Category Praxis Manned Spaceflight Log 1961-2006

Future Flight Manifest 2006-2011 (as at 1 October 2006)

Date

Mission

Flight

Country Crew

Objective

2009

Jan STS-128 ? (128) 17A USA Establish six person crew capability on ISS

No crew assigned

MPLM; Lightweight Multi-Purpose Experiment Support Structure Carrier (LMC); Three crew quarters, galley, second treadmill (TYIS2); Crew Flealth Care System 2 (CHeCS 2)

Mar

Soyuz TMA13

ISS-19

Russia

Krikalev (TMA/ISS Cdr)?; Surayev (FE) plus ?

Additional EO crew members?

Apr

STS-129? (129)

ULF-3

USA

No crew assigned

EXPRESS Logistics Carrier 1 (ELC 1); EXPRESS Logistics Carrier 2 (ELC 2)

Jul

STS-130? (130)

19A

USA

No crew assigned

MPLM; Lightweight Multi-Purpose Experiment Support Structure Carrier (LMC)

Sep

Soyuz TMA14?

ISS-20

Russia

No crew assigned

Sep?

Shenzhou 8 & Shenzhou 9

China

China

No crew assigned No crew assigned

Shenzhou 8 & 9 to perform first Chinese manned docking and creation of small short-stay space station

Oct

STS-131? (131)

ULF-4

USA

No crew assigned

EXPRESS Logistics Carrier 3 (ELC 3); EXPRESS Logistics Carrier 4 (ELC 4); two Shuttle-equivalent flights for contingency

2010

Jan

STS-132? (132)

20A

USA

No crew assigned

Node 3 with Cupola

Mar

Soyuz TMA15?

ISS-21

Russia

No crew assigned

816 Appendix С

EXPRESS Logistics Carrier 5 (ELC 5); EXPRESS Logistics Carrier 6 (ELC 6); two Shuttle-equivalent flights for contingency

ISS Assembly complete – Shuttle fleet retired Sep Soyuz TMA16 ? ISS-22 Russia No crew assigned

2011

Mar Soyuz TMA17 ? ISS-23 Russia No crew assigned

Apr

The following information was compiled with the help of Collect Space 7 Oct 2006, Robert Pearlman

Soyuz TMA-crewing 2007-2008

TMA10 ISS-15: April 2007-September 2007

Commander

FE1

FE2a

FE2b

FE2c

Oleg Kotov Fyodor Yurchikhin

Suni Williams (up on STS-116) until June 2007 Clay Anderson (up on STS-118) until September 2007 Dan Tani (up on STS-120) until October 2007

TMA11 ISS-16:

Commander

FE1

FE2a

FE2b

FE2c

FE2d

September 2007-March 2008 Yuri Malenchenko Peggy Whitson

Dan Tani (up on STS-120) until October 2007 Leopold Eyharts (up on STS-122) until December 2007 Bob Thirsk (up on STS-123) until March 2008 Koichi Wakata (up on STS-124) until April 2008

TMA12 ISS-17:

Commander

FE-1

FE-2

FE-2b

FE-2c

March 2008-September 2008 Sergei Volkov

Peggy Whitson (stays on ISS for 9 months returns on STS-119) Shalizhan Sharipov (launched on TMA-12)

Sandy Magnus (up on STS-119) until September 2008 Greg Chamitoff (up on STS-126) until November 2008.

A Selected Timeline

1961

Apr Yuri Gagarin becomes the first person fly into space and completes one orbit May Alan Shepard becomes the first American in space on a sub-orbital flight Aug Gherman Titov is launched on the first 24-hour mission, of 17 orbits

1962

Feb John Glenn becomes the first American to orbit the Earth, with 3 orbits Jul First X-15 flight to exceed 50 miles (Robert White)

Aug Andrian Nikolayev sets new endurance record (3 days 22 hours)

1963

Jun Valeri Bykovsky sets new endurance record (4 days 23 hours)

Valentina Tereshkova becomes first woman in space (2 days 22 hours)

Aug Highest X-15 flight (66.75 miles) – Pilot Joseph Walker

1964

Oct First multi-person space crew (3) – Voskhod 1; First civilians in space

1965

Mar Alexei Leonov becomes first person to walk in space

Mar First US multi-person crew (2) on Gemini 3

Jun Ed White becomes first American to walk in space

Aug Gemini 5 sets new endurance record (7 days 22 hours)

Cooper becomes first person to orbit Earth a second time Dec Gemini 7 set new endurance record (13 days 18 hours)

First space rendezvous – Gemini 6 with Gemini 7

1966

Mar First space docking – Gemini 8 with Agena target

Sep Gemini 11 attains highest altitude of Earth orbital manned flight (850 miles)

1967

Jan 27 Three Apollo 1 astronauts killed in pad fire

Apr Soyuz 1 pilot Vladimir Komarov killed during landing phase

Oct X-15 fastest flight (4520 mph – Mach 6.7) (Pete Knight)

Nov X-15 pilot Michael Adams is killed in crash of #3 aircraft after attaining

50.4 miles

1968

Aug Thirteenth and final X-15 “astro-flight”

Oct First three-man Apollo flight (Apollo 7)

Schirra becomes first person to make three orbital spaceflights Dec Apollo 8 becomes first lunar orbital mission

1969

Jan Soyuz 5/4 first manned docking and crew transfer (by EVA)

Mar Manned test of LM in Earth orbit (Apollo 9)

May Manned test of LM in lunar orbit (Apollo 10)

Jul First manned lunar landing – Apollo 11

Oct First triple manned spacecraft mission (Soyuz 6, 7, 8)

Nov Second manned lunar landing Apollo 12

1970

Apr Apollo 13 aborted lunar landing mission

Lovell becomes first to fly in space four times Jun Soyuz 9 cosmonauts set new endurance record (17 days 16 hrs)

1971

Feb Third manned lunar landing (Apollo 14)

Apr Launch of world’s first Space Station – Salyut (de-orbits Oct 1971)

Jun First space station (Salyut) crew. Killed during entry phase (Soyuz 11) Jul Fourth manned lunar landing (Apollo 15)

1972

Apr Fifth manned lunar landing (Apollo 16)

Dec Sixth and final (Apollo) manned lunar landing (Apollo 17)

1973

Apr Salyut 2 (Almaz) fails in orbit (de-orbits in 26 days)

May Launch of unmanned Skylab (re-enters Jul 1979)

First Skylab crew sets new endurance record of 28 days Jul Second Skylab crew increases endurance record to 59 day 11 hrs

Nov 3rd and final Skylab crew increases endurance record to 84 days 1 hr

1974

Jun Launch of Salyut (Almaz) 3 (de-orbits Jan 1975)

Jul First successful Soviet space station mission (Soyuz 14)

Dec Launch of Salyut 4 (de-orbits Feb 1977)

1975

Apr Soyuz 18 crew survive launch abort

Jul Soyuz 19 and Apollo dock in space – first international mission

1977

Sep Salyut 6 launched (de-orbits Jul 1982)

Dec First Salyut 6 resident crew set new endurance record of 96 days 10 hrs

1978

Jan First Soyuz exchange mission (Soyuz 27 for Soyuz 26)

Mar First Soviet Interkosmos mission (Czechoslovakian)

First non-Soviet, non-American person in space (Remek)

Jun Second Salyut 6 crew sets new endurance record of 139 days 14 hrs

1979

Feb Third Salyut 6 resident crew increases endurance record to 175 days

1980

Apr Fourth Salyut 6 resident crew increases endurance record to 184 days 20 hrs Jun First manned flight of Soyuz T variant

1981

Apr First Shuttle launch (Columbia STS-1) on 20th anniversary of Gagarin’s flight

John Young becomes first to make five space flights
Nov First return to space by manned spacecraft (Columbia STS-2)

1982

Apr Salyut 7 launched (de-orbits Feb 1991)

May First Salyut 7 resident crew sets new endurance record of 211 days 9 hrs

Nov First “operational” Shuttle mission, STS-5, is also the first four-person

launch

1983

Apr First flight of Challenger

Jun Sally Ride becomes first US woman in space during STS-7, the first five – person launch

Sep Soyuz T10-1 launch pad abort

Nov First Spacelab mission – STS-9; first six-person launch John Young flies record sixth mission

1984

Feb First use of MMU (STS 41-B) on untethered spacewalks Feb Third Salyut 7 resident crew sets new endurance record of 236 days 22 hrs

Jul Svetlana Savitskaya becomes the first woman to walk in space (Soyuz T12/

Salyut 7)

Aug First flight of Discovery on STS 41-D Oct First seven-person launch (STS 41-G)

Kathy Sullivan becomes first American woman to walk in space

1985

Jan First classified DoD Shuttle mission (STS 51-C)

Jul First Shuttle Abort-to-Orbit profile (STS 51-F)

Oct First flight of Atlantis (STS 51-J)

Oct First eight-person launch (STS 61-A)

1986

Jan Challenger and its crew of seven lost 73 seconds after launch (STS 51-L) Feb Mir core module launched unmanned

Mar First resident crew to Mir (Soyuz T15)

1987

Feb Second Mir resident crew sets new endurance record of 326 days 11 hrs First manned Soyuz TM variant

Dec First flight of over a year as third Mir resident crew sets endurance record of 365 days 22 hrs

1988

Sep Shuttle Return-to-Flight mission (STS-26)

1990

Apr Hubble Space Telescope deployment (STS-31)

1992

May First flight of Endeavour (STS-49)

1993

Dec First Hubble Service Mission (STS-61)

1994

Jan Valery Polyakov sets new endurance record (437 days 17 hrs) for one mission (lands Mar 1995)

Feb First Russian cosmonaut to fly on Shuttle (Krikalev STS-60)

1995

Feb First Shuttle-Mir rendezvous STS-63/Mir

Eileen Collins becomes first female Shuttle pilot Mar First American launched on Soyuz (Thagard – TM21)

Jul First Shuttle docking with Mir (STS-71 – Thagard down)

Nov Second Shuttle-Mir docking (STS-74)

1996

Mar Third Shuttle-Mir docking (STS-76 – Lucid up)

Sep Fourth Shuttle-Mir docking (STS-79 – Lucid down, Blaha up)

Nov Longest Shuttle mission (17 days 15 hrs – STS-80)

Musgrave becomes only astronaut to fly all five orbiters

1997

Jan Fifth Shuttle-Mir docking (STS-81 – Blaha down, Linenger up)

Feb Second Hubble service mission (STS-82)

May Sixth Shuttle-Mir docking (STS-84 – Linenger down, Foale up)

Jun Collision between unmanned Progress vessel and Mir space station damages Spektr module

Sep Seventh Shuttle-Mir docking (STS-86 – Foale down, Wolf up)

1998

Jan Eighth Shuttle-Mir docking (STS-89 – Wolf down, Thomas up)

Jun Ninth and final Shuttle-Mir docking (STS-91 – Thomas down)

Oct John Glenn returns to space aged 77, 36 years after his first space flight Nov First ISS element launched – Zarya FGB Dec First ISS Shuttle mission (STS-88)

1999

Jul Eileen Collins becomes first female US mission commander (STS-93)

Aug Mir vacated for first time in ten years Dec Third Hubble service mission (STS-103)

2000

Apr Last (28th) Mir resident crew (72 days)

Oct First ISS resident crew launched

2001

Mar Mir space station de-orbits after 15 years service

Apr Dennis Tito becomes first space flight participant, or “tourist”

2002

Mar Fourth Hubble service mission (STS-109)

Apr Jerry Ross becomes first person to fly seven missions in space Oct First manned flight of Soyuz TMA

2003

Feb Columbia and crew of seven lost during entry phase of mission STS-107

Apr ISS assumes two-person caretaker crews

Oct First Chinese manned spaceflight (Shenzhou 5)

Yang Liwei becomes first Chinese national in space

2004

Sep Spaceship One flies to 337,500 ft (102.87 km)

Oct Spaceship One flies to 367,442 ft (111.99 km) claiming $10 million X-Prize

2005

Jul Shuttle Return-to-Flight mission 1 – STS-114 Oct First Chinese two-man space flight – Shenzhou 6

2006

Jul Second Shuttle Return-to-Flight mission – STS-121 Aug ISS returns to three-person capability

Resumption of ISS construction – STS-115

Bibliography

The authors have referred to their own extensive archives in the compilation of this book. In addition, the following publications and resources were of great help in assembling the data:

The Press Kits, News releases and mission information from NASA, ESA, CSA, RKK-Energiya, JAXA (NASDA), CNES, and Novosti have been invaluable resources for many years

Magazines:

Flight International 1961-2006

Aviation Week and Space Technology 1961-2006

BIS Spaceflight 1961-2006

Soviet Weekly/Soviet News 1961-1990

Orbiter, Astro Info Service 1984-1992

Zenit, Astro Info Service, 1985-1991

ESA Bulletin 1975-2006

British Interplanetary Society Books:

History of Mir 1986-2000; Mir: The Final Year Supplement, Editor Rex Hall 2000/ 2001

The ISS Imagination to Reality Volume 1 Ed Rex Hall 2002 The ISS Imagination to Reality Volume 2, Ed Rex Hall 2005

NASA Reports:

NASA Astronautics and Aeronautics, various volumes, 1961-1995

Mir Hardware Heritage, David S. F. Portree NASA RP-1357, March 1995. Walking to Olympus: An EVA Chronology, David S. F. Portree and Robert C. Trevino, NASA Monograph in Aerospace history, #7 October 1997

NASA Histories:

1966 This New Ocean, a History of Project Mercury, SP-4201

1977 On the Shoulders of Titans: A history of Project Gemini, NASA SP-4203

1978 The Partnership: A history of Apollo-Soyuz Test Project, NASA SP-4209

1979 Chariots for Apollo: A history of manned lunar spacecraft, NASA SP-4205 1983 Living and working in space: A history of Skylab NASA SP 4208

1977 Where No Man Has Gone Before: a history of Apollo lunar exploration missions, NASA SP-4214

2000 Challenge to Apollo: the Soviet Union and the Space Race 1945-1974, Asif Siddiqi, NASA SP-2000-4408

Other Books:

1980 Handbook of Soviet Manned Space Flight, Nicholas L. Johnson, AAS Vol 48, Science and Technology Series

1981 The History of Manned Spaceflight, David Baker

1987 Heroes in Space: From Gagarin to Challenger, Peter Bond

1988 Space Shuttle Log: The First 25 Flights, Gene Gurney and Jeff Forte

1988 The Soviet Manned Space Programme, Phillip Clark

1989 The Illustrated Encyclopaedia of Space Technology, Chief Author Ken Gatland

1990 Almanac of Soviet Manned Space Flight, Dennis Newkirk

1992 At the Edge of Space: The X-15 Flight Program, Milton O. Thompson 1999 Who’s Who in space: The ISS Edition, Michael Cassutt 2001 Space Shuttle, History and Development of the National STS Program, Dennis Jenkins

Springer-Praxis Space Science Series (which include extensive references and bibliographies for further reading)

1999 Exploring the Moon: The Apollo Expeditions, David M. Harland

2000 Disasters and Accidents in Manned Spaceflight, David J. Shayler

2000 The Challenges of Human Space Exploration, Marsha Freeman

2001 Russia in Space: The Failed Frontier, Brian Harvey

2001 The Rocket Men, Vostok & Voskhod, the First Soviet Manned Spaceflights, Rex Hall and David J. Shayler 2001 Skylab:; America’s Space Station, David J. Shayler 2001 Gemini: Steps to the Moon, David J. Shayler

2001 Project Mercury: NASA’s First Manned Space Programme, John Catchpole

2002 The Continuing Story of the International Space Station, Peter Bond

Creating the International Space Station, David M. Harland and John E. Catchpole

Apollo: Lost and Forgotten Missions, David J. Shayler

Soyuz, a Universal Spacecraft, Rex Hall and David J. Shayler

China’s Space Programme: From Concept to Manned Spaceflight, Brian

Harvey

Walking in Space, David J. Shayler

The Story of the Space Shuttle, David M Harland

The Story of Space Station Mir, David M. Harland

Women in Space: Following Valentina, David J Shayler and Ian Moule

Space Shuttle Columbia: Her Missions and Crews, Ben Evans.

Russia’s Cosmonauts: Inside the Yuri Gagarin Training Center, Rex Hall, David J. Shayler and Bert Vis

Apollo: The Definitive Source Book, Richard W. Orloff and David M. Harland

2002

2002

2003

2004

2004

2004

2005

2005

2005

2005

2006

2006

NASA Scientist Astronauts, Colin Burgess and David J. Shayler

STS-88

Int. Designation

1998-069A

Launched

4 December 1998

Launch Site

Pad 39A, Kennedy Space Center, Florida

Landed

15 December 1998

Landing Site

Runway 15, Shuttle Landing Facility, KSC, Florida

Launch Vehicle

OV-105 Endeavour/ET-097/SRB BI-095; SSME #1 2043; #2 2044; #3 2045

Duration

11 days 19hrs 17 min 57 sec

Call sign

Endeavour

Objective

ISS assembly flight 2A; mating of Unity docking node to Zarya control module

Flight Crew

CABANA, Robert Donald, 49, USMC, commander, 4th mission Previous missions: STS-41 (1990); STS-53 (1992); STS-65 (1994) STURCKOW, Frederick Wilford, 37, USMC, pilot ROSS, Jerry Lynn, 50, USAF, mission specialist 1, 6th mission

Previous missions: STS 61-C (1985); STS-27 (1988); STS-37 (1997);

STS-55 (1993); STS-74 (1995)

CURRIE, Nancy Jane, 39, US Army, mission specialist 2, 3rd mission Previous missions: STS-57 (1993); STS-70 (1995)

NEWMAN, James Hanson, 42, civilian, mission specialist 3, 3rd mission Previous missions: STS-51 (1993); STS-69 (1995)

KRIKALEV, Sergei Konstantinovich, 40, civilian, Russian, mission specialist 5, 4th mission

Previous missions: Soyuz TM7 (1988); Soyuz TM12 (1991); STS-60 (1994)

Flight Log

This mission initiated the construction of the International Space Station (ISS), a project which had long been proposed but which so often looked as though it would never become reality. In 1984, President Ronald Reagan had challenged NASA to build a space station within a decade. An international team assembled to accomplish the feat, but an over-complicated and expensive design, coupled with the loss of Challenger and doubts over the reliability of the Shuttle had added years to the project. By 1993, the idea was still only on the drawing board and in mock-ups. After several redesigns, a new partnership with Russia helped put the programme back on track. The series of Shuttle-Mir dockings proved that the Shuttle was perfectly capable of doing what it was originally envisioned for back in 1969 – servicing and supplying a space station. A simplified station design helped focus

STS-88

Shortly after release from Endeavour’s cargo bay, the connected Unity and Zarya modules are photographed during a fly-around survey, documenting the completion of a major milestone in the ISS programme with the connection of the first two elements in orbit

the ISS project to the point where the first element of the station was launched on 20 November 1998. This was not an American element, however, but the Russian FGB Zarya (“Dawn”), designed to provide electrical power, attitude control and computer command and later serve as a fuel depot and storage facility. The next element of the station would be the link between the US and the Russian elements. Known as Node 1 (“Unity”), it featured six docking ports that would enable the facility to be further expanded.

Unity was the primary payload of STS-88, the first American ISS Shuttle mission, which would use the RMS to attach the module to the forward docking port of Zarya. The launch of STS-88 was postponed by 24 hours on 3 December due to problems with hydraulic system number 1. By the time the problem was cleared, it was too late in the launch process to initiate the final countdown, so the first American element had to wait until the following day to lift off without further incident.

During the approach to Zarya, the crew used their time to prepare Unity by testing the RMS. On 5 December, they attached the end effector to the node, lifting it out of the rear of the payload bay and relocating it in the front of the payload bay along with the Shuttle docking system. This would later allow the crew access through internal hatches from the crew compartment of Endeavour into Unity and on into Zarya. The attachment of Unity to Zarya occurred on 6 December, using the RMS to grasp a grapple feature on Zarya and using the Shuttle’s engines to gently nudge the

Unity docking system on to that of Zarya. The embryonic ISS configuration was created. After powering up Unity and checking the integrity of the docking seals and internal atmospheres, the hatches were opened, allowing Cabana and Krikalev to symbolically float into ISS together for the first time.

During the three EVAs (7 Dec for 7 hours 21 minutes; 9 Dec for 7 hours 2 minutes; and 12 Dec for 6 hours 59 minutes), Ross (EV1) and Newman (EV2) removed launch restraint pins on the four hatches on Unity that would be used in future operations, nudged two stuck antennas on Zarya into position, installed sunshades over Unity’s data relay boxes, disconnected the umbilicals that were used to mate the units, and installed a handrail, a tool bag and an S-Band communication system. They also tested the SAFER units.

Inside Zarya, Krikalev and Currie replaced a faulty unit, inspected the inside of the module and removed some launch bolts and restraints. The undocking from ISS took place on 13 December. After a fly-around photographic inspection, the crew prepared for landing, having completed one of the most important and critical Shuttle flights. One of the largest international construction projects in history – and certainly the largest off the Earth – had begun.

The STS crew called themselves “Dog Crew 3’’, since two of them had flown on previous “Dog Crews’’. Thus, the crew were known as “Mighty Dog’’ (Cabana), “Devil Dog’’ (Sturckow), “Hooch” (Ross), “Laika” (Currie), “Pluto’’ (Newman) and “Spotnik” (Krikalev).

Milestones

210th manned space flight 123rd US manned space flight 93rd Shuttle mission

41st US and 72nd flight with EVA operations 13th flight of Endeavour 1st Shuttle ISS mission 1st Endeavour ISS mission

STS-109

Int. Designation

2002-010A

Launched

1 March 2002

Launch Site

Pad 39A, Kennedy Space Center, Florida

Landed

12 March 2002

Landing Site

Runway 33, Shuttle Landing Facility, KSC, Florida

Launch Vehicle

OV-102 Columbia/ET-112/SRB BI-111/SSME #1 2056;

#2 2053; #3 2047

Duration

10 days 22 hrs 11 min 9 sec

Call sign

Columbia

Objective

4th Hubble Service Mission (HST SM 3B)

Flight Crew

ALTMAN, Scott Douglas, 42, USN, commander, 3rd mission Previous missions: STS-90 (1998); STS-106 (2000)

CAREY, Duane Gene, 44, USAF, pilot

GRUNSFELD, John Mace, 43, civilian, mission specialist 1, payload commander, 4th mission

Previous missions: STS-67 (1995); STS-81 (1997); STS-103 (1999)

CURRIE, Nancy Jane, 43, US Army, mission specialist 2, 4th mission Previous missions: STS-57 (1993); STS-70 (1995); STS-88 (1998) LINNEHAN, Richard Michael, 44, civilian, mission specialist 3, 3rd mission Previous missions: STS-78 (1996); STS-90 (1998)

NEWMAN, James Hansen, 45, civilian, mission specialist 4, 4th mission Previous missions: STS-51 (1993); STS-69 (1995); STS-88 (1998) MASSIMINO, Michael James, 39, civilian, mission specialist 5

Flight Log

The scheduled launch on 28 February was postponed 24 hours before tanking operations commenced when adverse weather conditions threatened launch criteria. Waiting 24 hours also gave the launch team the option of back-to-back launch opportunities, but they did not need them as launch occurred without delay on 1 March. Following the launch, controllers noted a degradation of the flow rate in one of two freon coolant loops which help dissipate heat from the orbiter. After a management review, the mission was given a “go” for its full duration. The problem had no impact on the crew’s activities and the vehicle de-orbited nominally.

Hubble was grappled and secured in the payload bay by the RMS on 2 March (FD 2). A series of five EVAs were completed by the crew, working in pairs. Grunsfeld (EV1) and Linnehan (EV2) completed EVAs 1, 3 and 5, while Newman (EV3) and Massimino (EV4) completed EVAs 2 and 4. When not performing an EVA, the resting

STS-109

John Grunsfeld (right) and Richard Linnehan signal the close of the fifth and final EVA at Hubble. One more service mission is planned for the telescope in 2008

 

team also acted as IV crew for those who were outside, and serviced, cleaned and prepared their own equipment ready for their next excursion. Each EVA was supported by Nancy Currie operating the RMS, with Altman and Carey photo – documenting the activities.

During the first EVA (4 Mar for 7 hours 1 minute), the astronauts removed the older starboard solar array from the telescope (attached during STS-61 in December 1993) and installed a new third-generation array. The old (retracted) array was then stowed in Columbia’s payload bay for return to Earth for analysis of its condition after nine years in space. During EVA 2 (5 Mar for 7 hours 16 minutes), the new port array was installed, together with a new Reaction Wheel Assembly after the removal of the older array. The astronauts also installed thermal blankets on Bay 6, door stop extensions on Bay 5 and foot restraints to assist with the next EVA. EVA 2 also included a test of bolts located on the aft shroud doors. The lower two bolts were found to need replacing, which they accomplished successfully. EVA 3 (6 Mar for 6 hours 48 minutes) was delayed by a fault in Grunsfeld’s suit, but after changing the HUT, they continued with the EVA programme. This included replacing the Power Control Unit (PCU) with a new unit capable of handling 20 per cent of power output generated from the new arrays. The extracted PCU was the original launched on the telescope in 1990, and this operation required the telescope to be powered down. This was the first time since its launch that Hubble had been turned off. The astronauts removed all 36 connectors to the old PCU and stowed it in the payload bay before attaching the new unit within 90 minutes. One hour later, the new unit passed its tests and Hubble came back to life. EVA 4 (7 Mar for 7 hours 18 minutes) completed the first science instrument upgrade of the mission by removing the last original instrument on the telescope, the Faint Object Camera, and installing the Advanced Camera for Surveys. They also installed the first element of an environmental cooling system, called the Electronics Support Module (ESM). The rest of the system would be installed the following day. The final EVA (8 Mar for 7 hours 32 minutes) saw the installation of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) in the aft shroud and the connection of cables to the ESM. They also installed the Cooling System Radiator on the outside of Hubble and fed radiator wires through the bottom of the telescope to connections on NICMOS.

Hubble was released by the RMS on 9 March (FD 9) and the next day was a rest day for the astronauts. During the day, they took the opportunity to speak with the ISS-4 crew (Yuri Onufriyenko, Carl Walz and Dan Bursch). FD 11 saw a full systems check before landing at the first opportunity at the Cape on FD 12, rounding out a highly successful mission. At this time, there was a further Hubble service mission on the manifest (HST SM #4) in 2004 or 2005, with a close-out mission in 2010. The options of either bringing the telescope back to Earth for eventual display in a museum or leaving it in orbit, boosted to a higher apogee to reduce atmospheric drag, were still being considered when Columbia was lost in February 2003. It looked as though Hubble was likely be abandoned when its systems eventually failed, but there was also growing support both inside and outside of NASA to devote one Shuttle mission to revisit the telescope before the Shuttle fleet is retired in 2010. In

October 2006, a return to Hubble was authorised for 2008 due to public and scientific demand for keeping the telescope working for as long as possible.

Milestones

230th manned space flight

138th US manned space flight

108th Shuttle mission

27th flight of Columbia

52nd US and 85th flight with EVA operations

4th Hubble service mission (3B)

EVA duration record for single Shuttle mission (35hrs 55 min)

Int. Designation

2006-036A

Launched

9 September 2006

Launch Site

Pad 39B, Kennedy Space Center, Florida

Landed

21 September 2006

Landing Site

Runway 33, Shuttle Landing Facility, KSC, Florida

Launch Vehicle

OV-104 Atlantis/ET-118/SRB BI-127/SSME: #1 2044, #2 2048; #3 2047

Duration

11 days 19 hrs 7 min 24 sec

Call sign

Atlantis

Objective

ISS assembly mission 12A; delivery and installation of P3/P4 Truss

Flight Crew

JETT, Brent, 47, USN, commander, 4th mission

Previous missions: STS-72 (1996); STS-81 (1997); STS-97 (2000)

FERGUSON, Chris, 44, USN, pilot

TANNER, Joe, 56, civilian, mission specialist 1, 4th mission Previous missions: STS-66 (1994); STS-82 (1997); STS-97 (2000) BURBANK, Dan, 45, USCG, mission specialist 2, 2nd mission Previous mission: STS-106 (2000)

STEFANYSHYN-PIPER, Heidemarie, 43, USN, mission specialist 3 MACLEAN, Steve, 51, civilian, Canadian mission specialist 4

Flight Log

Set for a 29 August launch, the lift-off for the STS-115 mission to resume space station construction was postponed due to the proximity of tropical storm Ernesto. A decision was then made to roll back the STS-115 stack into the protection of the VAB for the duration of the storm as it passed KSC. This had a scheduling impact for the Russian launch of Soyuz TMA9 in September, but later the same day, NASA managers decided to reverse the decision and began moving the Shuttle back to the pad as weather predictions improved. On 6 September, a problem with Fuel Cell #1 in Atlantis was noted when a voltage spike in the coolant pump was recorded, threat­ening the planned 8 September launch. Analysis indicated that this was not a problem that would prevent the launch, but when a fuel cut-off sensor in the ET caused concern during the final minutes of the count, the mission was postponed 24 hours at the T — 9 minute mark. After a nominal performance during tests, the launch was given the all clear to proceed, which it did without further incident.

The delay had resulted in a short postponement of the launch of Soyuz TMA9 to the station and the shortening of the STS-115 mission by a day.

STS-115

Displaying a new set of wings, this photograph of ISS taken from the departing Shuttle reveals the newly-installed solar arrays delivered and installed by the crew of STS-115

The first day in orbit found the crew preparing equipment for the docking and EVA activities, as well as inspecting the thermal protection system on the orbiter. After analysis on the ground, no significant damage was found. Prior to docking on 11 September, the orbiter was flipped to allow the ISS-13 crew to observe and photo­document the TPS. Less than two hours after docking, the crew entered the station for the first time. At the end of the day, the first EVA crew of Tanner (EV1) and Stefanyshyn-Piper (EV2) “camped-out” for the night in the Quest airlock to purge their bloodstreams of nitrogen, which would shorten EVA preparations the next day. This pair completed the first and third EVAs of the mission, with Burbank (EV3) and Canadian Steve MacLean (EV4) completing the second EVA. All three EVAs (12 Sep for 6 hours 26 minutes; 13 Sep for 7 hours 11 minutes; and 15 Sep for 6 hours 42 minutes) were associated with the installation of the P3/P4 Truss and the deployment of the solar arrays and radiators.

No focused inspection of the Atlantis TPS was required after detailed analysis of the images from the crew, RMS and station inspections, so after the first two EVAs were completed, the crew rested for a couple of days and turned their attention to the transfer of logistics to and from the station. Such was the success of the first two EVAs, the crew managed to complete several get-ahead tasks along with their primary objectives.

On 17 September, Atlantis undocked from ISS after a visit lasting six days. Early the next morning, as the Shuttle began preparations for the return to Earth, Soyuz TMA9 was launched from Baikonur. With 12 space explorers in orbit at the same time

on three different vehicles (six astronauts on board Atlantis, three on Soyuz and three on ISS), it was the most people in space at the same time since April 2001, when the ISS-2, STS-100 and Soyuz TM32 crews (totalling 13 crew members) were all aloft. The hatches were open for 5 days 21 hours and 57 minutes and during this time, the two crews transferred 362.88 kg of hardware and 473 kg of water into the station and returned 491 kg of unwanted hardware and trash. In addition, 90.72 kg of launch lock restraints and unnecessary hardware was placed in Progress M56 for disposal.

Another inspection of the TPS of Atlantis was completed the day after undocking and the following day, the Shuttle crew spoke with both the crew on ISS and the crew on the approaching Soyuz TMA9 craft in a three-way link up. On 19 September the mission was extended in order to re-check some of the TPS areas of Atlantis after small unidentified particles were found floating near the Shuttle. There were sufficient supplies to allow the mission to be extended until 22 September or for them to return to ISS for a possible rescue mission if anything untoward been found. However, analysis revealed no significant problems and Atlantis was cleared for landing on 21 September (the previous day had been ruled out due to weather concerns). In the event all went well, and Atlantis made a textbook landing at night at the SLF at the Cape.

During homecoming events in Houston on 21 September, Stefanyshyn-Piper collapsed twice and had to be assisted by officials and crew members. She was not taken to hospital and the effects were attributed to her adjustment to gravity after her first 12-day flight into space.

Milestones

249th manned space flight

146th US manned space flight

116th Shuttle mission

27th flight of Atlantis

19th Shuttle ISS mission

7th Atlantis ISS mission

59th US and 98th flight with EVA operations

Sub-orbital flight

The first US astronauts, Alan Shepard and Gus Grissom, flew sub-orbital Mercury test flights in 1961 aboard Redstone rockets, reaching over 160 km (99 miles) altitude. They were recognised as astronauts. When a Soviet Soyuz R7 booster failed in 1975,

Sub-orbital flight

Mercury launch vehicles

causing the abort that led to Soyuz 18-1 making a sub-orbital flight to about 145 km (90 miles) altitude, the flight was credited as a “space flight” to the two cosmonauts.

The Redstone was the USA’s first intermediate-range ballistic missile and was pow­ered by one Rocketdyne A-7 engine, with a thrust of 35,380 kg (78,013 lb) burning liquid oxygen, ethyl alcohol and water. The Mercury-Redstone was 25.29 m (82.97 ft) high. Two such vehicles were used in the Mercury programme for manned flights, while a third was cancelled with the desire to press on to the first orbital manned flight using Atlas.

Vostok and Voskhod

Vostok 1 weighed 4,726 kg (10,419 lb) and comprised a spherical flight module and an instrument section, shaped like a double cone, containing batteries and a retro-rocket. The total length of the spacecraft was 4.4m (14.4ft), with a maximum diameter of 2.43 m (7.97 ft). The habitable module was 2.3 m (7.55 ft) in diameter and weighed 2,240 kg (4,938 lb). Vostok was designed to support life for ten days in an orbit low enough to guarantee a re-entry due to natural decay in that period, in case of retro- rocket failure. The instrument section, weighing 2,270 kg (5,004 lb) and measuring

Vostok and Voskhod

The first cosmonauts of Vostok and Voskhod -1 to r Komarov, Feoktistov, Gagarin, Leonov, Titov, Bykovsky, Tereshkova, Popovich, Belayev, Yegorov, Nikolayev (AIS collection)

2.25 m (7.38 ft) long, utilised the TDU 1 retro-engine, powered by nitrous oxide and an amine-based fuel, with a thrust of 1.6 tonnes and a burn time of 45 seconds. The flight module landed at 10m/sec (32.8 ft/sec) – enough to injure the passenger seriously – so the pilot ejected at a height of 7 km (4 miles) and parachuted separately to the ground, landing at a speed of 5m/sec (16.4 ft/sec). The Vostok capsule had been tested three times successfully in six attempts on Korabl-Sputnik 1-5 (known in the West as Sputnik 4, 5, 6, 9 and 10), four of which carried canine passengers. Another canine­carrying mission failed to reach orbit. Other missions were planned but were cancelled in favour of upgrading the spacecraft into what became Voskhod as an interim measure to compete with the US Gemini series of missions.

Voskhod was essentially a Vostok spacecraft without crew ejector seats and with a back-up retro-rocket pack on top. It also had a landing retro-rocket system. The spacecraft weighed 5,320kg (11,730lb), comprising the 2,900kg (1,802lb) flight Descent Module, a 2,280 kg (5,027 lb) Instrument Module and a 145 kg (320 lb) back-up retro-pack. It was 5 m (16 ft) high, with a maximum diameter of 2.43 m (8 ft). The back-up retro-rocket – needed because Voskhod’s orbit, higher than Vostok on the more powerful SL-4 booster, would not naturally decay in ten days in the event of retro-fire failure – had a thrust of 12 tonnes and comprised 87 kg (192 lb) of solid propellant. It resembled an inverted cup on top of the Descent Module. To enable a 0.2 m/sec (0.65 ft/sec) landing, compared with the Vostok landing speed of 8 to 10m/sec (26-32 ft/sec), a landing retro-rocket was added, deployed with the parachute so that it fired downwards in front of the Descent Module. Voskhod flew one unmanned test flight, Cosmos 47, six days before the first manned flight. Voskhod 2 weighed 5,683 kg (12,531 lb). The main difference compared with Voskhod 1 was the flexible airlock, which was approximately 2.13 m (7 ft) long and 0.91 m (3 ft) in diam­eter. This was jettisoned after the EVA. The payload fairing of the SL-4 launch vehicle was modified to include a blister-like covering for the stowed airlock which protruded slightly from the flight capsule. Again, an unmanned craft (Cosmos 57) flew three weeks before Voskhod 2. There was also a 22-day canine flight flown as Cosmos 110 in early 1966, and a series of other manned Voskhod flights were planned, but they were cancelled in a desire to move on to the more advanced Soyuz programme.

Mercury

The US Mercury capsule was even smaller, with the pilot “putting it on”, rather than getting into it, as some astronauts described the entry. It would splashdown at sea under a single parachute.

The Mercury capsule was a bell-shaped spacecraft, 2.87 m (9.41ft) high, with a maximum diameter across the heat shield base of 1.85m (6.07 ft). At lift-off, with a launch escape system tower on its top, Mercury weighed about 1,905 kg (4,200 lb). The attitude of the heavily instrumented but severely cramped capsule would be changed by the release of short bursts of hydrogen peroxide gas from 18 thrusters located on the

Vostok and Voskhod

The Original Seven Mercury astronauts pose by a Mercury capsule and an Apollo CM at the Manned Spacecraft Center in Houston, Texas, during Look magazine’s coverage of the Collier Trophy Award in June 1963. L to r are Cooper, Schirra (partially hidden), Shepard, Grissom, Glenn, Slayton and Carpenter

craft. These movements could be controlled by the Automatic Stability and Control System (ASCS, which acted as the craft’s “autopilot” from the ground), through the Rate Stabilisation Control System (RSCS), or manually by the astronaut using a hand controller connected to a fly-by-wire system. At the back of the capsule, over an ablative heat shield, was a retro-pack containing three solid propellant rockets. These were held to the heat shield by three metal “straps” which were deployed along with the heat shield during re-entry. Mercury descended to a sea landing, or “splashdown” under one main parachute. Just before splashdown, the heat shield was dropped 1.21 m (4 ft), pulling out a rubberised fibreglass landing bag to reduce shock. Mercury had been tested unmanned 17 times previously on various rockets, only seven times successfully. Freedom 7 was Mercury capsule 7, the only first-production run, man­rated capsule and the only one to fly manned with one circular porthole, rather than a larger rectangular window, one of several new features requested by the astronauts but not included in time for MR3. Mercury capsule No. 11 (for MR4 the second sub­orbital mission) was in fact the first operational capsule designed for orbital flights, and included a rectangular window and an explosive side hatch, recommended by the astronauts for safety purposes.

Both Vostok and Mercury made six single-person flights between 1961 and 1963. Mercury was succeeded by a larger two-person craft called Gemini, while Vostok basically became Voskhod, into which a three-man crew was crammed for the maiden flight in 1964. A second flight included the first spacewalk, performed in 1965. These two flights in a sense diverted the Soviet Union from its lunar goal, because they were flown for short-term prestige.

MERCURY ATLAS 8

Подпись: Int. Designation Launched Launch Site Landed Landing Site Launch Vehicle Duration Callsign Objective1962 beta delta 1 3 October 1962

Pad 14, Cape Canaveral, Florida 3 October 1962

756.35 km northeast of Midway Island, Pacific Ocean Atlas 113D; spacecraft serial number SC-16 9 hrs 13 min 11 sec Sigma 7

Six-orbit mission

Flight Crew

SCHIRRA, Walter Marty Jr., 39, USN, pilot

Flight Log

Carpenter’s science-packed flight plan was being changed until almost launch day, so it was not surprising that he had trouble in orbit. One of his main critics was MA8 pilot Wally Schirra, who was extremely pleased with the smooth running of his own six-orbit mission, which he had made a modest engineering test flight with the minimum of experiments and manoeuvring. Indeed, his flight plan had been cast in stone on 8 August. What was surprising was the conservatism of mission planners, who decided to increase orbital flight experience by just 50 per cent, with a first-time landing in the Pacific Ocean, just short of a full six orbits.

MA8 could have been the first aborted launch, for just ten seconds after leaving the pad at 07: 15 hrs local time, Atlas 113D developed an alarming clockwise roll rate just 20 per cent short of an abort. The launch was the first to be shown on British television on the same day, three hours later, thanks to the Telstar communications satellite. It was also watched from the Cape by nine new NASA astronauts, who had been selected the previous month. Schirra had been in his capsule, with the engineering name Sigma 7, since 04: 14 hrs, and reached the highest Mercury orbit of 282 km (175 miles) and a speed of 28,256 kph (17,558 mph).

There had been concern that Schirra would be affected by the radiation belt created the previous July by the horrendous US upper-atmosphere nuclear test, Project Dominic. An overheating spacesuit almost forced an early return after just one orbit, but fortunately spacesuits were Schirra’s speciality. He deployed the MA7- type tethered multicoloured balloon, this time with success, and spent at least one orbit letting the spacecraft drift as it pleased. The retros were fired at T + 8 hours 56 minutes 22 seconds and Sigma 7 splashed down in the Pacific Ocean 756.35 km (470 miles) northeast of Midway Island, and just 7.2 km (4 miles) from its target, close to the recovery ship, USS Kearsage. Schirra’s mission lasted 9 hours 13 minutes

MERCURY ATLAS 8

Mercury Atlas 8 pilot Wally Schirra

11 seconds. He stayed with the ship until winched aboard the Kearsage. Media interest in the flight was minimal.

Milestones

9th manned space flight 5th US manned space flight 5th Mercury manned flight

STS-1

Int. Designation

1981-034A

Launched

12 April 1981

Launch Site

Pad 39A, Kennedy Space Center, Florida

Landed

14 April 1981

Landing Site

Runway 23, Edwards Air Force Base, California

Launch Vehicle

OV-102 Columbia/ET-2/SRB A07; A08/SSME #1 2007;

#2 2006; #3 2005

Duration

2 days 6 hrs 20 min 53 sec

Callsign

Columbia

Objective

First manned orbital test flight (OFT-1) of Shuttle system

Flight Crew

YOUNG, John Watts, 50, USN, commander, 5th mission

Previous missions: Gemini 3 (1965); Gemini 10 (1966); Apollo 10 (1969);

Apollo 16 (1972)

CRIPPEN, Robert Laurel, 43, USN, pilot

Flight Log

The build up to this momentous space mission for the US programme was painfully slow. A budget lower than that afforded to Apollo for a space system five times more technically demanding resulted in inevitable glitches at almost every turn. The first space flight by the Space Shuttle was originally scheduled for 1978, but in fact all that happened was that the first four space crews were rather optimistically named for missions that would start the following year. Thus, veteran John Young and rookie Bob “Crip” Crippen began what was to become one of the longest periods of training ever, ending with a lift-off in 1981. Coincidentally, for such a major space milestone, the launch would be on the twentieth anniversary of the first manned space flight by Yuri Gagarin.

That the launch had been scrubbed at T — 36 min, by a computer synchronisation glitch two days before, which had been dubbed by the media assembled at the Kennedy Space Center as a “fiasco”, is indicative of the reputation of the Shuttle. The USA had been through a period of several major technical disasters, including Three Mile Island, and there were many cynics expecting to be reporting another from the Kennedy Space Center on a maiden flight being manned for the first time. There is no doubting the heroism of the crew, who had only the dubious opportunity of ejection seats available to them for an early bail-out.

The cataclysmic blast-off occurred at 07: 00 hrs local time, causing unpredicted over pressurisation of the orbiter and a potential collision with the launch tower, followed almost immediately by the roll programme which alarmed already nervous

Подпись: 246STS-1
The Third Decade: 1981-1990

spectators with its brute force. Thrust was five per cent higher than anticipated, leading to a steeper, “heads down” climb to orbit. The solid rocket boosters were ejected at T + 2 minutes 11 seconds and the three main engines cut off at T + 8 minutes. The Space Shuttle Columbia was in initial orbit and was then boosted by four burns of the orbiter’s own propulsion system. Inclination was 40.3° and maximum altitude 232 km (144 miles).

With Columbia flying “upside-down” with its back facing the Earth, the payload bay doors were opened, exposing a vast interior which was empty for this test flight. TV cameras also showed that some heatshield tiles were missing from the rear of the orbiter and much was made of this in the popular press. They were not critical tiles, but all the same if they were missing, could other more critical tiles on the orbiter’s underside be loose or lost? The crew would find out after their thirty-sixth orbit, when after an almost flawless orbital workout by the jubilant Young and Crippen, the OMS engines initiated the 2 minute 27 second long retro-fire burn.

The Mach 25 re-entry, during which some tiles were exposed to 1,260°C, was accompanied by the usual radio blackout. Then, at Mach 10 and 57.3 km (36 miles), the happy Young reported that all was well. He proceeded to bring Columbia in like an airliner, landing on the dry lake bed runway 23, at Edwards Air Force Base, with main gear touchdown at T + 2 days 6 hours 20 minutes 32 seconds. Routine space flight with airliner-like landings seemed to have begun. Fifty Shuttle flights a year were being predicted.

Milestones

80th manned space flight 32nd US manned space flight 1st Shuttle mission 1st flight of Columbia

1st manned space flight in a reusable spacecraft

1st manned space flight on previously untested spacecraft

1st manned space flight to be boosted by solid propellants

1st flight by crewman on fifth space mission

1st flight to end with conventional runway landing

Подпись:

Подпись: SOYUZ 40
Подпись: 1981-042A 15 May 1981 Pad 1, Site 5, Baikonur Cosmodrome, Kazakhstan 22 May 1981 224 km southeast of Dzhezkazgan R7 (11A511U); spacecraft serial number (7K-T) #56 7 days 20hrs 41 min 52 sec Dneiper (Dneiper) Romanian Salyut 6 Interkosmos visiting mission

Flight Crew

POPOV, Leonid Ivanovich, 35, Soviet Air Force, commander, 2nd mission Previous mission: Soyuz 35 (1980)

PRUNARIU, Dumitru Dorin, 28, Romanian Army Air Force, cosmonaut researcher

Flight Log

The final Interkosmos mission involving a cosmonaut researcher from a Soviet bloc country, Soyuz 40, was also the last of this Soyuz model. Crewed by Leonid Popov and Dumitru Prunariu, the mission got under way at 23: 17hrs from Baikonur, followed by the docking with Salyut 6 a day later and greetings from residents Kovalenok and Savinykh. Experiments on board included those to study the Earth’s upper atmosphere and changes in its magnetic field. The mission ended at T + 7 days 20 hours 41 minutes 52 seconds, 224 km (139 miles) southeast of Dzhezkazgan. Maximum altitude during the 51.6° mission was 374 km (232 miles).

When Soyuz T4 returned later, Salyut 6 had received 16 cosmonaut crews and 15 unmanned spacecraft in three-and-a-half years. No fewer than 35 dockings had been made with it and Salyut 6 was occupied for 676 days. Some 13,000 photographs of the Earth had been taken and 1,310 experiments operated a remarkable record.

Milestones

81st manned space flight

49th Soviet manned space flight

42nd Soyuz manned space flight

39th (original) Soyuz manned space flight

Final flight of original Soyuz variant

1st manned space flight by a Romanian

9th and final Interkosmos mission

STS-1

Prunariu (right) wears the Chibis lower body negative pressure garment aboard Salyut 6, assisted by Popov