Category Praxis Manned Spaceflight Log 1961-2006

Future Flight Manifest 2006-2011 (as at 1 October 2006)

Date

Mission

Flight

Country Crew

Objective

2009

Jan STS-128 ? (128) 17A USA Establish six person crew capability on ISS

No crew assigned

MPLM; Lightweight Multi-Purpose Experiment Support Structure Carrier (LMC); Three crew quarters, galley, second treadmill (TYIS2); Crew Flealth Care System 2 (CHeCS 2)

Mar

Soyuz TMA13

ISS-19

Russia

Krikalev (TMA/ISS Cdr)?; Surayev (FE) plus ?

Additional EO crew members?

Apr

STS-129? (129)

ULF-3

USA

No crew assigned

EXPRESS Logistics Carrier 1 (ELC 1); EXPRESS Logistics Carrier 2 (ELC 2)

Jul

STS-130? (130)

19A

USA

No crew assigned

MPLM; Lightweight Multi-Purpose Experiment Support Structure Carrier (LMC)

Sep

Soyuz TMA14?

ISS-20

Russia

No crew assigned

Sep?

Shenzhou 8 & Shenzhou 9

China

China

No crew assigned No crew assigned

Shenzhou 8 & 9 to perform first Chinese manned docking and creation of small short-stay space station

Oct

STS-131? (131)

ULF-4

USA

No crew assigned

EXPRESS Logistics Carrier 3 (ELC 3); EXPRESS Logistics Carrier 4 (ELC 4); two Shuttle-equivalent flights for contingency

2010

Jan

STS-132? (132)

20A

USA

No crew assigned

Node 3 with Cupola

Mar

Soyuz TMA15?

ISS-21

Russia

No crew assigned

816 Appendix С

EXPRESS Logistics Carrier 5 (ELC 5); EXPRESS Logistics Carrier 6 (ELC 6); two Shuttle-equivalent flights for contingency

ISS Assembly complete – Shuttle fleet retired Sep Soyuz TMA16 ? ISS-22 Russia No crew assigned

2011

Mar Soyuz TMA17 ? ISS-23 Russia No crew assigned

Apr

The following information was compiled with the help of Collect Space 7 Oct 2006, Robert Pearlman

Soyuz TMA-crewing 2007-2008

TMA10 ISS-15: April 2007-September 2007

Commander

FE1

FE2a

FE2b

FE2c

Oleg Kotov Fyodor Yurchikhin

Suni Williams (up on STS-116) until June 2007 Clay Anderson (up on STS-118) until September 2007 Dan Tani (up on STS-120) until October 2007

TMA11 ISS-16:

Commander

FE1

FE2a

FE2b

FE2c

FE2d

September 2007-March 2008 Yuri Malenchenko Peggy Whitson

Dan Tani (up on STS-120) until October 2007 Leopold Eyharts (up on STS-122) until December 2007 Bob Thirsk (up on STS-123) until March 2008 Koichi Wakata (up on STS-124) until April 2008

TMA12 ISS-17:

Commander

FE-1

FE-2

FE-2b

FE-2c

March 2008-September 2008 Sergei Volkov

Peggy Whitson (stays on ISS for 9 months returns on STS-119) Shalizhan Sharipov (launched on TMA-12)

Sandy Magnus (up on STS-119) until September 2008 Greg Chamitoff (up on STS-126) until November 2008.

A Selected Timeline

1961

Apr Yuri Gagarin becomes the first person fly into space and completes one orbit May Alan Shepard becomes the first American in space on a sub-orbital flight Aug Gherman Titov is launched on the first 24-hour mission, of 17 orbits

1962

Feb John Glenn becomes the first American to orbit the Earth, with 3 orbits Jul First X-15 flight to exceed 50 miles (Robert White)

Aug Andrian Nikolayev sets new endurance record (3 days 22 hours)

1963

Jun Valeri Bykovsky sets new endurance record (4 days 23 hours)

Valentina Tereshkova becomes first woman in space (2 days 22 hours)

Aug Highest X-15 flight (66.75 miles) – Pilot Joseph Walker

1964

Oct First multi-person space crew (3) – Voskhod 1; First civilians in space

1965

Mar Alexei Leonov becomes first person to walk in space

Mar First US multi-person crew (2) on Gemini 3

Jun Ed White becomes first American to walk in space

Aug Gemini 5 sets new endurance record (7 days 22 hours)

Cooper becomes first person to orbit Earth a second time Dec Gemini 7 set new endurance record (13 days 18 hours)

First space rendezvous – Gemini 6 with Gemini 7

1966

Mar First space docking – Gemini 8 with Agena target

Sep Gemini 11 attains highest altitude of Earth orbital manned flight (850 miles)

1967

Jan 27 Three Apollo 1 astronauts killed in pad fire

Apr Soyuz 1 pilot Vladimir Komarov killed during landing phase

Oct X-15 fastest flight (4520 mph – Mach 6.7) (Pete Knight)

Nov X-15 pilot Michael Adams is killed in crash of #3 aircraft after attaining

50.4 miles

1968

Aug Thirteenth and final X-15 “astro-flight”

Oct First three-man Apollo flight (Apollo 7)

Schirra becomes first person to make three orbital spaceflights Dec Apollo 8 becomes first lunar orbital mission

1969

Jan Soyuz 5/4 first manned docking and crew transfer (by EVA)

Mar Manned test of LM in Earth orbit (Apollo 9)

May Manned test of LM in lunar orbit (Apollo 10)

Jul First manned lunar landing – Apollo 11

Oct First triple manned spacecraft mission (Soyuz 6, 7, 8)

Nov Second manned lunar landing Apollo 12

1970

Apr Apollo 13 aborted lunar landing mission

Lovell becomes first to fly in space four times Jun Soyuz 9 cosmonauts set new endurance record (17 days 16 hrs)

1971

Feb Third manned lunar landing (Apollo 14)

Apr Launch of world’s first Space Station – Salyut (de-orbits Oct 1971)

Jun First space station (Salyut) crew. Killed during entry phase (Soyuz 11) Jul Fourth manned lunar landing (Apollo 15)

1972

Apr Fifth manned lunar landing (Apollo 16)

Dec Sixth and final (Apollo) manned lunar landing (Apollo 17)

1973

Apr Salyut 2 (Almaz) fails in orbit (de-orbits in 26 days)

May Launch of unmanned Skylab (re-enters Jul 1979)

First Skylab crew sets new endurance record of 28 days Jul Second Skylab crew increases endurance record to 59 day 11 hrs

Nov 3rd and final Skylab crew increases endurance record to 84 days 1 hr

1974

Jun Launch of Salyut (Almaz) 3 (de-orbits Jan 1975)

Jul First successful Soviet space station mission (Soyuz 14)

Dec Launch of Salyut 4 (de-orbits Feb 1977)

1975

Apr Soyuz 18 crew survive launch abort

Jul Soyuz 19 and Apollo dock in space – first international mission

1977

Sep Salyut 6 launched (de-orbits Jul 1982)

Dec First Salyut 6 resident crew set new endurance record of 96 days 10 hrs

1978

Jan First Soyuz exchange mission (Soyuz 27 for Soyuz 26)

Mar First Soviet Interkosmos mission (Czechoslovakian)

First non-Soviet, non-American person in space (Remek)

Jun Second Salyut 6 crew sets new endurance record of 139 days 14 hrs

1979

Feb Third Salyut 6 resident crew increases endurance record to 175 days

1980

Apr Fourth Salyut 6 resident crew increases endurance record to 184 days 20 hrs Jun First manned flight of Soyuz T variant

1981

Apr First Shuttle launch (Columbia STS-1) on 20th anniversary of Gagarin’s flight

John Young becomes first to make five space flights
Nov First return to space by manned spacecraft (Columbia STS-2)

1982

Apr Salyut 7 launched (de-orbits Feb 1991)

May First Salyut 7 resident crew sets new endurance record of 211 days 9 hrs

Nov First “operational” Shuttle mission, STS-5, is also the first four-person

launch

1983

Apr First flight of Challenger

Jun Sally Ride becomes first US woman in space during STS-7, the first five – person launch

Sep Soyuz T10-1 launch pad abort

Nov First Spacelab mission – STS-9; first six-person launch John Young flies record sixth mission

1984

Feb First use of MMU (STS 41-B) on untethered spacewalks Feb Third Salyut 7 resident crew sets new endurance record of 236 days 22 hrs

Jul Svetlana Savitskaya becomes the first woman to walk in space (Soyuz T12/

Salyut 7)

Aug First flight of Discovery on STS 41-D Oct First seven-person launch (STS 41-G)

Kathy Sullivan becomes first American woman to walk in space

1985

Jan First classified DoD Shuttle mission (STS 51-C)

Jul First Shuttle Abort-to-Orbit profile (STS 51-F)

Oct First flight of Atlantis (STS 51-J)

Oct First eight-person launch (STS 61-A)

1986

Jan Challenger and its crew of seven lost 73 seconds after launch (STS 51-L) Feb Mir core module launched unmanned

Mar First resident crew to Mir (Soyuz T15)

1987

Feb Second Mir resident crew sets new endurance record of 326 days 11 hrs First manned Soyuz TM variant

Dec First flight of over a year as third Mir resident crew sets endurance record of 365 days 22 hrs

1988

Sep Shuttle Return-to-Flight mission (STS-26)

1990

Apr Hubble Space Telescope deployment (STS-31)

1992

May First flight of Endeavour (STS-49)

1993

Dec First Hubble Service Mission (STS-61)

1994

Jan Valery Polyakov sets new endurance record (437 days 17 hrs) for one mission (lands Mar 1995)

Feb First Russian cosmonaut to fly on Shuttle (Krikalev STS-60)

1995

Feb First Shuttle-Mir rendezvous STS-63/Mir

Eileen Collins becomes first female Shuttle pilot Mar First American launched on Soyuz (Thagard – TM21)

Jul First Shuttle docking with Mir (STS-71 – Thagard down)

Nov Second Shuttle-Mir docking (STS-74)

1996

Mar Third Shuttle-Mir docking (STS-76 – Lucid up)

Sep Fourth Shuttle-Mir docking (STS-79 – Lucid down, Blaha up)

Nov Longest Shuttle mission (17 days 15 hrs – STS-80)

Musgrave becomes only astronaut to fly all five orbiters

1997

Jan Fifth Shuttle-Mir docking (STS-81 – Blaha down, Linenger up)

Feb Second Hubble service mission (STS-82)

May Sixth Shuttle-Mir docking (STS-84 – Linenger down, Foale up)

Jun Collision between unmanned Progress vessel and Mir space station damages Spektr module

Sep Seventh Shuttle-Mir docking (STS-86 – Foale down, Wolf up)

1998

Jan Eighth Shuttle-Mir docking (STS-89 – Wolf down, Thomas up)

Jun Ninth and final Shuttle-Mir docking (STS-91 – Thomas down)

Oct John Glenn returns to space aged 77, 36 years after his first space flight Nov First ISS element launched – Zarya FGB Dec First ISS Shuttle mission (STS-88)

1999

Jul Eileen Collins becomes first female US mission commander (STS-93)

Aug Mir vacated for first time in ten years Dec Third Hubble service mission (STS-103)

2000

Apr Last (28th) Mir resident crew (72 days)

Oct First ISS resident crew launched

2001

Mar Mir space station de-orbits after 15 years service

Apr Dennis Tito becomes first space flight participant, or “tourist”

2002

Mar Fourth Hubble service mission (STS-109)

Apr Jerry Ross becomes first person to fly seven missions in space Oct First manned flight of Soyuz TMA

2003

Feb Columbia and crew of seven lost during entry phase of mission STS-107

Apr ISS assumes two-person caretaker crews

Oct First Chinese manned spaceflight (Shenzhou 5)

Yang Liwei becomes first Chinese national in space

2004

Sep Spaceship One flies to 337,500 ft (102.87 km)

Oct Spaceship One flies to 367,442 ft (111.99 km) claiming $10 million X-Prize

2005

Jul Shuttle Return-to-Flight mission 1 – STS-114 Oct First Chinese two-man space flight – Shenzhou 6

2006

Jul Second Shuttle Return-to-Flight mission – STS-121 Aug ISS returns to three-person capability

Resumption of ISS construction – STS-115

Bibliography

The authors have referred to their own extensive archives in the compilation of this book. In addition, the following publications and resources were of great help in assembling the data:

The Press Kits, News releases and mission information from NASA, ESA, CSA, RKK-Energiya, JAXA (NASDA), CNES, and Novosti have been invaluable resources for many years

Magazines:

Flight International 1961-2006

Aviation Week and Space Technology 1961-2006

BIS Spaceflight 1961-2006

Soviet Weekly/Soviet News 1961-1990

Orbiter, Astro Info Service 1984-1992

Zenit, Astro Info Service, 1985-1991

ESA Bulletin 1975-2006

British Interplanetary Society Books:

History of Mir 1986-2000; Mir: The Final Year Supplement, Editor Rex Hall 2000/ 2001

The ISS Imagination to Reality Volume 1 Ed Rex Hall 2002 The ISS Imagination to Reality Volume 2, Ed Rex Hall 2005

NASA Reports:

NASA Astronautics and Aeronautics, various volumes, 1961-1995

Mir Hardware Heritage, David S. F. Portree NASA RP-1357, March 1995. Walking to Olympus: An EVA Chronology, David S. F. Portree and Robert C. Trevino, NASA Monograph in Aerospace history, #7 October 1997

NASA Histories:

1966 This New Ocean, a History of Project Mercury, SP-4201

1977 On the Shoulders of Titans: A history of Project Gemini, NASA SP-4203

1978 The Partnership: A history of Apollo-Soyuz Test Project, NASA SP-4209

1979 Chariots for Apollo: A history of manned lunar spacecraft, NASA SP-4205 1983 Living and working in space: A history of Skylab NASA SP 4208

1977 Where No Man Has Gone Before: a history of Apollo lunar exploration missions, NASA SP-4214

2000 Challenge to Apollo: the Soviet Union and the Space Race 1945-1974, Asif Siddiqi, NASA SP-2000-4408

Other Books:

1980 Handbook of Soviet Manned Space Flight, Nicholas L. Johnson, AAS Vol 48, Science and Technology Series

1981 The History of Manned Spaceflight, David Baker

1987 Heroes in Space: From Gagarin to Challenger, Peter Bond

1988 Space Shuttle Log: The First 25 Flights, Gene Gurney and Jeff Forte

1988 The Soviet Manned Space Programme, Phillip Clark

1989 The Illustrated Encyclopaedia of Space Technology, Chief Author Ken Gatland

1990 Almanac of Soviet Manned Space Flight, Dennis Newkirk

1992 At the Edge of Space: The X-15 Flight Program, Milton O. Thompson 1999 Who’s Who in space: The ISS Edition, Michael Cassutt 2001 Space Shuttle, History and Development of the National STS Program, Dennis Jenkins

Springer-Praxis Space Science Series (which include extensive references and bibliographies for further reading)

1999 Exploring the Moon: The Apollo Expeditions, David M. Harland

2000 Disasters and Accidents in Manned Spaceflight, David J. Shayler

2000 The Challenges of Human Space Exploration, Marsha Freeman

2001 Russia in Space: The Failed Frontier, Brian Harvey

2001 The Rocket Men, Vostok & Voskhod, the First Soviet Manned Spaceflights, Rex Hall and David J. Shayler 2001 Skylab:; America’s Space Station, David J. Shayler 2001 Gemini: Steps to the Moon, David J. Shayler

2001 Project Mercury: NASA’s First Manned Space Programme, John Catchpole

2002 The Continuing Story of the International Space Station, Peter Bond

Creating the International Space Station, David M. Harland and John E. Catchpole

Apollo: Lost and Forgotten Missions, David J. Shayler

Soyuz, a Universal Spacecraft, Rex Hall and David J. Shayler

China’s Space Programme: From Concept to Manned Spaceflight, Brian

Harvey

Walking in Space, David J. Shayler

The Story of the Space Shuttle, David M Harland

The Story of Space Station Mir, David M. Harland

Women in Space: Following Valentina, David J Shayler and Ian Moule

Space Shuttle Columbia: Her Missions and Crews, Ben Evans.

Russia’s Cosmonauts: Inside the Yuri Gagarin Training Center, Rex Hall, David J. Shayler and Bert Vis

Apollo: The Definitive Source Book, Richard W. Orloff and David M. Harland

2002

2002

2003

2004

2004

2004

2005

2005

2005

2005

2006

2006

NASA Scientist Astronauts, Colin Burgess and David J. Shayler

SPACE FLIGHT METHODS

As the quest for space began, two methods of getting there were investigated, both requiring rockets for power. One was to develop winged craft which would access space from a carrier aircraft in the upper atmosphere and would perform a guided entry and landing for the return. The other was to use blunt-ended capsules on top of former military missiles shot through the atmosphere on ballistic trajectories, relying on the increasing density of the atmosphere to slow the return sufficiently for parachutes to finish the landing.

Rocket planes

The first powered steps towards space were made by a series of American rocket – propelled aircraft. In October 1947, the first supersonic flight was made by the X-1, piloted by Chuck Yeager. In 1963, an X-15 rocket plane piloted by Joe Walker reached an altitude of 106 km (66 miles). The majority of rocket planes were indeed released from carrier aircraft at high altitude before igniting their onboard rocket engines for a quick climb to the fringes of space and then a gliding landing on a runway. One of the X-15s flew at over Mach 6 in 1967. Together with several strangely shaped, blunt-bodied, wingless vehicles known as lifting bodies (which evaluated the

SPACE FLIGHT METHODS

Pilot Mike Adams with the X-15

technological possibilities of a vehicle that could survive heat of re-entry, fly at subsonic speeds and still make a controlled horizontal landing), such programmes would lay the groundwork for what eventually became the Space Shuttle. The X-Prize winners Spaceship One drew upon the same legacy.

APOLLO BLOCK I

Early planning for Apollo included a series of manned missions designed to evaluate the systems and procedures of the Apollo parent craft (the Command and Service Module, or CSM) in Earth orbit, prior to committing it to lunar distance flights or flights with the Lunar Module. These capsules were termed Block 1 and did not feature the docking and transfer tunnel system utilised on the lunar missions. Sub­sequent Block II CSMs were designed to fly in conjunction with the LM in Earth orbit or deep space, or to support the lunar landing flights. More advanced missions that fell under the Apollo Applications Program banner would use a proposed (but unflown) Block III series of CSMs. Some of the amendments proposed to support extended – duration lunar missions were actually incorporated into the “J” series of scientific Apollo missions flown in 1971-1972 using upgraded Block II CSMs and LMs. Block III CSMs were also planned to support flights to orbital workshops (later Skylab), but none were fabricated. There was also a Block I mission known as Apollo 2, but this was cancelled in 1966 when it became apparent that it was too much of a duplication of the Apollo 1 mission, given the desire to press on with qualifying the Block II series of CSMs, the Lunar Module and the Saturn V for manned flights.

APOLLO 1

Int. Designation

None – fatal pad fire accident prior to planned launch

Launched

Planned 21 February 1967

Launch Site

Pad 34, Kennedy Space Center, Florida

Landed

Planned 7 March 1967

Landing Site

Pacific Ocean

Launch Vehicle

Saturn 1B

Duration

Planned 13 days 18 hours 50 minutes

Callsign

Apollo 1

Objective

First manned qualification test of Apollo (Block I) CSM in Earth orbit for up to 14 days; test firings of the Service Propulsion System; evaluation of systems and procedures by crew and vehicle

Flight Crew

GRISSOM, Virgil Ivan “Gus”, 40, USAF, commander, 3rd mission Previous missions: Mercury Redstone 4 (1961); Gemini 3 (1965) WHITE II, Edward Higgins, 36, USAF, senior pilot, 2nd mission Previous mission: Gemini 4 (1965)

CHAFFEE, Roger Bruce, 31, USN

International manned space flight

In 1972, after several years of negotiations, the first joint mission between the Soviet Union and the USA was agreed, and was launched in 1975 as the Apollo-Soyuz Test Project, or ASTP. In order for the Apollo and Soyuz crews to join together in orbit, a docking module was developed to allow a physical link between the two spacecraft.

International manned space flight

Artwork depicting the highlights of the historic ASTP international space mission. Dual launches, a docking in space and the five crew members. l to r Slayton, Brand, Stafford, Kubasov, Leonov with the programme logo in the centre

The docking module was an airlock 3 m (10 ft) long and over 1 m (3 ft) in diameter. It had an Apollo LM-type (drogue) docking port at one end to take the Apollo docking probe, and at the other end was the androgynous docking system. This consisted of an extendable guide ring with three petal-like plates on its circumference, each plate

Table 3.5. ISS major elements dimensions as of 2006

Element

Launched

Vehicle

Length

Max dia.

Hab. volume

Mass (kg)

Zarya

1998 Nov 20

Proton

12.5m

4.1 m

71.5m3

11,600

Unity

1998 Dec 4

STS-88

5.4m

4.5 m

70 m3

11,612

Zvezda

2000 Jul 12

Proton

13.10m

4.15 m

89.0m3

19,051

Z1 Truss

2000 Oct 11

STS-92

5.79m

4.6 m

n/a

8,100

P6 Truss

2000 Nov 30

STS-97

13.7m

4.6 m

n/a

7,900

Destiny

2001 Feb 7

STS-98

8.5 m

4.26 m

10.75m3

14,514

Quest

2001 Jul 12

STS-104

6.0m

4.0m

34m3

6,064

Pirs

2001 Sep 14

Progress

2.55 m

2.20 m

13m3

2,876

S0 Truss

2002 Apr 8

STS-110

13.4m

4.6 m

n/a

12,247

S1 Truss

2002 Oct 7

STS-112

13.7m

4.6 m

n/a

14,061

P1 Truss

2002 Nov 23

STS-113

13.7m

4.6 m

n/a

14,061

P3/4 Truss

2006 Sep 21

STS-115

13.7m

4.6 m

n/a

15,876

having a capture latch inside it. Once the latches of both craft were engaged, the active vehicle retracted the guide ring, pulling the craft together. The docking module was jettisoned by the Apollo crew prior to retro-fire.

The Soviet Union also flew a series of Interkosmos missions with cosmonauts from several Soviet bloc countries, starting in 1978. This led to a series of international commercial missions and cooperative missions with European and US astronauts, and the creation of the opportunity to sell seats to rather affluent “tourists”.

NASA’s Space Shuttle Spacelab programme has featured several international missions using a series of modules in the payload bay and these have particularly assisted the crews to gain the experience needed for the International Space Station. Spacelab 1 consisted of a 15,088 kg long module, single pallet and aim (3.3 ft) diameter, 5.8 m (19 ft) long tunnel from the modular Spacelab hardware kit. Over the years, there would be sixteen module flights of Spacelab, six pallet-only missions and a further eleven Shuttle missions featuring Spacelab pallets that supported a variety of payloads, many of them international in nature.

The International Space Station programme evolved from a 1984 US presidential initiative to create a large space station. A cooperative team of 16 nations worked to launch separate elements of the station and construct it in orbit over several years, re­supplied by American Shuttle and Russian Soyuz and Progress vehicles. The Zarya module was a descendant of the add-on Mir modules, whilst Zvezda was similar to the Mir base block.

Shenzhou

This Chinese manned programme aims to establish a manned “space station’’ in orbit within a few years. Two Shenzhou orbital modules will be linked together to establish a precursor space laboratory, before a more permanent station is launched.

After years of speculation and four unmanned test flights, China achieved what it had planned for decades – the capability to put Chinese citizens in space independently.

Forty years after the Soviet Union and America started the human space flight programme, China became only the third nation to claim manned space flight cap­ability. Such capability was envisaged in the mid-1960s, and in the 1970s, a programme called Dawn (Shuguang) was planned. Even though astronaut trainees were selected in April 1971 (Project 714), the project progressed very little and was terminated in 1972. It remained a guarded secret for over thirty years. A serious space biomedical pro­gramme continued in China, as did a series of flights to develop the technology to recover satellite capsules from orbit, and as the launch infrastructure improved, the idea for conducting a manned space programme resurfaced. Rumours persisted throughout the 1980s, even to the point of releasing photos of Air Force system testers undergoing simulations and pressure suit checks. In 1984, the US offered China a flight for a payload specialist on the Shuttle, and even went so far as to select a group of candidates who toured JSC just days before the loss of Challenger in January 1986. After that tragedy, the whole payload specialist programme was suspended indefi­nitely. An offer to fly a Chinese cosmonaut to Mir was not taken up.

However, in 1992, a new project, called Project 921, was created to support a national Chinese manned programme. Cooperative agreements with the Russians, including visits to the Russian space centres and the cosmonaut training centre, helped the Chinese to advance their own plans and programmes. In 1998, a team of trainees were selected to train for the new flight programme, which began with a series of four unmanned missions, the first of which was placed in orbit in 1999. The first manned orbital flight occurred in October 2003. The Chinese programme is a measured and deliberate one, building on the success of the previous mission and learning from the failures as well as from US and Russian experiences.

Their Shenzhou vehicle can carry up to three crew members. It resembles the Russian Soyuz TM, but differs in several respects. The Chinese vessel is larger, being 2.8 m in diameter and 8.8 m long (Soyuz TM is 7.5 m long). It is also heavier at 7.8 tons (Soyuz TM is 7.2 tons). Shenzhou also has solar panels attached to the Orbital Module in addition to the Instrument Module, with the reported capacity of up to three times the power of the Soyuz arrays. The OM itself is two tons heavier and has the capability of independent orbital flight with its own manoeuvring engines. The Descent Module is also slightly larger than the Soyuz, at 2.5 m diameter by 2 m long (Soyuz is 2.17 m x 1.9 m). Finally, the Instrument Module is about 70 cm longer than the Russian equivalent.

SOYUZ 6, 7 AND 8

Подпись: Int. Designation Launched Launch Site Landed Landing Site Подпись:Подпись: Duration Callsign Objective 1969-085A (Soyuz 6), 086A (Soyuz 7), 087A (Soyuz 8)

11 (Soyuz 6), 12 (Soyuz 7) and 13 (Soyuz 8) October 1969 Pad 1, Site 5 (Soyuz 7); Pad 31, Site 6 (Soyuz 6, Soyuz 8), Baikonur Cosmodrome, Kazakhstan 16 (Soyuz 6), 17 (Soyuz 7) and 18 (Soyuz 8) October 1969 Soyuz 6 – 179.2 km (111 miles) northwest, Soyuz 7 – 153.6 km (95 miles) northwest and Soyuz 8 – 144 km (89 miles) north of Karaganda R7 (11A511) for all three launches; spacecraft serial numbers (7K-0K) #14 (Soyuz 4); #15 (Soyuz 5);

#16 (Soyuz 8)

4 days 22hrs 42 min 47 sec (Soyuz 6); 4 days 22hrs 40 min 23 sec (Soyuz 7); 4 days 22hrs 50 min 49 sec (Soyuz 8) Soyuz 6 – Antey (Antaeus); Soyuz 7 – Buran (Snowstorm); Soyuz 8 – Granit (Granite)

Soyuz “troika” group flight; rendezvous and docking between Soyuz 7 and 8; space welding experiments on Soyuz 6

Flight Crew

SHONIN, Georgy Stepanovich, 34, Soviet Air Force, commander Soyuz 6 KUBASOV, Valery Nikoleyevich, 34, civilian, flight engineer Soyuz 6 FILIPCHENKO, Anatoly Vasilyevich, 41, Soviet Air Force, commander, Soyuz 7

VOLKOV, Vladislav Nikoleyevich, 33, civilian, flight engineer Soyuz 7 GORBATKO, Viktor Vasilyevich, 34, Soviet Air Force, research engineer, Soyuz 7

SHATALOV, Vladimir Aleksandrovich, 42, Soviet Air Force, commander Soyuz 8 and group commander, 2nd mission Previous mission: Soyuz 4 (1969)

YELISEYEV, Aleksey Stanislovich, 35, civilian, flight engineer Soyuz 8, 2nd mission

Previous mission: Soyuz 5 (1969)

Flight Log

Soyuz 6 was to have been a solo mission but was flown together with Soyuz 7 and 8 which were to perform a Soyuz 4/5-type rendezvous, docking and transfer mission. Soyuz 6 – without a docking probe – set off first at 16: 10 hrs local time on 11 October. It carried two cosmonauts, Shonin and Kubasov, and entered a 51.7° inclination

SOYUZ 6, 7 AND 8

The Soyuz 6 crew of Kubasov (left) and Shonin

orbit, which would, after four manoeuvres, reach a maximum altitude of 242 km (150 miles). Their objectives were the usual Soviet ones of “testing, checking, perfect­ing and conducting” plus a unique experiment called Vulcan, in which automatic welding would be attempted inside the unpressurised Orbital Module. On the 77th orbit of Soyuz 6, three processes were attempted: electron beam, fusible electrode and compressed arc welding, under the control of Kubasov. The samples were returned to Earth. In 1990, some 21 years later, it was revealed that the low-pressure compressed arc had inadvertently almost burned a hole right through the inner compartment flooring and damaged the hull of the Orbital Module. The crew were at first unaware of this as they were sealed in the DM during the welding operation, but found the damage when they entered the OM towards the end of their mission.

When Soyuz 7 was launched at 15: 45 hrs local time from Baikonur the day after, most observers felt that a docking was likely since, at the time, it was not known that

SOYUZ 6, 7 AND 8

The crews of Soyuz 6-8 pose for a “group shot”. Back row from left: Gorbatko, Filipchenko and Volkov (Soyuz 7). Front row from left: Kubasov and Shonin (Soyuz 6), Shatalov and Yeliseyev (Soyuz 8)

Soyuz 6 could not do so. Indeed, one of Soyuz 7’s stated objectives was “manoeuvring and navigation tests” with Soyuz 6. But Filipchenko, Gorbatko and Volkov were supposed to dock not with Soyuz 6 but with Soyuz 8, which was duly launched at 15: 19 hrs local time on 13 October, with Shatalov and Yeliseyev, the first Soviet space – experienced crew.

Problems with the Igla rendezvous system were experienced, and a manual attempt at docking was not successful. The nearest the two craft came to one another was 487m (1,600ft), observed for 4 hours 24 minutes by Soyuz 6 from about 1.6km (1 mile) away. Maximum altitudes achieved by Soyuz 7 and 8 were 244 and 235 km (152 and 146 miles) respectively during their missions which, with Soyuz 6, entailed detailed Earth and celestial observations under the group command of Shatalov.

The “mystery missions”, which in total involved 31 orbital change manoeuvres, ended on 17, 18 and 19 October, 179.2km (111 miles) northwest, 153.6km (95 miles) northwest and 144 km (89 miles) north of Karaganda respectively.

Milestones

34th, 35th and 36th manned space flights 13th, 14th and 15th Soviet manned space flights 1st three-manned-spacecraft mission 1st time with seven people in space at once

Shortest turnaround between missions – ten months, for Shatalov and Yeliseyev

Подпись: Int. Designation Launched Launch Site Landed Landing Site Launch Vehicle Duration Callsign Objective

Подпись: APOLLO 12
Подпись: 1969-099A 14 November 1969 Pad 39A, Kennedy Space Center, Florida 24 November 1969 Pacific Ocean Saturn V AS-507; spacecraft designations: CSM-108; LM-6 10 days 4hrs 36 min 25 sec CSM - Yankee Clipper; LM - Intrepid Second manned lunar landing mission (H-1)

Flight Crew

CONRAD, Charles “Pete” Jr., 39, USN, commander, 3rd mission Previous missions: Gemini 5 (1965); Gemini 11 (1966)

GORDON, Richard Francis Jr., 40, USN, command module pilot, 2nd mission Previous mission: Gemini 11 (1966)

BEAN, Alan LaVern, 37, USN, lunar module pilot

Flight Log

Flying to the Moon a second time wasn’t any easier, but it seemed that way after the euphoria of Apollo 11. Indeed, Apollo 12 had two particular hazards, one deliberate and one unpredictable but none the less avoidable. The deliberate hazard was to be the hybrid trajectory to the Moon, which did not guarantee Apollo 12 a “free return’’ by lunar loop if there was a major systems failure en route. The second hazard could have been avoided had NASA not decided to launch the mighty Saturn V in heavy rain and dark storm clouds, seemingly to please the space budget-cutter, President Richard Nixon, who had come to the KSC to watch.

About 36 seconds after 11: 22 hrs local time, with the Saturn already out of view, Pad 39A was hit by lightning. So was Apollo 12. Commander Conrad saw the multicoloured control panel displaying systems shorts and said that it seemed that “everything in the world had dropped out.’’ LMP Bean restored systems as the second and third stages proceeded effortlessly into 199 km (124 miles) 32° orbit. All the electrical circuits were checked and the go for the Moon was given. The S-IVB burned for 5 minutes 45 seconds and the transposition and docking manoeuvre was success­ful, but the S-IVB was placed into an unusual and highly elliptical orbit of the Earth, rather than into solar orbit, due to a malfunction.

The TV shows were jocular and informative. Conrad and Bean checked out the Lunar Module, and one mid-course correction was made to place Apollo out of the free return and on course for a lunar orbit with desirable lighting conditions at the landing point. Apollo 12’s SPS lit up on the lunar far side and placed the spacecraft

SOYUZ 6, 7 AND 8

Pete Conrad examines the Surveyor 3 spacecraft. The Apollo 12 Lunar Module can be seen on the horizon.

into a 110 by 312 km (68 x 194 miles) orbit, which was adjusted two orbits later to an eventual 110 km (68 miles). At T + 107 hours 54 minutes, the Lunar Module became Intrepid and the Command Module Yankee Clipper, illustrating that this was an all­Navy crew. DOI began at T + 109 hours 23 minutes with a 29-second firing placing Intrepid at a perilune of 14.4 km (9 miles) for the PDI. Before this, there was hectic activity between the ground and the crew to update the LM’s navigation programme, which continued two minutes into the burn that began at T + 110 hours 20 minutes.

The high-spirited crew came into their Ocean of Storms landing site, close to the unmanned Surveyor 3 spacecraft which had landed there in 1967. Conrad landed Intrepid about 856 m (2,808 ft) northwest of Surveyor at T + 110 hours 32 minutes at 3°11’51" south 23°23’7.5" west. CMP Gordon spotted both Intrepid and Surveyor from orbit in Yankee Clipper. The first moonwalk began at T + 115 hours 10 minutes when the jocular Conrad hopped, skipped and hummed across the surface. After joining him, Bean took the colour television camera to place it on a tripod, but the camera was pointed at the Sun and blacked out. The by now dwindling TV audiences switched off.

The first 3 hour 56 minute EVA on 19 November involved erecting the US flag and deploying the first ALSEP array of lunar experiments, one of which was powered by a radioisotope thermoelectric generator with a radioactive fuel source. The second

EVA on 20 November, lasting 3 hours 49 minutes, was highlighted by the visit to Surveyor, bits of which were cut off to be taken home for analysis. Conrad’s fall in the lunar dust caused a “spacesuit might leak’’ scare, but from the antics of later moon – walkers, one wonders what the fuss was about.

The highly successful moonwalks over, after 31 hours 31 minutes on the Moon, Intrepid sailed for Yankee Clipper. The rendezvous and docking 3 hours 30 minutes later was watched live by TV audiences, who could even see Intrepid’s crew in the windows of the LM and the little spurts of the RCS jets. Conrad and Bean removed their dusty spacesuits and crossed into Yankee Clipper naked, except for their head­sets. Intrepid was sent crashing into the Moon and the reverberations from the impact were picked up by the ALSEP seismometer now on the surface.

Yankee Clipper broke anchor after 45 orbits and 88 hours 56 minutes over the Moon. The crew witnessed a spectacular solar eclipse on the way home and splashed down near USS Hornet at 15° south 165° west at T + 10 days 4 hours 36 minutes 25 seconds. Like the Apollo 11 crew, Conrad, Gordon and Bean had to live in the Apollo quarantine container for three weeks to ensure that no “moon bugs’’ came home with them.

Milestones

37th manned space flight

22nd US manned space flight

6th manned Apollo flight

6th Apollo CSM manned flight

4th Apollo LM manned flight

4th manned flight to and orbit of the Moon

2nd manned lunar landing and moonwalk

1st manned mission with two EVAs

1st manned spacecraft to spend a day on the Moon

1st manned mission to use radioisotope thermoelectric generators

8th US and 10th flight with EVA operations

Подпись:

Подпись: APOLLO 13
Подпись: 1970-029A 11 April 1970 Pad 39A, Kennedy Space Center, Florida 17 April 1970 Pacific Ocean Saturn V AS-508; spacecraft designations: CSM-109; LM-7 5 days 22hrs 54 min 41 sec CSM - Odyssey; LM - Aquarius Third manned lunar landing mission (H-2)

Flight Crew

LOVELL, James Arthur Jr., 42, USN, commander, 4th mission Previous missions: Gemini 7 (1965); Gemini 12 (1966); Apollo 8 (1968) SWIGERT, John Leonard “Jack” Jr., 39, command module pilot HAISE, Fred Wallace Jr., 36, lunar module pilot

Flight Log

Command module pilot Thomas “Ken” Mattingly had the bad luck, two days before the flight of Apollo 13, to be declared not immune to the German measles that he had been exposed to by back-up LMP Charlie Duke. He was dropped and replaced by back-up Jack Swigert, who was put through his paces in the simulator to ensure his readiness and compatibility with the remaining prime crew members, James Lovell and Fred Haise. Lift-off seemed routine at 14: 32hrs local time, but the Saturn V burn lasted 44 seconds longer, because the four remaining engines of the S-II had to burn for an extra 34 seconds to make up for the loss of the fifth one, and the S-IVB had to burn for an additional ten seconds.

Initial orbit of 33.5° and 156 km (97 miles) apogee was achieved. The S-IVB ignited, the transposition and docking was successful and the stage was sent towards an impact on the Moon, big enough to be detected by the Apollo 12 seismometer. The television pictures were of high quality, but were not shown live by any network. Apollo 13 indeed seemed a milk run to the Moon, targeted for the Fra Mauro highlands. Then, at T + 55 hours 55 minutes 20 seconds on 13 April, oxygen tank No. 2 in the Service Module, which had undetected heater switches welded together due to an electrical malfunction in a pre-launch test, exploded 328,000 km (222,461 miles) from Earth.

The reaction of the crew was calm and stoic as they faced a lingering death in space. Power was going down fast in the Command Module. The only hope was to use the LM Aquarius, thankfully still attached, as it was the trans-lunar coast rather than

SOYUZ 6, 7 AND 8

Apollo 13 crew (1 to r) Haise, Swigert and Lovell, relieved to be back on Earth after a trying mission

the return journey. Aquarius’s descent engine was used three times, T + 61 hours 30 minutes, for 30 seconds, to get Apollo 13 back on a lunar looping “free return’’ trajectory which would at least guarantee making landfall on Earth – somewhere, hopefully in the Indian Ocean: for 4 minutes 28 seconds to speed the return journey, at T + 142 hours 53 minutes; and for 15.4 seconds to fine-tune the trajectory. Rookies Haise and Swigert had strained at their windows to get a peek at the lunar far side during the lunar loop, which made them and Lovell the farthest travellers from Earth, at a distance of 397,848 km (247,223 miles).

Conditions on board were pitiful. It was extremely cold and the spacecraft was operating on the power equivalent of a single light bulb by the end of the mission. The crew, ably supported by thousands of engineers, scientists and fellow astronauts on the ground, even had to jury-rig an air conditioning unit to get rid of carbon dioxide. Aquarius was separated just before re-entry, followed by the Service Module, giving the incredulous crew their first view of the devastation that had been below them. Left with a little battery power, the Command Module Odyssey limped home to a splash­down at T + 5 days 22 hours 54 minutes 41 seconds, close to the USS Iwo Jima at 21° south 165°west. The shortest US three-person flight in history had captured the hearts of the world, and ended with a service of thanksgiving on the recovery ship.

The events of Apollo 13, as well as a tightening of the NASA budget, helped to seal the fate of future missions. Apollo 20 had already been axed in January 1970, and

by September, Apollo 15 and 19 had been cancelled and the remaining missions renumbered to end with Apollo 17. The fear of losing a crew in space, or of their being stranded on the Moon with no hope of rescue, and the desire to move on to new programmes closer to Earth, together with the escalating cost of the war in southeast Asia and social unrest in the United States, all contributed to the end of the Apollo lunar programme.

Milestones

38th manned space flight

23rd US manned space flight

7th Apollo manned space flight

7th Apollo CSM manned flight

5th Apollo LM manned flight (docked only)

5th manned flight to the Moon

1st manned lunar loop flight

1st aborted lunar landing mission

1st flight by crewman on fourth mission

1st flight by crewman on second Moon mission

Int. Designation

1984-034A

Launched

6 April 1984

Launch Site

Pad 39A, Kennedy Space Center, Florida

Landed

13 April 1984

Landing Site

Runway 17, Edwards Air Force Base, California

Launch Vehicle

OV-099 Challenger/ET-10/SRB BI-012/SSME #1 2109; #2 2020; #3 2012

Duration

6 days 23 hrs 40 min 7 sec

Callsign

Challenger

Objective

Repair and re-deployment of Solar Max; deployment of Long Duration Exposure Facility (LDEF)

Flight Crew

CRIPPEN, Robert Laurel, 46, USN, commander, 3rd mission Previous missions: STS-1 (1981); STS-7 (1983)

SCOBEE, Francis Richard “Dick”, 44, USAF, pilot

HART, Terry Jonathan, 37, civilian, mission specialist 1

NELSON, George Driver, 33, civilian, mission specialist 2

VAN HOFTEN, James Douglas Adrianus, 39, civilian, mission specialist 3

Flight Log

Space Shuttle flights were seemingly becoming more and more audacious mission by mission. STS 41-C was to retrieve, repair and redeploy the Solar Maximum Mission, or Solar Max, a science satellite that had been launched in 1980 but had blown some fuses, spoiling its fine pointing ability and rendering it useless. It was a tough assign­ment for the Challenger crew, led by the inspiring Bob “Mr. Shuttle” Crippen. Challenger took off two days late from the Kennedy Space Center at 08:58 hrs local time. For the first time, the Shuttle made a direct insertion into 28.45° orbit, to conserve valuable OMS propellant for the intensive manoeuvres required for Solar Max rendezvous. Lower than anticipated SRB performance almost resulted in the use of the OMS engines to achieve the planned orbit, which would have cancelled the Solar Max portion of the flight. The crew reached a maximum altitude of 435 km (270 miles) during the mission.

Before Solar Max could be retrieved, Challenger’s payload bay had to be emptied of a rather unique cylindrical satellite which almost filled it completely. This was the Long Duration Exposure Facility, or LDEF, which was a 12-sided craft with 57 materials experiments mounted on the outside. LDEF was scheduled to be retrieved in 1985 to enable scientists to assess the effects of exposure to the space environment on

STS 41-C

‘Ox” Van Hoften test-flies an MMU in the payload bay of Challenger during STS 41-C

the different materials. Its deployment over the Kennedy Space Center, using the RMS, was a spectacular sight.

Crippen, his pilot Dick Scobee, and Challenger’s rendezvous radar, star trackers and computers, got to work on the Solar Max rendezvous, which was achieved effortlessly on 8 April. The rotating spacecraft was about 54 m (177 ft) away as mission specialist George Nelson (EV1), wearing an MMU, flew from Challenger. Attached to his chest was a T-pad docking device with which he was to attach himself to Solar Max, to steady it for an RMS grapple. But try as he may, while a soft-docking was achieved, Nelson could not make a hard dock with the satellite. In an effort to steady it manually, Nelson undocked and tried to hold the solar panels. Solar Max went even more out of control and the mission seemed doomed. The unhappy Nelson was recalled to Challenger.

Its solar panels now pointing away from the Sun, Solar Max was losing power, but ground engineers managed to bring it under some sort of control, so that Challenger, its mission extended one day, could attempt a direct RMS grab. Mission specialist Terry Hart’s one and only chance had to succeed and his deft handling worked. Solar Max was captured. During a record 7 hour 16 minute EVA on 11 April, Nelson and James van Hoften, who had assisted during the first 2 hour 57 minute EVA, repaired Solar Max, which was later redeployed to continue its mission. The repair to the satellite’s electronics and attitude control system was a great demon­stration of what a crew and the Shuttle could do. Van Hoften (EV2) was allowed a little go on the MMU, clocking up 28 minutes on Unit 3, compared with Nelson’s 42 minutes on Unit 2. It was during the STS 41-C EVAs that Nelson experienced a spacewalker’s worst nightmare (apart from a punctured pressure suit) – a minor urine contamination problem – in other words his waste collection device leaked. Fortu­nately, the liquid coolant garment (LCG) soaked up some of the liquid like a sponge, and though some helmet fogging was experienced, post-flight inspection revealed that no urine had entered the helmet. The fogging was a result of turning down the LCG after the astronaut felt cold as the urine was soaked up. The real danger of inhaling a small globule of any liquid in an EVA suit is that it could become trapped in the throat. The possibility of an astronaut being drowned by less than a teaspoon of liquid is a very real one. When Nelson returned to the airlock and crew compartment, the aroma of six hours perspiration in the suit coupled with the soaking urine reminded his crew members of “the inside of a toilet that had not been cleaned.’’ The smell was so bad that Nelson’s colleagues threatened to put him back outside for the remainder of the mission!

The icing on the cake was to be a landing back at the Kennedy Space Center but, as was the case with Crippen’s STS-7 mission, bad weather thwarted the attempt. Challenger came home after a one-orbit extension, on runway 17 at Edwards Air Force Base at T + 6 days 23 hours 40 minutes 7 seconds. “Mr. Shuttle’’ headed straight for the simulators for his next mission. Solar Max re-entered in 1990.

Milestones

98th manned space flight 42nd US manned space flight 11th Shuttle mission 5th flight of Challenger

1st satellite retrieval, in-orbit repair and redeployment

1st astronaut docking with satellite

19th US and 26th flight with EVA operations

Подпись:

Подпись: SOYUZ T12
Подпись: 1984-073A 17 July 1984 Pad 31, Site 5, Baikonur Cosmodrome, Kazakhstan 29 July 1984 140 km southeast of Dzhezkazgan R7 (11A511U2); spacecraft serial number (7K-ST) #18L 11 days 19hrs 14min 36sec Pamir (Pamirs) All-Soviet Salyut 6 visiting mission; on-orbit instruction activities; tests of new EVA equipment

Flight Crew

DZHANIBEKOV, Vladimir Aleksandrovich, 42, Soviet Air Force, commander, 4th mission

Previous missions: Soyuz 27 (1978); Soyuz 39 (1981); Soyuz T6 (1982) SAVITSKAYA, Svetlana Yevgenyevna, 35, civilian, flight engineer, 2nd mission Previous mission: Soyuz T7 (1982)

VOLK, Igor Petrovich, 47, civilian, research engineer

Flight Log

Lift-off of this Soyuz with a difference came at 23: 41 hrs local time at Baikonur. The commander was making his fourth flight, the flight engineer was the first woman to make two missions and the cosmonaut researcher was a Buran space shuttle pilot on a familiarisation trip. To cap it all, the commander and flight engineer made an EVA on the mission, the first by a female and the first by a man and a woman together. All these statistical firsts seemed to be linked to the fact that in three months’ time the US was to launch a Shuttle to perform all these facts and feats.

Soyuz T12 was not altogether a Khrushchev-style propaganda mission, since Vladimir Dzhanibekov, the commander, was giving Salyut 7 a once-over and training the resident crew in the updated repair techniques necessary to keep it operational and which had been developed since their launch. Docking with Salyut occurred on 18 July and seven days later, Dzhanibekov and Svetlana Savitskaya started a 3 hour 55 minute EVA, during which both operated welding equipment. A 30 kg (66 lb) portable electron beam welder was carried outside, together with the control panel, transformer and metal samples. Savitskaya started the cutting, soldering and welding tests and was followed by her commander.

At the end of the spacewalk, the cosmonauts retrieved some samples from the outside of Salyut. The rest of the mission included experiments with the French Cytos 3 biological unit. The visiting mission was a long one compared with those that went

STS 41-C

On board Salyut 7, clockwise from bottom left: Dzhanibekov, Savitskaya, Solovyov, Yolk, Atkov and Kizim

 

before and ended at T + 11 days 19 hours 14 minutes 36 seconds. Maximum altitude during the 51.6° mission was 372 km (231 miles).

As Buran was still a state secret, the activities of Volk were quite vague. Volk had trained for a flight to Salyut 7 with Kizim and Solovyov but his mission had been delayed due to the problems Salyut was experiencing. After completing the T12 mission and shortly after landing, Volk piloted both the Tupolev 154 and MiG 25 with adapted Buran control systems in order to test the effects of a 12-day space flight on his piloting skills. This was a simulation of what a Buran pilot would have to experience upon returning the shuttle from orbit, something the Americans had been doing for the previous three years.

Milestones

99th manned space flight

57th Soviet manned space flight

50th Soyuz manned space flight

11th Soyuz T manned space flight

1st space flight by female on second mission

1st EVA by female

1st male-female EVA

9th Soviet and 27th flight with EVA operations Final manned space flight from Pad 31, Site 6

First manned flight of new Soyuz uprated booster (11A511U2) – Soyuz U2

Int. Designation

1988-106A

Launched

2 December 1988

Launch Site

Pad 39B, Kennedy Space Center, Florida

Landed 6

December 1988

Landing Site

Runway 17, Edwards Air Force Base, California

Launch Vehicle

OV-104 Atlantis/ET-23/SRB BI-030/SSME #1 2027;

#2 2030; #3 2029

Duration

4 days 9 hrs 5 min 35 sec

Callsign

Atlantis

Objective

3rd classified DoD Shuttle mission

Flight Crew

GIBSON, Robert Lee “Hoot”, 42, USN, commander, 3rd mission Previous missions: STS 41-B (1984); STS 61-C (1986)

GARDNER, Guy Spence, 40, USAF, pilot

MULLANE, Richard Michael, 43, USAF, mission specialist 1, 2nd mission Previous mission: STS 41-D (1984)

ROSS, Jerry Lynn, 40, USAF, mission specialist 2, 2nd mission Previous mission: STS 61-B (1985)

SHEPHERD, William McMichael, 39, USN, mission specialist 3

Flight Log

STS 62-A, the first manned polar orbiting space flight, was to have been launched from Vandenberg Air Force Base in California in 1986. The flight was cancelled and the Vandenberg pad mothballed after the Challenger disaster. It re-emerged as STS-27, with a new commander, Hoot Gibson, replacing Bob Crippen, and a new mission specialist, William Shepherd, replacing Dale Gardner. Orbiter Atlantis was equipped with an enormous electronic intelligence and digital imaging reconnaissance satellite which was to be placed into a 57° inclination orbit, the highest inclination permitted by a Shuttle from the KSC.

The first launch attempt was called off on 1 December with the crew aboard at T — 9 minutes due to high winds at altitude. There was a minor delay the following day, before the spectacular take-off at 09: 30 hrs local time, with the Shuttle making a dramatic, sloping lateral movement away from the pad as it performed a 140° roll programme and headed up the east coast of the USA. Debris from the top of one of the SRBs broke away and severely damaged some of the underside of Atlantis, as the crew would see after they landed. Once in orbit the official communications, which began at T — 9 minutes, ended for this military mission.

STS-27

L to r: Gardner, Gibson and Shepard at work during STS-27

According to analysis and ground observations, the giant Lacrosse was deployed from the payload bay by the RMS and inspected. Its 45 m (147 ft) span solar panels were supposed to unfurl but did not at first. If an EVA was required to free the panels it was not announced but the panels were freed, possibly by an RMS-induced shake, and the deployment followed at about T + 7 hours into the mission. Little information about it was released, except that a gallon of water had leaked in the cockpit. STS-27 marked the third time that eleven people were in space at once, with six cosmonauts on board the Mir space station at the same time.

The flight ended at T + 4 days 9 hours 5 minutes 35 seconds on runway 17 at Edwards Air Force Base after a northerly approach from its high-inclination orbit, only the second afternoon landing in the Shuttle programme. The crew busied themselves examining the underside of the orbiter, which had suffered extensive damage to its heatshield tiles, resulting in the need to replace 707 of them, the greatest tile loss on the programme. Despite this, STS-27 had qualified Atlantis for the Return – to-Flight programme.

Milestones

123rd manned space flight 57th US manned space flight 27th Shuttle mission 3rd flight of Atlantis

Int. Designation

1991-054A

Launched

2 August 1991

Launch Site

Pad 39A, Kennedy Space Center, Florida

Landed

11 August 1991

Landing Site

Runway 15, Shuttle Landing Facility, Kennedy Space Center, Florida

Launch Vehicle

OV-104 Atlantis/ET-47/SRB BI-045/SSME #1 2024; #2 2012; #3 2028

Duration

8 days 21 hrs 21 min 25 sec

Call sign

Atlantis

Objective

Deployment of the fifth Tracking and Data Relay Satellite (TDRS-E) by IUS-15 upper stage

Flight Crew

BLAHA, John Elmer, 43, USAF, commander, 3rd mission Previous missions: STS-29 (1989), STS-33 (1989)

BAKER, Michael Allen, 37, USN, pilot

LUCID, Shannon Wells, 48, civilian, mission specialist 1, 3rd mission Previous missions: STS 51-G (1985), STS-34 (1989)

LOW, George David, 35, civilian, mission specialist 2 ADAMSON, James Craig, 45, US Army, mission specialist 3

Flight Log

The primary objective of STS-43 was achieved barely twelve hours into the mission, when the fifth TDRS satellite was deployed and then placed in its operational circular orbit after two burns of the IUS. Following the mission, the crew returned to Earth with data and results from four payload bay experiments, eight mid-deck payloads, thirteen Detailed Test Objectives (DTO) and nine Detailed Supplementary Objectives (DSO), most of which were linked to extended-duration missions in orbit.

The deployment of a TDRS satellite from a Shuttle rarely attracted headline news and these became some of the “quieter” missions in the programme. However, the work conducted by the crew after the deployment contributed to the development of techniques and procedures that would be significant for missions carried out years later on Mir and ISS. The launch was originally set for 23 July, but was delayed by a day to replace a faulty integrated electronics assembly (which controlled the separa­tion of the ET from the orbiter). Five hours before the second launch attempt, the mission was postponed again due to a faulty main engine controller on SSME #3. The launch was reset for 1 August, but was again delayed, this time due to cabin pressure

STS-43

TDRS-E leaves the payload bay of Atlantis atop IUS-15 just six hours after launch from KSC. When it reached its operational station it was renamed TDRS-5, replacing TDRS-3 at 174° west longitude. The GAS canisters are seen to the right of frame along the side of the payload bay wall

vent valve problems. It was postponed a further 24 hours due to infringements of Return-To-Launch-Site (RTLS) weather parameters.

When the mission did finally launch, the crew observed and photographed auroras and lightning discharges, along with four hurricanes in the Pacific Ocean. Measurements of solar UV radiation and UV backscatter radiation from Earth’s clouds were also obtained, which would be used to corroborate readings from instruments aboard NIMBUS 7 and the NOAA 9 and 11 satellites, which measured ozone concentration in the upper atmosphere. The In-Flame Preparation in Micro­gravity experiment was part of an improved fire safety technology investigation connected with safety in future manned spacecraft, while studies of the operation of two large heat pipe radiation elements were linked to the space station. The crew also worked with protein crystallisation, polymer membrane processing and bio­medical and fluid science experiments. They also evaluated new Shuttle computers, associated software and improved cursor control devices. In the medical experiments, data was obtained from use of the Lower Body Negative Pressure Device, as well as monitoring cardiovascular performance of the crew in anticipation of future inves­tigations during long space flights. Blaha and Lucid would both participate in their own long-duration flights aboard space station Mir in 1996 and 1997.

Milestones

143rd manned space flight

72nd US manned space flight

42nd Space Shuttle mission

9th mission for Atlantis

5th TDRS Shuttle deployment mission

1st female astronaut to make three space flights (Lucid)

1st planned landing at KSC since January 1986