure at sea level on Earth. For large numbers, the difference is insignificant.

[36] The pictures taken by Lunar Orbiter 1 showing Earth against the lunar limb were in black – and-white.

[37] Both Apollo 15 and Apollo 17 were sent to sites imaged by Lunar Orbiter 5; although in the case of Apollo 17 the observations by Apollo 15 also contributed to the selection.

[38] In the late 1950s J. J. Gilvarry argued that the maria were once water oceans, and hosted life. He said the now-dry plains were sedimentary rock, and dark owing to the presence of organic material. He claimed the elemental abundance data from the alpha-scattering instrument matched mudstone even better than it did basalt.

[39] Although NASA was unaware of it, a gamma-ray spectrometer operated in lunar orbit by Luna 10 in 1966 had provided a rudimentary analysis of the composition of the lunar surface across a wide range of latitudes, and the results showed there to be no significant exposures of acidic rock in the highlands.

[40] The term ‘facies’ was introduced to geology in 1838 by the Swiss stratigrapher Amanz Gressly to specify a body of rock having given characteristics.

[41] They were: Lieutenant Charles ‘Pete’ Conrad Jr, Lieutenant Commander James Arthur Lovell Jr, and Lieutenant Commander John Watts Young from the Navy; Major Frank Frederick Borman II, Captain James Alton McDivitt, Captain Thomas Patten Stafford, and Captain Edward Higgins White II from the Air Force; Neil Alden Armstrong, a former naval aviator, now a civilian test pilot for NASA; and Elliot McKay See Jr, a civilian test pilot for the General Electric Company.

[42] Slayton had been grounded in 1962 owing to a heart irregularity while training for a Mercury mission.

[43] They were: Major Edwin Eugene ‘Buzz’ Aldrin Jr, Captain William Alison Anders, Captain Charles Arthur Bassett II, Captain Michael Collins, Captain Donn Fulton Eisele, Captain Theodore Cordy Freeman, and Captain David Randolph Scott from the Air Force; Lieutenant Alan LaVern Bean, Lieutenant Eugene Andrew Cernan, Lieutenant Roger Bruce Chaffee, and Lieutenant Commander Richard Francis Gordon Jr from the Navy; Captain Clifton Curtis Williams from the Marines; Ronnie Walter Cunningham, a research scientists at the RAND Corporation; and Russell Louis ‘Rusty’ Schweickart, a research scientist at the Massachusetts Institute of Technology.

[44] This name change officially took effect on 20 December 1963.

[45] On 26 October 1962 a nomenclature was introduced by which the pad abort tests were to run in sequence from PA-1; the Little Joe II flights were to start at A-001; missions using the Saturn I were to start at A-101; missions using the Saturn IB were to start at A-201; and missions using the Saturn V were to start at A-501, with the ‘A’ standing for ‘Apollo’. The ‘SA’ prefix was employed by the Marshall Space Flight Center (giving precedence to the launch vehicle) and the ‘AS’ prefix was used by the Manned Spacecraft Center (giving precedence to the spacecraft). In addition, the term ‘space vehicle’ was introduced to describe the integrated ‘launch vehicle’ and ‘spacecraft’, with the latter comprising the CSM, the LM (if present) and the SLA structure.

[46] NASA’s Flight Research Center at Edwards Air Force Base was renamed in Dryden’s honour.

[47] On 30 March 1967 George Low suggested that the AS-201 and AS-202 test flights be assigned the designations Apollo 2 and Apollo 3 retrospectively in order to fill in the gap, but this was rejected by Mueller on 24 April. AS-203 was not included because it did not carry a spacecraft.

[48] The last two categories represented the lunar part of the Apollo Applications Program which was being promoted by George Mueller, and when this fell by the wayside the reconnaissance surveys were deleted and the main program was expanded to include ‘enhanced capability’ landings.

[49] Times in this hhh:mm:ss format are with reference to the time of launch.

[50] It is worth noting that the guidance system in the IU performed this magnificent recovery entirely on its own.

[51] CSM-101 had flown on Apollo 7, CSM-102 had been retained by North American Aviation for ground testing, CSM-103 had been assigned to the Apollo 8 ‘C-prime’ mission, CSM-104 was to fly the Apollo 9 ‘D’ mission, CSM-105 was for ground testing, and CSM-106, which was delivered to the Cape on 25 November 1968, was assigned to Apollo 10.

BORING HOLES IN THE SKY

AS-205 lifted off from Pad 34 at 15:02:45 GMT on 11 October 1968 to fly the ‘C’ mission. Flown by Wally Schirra, Donn Eisele and Walt Cunningham, Apollo 7 was

to be open-ended up to 11 days and its purpose was to assess the performance of the Block II spacecraft.

The ascent phase was nominal and the S-IVB achieved a 123 x 152-nautical mile orbit. Prior to separating from the spent stage, the crew temporarily took command of the Instrument Unit and manually manoeuvred the combined vehicle in pitch, roll, and yaw, then they returned control to the launch vehicle. By the time the spacecraft separated at 002:55:02.40, venting of S-IVB propellants had raised the orbit to 123 x 170 nautical miles. The spacecraft moved clear, flipped and moved back in as if to retrieve the LM (which was absent). Since one of the four panels of the SLA had not fully deployed, it was decided that in future the panels would be jettisoned. One of the primary objectives was to demonstrate Apollo’s rendezvous capability using the spent stage as the target. At Schirra’s insistence, one man was awake at all times to monitor the spacecraft’s systems, even though the ongoing work made sleeping difficult. The rendezvous rehearsal was successfully achieved on the second day.

Although this was the first US spacecraft to have sufficient habitable volume for a man to leave his couch and move around, the crew suffered no disorientation in the weightless state, despite efforts to induce motion sickness. However, all three men developed head colds early on, making them grumpy, and in-flight TV, which was a secondary objective, provided a focus for their frustration. When the monochrome camera was finally switched on, however, it delivered excellent results and the crew played up to their audience. But it was a long and tedious flight of monitoring the systems to evaluate their performance, always prepared to intervene in the event of a problem. In fact, it was an exercise in would later be derided as “boring holes in the sky’’.

At 11:11:48 GMT on 22 October the command module splashed in the Atlantic 1.9 nautical miles from the target point. It initially assumed an apex-down attitude, but was soon turned apex-up by the inflatable bags on its nose. The astronauts were retrieved by helicopter and arrived on USS Essex an hour later.

The Apollo 7 mission was successful in every respect, with the service propulsion system firing perfectly eight times. Indeed, afterwards Schirra described the flight as a “101 per cent success’’. In combination with previous missions and ground tests, it certified the CSM for use in Earth orbit and for tests in the cislunar and lunar orbital environments.

MEN ORBIT THE MOON!

On 7 November 1968 George Mueller declared that AS-503 was fit for a mission to the Moon. On 11 November Sam Phillips recommended to the Manned Space Flight Management Council that Apollo 8 enter lunar orbit. Later that day, Mueller told Thomas Paine that he had discussed the mission with the Science and Technology Advisory Committee and with the President’s Science Advisory Committee, both of which had endorsed the proposal, and he recommended that it should be undertaken. After speaking to Frank Borman by telephone, who confirmed his willingness to fly the mission, Paine gave the formal go ahead and told Phillips to make the necessary arrangements. The next day, NASA announced that Apollo 8 would be launched on 21 December and attempt a lunar orbital mission. Earlier in the year, Michael Collins had withdrawn from the crew to undergo a surgical procedure, and had been replaced by his backup, James Lovell.

Tom Stafford, John Young and Gene Cernan were announced on 13 November as the prime crew of Apollo 10, backed up by Gordon Cooper, Donn Eisele and Edgar Mitchell. This established the precedent for a crew backing up one mission, skipping two, and becoming the prime crew of the mission after that. It had yet to be decided, however, whether Apollo 10 would fly the ‘F’ or the ‘G’ mission.[51]

On 9 October 1968 AS-503, complete with CSM-103 and LTA-B, was rolled out to Pad 39A. The countdown demonstration test was completed on 11 December, and the actual countdown began at 00:00 GMT on 16 December. The launch window ran from 20 to 27 December, and it had been decided to try for 21 December to enable the astronauts to inspect the ALS-1 landing site in eastern Mare Tranquillitatis soon after local sunrise.

Frank Borman, James Lovell and Bill Anders entered the spacecraft with a little under 3 hours on the clock. There were no unplanned holds, and Apollo 8 lifted off at 12:51:00 GMT on 21 December for the ‘C-prime’ mission.

The ascent was nominal and the deviations from the trajectory when the S-IVB cut off at T+ 684.98 seconds were + 1.44 ft/sec in velocity and -0.01 nautical mile in altitude, which was almost perfect. At 002:27:22, after the S-IVB and spacecraft had been thoroughly checked, Collins, serving as the CapCom in Mission Control, made the momentous call, ‘‘Apollo 8, you are ‘Go’ for TLI.’’

The 317.7-second translunar injection was started at 002:50:37.8 and produced a velocity of 35,505.4 ft/sec. The spacecraft separated 30 minutes later and the four SLA panels were jettisoned. After turning around, the spacecraft’s ability at station­keeping with the spent stage was assessed. A 1.1-ft/sec manoeuvre was performed at 003:40:01 using the reaction control system of the service module to move clear of the stage, and a 7.7-ft/sec manoeuvre at 004:45:01 increased the separation rate.

At 004:55:56.0 the S-IVB opened its hydrogen vent valve and at 005:07:55.8 it passed oxygen through the engine. At 005:25:55.8 the auxiliary propulsion system was ignited and burned to depletion. The accumulated velocity increment placed the stage on course to fly by the trailing limb of the Moon at an altitude of 681 nautical miles and pass into solar orbit. The spacecraft’s service propulsion system executed a 2.4-second, 20.4-ft/sec midcourse manoeuvre at 010:59:59.2. A 24.8-ft/sec change had been planned, but the engine delivered less thrust than expected and a correction was made at 060:59:55.9 to refine the trajectory. These burns served to calibrate the service propulsion system in advance of calculating the orbit insertion manoeuvre.

In contrast to Apollo 7, this time all three crewmen experienced nausea as a result of rapid body movement, with the symptoms lasting up to 24 hours. The first of six TV transmissions started at 031:10:36 and ran for 23 minutes 37 seconds. The wide – angle lens gave an excellent view of the inside of the spacecraft, where Lovell was preparing a meal, but the telephoto lens passed too much light and pictures of Earth were poor. After a procedure was devised to tape a filter of the still camera onto the TV camera, it produced improved pictures of Earth during a transmission starting at 055:02:45. At 055:38:40 the astronauts were alerted that they had become the first people to enter a region where the gravitational attraction of another body exceeded that of Earth. The spacecraft had been slowing as it climbed up from Earth, but now it began to accelerate as it was drawn in by the Moon. However, they were not yet committed. If a reason developed not to brake into lunar orbit, then Apollo 8 would simply continue on its ‘free return’ trajectory around the back of the Moon and be ‘slingshot’ back to Earth. Although everything was going well, the translunar coast was frustrating in the sense that at no time were the crew able to see their objective owing to the spacecraft’s trajectory in relation to the positions of the Moon and the Sun.

The lunar orbit insertion manoeuvre began at 069:08:20.4 at an altitude of 75.6 nautical miles above the far-side of the Moon, and the 246.9-second burn produced an orbit ranging between 60.0 and 168.5 nautical miles with its high point above the near-side. After the post-burn checklist had been attended to, and while still passing over the far-side, the astronauts had their first opportunity to inspect the surface of the Moon up close. At 071:40:52 they gave a 12-minute TV transmission showing the passing terrain. In contrast to geologists, the astronauts described the surface in terms of ‘‘a battlefield’’, ‘‘a sandbox torn up by children’’, ‘‘a volleyball game played on a dirty beach’’, ‘‘plaster of Paris’’, or (vaguely scientifically) as ‘‘pumice’’. Bright ray craters appeared just as if they had been made by a ‘‘pickaxe striking concrete’’. The colour was varied, sometimes appearing to be black and white, yet other times displaying a distinctly brownish tan. In terms of mood, the surface was ‘‘desolate’’, ‘‘bleak’’ and ‘‘forbidding’’. A 9.6-second burn at 073:35:06.6 circularised the orbit at 60 nautical miles.

As this was the first opportunity for humans to directly observe the Moon at close range, James Sasser of the Apollo Spacecraft Project Office in Houston had served as the ‘project scientist’ for the mission. He formed an advisory team and this drew up a program of photography and visual observations for the crew to perform using a Maurer 16-mm movie camera and a Hasselblad with a 250-mm lens. In particular, the Manned Spacecraft Center wanted views of the eastern limb to assist in selecting landmarks for a lander’s navigational checks prior to the powered descent. Some of this documentation was to be overlapping vertical and oblique pictures which would enable stereoscopic analysis to determine the geographical position and elevation of each feature, but the movie camera was also to be fitted to the spacecraft’s sextant to depict the landmarks in context. In addition, some ‘scientific’ targets were marked on the flight charts as ‘targets of opportunity’ which were to be inspected if time and circumstances allowed. These were to provide either detailed coverage of specific features or broad coverage of areas which had not been adequately imaged by the Lunar Orbiters. And, of course, the ALS-1 landing site was to be inspected. Most of the scientific observing and photography was assigned to Anders, the LMP without a lunar module. Jack Schmitt, a professional geologist who was hired as an astronaut in 1965, served as the main interface between Sasser’s team and the Apollo 8 crew in training, but some briefings were provided by US Geological Survey staff. At the suggestion of Wilmot N. Hess, Director of the Science and Applications Directorate at the Manned Spacecraft Center, SasseTr’s team had set up a ‘science support’ room in Mission Control to listen to the astronauts’ commentaries and watch the TV of the lunar landscape passing below the spacecraft.

The astronauts could recognise surface features in shadows lit by Earthshine, and could see detail on sunward-facing slopes which had been ‘washed out’ in the Lunar Orbiter pictures. In fact, they could perceive detail to within 5 degrees of the ‘zero phase’ point, which is the line of sight with the Sun directly behind the observer. In planning the lunar landing the lower limit for Sun angle had been set at 6 degrees, but the astronauts could see surface detail at angles as low as 2 degrees. They were able to confirm that the upper limit of 16 degrees provided excellent definition, and their observations suggested that it might be possible to raise the limit to 20 degrees – but no higher than this. This enabled the lighting constraints for the lunar landing to be relaxed.

Of the two candidate landing sites in Mare Tranquillitatis, ALS-1 in the east was brighter; so much so, in fact, that it was debatable whether it was truly mare material or a flatfish portion of the adjacent terra. Observing it visually from an altitude of 60 nautical miles, Lovell said it reminded him of an aerial view of Pinacate in Mexico, a volcanic field which he had been shown in training.

Owing to crew fatigue, Frank Borman took the decision at 084:30 to cancel all secondary activities during the final two revolutions, to allow the crew to rest. The only tasks during this period were an alignment of the inertial guidance system and the preparations for transearth injection. But at 085:43:03 they provided the planned 27-minute TV transmission showing the Moon and Earth, and to mark the fact that it was Christmas Eve they recited the first ten verses of the Book of Genesis from the Bible prior to signing off with, ‘‘Good night, good luck, a Merry Christmas, and God bless all of you – all of you on the good Earth.’’

Radio tracking indicated that by the time Apollo 8 was ready to head for home the mascons had perturbed its initially circular orbit into one of 58.6 x 63.6 nautical miles. At 089:19:16.6, after ten revolutions of the Moon, the 203.7-second transearth injection was made on the far-side of the Moon at an altitude of 60.2 nautical miles, which was just about perfect. After returning to the Earth’s gravitational influence, the spacecraft progressively accelerated. Only one small midcourse correction was required. It was made at 104:00:00, and the 15.0-second burn by the service module reaction control system imparted a change of 4.8 ft/sec.

On shedding the service module, the command module adopted its entry attitude and at 146:46:12.8 hit the entry interface travelling at 36,221.1 ft/sec. It pursued an automatically guided profile. The ionisation bathed the interior of the cabin in a cold

An oblique view by Apollo 8 looking northwest across the eastern part of Mare Tranquillitatis. The crater in the foreground is Taruntius-F, and one of the Cauchy clefts crosses the upper part of the picture. The ALS-1 site is out of frame to the south.

blue light as bright as daylight. At 180,000 feet, as expected, the lift vector deflected the vehicle to 210,000 feet, then it resumed its downward course. It splashed into the Pacific 1.4 nautical miles from the target at 15:51:42 on 27 December. It adopted an apex-down position, but promptly righted itself. The astronauts were soon recovered and flown by helicopter to USS Yorktown.

This audacious mission, described as the “greatest voyage since Columbus”, took NASA a giant step towards achieving Kennedy’s challenge.

On 6 January 1969 Deke Slayton called Neil Armstrong, Michael Collins and Buzz Aldrin to his office at the Manned Spacecraft Center and told them that they would fly Apollo 11 and should assume their mission would involve a lunar landing.

On 10 January 1969 John Stevenson, Director of Mission Operations at the Office of Manned Space Flight, circulated a revised version of the tentative schedule for the year that was issued early in 1968. This called for launching the delayed ‘D’ mission on 28 February. As the ‘E’ mission had been rendered irrelevant by Apollo 8, this meant that if the ‘F’ mission flew in May and was satisfactory, it should be possible to attempt the lunar landing in July. The rationale for the ‘F’ mission was to obtain experience of operating in deep space, but after Apollo 8 the issue became whether another test in lunar orbit was required. The decision was postponed until LM-3 had been put through its paces.

SOVIET LUNAR FLYBY

Although the Advanced Research Projects Agency had hoped to beat the Soviets to the vicinity of the Moon, by the time Pioneer 4 became the first American probe to do so this particular race had been won by the Soviets. Luna 1 lifted off at 16:41 GMT on 2 January 1959 on a direct ascent trajectory, and on 4 January flew by the Moon at a range of 5,500 km and passed into solar orbit. In fact, the objective was to hit the Moon, but the Soviets gave the impression that the plan had been to make a flyby. The 1.2-metre-diameter 361-kg spherical probe was not stabilised in flight. Its particles and fields instruments included a magnetometer on a 1-metre-long boom. The transmissions continued for 62 hours, by which time it was 600,000 km from Earth. It detected plasma in interplanetary space, further supporting the existence of the solar wind, but no evidence that the Moon possessed a magnetic field.

NASA EMBRACES LUNAR SCIENCE

The term ‘sky science’ was coined by JPL historian Cargill Hall to encompass the study of the Earth’s upper atmosphere and ionosphere, particles and fields in space and micrometeoroid particles. It included solar and cosmic rays, plasma dynamics and the interaction of the solar and terrestrial magnetic fields. By the late 1950s, sky scientists had a range of instruments with which to pursue their interests. These had been developed and refined initially by balloon-borne packages and, more recently, by sounding rockets. Its members were a cohesive group with impeccable academic pedigrees. By way of the National Academy of Sciences they had played key roles in

The charged particles trapped in the Earth’s magnetic field became known as the van Allen radiation belts.

selecting the experiments for the sounding rockets fired by the United States for the International Geophysical Year, and had dominated planning for the Vanguard and Explorer satellites and Pioneer space probes.[8] As a group, they were not interested in physical bodies such as the Moon other than as sources of magnetic fields, and they were certainly not interested in the geological history of the lunar surface.

In early 1958 ‘planetary scientists’ began a series of informal Lunar and Planetary Exploration Colloquia. The first meeting on 13 May 1958 was jointly sponsored by the RAND Corporation, the California Research Corporation and North American Aviation, and it was hosted by the latter in Downey, California. The three principal objectives were (1) to bring together people of common interest for the exchange of scientific and engineering information; (2) to define the scientific and engineering aspects of lunar and planetary exploration and to provide a means for their long­term appraisal; and (3) to make available, nationally, the collective opinions of a qualified group on this subject.[9]

In June 1958 the National Academy of Sciences, a private organisation chartered in 1863 to promote the advancement of science and, when requested, to advise the government on scientific matters, established the Space Science Board, chaired by Lloyd Berkner, to advise the not-yet-active NASA on space research priorities. By the end of 1958, both the President’s Science Advisory Committee and the Space Science Board had cited ‘lunar exploration’ as a worthwhile scientific objective for the new agency.

The only interest in the Moon as a body in its own right expressed by the Pioneer project started by the Advanced Research Projects Agency was to photograph its far-side. But this was not achieved by the Air Force probes, and the discoveries made by the first Army probe led to the deletion of the imaging system of the second probe in order to obtain further particles and fields observations. To be fair, this data was an important contribution to a rapidly developing field of the International Geophysical Year.

The first lunar project authorised by NASA was the Atlas-Able, which was an Air Force launch of a probe supplied by the Space Technology Laboratories. The initial idea had been to use the Atlas, which was much more powerful than the Thor, for a program that would make two launches to send probes towards Venus and then two to insert probes into lunar orbit, but Luna 1’s flyby of the Moon prompted NASA to order the planetary payloads to be replaced by lunar orbiters. The 170-kg probes were to have a spin-stabilised 1-metre-diameter spherical structure with four ‘paddle wheel’ solar arrays around the equator. They would use liquid-propellant engines to make a midcourse correction on the way to the Moon and later to enter orbit around that body. In addition to a suite of particles and fields instruments, they would carry the TV system made for the Thor-launched probes. The first probe was destroyed on 24 September 1959, when the Atlas exploded during a static test. The second lifted off at 07:26 GMT on 26 November from Pad 14 on a direct ascent trajectory, but the aerodynamic shroud protecting the probe failed 45 seconds into the flight. The third lifted off at 15:13 GMT on 25 September I960 from Pad 12, but the first of the two Able stages malfunctioned and fell into the atmosphere 17 minutes after launch. The final probe was launched at 08:40 GMT on 14 December 1960 from Pad 12 but the vehicle exploded 68 seconds later. Although in each case the plan was to enter lunar orbit, most of the 55-kg scientific payload was for particles and fields investigations; indeed, the TV system was deleted from the second pair of probes to accommodate additional radiation detectors. In fact, the Moon was to serve merely as an ‘anchor’ in space away from Earth. In no way could this series of probes be said to constitute ‘lunar exploration’. However, even as the Atlas-Able probes were being developed the situation was changing.

As Assistant Director of the Lewis Laboratory of the National Advisory Council for Aeronautics, in the summer of 1958 Abraham Silverstein played a leading role in the establishment of NASA. When the new agency set up the Office of Space Plight Development at its headquarters, Silverstein became its Director. He promptly hired Homer E. Newell as his assistant for Space Sciences. Newell had joined the Naval Research Laboratory in 1944, and the next year started to conduct research into the upper atmosphere using sounding rockets – in particular investigating the interaction between the magnetic fields of the Sun and Earth. He served as the Science Program Coordinator for the Vanguard project of the International Geophysical Year.

At NASA, Newell created a division staffed by members of the upper atmosphere research group of the Naval Research Laboratory, to organise the agency’s activities in that field. In November, he appointed Robert Jastrow to chair another division to address astronomy, cosmology and planetary sciences. As a sky scientist, Jastrow set out to learn about these topics by visiting the leading proponents.

On reaching the age of 65 in 1958, Harold Urey had retired from the University of Chicago and taken a research position at the University of California at San Diego. He was a member of the Space Science Board of the National Academy of Sciences, and in a paper entitled The Chemistry of the Moon given on 29 October 1958 at the third Lunar and Planetary Exploration Colloquia he had explained the significance of sending a probe to photograph the far-side of the Moon.

When Jastrow visited Urey in early January 1959, Urey emphasised the ‘‘unique importance’’ of the Moon for achieving an understanding of the origin of the planets. As Jastrow recalled of this meeting in his 1967 book Red Giants and White Dwarfs: ‘‘I was fascinated by [his] story, which had never been told to me before in 14 years of study and research in physics.’’ The following week, at Jastrow’s invitation, Urey gave a 2-day presentation at NASA headquarters in which he urged that probes be sent to the Moon. After deliberating, Newell concluded that NASA should initiate a program to study the Moon as an object in its own right. He formed an ad hoc Working Group on Lunar Exploration, with Jastrow in the chair and Urey as a member, to evaluate and recommend experiments which should be placed into orbit around the Moon or landed on its surface. This gave the lunar (and later planetary) scientists a presence at NASA headquarters to match that of the sky scientists.

At that time, JPL was drawing up a proposal for a program of a dozen deep-space missions, of which five would study the Moon. On 5 February 1959 Jastrow sent a contingent to JPL to pass the word that NASA was keen to undertake lunar exploration. The options were for probes to report results as they plunged to their destruction by smashing into the Moon, to enter lunar orbit, and to land instruments on the surface. JPL was authorised to initiate preliminary work. It formed a study group chaired by Albert R. Hibbs.

In fact, in 1959 JPL engineers and scientists were more interested in the challenge of sending probes to Venus and Mars than they were in studying the Moon. There were ‘windows’ for efficiently sending probes to Mars at 25-month intervals and to Venus at 18-month intervals. As the next windows were October I960 for Mars and January 1961 for Venus, the feeling was that the immediate effort should be devoted to these opportunities, rather than the Moon, which could be reached at almost any time. In 1958 JPL had proposed to NASA the development of a new upper stage for the Atlas. This Vega stage would be powered by the engine of the Viking ‘sounding rocket’, modified for ignition in the upper atmosphere. The Atlas-Vega was to be used to launch satellites. A third stage would dispatch deep-space probes. The Soviet lunar flyby in January 1959 spurred the US Congress to authorise the development of the Vega stage. On 30 April JPL sent NASA a 5-year plan of deep-space missions using the Atlas-Vega. The aim was to devote the early effort to flybys of Venus and Mars, and postpone lunar science until 1961. A rough lander would be followed up by an orbiter equipped to investigate the space environment near the Moon and to obtain high-resolution pictures to enable a site for a soft lander to be chosen. Jastrow recommended to Newell the development of a seismometer, communication system and power supply for the package that would be delivered to the lunar surface by the rough landing method. It was later decided to operate a magnetometer, gamma-ray spectrometer and X-ray fluorescence spectrometer during the approach phase. On 25 May 1959, Silverstein and Newell decided to follow the rough lander launched by the Atlas-Vega with two soft landers launched by the Atlas-Centaur, the latter using a powerful stage that was expected to enter service in 1962. In June 1959 Silverstein told JPL to cancel the Mars mission and reassign its launcher to a lunar orbiter.

On 23 July Keith Glennan, Hugh Dryden and Associate Administrator Richard E. Horner met George B. Kistiakowsky, who had succeeded James Killian as Eisenhower’s Special Assistant for Science of Technology, to discuss the objectives of the space program. Glennan warned that slippage in the development of the Vega stage made planetary flights in 1960-1961 impractical. Windows for the Moon were not only more frequent, the flight time was days rather than months. Glennan recommended that the agency focus on lunar missions in order to address the short­term objectives recently specified by the National Security Council’s policy paper, Preliminary US Policy on Outer Space? This was agreed. Several days later, Silverstein cancelled the Venus mission and directed JPL to prepare a new schedule which focused on the Moon. Meanwhile, Newell had established the Lunar and

Document NSC5814/1.

More Soviet successes 53

Planetary Programs Office and transformed Jastrow’s ad hoc Working Group on Lunar Exploration into a standing committee as the Lunar Science Group.

Ranger triumphs

SUCCESS AT LAST

Ranger 7 was mated with its launch vehicle on 6 July 1964. The countdown began early in the morning of 27 July, but was scrubbed owing to a problem with the Atlas. It lifted off at 16:50 GMT on 28 July, the Atlas performed flawlessly, and the Agena achieved a circular parking orbit at 185 km then performed the translunar injection.

As to the target, Maxime Faget of the Manned Spacecraft Center had suggested investigating the crater made by its predecessor in order to use that calibrated impact to calculate the strength of the surface material, but the Moon was ‘full’ on 24 July and ‘last quarter’ on 1 August, with the result that the Sun would have set for Mare Tranquillitatis. After an analysis found that the best region would be in the vicinity of Guericke in Mare Nubium, in early July Homer Newell approved aiming for a point where the mare was crossed by bright rays from both Copernicus and Tycho. The translunar injection of 39,461 km/hour was within 6.5 km/hour of that planned. It would have caused the spacecraft to skim the leading limb of the Moon and crash on the far-side. The 50-second midcourse manoeuvre at 10:27 on 29 July established the desired trajectory. Afterwards, the terminal approach was analysed in terms of the angle of illumination of the lunar surface, the direction of the velocity vector of the spacecraft and the optical axis of the camera system, and it was decided that no terminal manoeuvre would be required for the photographic operation on 31 July.

The 3-storey Space Flight Operations Facility had been completed several months earlier. It had a main room for engineers and controllers, and nearby science support rooms for scientists to receive and analyse the incoming data. All these rooms were windowless for 24-hour use. Homer Newell, Edgar Cortright and Oran Nicks joined W. H. Pickering in the VIP gallery. Harris Schurmeier and Patrick Rygh supervised the flight control team. Gerard Kuiper’s experimenters congregated in their room. With 20 minutes remaining, George Nichols informed the auditorium that the wide – angle cameras had started to warm up. The duration of this process had been halved, and 90 seconds later he reported they were on full power, prompting a round of applause. These cameras began to take pictures at 13:08:36. The narrow-angle

cameras followed suit at 13:12:09. It was early morning at JPL, but there was a large crowd of technical staff on hand, and they applauded and cheered when Goldstone announced that both video streams were coming in. Impact was at 13:25:49, within 12 km of the aim point.1 This was the first American lunar spacecraft of any type to fully achieve its mission. Schurmeier produced several cases of champagne for the flight controllers, then led the VIPs to join the experimenters.

When Pickering, Newell and Schurmeier entered the auditorium an hour later for a press conference, they received a standing ovation. A total of 4,316 pictures were received. The first was taken at an altitude of 2,100 km and the last at about 500 metres. Goldstone converted the signal to TV format, and simultaneously stored this on magnetic tape and displayed it on a high-speed monitor. A camera whose action was synchronised with the incoming frame rate recorded each TV frame on 35-mm film – this film was then transferred to a vault. As this was going on, a technician ‘sampled’ another screen using a Polaroid camera to provide an initial evaluation of the quality of the results. The tape was replayed to make another film that was flown to the Hollywood-Burbank Airport for processing by Consolidated Film Industries. In the late afternoon local time, prints and slides were driven to JPL. While the experimenters examined the masters, the VIPs viewed copies. The press conference

Подпись: 1

image47

The crater that Ranger 7 made was identified in Apollo 16 photography in 1972.

by the experimenters that evening was broadcast ‘live’ by the national TV networks. After Pickering introduced the team, Kuiper, the principal investigator, began the presentation: ‘‘This is a great day for science, and this is a great day for the United States. We have made progress in resolution of lunar detail not by a factor of 10, as hoped would be possible with this flight, nor by a factor of 100, which would have been already very remarkable, but by a factor of 1,000.’’ In fact, he was being a little optimistic, as the resolution of the final frame was about half a metre.

The experimenters were obliged to provide ‘instant science’, to explain what the pictures showed.

Harold Urey pointed out that he was ‘‘pleasantly surprised’’ at the amount of information that could be inferred from the pictures. The surface was cratered, right down to the limiting resolution of the final frame. The bright rays appeared to have been formed by ‘secondary’ impacts as ejecta fell back on low-energy ballistic trajectories from an energetic ‘primary’ impact. Science fiction authors had reasoned that since the Moon had no atmosphere there could be no erosion, and this had led artists to depict an extremely rugged landscape. The fact that the surface was gently undulating was clear evidence that the incessant rain of meteoritic material was a potent form of erosion. Urey introduced the term ‘gardening’ to describe the process by which impacts ‘turn over’ the material.

Kuiper said the pictures supported his belief that the mare plains were lava flows, the surface of which, having been exposed to the vacuum of space, must be ‘frothy’. This was based on laboratory experiments in which fluids of various viscosities had been exposed to vacuum. He ventured that when an astronaut walked on the surface, the experience would be similar to walking on crunchy snow. He accepted that there would be a layer of impact-generated fragmental debris, at least in some places, but thought it would be very thin, perhaps no more than a few centimetres.

Given the presence of large and obviously heavy blocks of rock, Gene Shoemaker was confident that the surface would bear the weight of a lander.

Nevertheless, Thomas Gold of Cornell University, who was not on the experiment team and not at the conference, had a theory that the maria were deep accumulations of fine dust. On seeing the Ranger 7 pictures Gold told reporters that whilst the dust would flow and tend to smooth out small-scale deformations, the rate at which it did so might be as little as a millimetre per year. As evidence of such flow, he pointed out that the rims of the older-looking craters were softer than the rims of the newer – looking ones.[22]

Although the Ranger 7 results were consistent with the ‘hot Moon’ hypothesis, in which the maria were volcanic lava flows, Urey did not give up on his ‘cold Moon’ hypothesis in which they were splashes of impact melt.

Several days later, Robert Gilruth, the Director of the Manned Spacecraft Center,

image48

image49

image50

image51

image52

image53

An oblique view of the plaster model of the lunar surface made by the US Geological Survey’s Branch of Astrogeology on the basis of the final high-resolution images from the Ranger 7 spacecraft.

and Joseph Shea, the Apollo Spacecraft Program Manager in Houston, visited JPL to be briefed by the experimenters. Shea later told reporters that in the pictures much of the mare plain appeared “relatively benign’’. Overall, Gilruth said, an Apollo landing should be “easier than we thought’’.

On 28 August NASA hosted the Interim Scientific Results Conference, chaired by Oran Nicks. The visual highlight was a 5-minute movie of successive frames of the picture sequence showing Ranger 7’s dive. Immediately afterwards, the experiment team went to the International Astronomical Union meeting in Hamburg, Germany, and showed the movie again. The Union designated the Ranger 7 target area Mare Cognitum – the Known Sea. Shortly afterwards, as the pictures were being used to make an atlas of this region, Gerard Kuiper marvelled, “To have looked at the Moon for so many years, and then to see this. . . it’s a tremendous experience.’’ Ranger 7 gave a flood of data to a community which had been starving for years. The population statistics for primary projectiles is such that there is a small number of really large ones and increasing numbers of ever smaller ones. An airless surface exposed to such a population will gain many small craters, and progressively fewer larger ones. Given actual numbers for the populations, the cratering density (derived from counting) provides an age estimate – at least in terms of a presumption of how the population of projectiles changed over time. The simplest hypothesis is that this has remained constant, so that although the sheer number of potential projectiles has declined, their proportions have remained the same. It was evident that large caters would stand apart, but there would be a size of crater at which a given surface would be saturated – i. e. such craters would be so numerous that they would be rim to rim, and each new crater would mask an old one. This saturation would produce a sharp transition in the ‘crater curve’. Dating by this method can be done only using craters which exceed the saturation size. It was not possible to determine this telescopically, but Ranger 7’s pictures enabled the saturation size for this patch of Mare Nubium to be estimated at 300 metres. At less than this size, the surface was in a ‘steady state’. The areal coverage of Ranger 7 did not include many craters larger than 300 metres, but William Hartmann at the Lunar and Planetary Laboratory of the University of Arizona attempted the measurement and derived an age of 3.6 billion years. During the 1950s C. C. Patterson at Caltech had radiologically dated a number of meteorites, and reached the conclusion that the solar system formed 4.55 ( + 0.07) billion years ago. If the Moon formed at that time, Hartmann’s crater counting indicated that the surface of Mare Nubium was about a billion years younger.

While the scientists digested the Ranger 7 results, there was a hiatus in the project to accommodate the launches of Mariner 3 and Mariner 4 in November 1964, which also used the Atlas-Agena and hence the same pad facilities at the Cape.

SCIENTIFIC TARGETS

On 7 March 1967, several days after Lunar Orbiter 3’s readout was curtailed, the project established a working group to develop the strategy for the final mission of the series. It was decided that if Lunar Orbiter 4 was successful in its mapping, then Lunar Orbiter 5 should undertake a scientific mission involving multiple targets. The photographic objectives were: (1) to obtain additional near-vertical, stereoscopic and westward-looking oblique frames of the eastern candidate sites for the early Apollo landings; (2) to accomplish broad survey coverage of those portions of the far-side which had been in darkness during previous missions; (3) to obtain pictures of sites of interest to the Surveyor project; (4) to reconnoitre potential targets for advanced Apollo landings – i. e. sites outside the equatorial zone; and (5) to take a close look at as many scientifically interesting sites as possible. The main criterion for a site being considered to be interesting was its perceived ‘freshness’. The pictures from Ranger and the Lunar Orbiters to date had revealed most lunar terrain to appear subdued, so it had been decided to seek terrains which had not been exposed for long enough to have been significantly weathered by the incessant rain of material from space.

The preliminary plan was put to Boeing on 21 March, and a meeting on 26 May designed an orbit that would enable the spacecraft to address the widely distributed targets without violating any of its operating constraints. It would have to fly in a near-polar orbit to gain the latitude coverage, on a track with the Sun at an elevation of between 8 and 24 degrees to highlight the topography, and the perilune at about 100 km to provide the requisite 2-metre resolution.

Lawrence Rowan had led the US Geological Survey’s participation in the Apollo site selection process, but he stood down after Lunar Orbiter 3. Donald E. Wilhelms took over this role for Lunar Orbiter 5, with its focus on advanced Apollo missions.

On 15 March Bellcomm had hired Farouk El-Baz, an Egyptian geologist with a PhD from the University of Missouri, and he undertook much of the organisational work. Whereas the sites short-listed for the early Apollo landings were on open plains with as few craters and rocks as possible, it was evident that advanced landings would be best made at sites where craters had excavated boulders. And, of course, there were mountains, rilles and features which appeared to be of volcanic origin. However, to be viable a target required a clear line of approach from the east, and this favoured interesting sites adjacent to smooth plains over which an Apollo lander could make its approach. Of course, if the landing site was several kilometres from the ‘feature’ that attracted the interest of the selectors, some form of surface transportation would require to be provided in order to enable the astronauts to reach their true objective.

On 14 June the Surveyor/Orbiter Utilisation Committee approved the overall plan. The initial target list was compiled largely from telescopic studies, but almost half of the items were revised following a review of the Lunar Orbiter 4 results. The agreed objectives were (1) to inspect 36 sites of scientific interest on the near-side, (2) to obtain additional views of five potential Apollo sites and a number of Surveyor sites, and (3) to map most of the far-side that had not previously been covered.

Lunar Orbiter 5 lifted off at 22:23:01 GMT on 1 August 1967. Its Canopus sensor had difficulty finding its target star, but locked on in time for the 26-second, 30-m/s midcourse manoeuvre at 06:00 on 3 August. A 508-second, 644-m/s insertion burn initiated at 16:48 on 5 August attained a 195 x 6,028-km orbit inclined at 85 degrees with a period of 8 hours 27 minutes. The phase of the Moon was ‘new’ on 6 August, and would be ‘full’ on 20 August. Most of the far-side pictures were to be taken in this initial orbit. The first picture was taken at 23:22 on 6 August, near apolune. An 11.4-second burn at 08:44 on 7 August lowered the perilune to 100 km. At 09:05 an impromptu picture was taken of Earth. A 153-second burn at 05:08 on 9 August lowered the apolune to 1,500 km and reduced the period to 3 hours 11 minutes. The Bimat was cut at 03:30 on 19 August, and the readout was concluded on 27 August.

The Apollo sites had been assigned 44 frame-pairs, which was about 20 per cent of the total. The sites of scientific interest on the near-side had included the rilles in Mare Serenitatis near the crater Littrow and near Sulpicius Gallus; some lava flow features in Mare Imbrium; the craters Copernicus, Dionysus, Alphonsus, Dawes and Fra Mauro; secondary craters associated with Copernicus; the Aristarchus plateau; and small domes near Gruithuisen, Tobias Mayer and Marius. All of these sites were regarded as possible targets for advanced Apollo missions.[37]

On 21 January 1968, during the extended mission, the 61-inch telescope of the University of Arizona successfully photographed the orbiter against the stars when it was at apolune. Ten days later, the spacecraft was deliberately crashed in Oceanus Procellarum.

Astronomers had inferred that either the Moon’s shape or its density distribution (or perhaps both) were irregular. The radio tracking of the Lunar Orbiters did not settle the question of the Moon’s shape, but did yield a major discovery. The early missions in near-equatorial orbits had revealed the Moon’s gravitational field on the near-side to be irregular – after allowing for the variation of velocity with altitude in an elliptical orbit, the vehicles kept speeding up and slowing down. The tracking of Lunar Orbiter 5 in its low polar orbit enabled a gravimetric map to be compiled with sufficient resolution for the ‘anomalies’ to be correlated with surface features. It was found that a vehicle was accelerated as it approached one of the ‘circular maria’ and decelerated afterwards.

Such sites included Imbrium, Crisium, Smythii, Serenitatis, Humorum, Nectaris, Humboldtianum, Orientale and Grimaldi. As the maria were low-lying rather than elevated landforms, it was apparent that they must be of a greater density than their surroundings. One early suggestion was that the ‘attractor’ was the buried body of the impactor which excavated the basin that was later filled in by mare material, but this hypothesis was rejected when it was realised that there were negative anomalies associated with basins that had not been filled in by maria. John O’Keefe argued that the attractor was the infill itself. That is, the anomalies were the due to magma from deep in the interior having erupted onto the surface – gravitational attraction falls off with the inverse square of range, and dense material on the surface would produce a significant local attraction. Negative anomalies included craters such as Copernicus, which had essentially excavated ‘holes’ in the maria. Since the positive anomalies represented concentrations of mass, they were dubbed ‘mascons’. The discovery was reported in a paper in Nature in August 1968 by Paul M. Muller and William L. Sjogren.

If the lunar crust had been able to adjust isostatically to the eruption of dense lava onto the surface there would be no anomalies today; the fact that this had not occurred was evidence that the crust was sufficiently rigid at the time the lava was erupted to support its weight. In 1968 Ralph Baldwin provided an explanation. A basin formed and was ‘dry’ for a while, during which its floor began to adjust isostatically to the removal of the crustal material. But before it could achieve equilibrium, fractures in the floor allowed lava to well up and fill in the low-lying areas. This process of infill occurred in many pulses over an extended time. Being dense, the mare pool tended to sink, thereby forming compression wrinkles in its centre and opening rilles at its periphery. When it was unable to achieve isostatic equilibrium the result was a local mascon. A further realisation (obvious in retrospect) was that the sudden removal of crustal material in the excavation of a basin would relieve the pressure on the mantle below and induce deep melting, which would in turn cause a plume to rise, lift and fracture the floor of the basin, and drive enormous volumes of low-viscosity magma to the surface. A question for further research was why most of the basins on the far-side were ‘dry’ – was the crust thicker on that side of the Moon?

WRAPPING UP

The five Lunar Orbiter missions were launched within a 12-month interval. They suffered various technical problems, but the primary objective of providing pictures in support of Apollo was achieved. Only 78 per cent of the frames were classified as ‘useful’, but a large batch of useless ones were the H frames from the first mission. Although solar flares occurred during missions, photography continued. The worst radiation dose was on 2 September 1966, but the flood of energetic protons did not fog Lunar Orbiter 2’s film. This confirmed the wisdom of using a very ‘slow’ film. The radiation detector data confirmed that the Apollo vehicles and spacesuits would protect astronauts from an average exposure to solar plasma, and indeed from short­term greater-than-average exposure. In all, the five Lunar Orbiters reported a total of 22 micrometeoroid strikes over their entire time in space. The hazard in lunar orbit proved to be about half of that in low Earth orbit. An additional benefit to Apollo from the extended missions of the Lunar Orbiters, was the experience gained by the Manned Space Flight Network in tracking vehicles in lunar orbit. If the existence of mascons had not been discovered prior to the first Apollo mission venturing out to the Moon, the astronauts would have found their orbit varying in an unpredictable (and alarming) manner. This was the value of making a thorough reconnaissance!

Boeing had sufficient parts to assemble a sixth spacecraft, and even before Lunar Orbiter 5 was launched the Office of Space Sciences and Applications considered an additional mission. On 5 July 1967 Lee Scherer explained that this could perform a survey of the far-side at a resolution similar to that provided by Lunar Orbiter 4 of the near-side. One suggestion was that it should carry the gamma-ray spectrometer built for Ranger, in order to make a preliminary map the composition of the surface. On 14 July Homer Newell wrote to Robert Seamans putting the case for launching a sixth mission in November. Seamans refused, in part because it would not directly contribute to Apollo – which was not capable of landing on the far-side.

The scientists had hoped to develop Lunar Orbiter Block II to conduct a series of missions utilising a variety of sensors. In late 1964 the Office of Space Sciences and Applications compiled an experiment list: a gamma-ray spectrometer to survey the abundances of radioactive isotopes on the lunar surface; and infrared experiment to map the surface temperatures; a photometry/colorimetry experiment to determine the variation in the photometric function and colour of the surface material; a radiometer to measure surface thermal gradients; an X-ray fluorescence spectro­meter to survey the relative abundances of nickel and iron on the surface; a solar plasma experiment to measure the spatial and temporal variation in flux and energy distribution of low-energy protons and electrons; a magnetometer to determine whether the Moon had a magnetic field; an instrument to test for a low-density ionospheric plasma; and using the transmitter for a bi-static radar experiment to study the roughness and dielectric properties of the surface. But without the leverage of the Office of Manned Space Flight this proposal failed to attract funding.

MORE SOVIET SUCCESSES

Luna 2 was launched at 06:40 GMT on 12 September 1959, and 33.5 hours later it smashed into the Moon in the triangle defined by the craters Archimedes, Aristillus and Autolycus. On striking the ground at 3 km/sec, the probe would have vaporised. It carried similar instruments to its predecessor. In extending the particles and fields survey down to the surface, it found no appreciable magnetic field and no evidence of a radiation belt. The Earth’s field is generated by electric currents in molten iron in the core. The absence of a dipole field suggested that either the Moon had never developed a molten core, or it had and either the rate of the Moon’s rotation was too slow to generate electric currents or the core had since solidified.9

When Luna 3 was launched at 00:44 GMT on 4 October 1959, it was to undertake the eagerly anticipated photographic mission. It was inserted into a highly eccentric orbit of Earth which would provide a view of the far-side of the Moon. The 279-kg probe was 1.3 metres long. The main body was a 1.2-metre-diameter cylinder, and it had solar transducer cells in fixed positions on its exterior. The earlier probes in this series were battery powered, but a battery would not provide the duration required to undertake this particular mission. In addition to particles and fields instruments, the probe had a camera. Its trajectory crossed the radius of the Moon’s orbit 6,200 km to the south of the Moon. The point of closest approach was at 14:16 on 6 October, and lunar gravity deflected the trajectory northward. While coasting, the probe was spin stabilised. On approaching the Earth-Moon plane, beyond the Moon, gas jets halted the spin, a Sun sensor locked on, and the vehicle rolled until another sensor enabled the optics to view the Moon.

The camera had a 200-mm f/5.6 lens and a 500-mm f/9.6 narrow-angle lens, with the optical axes coaligned. Starting at 03:30 on 7 October, at a range of 65,200 km, pairs of pictures were captured simultaneously on 35-mm film which had a ‘slow’ rating in order to resist being ‘fogged’ by the radiation in the space environment. After 40 minutes of photography, the vehicle resumed its spin for stability. The film was wet-developed, fixed and dried. After the probe had achieved the 480,000-km apogee on 10 October, it headed back for the 47,500-km perigee on 18 October. The film was scanned using a constant-brightness light beam which was detected by a photoelectric multiplier whose output took the form of an analogue signal. The scanner had two transmission rates: a slow rate for when far away from Earth and a higher rate for perigee. Contact with the probe was lost on 22 October. On Earth, the signal was recorded on magnetic tape for further processing. The raw images were marred by bands of ‘noise’, which had to be ‘removed’, and the contrast was drawn

A picture taken by Luna 3 on 7 October 1959 showing Mare Crisium (on the left) and a large portion of the hitherto unobserved hemisphere of the Moon.

image26out to emphasise detail. In the wide lens the lunar disk spanned 10 mm, and in the narrow lens it was 25 mm.

The phase of the Moon was ‘new’ on 2 October and ‘first quarter’ on 9 October. Therefore, when the pictures were taken on 7 October a portion of the near-side was illuminated. The prominent presence of Mare Crisium gave a sense of perspective. The remainder of the illuminated zone was 70 per cent of the hitherto unobserved region. As the Sun was directly behind the camera, the lack of shadow detail made it impossible to discern the topography. However, the results did show there to be few dark features – revealing the hemispheres which faced towards and away from Earth to be different. The maria cover 30 per cent of the near-side, but only 2 per cent of the far-side; in total about 16 per cent. The likelihood of there being fewer maria had been inferred from the paucity of maria on the limb, with those present being patchy rather than major plains, but their virtual absence was a surprise. The fact that the Moon’s rotation is ‘tidally locked’ with Earth was evidently an important factor in creating the dichotomy between the two hemispheres.

The results were published in 1960 as Atlas Obratnoy Storony Luny by N. P. Barabashov, A. A. Mikhaylov and Yu. N. Lipskiy. They unilaterally assigned names to the far-side features, with the two most prominent dark patches becoming Mare Moscoviense and Tsiolkovsky.[10] The atlas listed some 500 features of various types on a scale which represented the Moon as a disk 35 cm in diameter.

The Luna 3 mission was a remarkable success for the first attempt at a difficult task.

REPEAT PERFORMANCE

Now that Ranger Block III had proved itself, the Office of Manned Space Flight asserted its right to specify the requirements for future targets. On 16 October 1964 Sam Phillips, the Apollo Program Director, told Oran Nicks that Ranger 8 should investigate a mare plain in the Apollo zone at a position which was not crossed by rays. At a meeting at JPL on 19 November, the scientists argued for comparing the ‘reddish’ Mare Nubium with a ‘bluish’ one in the eastern hemisphere. Nicks made the formal recommendation to Homer Newell on 9 February 1965, who concurred. The target for the first day of the launch window was to be Mare Tranquillitatis, but if the launch were delayed then it would move westward along the Apollo zone to keep pace with the migrating terminator. The launch window for Ranger 8 opened on 17 February. The Moon was ‘full’ on 16 February and would be ‘last quarter’ on 23 February.

Launch was at 17:05 GMT on 17 February. The translunar injection produced a flyby at a range of 1,828 km. The trajectory was refined by a 59-second midcourse manoeuvre at 10:27 on 18 February. When Ranger 8 made its approach to the Moon, it was decided to start the cameras several minutes early so that the initial pictures would be comparable to the best attainable by a terrestrial telescope. A total of 7,137 pictures were received – almost twice as many as from Ranger 7 owing to the extended sequence. Whereas Ranger 7 had made a near-vertical descent west of the meridian, the target for Ranger 8 was 24 degrees east of the meridian and to reach it the spacecraft had to make a slanting approach. Whilst this significantly increased the areal coverage, in particular depicting the central highlands at an unprecedented resolution, it meant there was no overlap between the frames later on and the lateral velocity smeared the final frames. The impact occurred at 09:57:38 on 20 February. Don Wilhelms was watching through the 36-inch refractor at the Lick Observatory near San Jose in California and listening to a radio countdown from JPL, but saw no flash. Alika Herring of the Lunar and Planetary Laboratory was using the 84-inch reflector at the Kitt Peak National Observatory in Arizona, but did not see anything either. As a result of the lack of overlap, the impact point was not actually within the final frame – not that it really mattered, it was calculated from the trajectory as being 24 km from the aim point.[23] In this case, owing to the smearing of the final images, the best resolution was 1.5 metres.

At a press conference 30 minutes later given by W. H. Pickering, Edgar Cortright, William Cunningham and Harris Schurmeier, the latter delightedly summed up the mission as “another textbook flight”.

The experimenters presented some of the pictures later in the day. There were more rocks than at the Mare Nubium site, once again indicating a substantial bearing strength. In fact, this area was one of the ‘hot spots’ in near-infrared measurements made during the lunar eclipse of 19 December 1964, and the exposed rock supported the interpretation of such thermal anomalies as being due to rocks slowly radiating their heat when the Moon entered into the Earth’s shadow.

Despite the intention to investigate a mare site free of rays, it was discovered that Ranger 8 came down over a faint ray from Theophilus. One striking observation was that the surface of Mare Tranquillitatis appeared remarkably similar to that of Mare Nubium. In fact, Gerard Kuiper, showing one of the final frames, remarked, ‘‘If you didn’t know that this was taken by Ranger 8, you’d think it was one of the Ranger 7 pictures.’’ It was ventured that ‘‘probably all lunar maria are pretty much this way’’.

Harold Urey introduced the term ‘dimple crater’ for irregular rimless pits which, it was speculated, might be where loose surficial material had drained into a cavity in much the same way as sand drains in an hourglass. Noting that tubes and cavities occur in terrestrial lava fields, and believing the lunar maria to be lava flows, Kuiper speculated that such pits might pose a ‘‘treacherous’’ threat to an Apollo lander. To Gene Shoemaker, however, they appeared merely to be degraded secondary impact craters.

On the larger scale, the scientists were pleased that as Ranger 8 made its slanting approach it provided views of Ritter and Sabine in unprecedented detail. These two 30-km-diameter craters in the southwestern Mare Tranquillitatis lacked radial ejecta and secondary craters, and their depth-to-diameter ratios made them anomalously shallow in terms of the curve plotted for impacts by Ralph Baldwin. The fact that they were aligned along the Hypatia rilles, were located on the fringe of a mare and had ‘raised floors’ had led some people to interpret them as volcanic calderas. Even people who favoured the impact origin of craters allowed that Ritter and Sabine

image54

image55

image56

image57

image58

might be ‘hybrid craters’ that were excavated by impacts and later modified by volcanism stimulated by their formation – indeed, they were the exemplars of this hypothesis.