Category Paving the Way for Apollo 11

BORING HOLES IN THE SKY

AS-205 lifted off from Pad 34 at 15:02:45 GMT on 11 October 1968 to fly the ‘C’ mission. Flown by Wally Schirra, Donn Eisele and Walt Cunningham, Apollo 7 was

to be open-ended up to 11 days and its purpose was to assess the performance of the Block II spacecraft.

The ascent phase was nominal and the S-IVB achieved a 123 x 152-nautical mile orbit. Prior to separating from the spent stage, the crew temporarily took command of the Instrument Unit and manually manoeuvred the combined vehicle in pitch, roll, and yaw, then they returned control to the launch vehicle. By the time the spacecraft separated at 002:55:02.40, venting of S-IVB propellants had raised the orbit to 123 x 170 nautical miles. The spacecraft moved clear, flipped and moved back in as if to retrieve the LM (which was absent). Since one of the four panels of the SLA had not fully deployed, it was decided that in future the panels would be jettisoned. One of the primary objectives was to demonstrate Apollo’s rendezvous capability using the spent stage as the target. At Schirra’s insistence, one man was awake at all times to monitor the spacecraft’s systems, even though the ongoing work made sleeping difficult. The rendezvous rehearsal was successfully achieved on the second day.

Although this was the first US spacecraft to have sufficient habitable volume for a man to leave his couch and move around, the crew suffered no disorientation in the weightless state, despite efforts to induce motion sickness. However, all three men developed head colds early on, making them grumpy, and in-flight TV, which was a secondary objective, provided a focus for their frustration. When the monochrome camera was finally switched on, however, it delivered excellent results and the crew played up to their audience. But it was a long and tedious flight of monitoring the systems to evaluate their performance, always prepared to intervene in the event of a problem. In fact, it was an exercise in would later be derided as “boring holes in the sky’’.

At 11:11:48 GMT on 22 October the command module splashed in the Atlantic 1.9 nautical miles from the target point. It initially assumed an apex-down attitude, but was soon turned apex-up by the inflatable bags on its nose. The astronauts were retrieved by helicopter and arrived on USS Essex an hour later.

The Apollo 7 mission was successful in every respect, with the service propulsion system firing perfectly eight times. Indeed, afterwards Schirra described the flight as a “101 per cent success’’. In combination with previous missions and ground tests, it certified the CSM for use in Earth orbit and for tests in the cislunar and lunar orbital environments.

MEN ORBIT THE MOON!

On 7 November 1968 George Mueller declared that AS-503 was fit for a mission to the Moon. On 11 November Sam Phillips recommended to the Manned Space Flight Management Council that Apollo 8 enter lunar orbit. Later that day, Mueller told Thomas Paine that he had discussed the mission with the Science and Technology Advisory Committee and with the President’s Science Advisory Committee, both of which had endorsed the proposal, and he recommended that it should be undertaken. After speaking to Frank Borman by telephone, who confirmed his willingness to fly the mission, Paine gave the formal go ahead and told Phillips to make the necessary arrangements. The next day, NASA announced that Apollo 8 would be launched on 21 December and attempt a lunar orbital mission. Earlier in the year, Michael Collins had withdrawn from the crew to undergo a surgical procedure, and had been replaced by his backup, James Lovell.

Tom Stafford, John Young and Gene Cernan were announced on 13 November as the prime crew of Apollo 10, backed up by Gordon Cooper, Donn Eisele and Edgar Mitchell. This established the precedent for a crew backing up one mission, skipping two, and becoming the prime crew of the mission after that. It had yet to be decided, however, whether Apollo 10 would fly the ‘F’ or the ‘G’ mission.[51]

On 9 October 1968 AS-503, complete with CSM-103 and LTA-B, was rolled out to Pad 39A. The countdown demonstration test was completed on 11 December, and the actual countdown began at 00:00 GMT on 16 December. The launch window ran from 20 to 27 December, and it had been decided to try for 21 December to enable the astronauts to inspect the ALS-1 landing site in eastern Mare Tranquillitatis soon after local sunrise.

Frank Borman, James Lovell and Bill Anders entered the spacecraft with a little under 3 hours on the clock. There were no unplanned holds, and Apollo 8 lifted off at 12:51:00 GMT on 21 December for the ‘C-prime’ mission.

The ascent was nominal and the deviations from the trajectory when the S-IVB cut off at T+ 684.98 seconds were + 1.44 ft/sec in velocity and -0.01 nautical mile in altitude, which was almost perfect. At 002:27:22, after the S-IVB and spacecraft had been thoroughly checked, Collins, serving as the CapCom in Mission Control, made the momentous call, ‘‘Apollo 8, you are ‘Go’ for TLI.’’

The 317.7-second translunar injection was started at 002:50:37.8 and produced a velocity of 35,505.4 ft/sec. The spacecraft separated 30 minutes later and the four SLA panels were jettisoned. After turning around, the spacecraft’s ability at station­keeping with the spent stage was assessed. A 1.1-ft/sec manoeuvre was performed at 003:40:01 using the reaction control system of the service module to move clear of the stage, and a 7.7-ft/sec manoeuvre at 004:45:01 increased the separation rate.

At 004:55:56.0 the S-IVB opened its hydrogen vent valve and at 005:07:55.8 it passed oxygen through the engine. At 005:25:55.8 the auxiliary propulsion system was ignited and burned to depletion. The accumulated velocity increment placed the stage on course to fly by the trailing limb of the Moon at an altitude of 681 nautical miles and pass into solar orbit. The spacecraft’s service propulsion system executed a 2.4-second, 20.4-ft/sec midcourse manoeuvre at 010:59:59.2. A 24.8-ft/sec change had been planned, but the engine delivered less thrust than expected and a correction was made at 060:59:55.9 to refine the trajectory. These burns served to calibrate the service propulsion system in advance of calculating the orbit insertion manoeuvre.

In contrast to Apollo 7, this time all three crewmen experienced nausea as a result of rapid body movement, with the symptoms lasting up to 24 hours. The first of six TV transmissions started at 031:10:36 and ran for 23 minutes 37 seconds. The wide – angle lens gave an excellent view of the inside of the spacecraft, where Lovell was preparing a meal, but the telephoto lens passed too much light and pictures of Earth were poor. After a procedure was devised to tape a filter of the still camera onto the TV camera, it produced improved pictures of Earth during a transmission starting at 055:02:45. At 055:38:40 the astronauts were alerted that they had become the first people to enter a region where the gravitational attraction of another body exceeded that of Earth. The spacecraft had been slowing as it climbed up from Earth, but now it began to accelerate as it was drawn in by the Moon. However, they were not yet committed. If a reason developed not to brake into lunar orbit, then Apollo 8 would simply continue on its ‘free return’ trajectory around the back of the Moon and be ‘slingshot’ back to Earth. Although everything was going well, the translunar coast was frustrating in the sense that at no time were the crew able to see their objective owing to the spacecraft’s trajectory in relation to the positions of the Moon and the Sun.

The lunar orbit insertion manoeuvre began at 069:08:20.4 at an altitude of 75.6 nautical miles above the far-side of the Moon, and the 246.9-second burn produced an orbit ranging between 60.0 and 168.5 nautical miles with its high point above the near-side. After the post-burn checklist had been attended to, and while still passing over the far-side, the astronauts had their first opportunity to inspect the surface of the Moon up close. At 071:40:52 they gave a 12-minute TV transmission showing the passing terrain. In contrast to geologists, the astronauts described the surface in terms of ‘‘a battlefield’’, ‘‘a sandbox torn up by children’’, ‘‘a volleyball game played on a dirty beach’’, ‘‘plaster of Paris’’, or (vaguely scientifically) as ‘‘pumice’’. Bright ray craters appeared just as if they had been made by a ‘‘pickaxe striking concrete’’. The colour was varied, sometimes appearing to be black and white, yet other times displaying a distinctly brownish tan. In terms of mood, the surface was ‘‘desolate’’, ‘‘bleak’’ and ‘‘forbidding’’. A 9.6-second burn at 073:35:06.6 circularised the orbit at 60 nautical miles.

As this was the first opportunity for humans to directly observe the Moon at close range, James Sasser of the Apollo Spacecraft Project Office in Houston had served as the ‘project scientist’ for the mission. He formed an advisory team and this drew up a program of photography and visual observations for the crew to perform using a Maurer 16-mm movie camera and a Hasselblad with a 250-mm lens. In particular, the Manned Spacecraft Center wanted views of the eastern limb to assist in selecting landmarks for a lander’s navigational checks prior to the powered descent. Some of this documentation was to be overlapping vertical and oblique pictures which would enable stereoscopic analysis to determine the geographical position and elevation of each feature, but the movie camera was also to be fitted to the spacecraft’s sextant to depict the landmarks in context. In addition, some ‘scientific’ targets were marked on the flight charts as ‘targets of opportunity’ which were to be inspected if time and circumstances allowed. These were to provide either detailed coverage of specific features or broad coverage of areas which had not been adequately imaged by the Lunar Orbiters. And, of course, the ALS-1 landing site was to be inspected. Most of the scientific observing and photography was assigned to Anders, the LMP without a lunar module. Jack Schmitt, a professional geologist who was hired as an astronaut in 1965, served as the main interface between Sasser’s team and the Apollo 8 crew in training, but some briefings were provided by US Geological Survey staff. At the suggestion of Wilmot N. Hess, Director of the Science and Applications Directorate at the Manned Spacecraft Center, SasseTr’s team had set up a ‘science support’ room in Mission Control to listen to the astronauts’ commentaries and watch the TV of the lunar landscape passing below the spacecraft.

The astronauts could recognise surface features in shadows lit by Earthshine, and could see detail on sunward-facing slopes which had been ‘washed out’ in the Lunar Orbiter pictures. In fact, they could perceive detail to within 5 degrees of the ‘zero phase’ point, which is the line of sight with the Sun directly behind the observer. In planning the lunar landing the lower limit for Sun angle had been set at 6 degrees, but the astronauts could see surface detail at angles as low as 2 degrees. They were able to confirm that the upper limit of 16 degrees provided excellent definition, and their observations suggested that it might be possible to raise the limit to 20 degrees – but no higher than this. This enabled the lighting constraints for the lunar landing to be relaxed.

Of the two candidate landing sites in Mare Tranquillitatis, ALS-1 in the east was brighter; so much so, in fact, that it was debatable whether it was truly mare material or a flatfish portion of the adjacent terra. Observing it visually from an altitude of 60 nautical miles, Lovell said it reminded him of an aerial view of Pinacate in Mexico, a volcanic field which he had been shown in training.

Owing to crew fatigue, Frank Borman took the decision at 084:30 to cancel all secondary activities during the final two revolutions, to allow the crew to rest. The only tasks during this period were an alignment of the inertial guidance system and the preparations for transearth injection. But at 085:43:03 they provided the planned 27-minute TV transmission showing the Moon and Earth, and to mark the fact that it was Christmas Eve they recited the first ten verses of the Book of Genesis from the Bible prior to signing off with, ‘‘Good night, good luck, a Merry Christmas, and God bless all of you – all of you on the good Earth.’’

Radio tracking indicated that by the time Apollo 8 was ready to head for home the mascons had perturbed its initially circular orbit into one of 58.6 x 63.6 nautical miles. At 089:19:16.6, after ten revolutions of the Moon, the 203.7-second transearth injection was made on the far-side of the Moon at an altitude of 60.2 nautical miles, which was just about perfect. After returning to the Earth’s gravitational influence, the spacecraft progressively accelerated. Only one small midcourse correction was required. It was made at 104:00:00, and the 15.0-second burn by the service module reaction control system imparted a change of 4.8 ft/sec.

On shedding the service module, the command module adopted its entry attitude and at 146:46:12.8 hit the entry interface travelling at 36,221.1 ft/sec. It pursued an automatically guided profile. The ionisation bathed the interior of the cabin in a cold

An oblique view by Apollo 8 looking northwest across the eastern part of Mare Tranquillitatis. The crater in the foreground is Taruntius-F, and one of the Cauchy clefts crosses the upper part of the picture. The ALS-1 site is out of frame to the south.

blue light as bright as daylight. At 180,000 feet, as expected, the lift vector deflected the vehicle to 210,000 feet, then it resumed its downward course. It splashed into the Pacific 1.4 nautical miles from the target at 15:51:42 on 27 December. It adopted an apex-down position, but promptly righted itself. The astronauts were soon recovered and flown by helicopter to USS Yorktown.

This audacious mission, described as the “greatest voyage since Columbus”, took NASA a giant step towards achieving Kennedy’s challenge.

On 6 January 1969 Deke Slayton called Neil Armstrong, Michael Collins and Buzz Aldrin to his office at the Manned Spacecraft Center and told them that they would fly Apollo 11 and should assume their mission would involve a lunar landing.

On 10 January 1969 John Stevenson, Director of Mission Operations at the Office of Manned Space Flight, circulated a revised version of the tentative schedule for the year that was issued early in 1968. This called for launching the delayed ‘D’ mission on 28 February. As the ‘E’ mission had been rendered irrelevant by Apollo 8, this meant that if the ‘F’ mission flew in May and was satisfactory, it should be possible to attempt the lunar landing in July. The rationale for the ‘F’ mission was to obtain experience of operating in deep space, but after Apollo 8 the issue became whether another test in lunar orbit was required. The decision was postponed until LM-3 had been put through its paces.

THE SPIDER

Apollo 9 was to be the ‘D’ mission – a lunar module manned flight demonstration in Earth orbit. The payload for the AS-504 launch vehicle was CSM-104 and LM-3. As they were to operate independently, the spacecraft were given radio call-signs. The blue wrapping of the command module for its shipment to the Cape had given it the appearance of a sweet, so it was named ‘Gumdrop’. The arachnid-like configuration of the lunar module prompted the name ‘Spider’.

The launch was scheduled for 28 February 1969 and the countdown was begun at 03:00:00 GMT on 27 February with 28 hours on the clock, but 30 minutes into the planned 3-hour hold at T-16 hours the clock was recycled to T-42 hours in order to enable the crew of James McDivitt, David Scott and Rusty Schweickart to recover from a mild respiratory infection. The count picked up at 07:30:00 on 1 March and the vehicle lifted off from Pad 39A on time at 16:00:00 GMT on 3 March.

The ascent was nominal and at S-IVB cutoff at T+664.66 seconds the deviations were +2.86 ft/sec in velocity and -0.17 nautical mile in altitude, with the result that the initial orbit was almost perfect at 100 nautical miles. At 002:41:16.0 the S-IVB released the CSM, which moved clear, turned end over end to aim its apex at the top of the LM and moved back in. At 003:01:59.3 it docked at the first attempt, marking the first use of this apparatus. Once the tunnel between the two spacecraft had been pressurised, the crew opened the apex hatch of the command module to confirm that all the latches on the docking ring had engaged, and after lines had been connected to supply power to the dormant LM the hatch was reinstalled. On a command issued by the CSM at 004:08:09 the S-IVB released the docked combination.

Preparing the CSM-104 and LM-3 spacecraft for the Apollo 9 mission.

Apollo 9’s S-IVB with the Lunar Module ‘Spider’ exposed.

After the spacecraft was clear, the S-IVB reignited its engine at 004:45:55.5 to raise an apogee of 1,672 nautical miles. Then, after a period of coasting to allow the engine to cool down, it initiated a final burn at 006:07:19.3 to achieve a velocity of 31,620 ft/sec which would send it into solar orbit.

Meanwhile, at 005:59:01.1 a 5.2-second burn by the service propulsion system raised the spacecraft’s orbit to 111 x 128 nautical miles. Three further manoeuvres on the second day in space measured the oscillatory response of the docked vehicles to obtain data designed to improve the autopilot’s response in this configuration, and also burned off the CSM’s propellant to increase the fidelity of manoeuvres which it would later perform in Earth orbit to rehearse what a mission would do in lunar orbit.

On the third day in space, Schweickart entered the LM to check out its systems. McDivitt joined him 50 minutes later. At about 045:52, shortly after the landing gear was deployed, McDivitt advised Mission Control that Schweickart had twice been sick – this illness would have an impact on the EVA planned for later in the mission. At 046:28 the astronauts made a 5-minute TV transmission from inside the LM. The descent engine was ignited at 049:41:34.5 for a 371.5-second burn in which the autopilot controlled the attitude of the docked vehicles and the astronauts manually throttled the engine to full thrust. The LM was deactivated at 051:00. Several hours later, a service propulsion system burn achieved an almost circular orbit of 125.9 x 131.0 nautical miles in preparation for the rendezvous sequence.

The EVA plan had called for Schweickart to exit the LM’s forward hatch, transfer to the command module hatch, and then return. But owing to his bouts of nausea the spacewalk was cut back from 2 hours 15 minutes to just 39 minutes, to be made on a single daylight pass. The LM was depressurised at 072:45, and the hatch opened at 072:46. Schweickart initiated his egress at 72:59:02, feet first and face up, and was completely out by 073:07. He was wearing the Extravehicular Mobility Unit suit and Portable Life Support System backpack which astronauts were to wear on the lunar surface. A 25-foot nylon safety tether precluded him drifting away. For stability, he inserted his feet into a pair of ‘golden slippers’ on the ‘porch’ of the descent stage. Meanwhile, at 073:02:00 Scott opened the side hatch of the command module and poked his head and shoulders out to monitor Schweickart. Although the transfer to the command module hatch had been cancelled, Schweickart was able to make an abbreviated study of translation and body-attitude-control using handrails affixed to the upper part of the LM. Before ingressing, Schweickart shot 16-mm movie footage of Scott’s activities, and 70-mm Hasselblad pictures of the exterior of both vehicles. Although the EVA was brief and did not involve a period of orbital darkness, it was sufficient to certify the suit and backpack for use on the lunar surface. The LM was repressurised at 073:53, and the CSM several minutes later. After a TV transmission from the LM that started at 074:58:03 and lasted 15 minutes, it was deactivated and McDivitt and Schweickart rejoined Scott.

On the fifth flight day McDivitt and Schweickart were back in the LM by 088:55 in order to prepare that ship for a period of free flight and an active rendezvous. At 092:22 the CSM oriented the pair into the attitude required for undocking. This was attempted at 092:38, but the latches did not fully release until 092:39:36. This was to be the first time that astronauts flew a spacecraft that was incapable of returning to Earth if an emergency were to arise – they relied on Scott to rescue them. Once free, the LM pirouetted while Scott made a visual inspection. At 093:02:54 the CSM used the thrusters of its reaction control system to make a separation manoeuvre. Over the next 6.3 hours, the LM undertook a series of manoeuvres which set up and executed a rendezvous. In the process, the descent propulsion system was fired under different control regimes and with the throttle being varied, after which the descent stage was jettisoned and the rendezvous was performed by the ascent stage. Terminal phase braking began at 098:30:03, and was followed by a period of station-keeping, then formation flying to facilitate mutual photography prior to docking at 099:02:26. McDivitt and Schweickart then transferred back to the CSM. The ascent stage was jettisoned at 101:22:45.0, and half an hour later ignited its main engine and fired it to depletion to enter a 126.6 x 3,760.9-nautical mile orbit.

The remainder of the mission was less hectic, being devoted mainly to conducting multispectral photography to prepare for the Skylab space station. At 169:30:00.4 the service propulsion system was fired in a 24.9-second burn which established the conditions for a nominal de-orbit. Unfavorable weather in the planned recovery area prompted a postponement of the de-orbit by one revolution, and it was performed at 240:31:14.8. The service module was jettisoned a few minutes later. The command module flew the entry profile under the control of its primary guidance system, and splashed into the Atlantic at 17:00:54 on 13 March about 2.7 nautical miles from the target. It settled in the ideal apex-up flotation attitude, and within an hour the crew were onboard USS Guadalcanal.

DRESS REHEARSAL

With Apollo 9 having successfully tested the LM in Earth orbit, the next issue was whether to fly the ‘F’ mission or to push on and attempt the lunar landing. In fact, it would be impossible for LM-4 to attempt the ‘G’ mission, as the software to conduct the powered descent was still under development. Furthermore, owing to propellant restrictions in the ascent stage of this somewhat overweight LM it would be unable to lift off and rendezvous. Tom Stafford, the Apollo 10 commander, argued against his crew waiting for LM-5 to become available. ‘‘There are too many ‘unknowns’ up there,’’ he noted. ‘‘We can’t get rid of the risk element for the men who will land on the Moon but we can minimise it; our job is to find out everything we can in order that only a small amount of ‘unknown’ is left.’’

On 24 March 1969 NASA stated that Apollo 10 would fly the ‘F’ mission. The original idea had called for the LM merely to undock, enter a slightly different orbit, rendezvous and redock, but in December 1968 the Mission Planning and Analysis Division at the Manned Spacecraft Center had urged putting the descent propulsion system through a high-fidelity rehearsal in which the LM would lower its perilune sufficiently to test the ability of the landing radar to detect and lock onto the surface. Howard Tindall also proposed that the LM should initiate the powered descent and then execute an early abort by ‘fire in the hole’ staging, but his colleagues convinced him that this would be too adventurous. One aspect of the decision to go ahead with the ‘F’ mission was to evaluate the tracking and communications of two vehicles in lunar orbit. In essence, it had been decided to exploit the fortuitous relaxation in schedule pressure and improve on Apollo 8 by performing a rehearsal to the point at which a later LM would initiate its powered descent.

The finally agreed plan called for the LM to separate from the CSM in the circular lunar parking orbit, enter an elliptical orbit having a perilune of about 50,000 feet located just east of the prime landing site, execute a low pass and then jettison the descent stage to make the rendezvous.

In April 1969 the site selectors met to decide the prime target for the first Apollo landing. The photographs of ALS-1 taken by Apollo 8 indicated the presence of a smooth blanket of light-toned material that softened or masked the landscape, and a study of the craters showed that the regolith was quite thick, which in turn implied a considerable age. The fact that the site was atypical of the maria made it unattractive for dating the maria, so it was rejected. This left ALS-2 in the southwestern part of Mare Tranquillitatis as the prime target. In early May, Jack Schmitt put it to Tom Stafford that the launch of Apollo 10 be slipped 24 hours from the proposed date so that the low-perilune pass over ALS-2 could be made in illumination matching that of a mission attempting to land there. This would enable high-resolution pictures to be taken of the site and the landmarks on the approach route. Stafford was receptive. Schmitt approached George Low, who asked Chris Kraft, who sought the advice of the flight control specialists – there were issues in favour and against. When the case was put to Sam Phillips he rescheduled the launch.

AS-505 had been installed on Pad 39B on 11 March, and Apollo 10 lifted off on schedule at 16:49:00 GMT on 18 May 1969 with Tom Stafford, John Young and Gene Cernan.

When the S-IVB cutoff at T + 703.76 seconds, the deviations were -0.23 ft/sec in velocity and -0.08 nautical miles in altitude. After translunar injection, CSM-106 ‘Charlie Brown’ separated, turned around and docked with LM-4 ‘Snoopy’, then the pair were released by the stage. The S-IVB then used propulsive venting to adopt a path that would fly past the Moon and enter solar orbit. At 026:32:56.8 the service propulsion system made a 49.2-ft/sec burn to match a July lunar landing trajectory. At 075:55:54.0 the spacecraft entered an initial lunar orbit of 60.2 x 170.0 nautical miles. Two revolutions later, this was refined to 59.2 x 61.0 nautical miles. During a 30-minute colour TV transmission the astronauts showed off the lunar surface. They reported the colour of the surface to be less grey than was described by Apollo 8. In particular, Mare Serenitatis appeared ‘‘tan’’, whereas Mare Tranquillitatis appeared ‘‘dark brown’’.

After undocking at 098:29:20, the vehicles took up station 30 feet apart while Young inspected the LM, and then the CSM moved off. A 27.4-second burn by the descent propulsion system at 099:46:01.6 placed the LM into a descent orbit with its perilune 15 degrees east of ALS-2. The landing radar was tested while passing over that site at an altitude of 47,400 feet an hour later. The pictures taken were of greater resolution than those transmitted by the Lunar Orbiters. Unfortunately, the 16-mm

This oblique view looking northwest across the crater Maskelyne was taken by the Apollo 10 Lunar Module ‘Snoopy’ as it flew low over Mare Tranquillitatis towards the ALS-2 target.

movie camera failed. A descent propulsion system burn at 100:58:25.9 put the LM into an orbit of 12.1 x 190.1 nautical miles to arrange a ‘lead angle’ equivalent to that which would occur at cutoff of an ascent from the lunar surface. At 102:44:49, during preparations to start the rendezvous with the CSM, the LM started to wallow off slowly in yaw and then stopped, and several seconds later it initiated a rapid roll accompanied by small pitch and yaw rates. Subsequent analysis revealed that this anomalous motion was due to human error. The control mode of the abort guidance system had inadvertently been returned to AUTO instead of the Attitude HOLD mode for staging. In AUTO, the abort guidance system steered the LM to enable the rendezvous radar to acquire the CSM, which at this point was not in accordance with the plan. The required attitude was re-established by the commander taking manual control. The descent stage was jettisoned at 102:45:16.9, and 10 minutes later an ascent propulsion system burn achieved an orbit of 11.0×46.5 nautical miles. This matched the insertion orbit for a mission returning from the surface. The LM had the active role in the rendezvous, and docked at 106:22:02. Two hours later the ascent stage was jettisoned, and during the next revolution the ascent propulsion system was fired to depletion in order to place the vehicle into solar orbit.

At 137:39:13.7, after 31 lunar revolutions, the CSM made the transearth injection. The aim was so accurate that it required only a 2.2-ft/sec refinement 3 hours prior to shedding the service module to centre the trajectory in the ‘corridor’ for atmospheric entry. The capsule splashed into the Pacific 1.3 nautical miles off target at 16:52:23 on 26 May and adopted the apex-up flotation attitude. The astronauts were aboard USS Princeton within the hour.

While Apollo 10 was in transit to the Moon, AS-506 was rolled out to Pad 39A in preparation for the Apollo 11 mission. After the pictures taken during the low pass over ALS-2 were examined, it was confirmed as the prime site for Apollo 11. ALS-3 in Sinus Medii was 2 day’s terminator travel westward and would be the backup. If the launch had to be delayed beyond the date for ALS-3, then the target would be ALS-5 in Oceanus Procellarum. In the post-flight debriefing, Tom Stafford pointed out that although the ALS-2 aim point was acceptable, the western end of the ellipse was much rougher. He advised Neil Armstrong that if he were to find himself at the far end of the ellipse and did not have the hover time to manoeuvre among the small craters and boulders to select a spot on which to land, then he would have to ‘‘shove off” – by which Stafford meant abort.

END GAME

A week before Apollo 11 was due to launch, people began to congregate at the Cape communities of Titusville, Cocoa Beach, Satellite Beach and Melbourne. They came from all around the world in order to be able to tell their grandchildren they were present when men set off to try to land on the Moon. By 15 July hotels and motels allowed late-comers to install camp beds in lounges and lobbies, but most people spent the night on the beaches and by the roadside, generating the worst congestion

in Florida’s history. With the notable exception of alarm clocks, which rapidly sold out, shops were able to supply the hoards. As it was to be a dawn launch, the parties ran through the night.

When AS-506 lifted off at 09:32:00 local time on 16 July on a mission to accept President Kennedy’s challenge of landing a man on the Moon before the decade was out, it was estimated that there were about a million people present and 1,000 times as many watching on ‘live’ television.

No-one could be certain that the objective would be achieved, but the way had certainly been well paved.

[1] He did not infer from the absence of detail in the shadows that the Moon was airless, nor did he suggest the presence of open water.

[2] In fact, one of the few names introduced by van Langren to have survived is Langrenus, by which he honoured his own family.

[3] Selene was the Greek moon-goddess.

[4] Like Herschel and Schroter, von Gruithuisen believed the Moon to be inhabited, and after using a small telescope he reported in 1824 his discovery of a city in the equatorial zone near the meridian; but this was later shown to be merely a group of shallow ridges that were visible only when the Sun was low on the local horizon.

[5] For over half a century, geologists had argued about how the Coon Butte crater formed – and this was for a structure that was accessible to in-situ examination. Could there be any hope of resolving the issue of the lunar craters, which could only be peered at from afar!?

[6] On transfer to NASA, the Langley Aeronautical Laboratory became the Langley Research Center, the Ames Aeronautical Laboratory became the Ames Research Center, the Lewis Flight Propulsion Laboratory became the Lewis Research Center and the High-Speed Flight Station became the Flight Research Center.

[7] On 3 December 1958 Eisenhower ordered that JPL be transferred to NASA. This took effect on 1 January 1959, although only under contract, since the facility was owned by Caltech, which NASA paid. In September 1959 the Pentagon voluntarily yielded the Army Ballistic Missile Agency since the military had decided it did not require the Saturn launch vehicle; it would develop the Titan III instead. On 21 October 1959 NASA announced that it was to gain von Braun’s rocket team. On 1 July 1960 the Army Ballistic Missile Agency became the Marshall Space Flight Center.

[8] Physicists James van Allen, Homer Newell, Charles Sonett and Lloyd Berkner were notable early members of the ‘sky science’ community.

[9] Colloquia were held quarterly at different venues on the West Coast through to May 1963.

[10] As would later be realised, Mare Moscoviense fills the floor of a 300-km-diameter crater and Tsiolkovsky covers a portion of the floor of a crater which has a prominent central peak.

[11] The name Ranger set a trend for lunar projects with the names Surveyor and Prospector; in contrast to Mariner for planetary missions – that is ‘land’ names as against ‘sea’ names.

[12] Later, launch operations would be made a separate field centre.

[13] In early 1962 the entire NASA launch organisation was restructured.

[14] The Soviet spacecraft fell silent on 27 February 1961, at a distance of 2З million km from Earth. A launch on 4 February had stranded a similar spacecraft in parking orbit, but its role was disguised by naming it Sputnik 7.

[15] Surface science was only one of the objectives; there were the investigations to be made during the terminal approach, and achieving these would mark an acceptable compromise on the first mission.

[16] They were Lieutenant Commander Alan Bartlett Shepard Jr, Lieutenant Malcolm Scott Carpenter and Lieutenant Commander Walter Marty Schirra Jr from the Navy; Lieutenant Colonel John Herschel Glenn Jr from the Marines; and Captain Virgil Ivan ‘Gus’ Grissom, Captain Donald Kent ‘Deke’ Slayton and Captain Leroy Gordon Cooper Jr from the Air Force.

[17] This reasoning would resurface when John F. Kennedy asked for a worthy challenge.

[18] In a reorganisation on 8 December 1959, the Office of Space Flight Development had become the Office of Space Flight Programs.

[19] In fact, NASA could have launched Shepard several weeks ahead of Gagarin’s flight. If this had been done, Kennedy may well not have issued the challenge of landing a man on the Moon before the decade was out. The fact that Shepard’s flight had been only suborbital whereas Gagarin’s was orbital, would probably not have mattered, since the world’s first ‘spaceman’ would have been an American. The fact that America ‘lost’ both the first satellite and the first man into space could be said to be directly responsible for the race to the Moon. It serves to illustrate that history is not an irresistible tide, it can be extremely sensitive to the outcome of singular events.

[20] Earth imparts a gravitational acceleration of 32.2 ft/sec2.

[21] Newell also wished to maximise the amount of science on manned flights in Earth orbit.

[22] Despite Gold’s assertion that the dust would react only slowly upon being loaded, reporters would remain fascinated by the possibility that a lander would rapidly become submerged by it!

[23] The crater made by Ranger 8 was photographed by Lunar Orbiter 2, and found to be about 13.5 metres in diameter with a mound at its centre.

[24] The converter was installed at JPL, not at Goldstone.

[25] The crater made by Ranger 9 was photographed by Apollo 16 in 1972. At 14 metres in diameter, it was similar to that of its predecessor.

[26] The delay in the Centaur stage was in part due to problems with the configuration of its propellant tanks, but also because the Marshall Space Flight Center was busy with the Saturn launch vehicles. In early 1962, therefore, the Centaur had been transferred to the Lewis Research Center.

[27] In the case of Lunar Orbiter, the wide-angle images would be referred to as medium (M) frames and the narrow-angle images as high-resolution (H) frames.

[28] In fact, Bimat was similar to the Polaroid process.

[29] In particularly, the Planetology Subcommittee called for the Lunar Orbiter Block II to undertake selenodesy, gamma-ray, X-ray, magnetometry, microwave and non-imaging radar studies from orbit.

[30] This was because on a direct ascent the translunar injection point was necessarily near the latitude of the launch site, and for a launch from Florida this was north of the equatorial plane on a southerly heading, which meant that by the time the spacecraft reached lunar distance it would be south of the equatorial plane.

[31] The Manned Space Flight Network was operated under the direction of the Goddard Space Flight Center in support of the Manned Spacecraft Center.

[32] In fact, stereoscopic analysis of the Lunar Orbiter pictures proved difficult due to the manner in which they were scanned in narrow strips for transmission, as this gave the impression of the surface as being corrugated.

[33] Whereas in summer the Moon reaches its ‘full’ phase south of the equator, in winter it does so north of the equator, and since for the early Surveyors the landing sites were well to the west of the lunar meridian with arrival soon after local sunrise in winter months the translunar injection had to be made from south of the Earth’s equator. The restartable Centaur facilitated this by using its first burn to achieve a parking orbit and, once south of the equator, using its second burn to head for the Moon.

[34] During a solar eclipse, when the Moon occults the Sun to terrestrial observers, the irregular profile of the lunar limb often allows light from small sections of the solar disk to be viewed during totality, giving rise to a phenomenon known as Baily’s Beads after the British astronomer Francis Baily who first noted them during an annular eclipse on 15 May 1836.

[35] The term ‘psia’ means pounds of force per square inch on an ‘absolute’ scale measured relative to zero. If a pressure gauge is calibrated to read zero in space, then at sea level on Earth it would read 14.7 psi, which is sea-level atmospheric pressure. A value specified in psia is therefore relative to vacuum, rather than a differential relative to the pressure at sea level on Earth. For large numbers, the difference is insignificant.

[36] The pictures taken by Lunar Orbiter 1 showing Earth against the lunar limb were in black – and-white.

[37] Both Apollo 15 and Apollo 17 were sent to sites imaged by Lunar Orbiter 5; although in the case of Apollo 17 the observations by Apollo 15 also contributed to the selection.

[38] In the late 1950s J. J. Gilvarry argued that the maria were once water oceans, and hosted life. He said the now-dry plains were sedimentary rock, and dark owing to the presence of organic material. He claimed the elemental abundance data from the alpha-scattering instrument matched mudstone even better than it did basalt.

[39] Although NASA was unaware of it, a gamma-ray spectrometer operated in lunar orbit by Luna 10 in 1966 had provided a rudimentary analysis of the composition of the lunar surface across a wide range of latitudes, and the results showed there to be no significant exposures of acidic rock in the highlands.

[40] The term ‘facies’ was introduced to geology in 1838 by the Swiss stratigrapher Amanz Gressly to specify a body of rock having given characteristics.

[41] They were: Lieutenant Charles ‘Pete’ Conrad Jr, Lieutenant Commander James Arthur Lovell Jr, and Lieutenant Commander John Watts Young from the Navy; Major Frank Frederick Borman II, Captain James Alton McDivitt, Captain Thomas Patten Stafford, and Captain Edward Higgins White II from the Air Force; Neil Alden Armstrong, a former naval aviator, now a civilian test pilot for NASA; and Elliot McKay See Jr, a civilian test pilot for the General Electric Company.

[42] Slayton had been grounded in 1962 owing to a heart irregularity while training for a Mercury mission.

[43] They were: Major Edwin Eugene ‘Buzz’ Aldrin Jr, Captain William Alison Anders, Captain Charles Arthur Bassett II, Captain Michael Collins, Captain Donn Fulton Eisele, Captain Theodore Cordy Freeman, and Captain David Randolph Scott from the Air Force; Lieutenant Alan LaVern Bean, Lieutenant Eugene Andrew Cernan, Lieutenant Roger Bruce Chaffee, and Lieutenant Commander Richard Francis Gordon Jr from the Navy; Captain Clifton Curtis Williams from the Marines; Ronnie Walter Cunningham, a research scientists at the RAND Corporation; and Russell Louis ‘Rusty’ Schweickart, a research scientist at the Massachusetts Institute of Technology.

[44] This name change officially took effect on 20 December 1963.

[45] On 26 October 1962 a nomenclature was introduced by which the pad abort tests were to run in sequence from PA-1; the Little Joe II flights were to start at A-001; missions using the Saturn I were to start at A-101; missions using the Saturn IB were to start at A-201; and missions using the Saturn V were to start at A-501, with the ‘A’ standing for ‘Apollo’. The ‘SA’ prefix was employed by the Marshall Space Flight Center (giving precedence to the launch vehicle) and the ‘AS’ prefix was used by the Manned Spacecraft Center (giving precedence to the spacecraft). In addition, the term ‘space vehicle’ was introduced to describe the integrated ‘launch vehicle’ and ‘spacecraft’, with the latter comprising the CSM, the LM (if present) and the SLA structure.

[46] NASA’s Flight Research Center at Edwards Air Force Base was renamed in Dryden’s honour.

[47] On 30 March 1967 George Low suggested that the AS-201 and AS-202 test flights be assigned the designations Apollo 2 and Apollo 3 retrospectively in order to fill in the gap, but this was rejected by Mueller on 24 April. AS-203 was not included because it did not carry a spacecraft.

[48] The last two categories represented the lunar part of the Apollo Applications Program which was being promoted by George Mueller, and when this fell by the wayside the reconnaissance surveys were deleted and the main program was expanded to include ‘enhanced capability’ landings.

[49] Times in this hhh:mm:ss format are with reference to the time of launch.

[50] It is worth noting that the guidance system in the IU performed this magnificent recovery entirely on its own.

[51] CSM-101 had flown on Apollo 7, CSM-102 had been retained by North American Aviation for ground testing, CSM-103 had been assigned to the Apollo 8 ‘C-prime’ mission, CSM-104 was to fly the Apollo 9 ‘D’ mission, CSM-105 was for ground testing, and CSM-106, which was delivered to the Cape on 25 November 1968, was assigned to Apollo 10.

WHENCE THE MOON?

A number of theories have been suggested over the years to explain the origin of the Moon, which is unique as a planetary satellite in that it has the greatest mass as a fraction of its primary, with the result that its orbital angular momentum exceeds the rotational momentum of the planet.

Whence the Moon? 31

In 1796 the French mathematician Pierre Simon de Laplace, inspired by the rings of Saturn, proposed that the solar system formed by the gravitational collapse of an enormous cloud of gas which was in a state of rotation. The conservation of angular momentum would have required the rate of rotation to increase, causing material to be shed every so often and making a series of concentric rings in a single plane. The central mass eventually formed the Sun, which was sufficiently hot to become self­luminous. As each ring of material condensed to become a planet, the process would have shed local rings which in turn formed satellites – in Earth’s case, the Moon. In Laplace’s time, the solar system appeared to comprise the entire celestial realm apart from the stars, and therefore his nebular hypothesis was the first serious attempt at cosmogony. Although accepted for many years, mathematical analysis later showed that it would not work as Laplace had imagined.

In 1878 George H. Darwin posited that the Earth and Moon formed together. The rapidly rotating body of hot liquid became an ellipsoid, rotating about its minor axis in an unstable equilibrium with two forces acting upon it: its own natural period of vibration, and tides raised by the Sun’s gravity. Once the forces achieved resonance, the shape became progressively more like a dumbbell until one day the narrow ‘neck’ collapsed, leaving two masses, the larger becoming Earth and the smaller the Moon. This fission hypothesis was popular for some time, but was later discarded owing to mathematical deficiencies, not least because a rapidly spinning ball of fluid would tend to divide into two more or less comparable masses, whereas the Moon has only 1/81st the mass of Earth.

In The Planets: Their Origin and Development, which was based on lectures he gave at Yale University and published in 1952, Harold Urey discussed the Moon in relation to the solar system as a whole. He argued that the Moon condensed from the solar nebula independently, and was later captured by Earth. Furthermore, he said it had never undergone thermal differentiation and that, consequently, its surface had no volcanic structures. This was dubbed the ‘cold Moon’ hypothesis.

In 1954 Gerard Kuiper proposed that the Earth and Moon formed simulta­neously in a common envelope within the solar nebula, and soon became gravitationally bound. He said the preponderance of craters was due to the Moon sweeping up all the debris in the neighbourhood. As the Moon’s mass is relatively large as a ratio of its primary, this made the Earth and its Moon essentially a ‘double planet’.

Nevertheless, as the space age dawned the origin of the Moon and the state of its interior were contested.

LOBOTOMY

Ranger 4 arrived at the Cape on 26 February 1962. The countdown ran smoothly to liftoff at 20:50 GMT on 23 April. The Atlas performed satisfactorily, the Agena achieved the desired parking orbit and then made the translunar injection manoeuvre as planned. But when the spacecraft appeared above the horizon at Johannesburg it was transmitting a carrier signal without encoded telemetry, which meant that it was not possible to determine the state of the systems. Unable to lock onto the Sun, the initial instabilities imparted by separation from the spent stage caused the spacecraft to tumble. It was concluded that the master clock in the computer/sequencer must have failed. Ranger 4 had transmitted telemetry during the ascent, but the clock had stopped at some point in the gap in coverage between the vehicle passing beyond the final station of the Eastern Test Range and its coming into range of Johannesburg. In effect, the Agena had released a lobotomised robot. Ironically, the radar tracking by Woomera showed that the slight discrepancy in the trajectory would have been well within the capacity of the spacecraft to correct.

The target for Ranger 4 was the same as for its predecessor. The Moon was ‘full’ on 20 April and would be ‘last quarter’ on 27 April. James Webb, W. H. Pickering, Oran Nicks, Clifford Cummings and James Burke congregated at Goldstone on 26 April as the spacecraft approached the Moon. Without solar power, the battery had expired, terminating the carrier wave from the main transmitter, but the fact that the independently powered surface package was transmitting enabled radio tracking to continue. At 12:47 GMT, some 64 hours after launch, the spacecraft passed behind the leading limb of the Moon. Calculations showed that it impacted 2 minutes later.

For the first time, American hardware had hit the Moon, marking a success for

image44

On 23 April 1962 an Atlas-Agena lifts off with the Ranger 4 spacecraft.

the launch vehicle – but this was little consolation for the spacecraft engineers, and the scientists gained nothing. On the one hand, in the original concept of the Block II it was deemed that three flights would be necessary to have a reasonable probability of achieving a fully successful flight that would deliver the scientific objectives of the project. However, the scientists appeared to think that every flight should succeed! It was difficult to precisely determine why Ranger 4’s clock had stopped, because the failure occurred when out of communication and it prevented the transmission of telemetry. But because the telemetry was present when the spacecraft was last seen on the Agena and absent following its release, attention focused on the separation procedure – in particular, when the umbilical plug was withdrawn from the bus and the onboard computer/sequencer issued the power-up command to the systems. It was inferred that there must have been a short circuit at this time, and the obvious root cause was the heat sterilisation process. Additional waivers were issued, but the computer/sequencer for Ranger 5 had already been treated. With mass no longer an issue for the Block II, it was decided to install a backup clock in order to ensure that telemetry would be produced in the event of the computer/sequencer being disabled.

APOLLO SITE SHORT-LIST

When the Apollo Site Selection Board met on 30 March 1967 the Apollo officials announced that whilst they would seek further Lunar Orbiter data, that from the first three missions satisfied “the minimal requirements of the Apollo program for site survey for the first Apollo landing”. By now nine mare sites in the Apollo zone were deemed to be suitable as ‘prime sites’ for the early Apollo landings: one in Mare Foecunditatis, two in Mare Tranquillitatis, one in Sinus Medii and five in Oceanus Procellarum. These were designated ‘Set B’.4 For each such site, the US Geological Survey produced geological maps at scales of 1:25,000 and 1:100,000 to supplement the 1:1,000,000 regional maps. It was noticed that the sites on the eastern maria had high densities of large but shallow craters, and the sites on the western maria were generally flatter but rougher in detail. The astronomers had long ago noted that there was a difference in spectral hue, with the eastern maria being bluish and the western maria reddish.

On 15 December 1967 the Apollo Site Selection Board convened at the Manned Spacecraft Center to refine the target list for the first Apollo landing. All of the sites of Set B were acceptable in terms of their approach routes. However, as a landing in Mare Foecunditatis would not allow sufficient time after rounding the eastern limb for radio tracking to verify the lander’s trajectory prior to powered descent, this site was discarded. Five sites were short-listed as ‘Set C’. It was decided that three of these must be selected as options for the first landing mission, forming a prime site and two backups spaced in lunar longitude to accommodate successive 2-day delays in launch. It was recognised that the need for the crew to familiarise themselves with three sites would increase their training burden, but there would be no impact on the surface activities because the first landing was not to include a mapped traverse. In east to west sequence, the five sites were II-P-2, II-P-6, II-P-8, III-P-11 and II-P-13. Whilst it was clear that the prime site would be in the eastern hemisphere, the meeting did not specify whether it should be II-P-2 or II-P-6.

On 26 September 1968 the Set C ellipses were ‘stretched’ from 5.3 x 7.9 km to 5.0 x 15.0 km to allow for uncertainties in the Moon’s gravitational field that might cause a lander to come in either ‘short’ or ‘long’ of the designated aim point. On 3 June 1969 the Set C sites were renamed Apollo Landing Site (ALS) 1 through 5 respectively.

They were I-P-1 in Mare Foecunditatis, II-P-2 and II-P-6 in Mare Tranquillitatis, II-P-8 in Sinus Medii, and II-P-11, III-P-9, III-P-11, III-P-12 and II-P-13 in Oceanus Procellarum.

THE FIRST LM

In mid-1966 Sam Phillips had hoped that AS-206 would be able to launch LM-1 in April 1967, and Kurt Debus, estimating that it would take 6 months to check out the spacecraft, had asked Grumman to send it to the Cape in September 1966. But it was delayed by manufacturing issues and combustion instabilities in the ascent engine. Nevertheless, AS-206 was erected on Pad 37 in January 1967 in the expectation of launching in April. However, because the AS-204 launch vehicle on Pad 34 had not been damaged by the fire that destroyed the Apollo 1 spacecraft, on 20 March it was reassigned to LM-1. Accordingly, by 11 April AS-206 had been returned to storage and AS-204R – as this was redesignated – erected in its place. In the absence of the spacecraft, Grumman built a plywood mockup on the pad for facilities verification.

On 12 May George Low confided to headquarters that although Grumman had promised to deliver LM-1 in June, he was sceptical. John J. Williams headed a 400- man operations team at the Cape. After the arrival of the ascent and descent stages on 23 June, LM-1 was mated on 27 June. However, the initial examination identified a significant number of departures from specification. On 26 July Carroll Bolender was reassigned to Houston as ASPO’s LM Manager. LM-1 was de-mated in August to repair leaks in the ascent stage. After another leak developed in September, it was de-mated and a number of items extracted for return to Grumman. After the testing was finally completed, the spacecraft, minus its legs, was mechanically mated to the launch vehicle on 19 November and a nose cone fitted in place of the absent CSM. The flight readiness tests were finished in late December. The cabin closeout was on 18 January 1968, during the countdown demonstration test. Loading the hypergolic propellants into LM-1 was delayed by procedural issues, but the ensuing tests ended on 19 January.

The terminal countdown began on 21 January, at T-10 hours 30 minutes. The spacecraft went onto internal power at T-42 minutes and, several hours later than planned, AS-206 lifted off as Apollo 5 at 22:48:08 GMT on 22 January 1968.

The S-IVB achieved an orbit ranging between 88 and 120 nautical miles, shed the nose cone and then splayed the four SLA panels. LM-1 was released at 000:53:50. After manoeuvring clear using its attitude control thrusters, the LM adopted a ‘cold – soak’ orientation, which its guidance system successfully maintained with a minimal engine duty cycle.

The mission plan called for two descent propulsion system manoeuvres, an abort staging, and an ascent propulsion system manoeuvre. The first manoeuvre was to occur on the third revolution and last 38 seconds. It would run at 10 per cent throttle for the first 26 seconds, then be concluded at full throttle. The thrust profile of the second manoeuvre was to be representative of flying a lunar landing, involving five phases over a total of 734 seconds. The abort staging sequence would be initiated at

Installing LM-1 for the Apollo 5 mission.

full throttle, and was to include descent propulsion system shutdown and a ‘fire in the hole’ 5-second burn by the ascent propulsion system. The final burn was to run to propellant depletion and end the primary mission. The guidance system initiated the first descent propulsion system firing at 003:59:42 but the buildup of thrust did not satisfy the programmed velocity-time criteria, and the guidance system, sensing that the spacecraft was not accelerating as rapidly as expected, aborted the burn after just 4 seconds. In fact, this was a design feature, since on a manned mission it would allow the crew time to analyse the situation and decide whether to restart the engine to continue. In normal circumstances the engine would have fired with full tank pressurisation and achieved the desired thrust in 4 seconds, but in this case the tanks were only partially pressurised and it would have taken 6 seconds to build up thrust. The premature cutoff was merely the result of inadequate coordination between the guidance and propulsion teams, not a problem with the spacecraft. Mission Control sent a command to deactivate the guidance system in order to permit the remainder of the mission to be controlled from Earth using a preplanned sequence which would address the minimum requirements of the mission.

At 006:10:00 the onboard automatic sequencer initiated this program. It began by using the backup control system to control the vehicle’s attitude. In performing two burns in this mode, the descent engine gimballed properly and responded smoothly to throttle commands. But the short duration of the three descent propulsion system firings precluded a full evaluation of the thermal aspects of the supercritical helium pressurisation system. In abort staging, all system operations and vehicle dynamics were satisfactory for manned flight. The primary control system was then reselected to control the vehicle’s attitudes and rates. However, as this had been off during the abort staging sequence its computer program did not know of the change of mass resulting from this action and its computed thruster firing times were based on the mass of the two-stage vehicle and caused an extremely high rate of propellant usage. The final ascent propulsion system firing started at 007:44:13 and ran to thrust decay at 007:50:03. Since the attitude control system had by that time exhausted its own propellants, this burn was initiated with the thrusters drawing from the tanks of the ascent propulsion system. This continued until the sequencer automatically closed the interconnect valves, whereupon, with the thrusters starved and the ascent engine still firing, the vehicle started to tumble. The rates were soon of such a magnitude as to impede the flow of propellants to the engine, and helium ingestion induced thrust decay prior to propellant depletion. The vehicle had been in a retrograde orientation during the controlled portion of its final manoeuvre, and calculations indicated that it entered the atmosphere over the Pacific Ocean.

On 26 January the LM-2 flight requirements meeting determined that: (1) apart from minor anomalies, LM-1 had achieved all its flight objectives; (2) it should be possible to achieve the objectives for LM-2 either by additional ground testing or on a manned mission; and (3) it was not necessary to undertake additional unmanned flights to ‘man rate’ the LM. Grumman’s own view was that there should be two test flights, but the company relented after the review of the LM-1 data by the Manned Space Flight Management Council on 6 February. On 6 March NASA cancelled the shipment of LM-2 to the Cape. If AS-502 repeated the success of its predecessor, then AS-503 would indeed be manned, and hopefully be launched before the end of the year with CSM-103 and LM-3.

The space age dawns

MISSILES AND SPACE

When a team of German rocket experts surrendered to the US Army in May 1945 and General Holger ‘Ludy’ Toftoy, an artillery officer serving as Chief of Ordnance Technical Intelligence in Europe, set out to arrange their relocation to the USA, the V-2 missile was seen as an important military technology. However, this perception changed with the introduction of the atomic bomb in August against Japan. In the immediate post-war years the US military felt that strategic aircraft carrying atomic bombs would enable it to defeat any enemy. In this context, a ballistic missile which could fly only several hundred kilometres to deliver about 1,000 kg of conventional explosive was insignificant. Consequently, upon being settled in El Paso, Texas, the German team led by Wernher von Braun found themselves with little to do.

Although the ballistic missile had seemingly become obsolete as a weapon, it held out the prospect of serving a more benign role, and in November 1945 the US Navy recommended the development of a satellite. The Army Air Force agreed. However, each service felt that it alone should be assigned this task.

In 1946 the RAND Corporation, created as a ‘think tank’ for the Army Air Force, said: ‘‘The achievement of a satellite craft by the United States would inflame the imagination of mankind, and would probably produce repercussions in the world comparable to the explosion of the atomic bomb. […] Since mastery of the elements is a reliable index of material progress, the nation which first makes significant achievements in space travel will be acknowledged as the world leader in both military and scientific techniques. To visualise the impact on the world, one can imagine the consternation and admiration that would be felt here if the US were to discover suddenly that some other nation had already put up a successful satellite.’’

Meanwhile, von Braun was showing the Army how to assemble, prepare and fire V-2 missiles at the White Sands Proving Grounds in New Mexico. They were made from parts either recovered from Germany or manufactured to his specifications in America. In 1948, while in Texas, von Braun wrote a book, Das Marsprojekt, in which he outlined how an expedition to explore Mars might be undertaken. It was a

‘grand design’ which left the details to be developed in due course. He set out “more or less to project the technology that existed then’’ to motivate young engineers. He argued that a mission would be feasible ‘‘in 15 to 20 years’’ if a nuclear-powered ion engine could be created. The expedition would involve ten space ships with a crew totalling around 70 people. The ships were to be assembled in Earth orbit, with three carrying ‘landing boats’ for Mars. Later in 1948, von Braun’s team was relocated to the Redstone Arsenal of the Army Ordnance Corps in Huntsville, Alabama. It was a new establishment on the site of facilities used by the Chemical Corps in the Second World War, and was to undertake research and development of rockets and missiles.

In September 1949 the Soviets exploded an atomic bomb – at least 3 years earlier than the US had expected. Although the Soviet bomb was not yet a weapon, it was evident that America would soon lose its monopoly. In early 1950 President Harry S. Truman authorised the hydrogen bomb. In 1951 funding was made available for preliminary work for what would become the Atlas intercontinental-range ballistic missile. The hydrogen bomb test at Eniwetok Atoll on 1 November 1952 was not a viable weapon, because it weighed 60 tonnes. But as the bomb’s weight was reduced for carriage by aircraft it was realised that if it were to prove possible to make the device even smaller, it might become feasible to develop a ballistic missile capable of delivering it. The Air Force (which had gained its independence from the Army in 1947) created a committee chaired by physicist John von Neumann. This was asked to predict the trend in weight-to-yield ratio of hydrogen bomb development, estimate the warhead that a ballistic missile might deliver over intercontinental range by the end of the decade, and assess whether the probable accuracy would make a warhead of that yield a viable weapon. In February 1954 the committee reported that progress with warheads would make missiles viable. The RAND Corporation endorsed this conclusion. Although the Air Force responded by assigning the development of an intercontinental-range ballistic missile ‘top priority’, Secretary of Defense Charles E. Wilson, who was in tune with the ‘economic conservatism’ of the administration of President Dwight D. Eisenhower deliberated on the matter for over 12 months until informed in 1955 that a recently established radar intelligence station in Turkey that was operated by the US had discovered that the Soviets were well advanced in the development of their own intercontinental-range ballistic missile – test flights were launched from a site east of the Black Sea and passed across Soviet territory to fall near the Kamchatka Peninsula. America had felt safe because the USSR had no strategic bombers, but a ballistic missile would be able to circumvent America’s air defences. The risk was that when the Soviet missile entered service with a nuclear warhead it would be able to wipe out the US bomber bases in a ‘first strike’ which would prevent retaliation against the Soviet Union. The US therefore simply had to have its own fleet of missiles.