The Ministry of Supply

The design and production of aircraft became the concern of the Ministry of Aircraft Production in May 1940. In April 1946 the Ministry of Aircraft Production was dissolved and its powers transferred to the Ministry of Supply, whose primary duty was the furnishing of supplies and the carrying out of research design and development for the services.

Firstly, this lead to problems in that the Ministry of Supply was responsible for developing aircraft, but at the same time, it would not be the end user, and thus lacked the incentive to overcome obstacles, and to speed the process along. Secondly, it did not have to operate the obsolescent material that the prototypes would replace, and so here too lacked that final sense of urgency. A third criticism was its industrial policy: projects were often not allocated to firms on the basis of their ability to carry them out, but often given to firms who were short of work in order to keep them busy. Sometimes the rationale behind some of the decisions was hard to fathom. Blue Steel was given to Avro, who had no experience whatsoever in guided weapons and had to set up a division from scratch – a process which must have cost a year or so of development time.

Reginald Maudling was Minister of Supply from 1955 to 1957. He has this to say about the Ministry in his autobiography:

When Anthony Eden became Prime Minister in 1955, he promoted me to Minister of Supply, which was my first full Ministerial post… It was a strange Department, and the target of a good deal of criticism, much of it justified. It was supposed to be concerned mainly with the supply of munitions to the three Services, and this was a large part of the routine work of the Department, but in addition it had responsibility for the aircraft production industry generally. The Government exercised a great deal of influence over the industry because, with the scale of modern projects and the vast amount of research expenditure involved, the industry had to rely heavily on the Government for contracts and for support. In addition, the Ministry of Supply was responsible for the Royal Aircraft Establishment at Farnborough, a quite remarkable institution, upon which industry relied heavily for scientific and technical support.

Inevitably we got caught in the middle in all disputes that went on between manufacturer and consumer. This was particularly true in the field of military aircraft, with the Air Force always demanding more from the manufacturers and complaining they were not getting their requirements met, while the manufacturers were saying that they were doing all that was possible and the RAF were asking too much. Relations between the Ministry of Supply and the Air Ministry were not ideal, and indeed I had from time to time considerable battles with Nigel Birch, who was then Secretary of State for Air. I came to the conclusion during the time I was there that the system was a bad one and that the interposition of a third party between customer and supplier, rather than acting as a pacifying agent, merely exacerbated argument. I did, in fact, recommend the abolition of the Ministry of Supply and when Harold Macmillan asked me to continue in that job when he became Prime Minister I naturally refused, because it seemed absurd to continue as Minister in charge of a Department whose existence I did not think was justified.1

Sir Frank Cooper, one of the senior Civil Servants of the time (among many other posts, Permanent Secretary at the Ministry of Defence from 1976 until 1982), had this to say about the Ministry of Supply in the context of the TSR 2, although his strictures could be applied more generally:

There was no doubt that relations with the Ministry of Aviation /Supply and the Air Ministry went from bad to worse and that these poor relations spread increasingly to the Ministry of Defence as a whole. The breach itself was of long-standing. The basic cause was lack of trust, particularly as regards the information received by the Air Ministry. The trust was lacking because the Procurement Ministry stood between the Air Ministry as the customer, and industry as the supplier. Moreover nothing seemed to arrive at the right time and at the right price, let alone with the desired performance. The lack of trust was exacerbated by the financial arrangements under which the Ministry of Supply/Aviation recovered production costs from the Air Ministry but was left with the research and development costs. Hence, there was no clear objective against which the supply department could assess performance and value.

Rocket Interceptors

An Overview

In 1945 the RAF and USAF had the world’s most powerful strategic bomber fleets, yet they were on the point of becoming obsolete, and the factor that was driving them obsolete was the jet fighter. The increase in performance that the jet engine gave to interceptors rendered the likes of the Lancaster and its derivatives hopelessly vulnerable. If airborne radar and guided weapons are added to the armoury of the fighter, the balance tilts even further away from the bomber.

One answer, of course, was to build jet powered bombers. The Air Ministry had been aware of this for some time, and before the Second World War had ended, had issued the Operational Requirements that would lead eventually to the V bombers, which were, together with guided missiles and the development of atomic weapons, a major part of the post-war defence programme. Similarly, the Americans, while having pushed their propeller driven designs as far as feasible, were also busy designing jet bombers in the 1940s and 1950s, culminating in the B52, still in service.

In post-war Europe, the strategic focus for the Western Allies switched very rapidly from Germany to Soviet Russia. The Soviet Air Force was also a formidable fighting machine, although it had evolved along lines more tactical than strategic. It had, on the drawing board, some impressive interceptor aircraft such as the MiG 15.

The first rocket powered interceptor of all was the German Me 163, which was used in the latter stages of the war against the high-flying daylight bombing raids by American B17s. It was small and simple, using a wheeled trolley for take-off and a skid for landing. Its endurance was extremely limited, but it had, by the standards of the time, a phenomenal rate of climb. However, despite its impressive performance, it had very few ‘kills’ credited to it – one source gives a total of nine.1

But the Me 163 obviously impressed the British Air Staff, and proposals for a very similar aircraft began to emerge in the late 1940s. The designs being considered were for a very similar aircraft: a rocket motor with no other means of propulsion, a simple skid for a dead stick (i. e., unpowered) landing, and a battery of unguided 0.5 inch rockets. It was intended for point defence, for airfields and the like. With its limited endurance, it was not suitable for much else. Such an aircraft would have been able to carry enough fuel for only three or four minutes powered flight. In effect, it was almost a manned guided missile, and the unpowered landing technique would not have made it popular with pilots.

In 1945, the whole strategic equation had been rewritten with the advent of the atomic bomb. There was no great urgency for the rocket interceptor in the immediate war years, since the Russians had built a formidable tactical air force, but had almost nothing in the way of heavy bombers. In addition, at that time it was thought that the Russians would not have atomic weapons until the mid – 1950s. In the event, the first Russian fission bomb was exploded in 1949.

A further difficulty to the problem of interception was that any jet atomic bomber would be flying very high, very fast. Up until the 1960s, the bomber’s best defence had always been height. The higher the aircraft, the more difficult it is to detect, the more difficult it is to hit with conventional anti-aircraft shells, and the more difficult it is to intercept. For interceptor fighters, the choice was either to loiter at high altitudes, which, given their limited endurance, was not usually a feasible option, or to reach these heights as quickly as possible. In the 1940s, the performance of the jet engine was not sufficient to do this. The problem was to get an interceptor to that height quickly enough and with a sufficient speed differential to be able to manoeuvre into a position in order to be able to attack. It was further realised that such an attack would probably be made by guided weapons of some form – either heat seeking, using infra-red sensors, or radar controlled.

There was a fundamental problem with an aircraft as small as the proposed rocket interceptor, in that it would have been able to fly only in daylight and reasonably good weather, and this problem would plague all the designs until the later P177 and F155 designs. It is curious, given these limitations, that there was so much interest in the design. When Churchill was returned to government in 1951, he took a personal interest in the project, asking Lindemann, his scientific advisor and iminence grise, to look further into the idea. But the RAF strategic offensive had been entirely night based, and the RAF had rarely encountered the Me 163, and knew of it mainly by reputation. Similarly the German offensive against the UK had been mainly night-based after the early attacks in 1940. It was only the Americans, with high-flying well-armed Flying Fortresses who attacked during the day. So why were the RAF so interested in a fighter that could be used only in daylight? One answer, of course, is the defence of the airfields where the V bombers would be based – effectively point defence.

But despite this, the Air Ministry issued OR 301. The main points of the designs requested were that they should be relatively simple and would use rockets for the main propulsion. However, quick calculations would show that the endurance of such an aircraft is extremely limited. Let us do some order of magnitude calculations.

Given a rocket motor with an S. I. of 200 seconds and mean thrust of 4,000 lb (the Spectre was rated at up to 8,000 lb thrust, but could be throttled) then the fuel consumption is around 20 lb per second. Given that the aircraft might carry

6,0 lb of fuel, this gives a powered flight time of 300 seconds or 5 minutes! This is not long in which to take off, intercept and shoot down an incoming aircraft at an altitude of almost 10 miles.

There are other problems too: high-speed, supersonic aircraft make very poor gliders! If the pilot’s interception takes him too far from his base, then he will be forced to eject. Similarly, every landing will have to be one chance only. Landing such an aircraft unpowered would be a pilot’s nightmare. It soon became obvious that an auxiliary turbojet would have to be fitted. This extended the post­interception phase and enabled the pilot to ‘go round again’ if there was a problem on landing.

But there can be other criticisms of the basic concept. The OR stated ‘in order to facilitate ease and speed of production, the aircraft and its equipment are to be as simple as possible.’ This, however, was a mistake. Although it is very tempting to go for a simple design on these grounds, any such design would have some fatal flaws. The first is that there was no inbuilt air-to-air radar, which would have been no novelty in 1952, and the lack of it would be a severe handicap for high-flying interceptor aircraft. It can also be argued that, owing to the limited nature of the OR, obsolescence was inevitable. The aircraft would be restricted to ground control and daylight interception. Would ground control be readily available in a nuclear war scenario?

Again, to quote from the OR:

Current day interceptor projects are expected to be adequate in performance to match the enemy threat in normal circumstances, but may be unable to destroy enemy aircraft carrying out special operations at exceptional heights.

An aircraft to fulfil this requirement must have an outstanding ceiling and altitude performance. So far as is known at present, the characteristics can only be provided by rocket propulsion, and, although aware of the probable operating limitations of this method, the Air Staff consider that the promise of tactical advantage more than outweighs other considerations.

It is surprising in other ways that the OR was put in this way. As mentioned, Bomber Command throughout the Second World War carried out the vast majority of its raids at night. It is unlikely that the Russians would attack by day, knowing how vulnerable such an operation would be with the advance warning that would be given as the bombers crossed the width of Europe. So OR 301 was in danger of becoming a requirement for an interceptor without a target.

But another key phrase is, of course, ‘special operations at high altitudes’. This was an oblique way of referring to the nuclear armed bomber, and there is one crucial difference between a conventional and a nuclear bomber. With conventional bombing, it is accepted that most of the bombers will get through the defences. Indeed, during the Bomber Command offensive, the German defences would be congratulating themselves if they inflicted 10% losses on a night’s raid. In nuclear terms, this is completely reversed. Even 90% losses on a bomber fleet could mean devastation wreaked by the remaining 10%. This was the philosophy behind the rocket interceptor.

In any event, designs were sought from all the major aircraft firms – Blackburn, Westland, Fairey Aviation, Saunders Roe and Bristol, among others. Saunders Roe were not originally on the list, and given their previous work, this is not surprising. However, they had gained experience of modern aircraft with the SRA1, a jet-propelled flying boat fighter. Bizarre though this concept might seem (it was intended for the Pacific war against Japan), it had two axial flow turbo jets, and, given the limitations on the design posed by its aquatic role, had a very respectable performance.

These designs were passed through to RAE to ‘score’ them on a complicated points system. The two that fared best were the Saunders Roe P154 and the Avro 720. The basic difference between the Avro design and the others is that Avro chose liquid oxygen and kerosene as fuels, as opposed to HTP/kerosene. The Gamma and the de Havilland Spectre rocket motors were the HTP choices. HTP was undoubtedly safer in a crash, although any rocket aircraft was inherently dangerous, owing to the explosive nature of fuel and oxidant.

Rocket Interceptors

But the limitations of these designs became obvious. Saunders Roe then came up with the suggestion that the aircraft should carry an auxiliary jet engine and have proper landing gear. The point of the jet was to supplement the rocket, and then to provide a limited cruise facility, followed by a return to base. The jet engine was of relatively low thrust compared with the rocket, but had high endurance. The Spectre was of 8,000 lb thrust; the Viper jet engine of 1,850 lb. This suggestion was also under consideration by the Ministry, and so Saunders Roe produced modified designs. The SR53 design then emerged from the various proposals.

Avro and Saunders Roe were instructed to build three prototypes each, before the first of many defence economy axes fell. The projects were put on hold. Eventually the Avro prototype, though nearly complete, was to be dropped. Saunders Roe was asked to build two prototypes of the F138D/SR53 (the first designation was the Ministry code for the project, the second was Saunders Roe’s).

Saunders Roe pressed on with further designs since the SR53 was felt to be too limited. Saunders Roe proposed the P177, with a much more powerful jet engine, and limited Air Interception capabilities, in other words, a radar set mounted in the nose. Both the RAF and Navy were impressed with this design, and for once, the two Services were in full agreement over a project. The P177 was given the go-ahead and Saunders Roe were asked to produce an initial 27 aircrafts. The two prototype SR53s were proceeded with so as to give experience with the concept.

The Air Staff went further and issued another requirement for a rocket assisted interceptor, F155, with an even more demanding specification. A number of proposals were put forward, with the ‘winner’ being a development of the Fairey Delta.

A variety of factors led to the cancellations of the P177 and the F155. The main reason, although not the commonly accepted reason, was a change in defence policy. At that time, the decisions about future defence projects and related policy were taken on the basis of reports by the DRPC, the current chairman being Sir Frederick Brundrett. The work that had been done over the past ten years on guided weapons, or surface to air missiles, was reaching fruition in the form of the Bloodhound missile.

Bloodhound was a remarkably successful missile, with a range of over 50 miles, being deployed in British service between 1958 and 1991. It was also deployed by Australia, Singapore, Sweden and Switzerland. Not only could it do the same job as the rocket assisted interceptors, it could do it a good deal cheaper. It costs a good deal less to maintain a squadron of missiles sitting on an airfield for ten years than it does to maintain and fly an equivalent squadron of manned aircraft.

There was also another reason for dropping the rocket assisted fighter: conventional jets with afterburners gave a performance not far short of the rocket. The English Electric P1, which went into the service as the Lightning, had a performance nearly as good as the P177. It too suffered from endurance problems!

Almost coincidental with this change of policy came a change of Prime Minister, when Eden resigned to be replaced by Macmillan. Macmillan wanted defence economies, and with that in mind, appointed Sandys as Minister of Defence. Very soon after the appointment came the 1957 Defence White Paper; indeed, so soon that most of the policy must have been established prior to Sandys. The 1957 White Paper became famous for three points: the abolition of National Service, considerable cuts in Defence spending, and cancellation of various aircraft projects in favour of missiles. On closer examination it is difficult to see how many other projects other than the rocket interceptors were cancelled, but it produced a considerable psychological shock to the British aircraft industry. There was a strong sense that there would be ‘no more manned aircraft’ for the RAF.

Rocket Interceptors

Figure 29. A somewhat fanciful artist’s impression of the SR177 in Luftwaffe service.

So despite a bitter rear-guard struggle fought by the Minister of Supply, Aubrey Jones, the P177 was cancelled. The Admiralty in particular pressed Sandys hard, and forced him eventually to admit that although the Navy still needed the aircraft for its carriers, the Defence Budget could not afford it. Both Saunders Roe and the Ministry of Supply tried hard to sell the aircraft overseas: there was Luftwaffe interest, and Saunders Roe prepared brochures for the Australian and Swedish Governments. However, Brundrett was against even this idea, arguing that we were trying to sell an aircraft which was obsolete, and that the Germans would be better off buying missiles from the UK. At the end of 1957, the Germans decided not to buy the aircraft; instead, they bought the Lockheed F-104 Starfighter, which became notorious in later years for its accident rate. Lockheed also had rather persuasive selling tactics unlikely to be matched by a small firm on the Isle of Wight!

The Lightning interceptor remained after the 1957 White Paper: later marks had almost the same capability as the P177 (and the same weakness in terms of endurance). It also showed the usefulness of a manned aircraft in the many interceptions carried out along the north and east coasts of the UK against long – range Russian aircraft probing British air defences.

Both the Lightning and the P177 fitted the specification for which they were designed more than adequately: the problem was not with the aircraft but with the specification and the changes in both technology and policy as the Ministry of Supply lumbered through its slow development procedures.

The apotheosis of the concept of the rocket interceptor was a design submitted by Saunders Roe for the Air Staff requirement F155. Saunders Roe’s design brochure was very impressive, leading to a behemoth of an aircraft with two jet engines with reheat and four rocket motors. This was an interceptor capable of taking on anything. It was also immensely huge, rivalling in scale even the TSR 2. Indeed, its size was to be its downfall. The original specification had been for an aircraft to carry two infra-red guided missiles and two radar guided missiles. Issue 2 specified one type or the other, with an option to switch. But whereas the other firms submitted their modified design, Saunders Roe stuck to their leviathan, and it was promptly discarded by the Ministry on grounds of size and expense. Fairey and Armstrong Whitworth were the chief contenders, with machines half the size, but again the project was never completed, falling foul of the same change in defence policy.

So the end result of all the work was the two flying prototypes of the SR53, and these were never to be anything other than research machines. But more than anything else, the concept had proved fatally susceptible to ‘mission creep’ over a period of ten years, from an extremely simple, almost crude, initial concept, to a highly sophisticated final series of designs. There is a saying, attributed to Voltaire, that the best is the enemy of the good (‘Le mieux est l’ennemi du bien’). If the RAF had wanted a good point defence high-flying interceptor, it could have had such a machine with 50 or so SR53s by the late 1950s. The concept of the rocket interceptor never had a chance to prove itself, partly because the window of opportunity in the technologies available was relatively narrow. This window was never fully utilised by the often slow progress of Operational Requirements through the Air Ministry, Ministry of Supply, the budget limitations and the desire to go one better as each design became finalised.

Rocket motors did have their drawbacks in the form of relatively limited operating time and use of exotic and expensive fuels. Handling such fuel would have produced difficulties when servicing the aircraft, and even though HTP is reckoned to be relatively benign as far as rocket fuels go, it is still hazardous to handle.

Rocket Interceptors

Figure 30. The SR53 in flight, but powered only by the small Viper jet engine.

The other factors leading to cancellations were the enforced defence economies, the constant improvement in jet engines, and the development of guided weapons. The role of interception was to be taken by the Lightning aircraft, which although it too had an impressive rate of climb to altitude, was also limited by range, at least, in the earlier marks. But it was the advent of guided missiles, principally Bloodhound, deployed along the East Coast V bomber bases and at RAF bases elsewhere, which finally killed off the rocket interceptors.

Unpopularity of Blue Streak

However, one further major question is left unanswered. The motives of the Services, the Ministry of Aviation, the Air Ministry and the Treasury appear obvious enough. What is not obvious is why the Ministry of Defence and Powell himself took the position they did.

There are several possible scenarios.

The first is that Powell himself, possibly in concert with other senior civil servants in other departments, felt that the project was insupportable. Although he did not have the authority himself to cancel it, he could set up circumstances that gave others the opportunity. Thus if the Treasury and the Chiefs of Staff were to object sufficiently, then the new and relatively inexperienced Minister, fresh to the Cabinet, had little choice. It is interesting that the major attack on the project was only mounted after the October 1959 election, when Sandys was moved from Defence to Aviation. It would also mean keeping the details of the report from Sandys at the Aviation ministry for as long as possible, which seems to have been the case.

Another possibility lies not with Powell but with Watkinson and Macmillan, as indicated in the Daily Mail article. Under this scenario, Watkinson is appointed by Macmillan with a specific brief to ensure the cancellation. But why would Macmillan want to do this?

A possible answer lies not in the cost, but the timing of the cost. Expenditure on Blue Streak would reach its peak from 1960 to 1965. Although expensive in terms of capital cost, its running costs were (or appeared to be) extremely low. Both Skybolt and Polaris were considerably less expensive to buy (the development costs would have been covered by the Americans) but their running costs were very much higher. Flying aircraft, or running submarines, does not come cheap. However, these running costs would not have been incurred for several years to come, which would be well beyond the lifetime of the Macmillan Government.

A further answer might lie in the silos themselves. It is curious that the estimates of the vulnerability of the silos were never questioned one way or the other. Although the Air Ministry and the Ministry of Supply had done the calculations as best they could, the design was still a paper one (indeed, the design of the lid, one of the most crucial points in any silo design, had not been finalised by the time of the cancellation). In a sense, this makes a nonsense of the whole argument: since no one actually knew the exact strength of the silos, the debate was in many ways so much hot air. But they would raise political difficulties. They would certainly consume a great deal of civil engineering resources, and the political impact of such large and controversial structures in Conservative constituencies should not be overlooked. Indeed, the Home Office under Butler had come into the argument at one stage, requesting that the silos be situated on the east side of the country so that, given prevailing westerly winds, fallout from an attack would to taken away from the UK. In addition, for Civil Defence purposes, Butler wanted the sites well away from centres of population.

But however well-disguised the real reasons were, and no matter how much the papers conceal the true motives, a very revealing letter was written a year after the cancellation. A Technical Sub-Committee was to be set up for the BND(SG), and Zuckerman wrote to various eminent scientists, inviting them to join. One was Sir Robert Cockburn, who had been working for the Government in various capacities since the war, and at one time had been CGWL at the Ministry of Aviation. He wrote back to Zuckerman, and one paragraph of his letter reads:

Blue Streak was cancelled because it was not politically viable rather than because it could be pre-empted. The scale of pre-emption was admitted to be of the order of

3,0 megatons. Supporters of the system argued that this was so excessive that pre­emption could be ignored in practice. The argument was not accepted and vulnerability was advanced as the main reason for cancellation. The real reasons were more fundamental although still not clearly appreciated. I suggest no British
statesman could visualise exploiting a deterrent threat which if mishandled could only lead to the annihilation of the whole country; nor could he believe that a threat involving such consequences would be taken seriously by an opponent.25

Подпись: 10Подпись: 12In other words, once missiles are fired, they cannot be recalled. And with missiles, which are seen as potentially vulnerable whilst on the ground, the incentive is to fire early. Bombers can be recalled, and they do not need to fire off their missiles until it is certain the UK has been attacked. The same is true of submarines lying undetected in the Atlantic. This, probably more than anything else, reflected the true reason why Blue Streak was cancelled.

The cancellation is a graphic example of how Whitehall can work. What is of more interest is the study of how much policy was made by officials and how much by Ministers. Ministers rely on officials for advice: how impartial was that advice? Civil servants themselves have opinions. Furthermore, the documentary evidence that survives tends to suggest that a good deal of policy was not made on paper, but in briefings, and that papers were presented with a particular pre­determined slant or viewpoint (although there is nothing new in that!). Ultimately, it might be said that the correct decision was made, but that the evidence presented was misleading, and the motivations of the various participants were, to say the least, often concealed.


Two stage. Launched 24 May 1960 at 21:00. Apogee 350 miles.

BK08, the first two-stage vehicle to be fired, was intended to obtain re-entry of the head at a higher speed. Main stage performance was good, but the second stage did not separate from the main stage and so was not ignited. The failure of explosive bolts or inertia switch circuitry was the probable cause. The trial, however, proved the aerodynamics of a new configuration, the control stability with the heavier vehicle, the stressing with greatly increased forward weight and the necessarily modified guidance arrangements.


Figure 92. The BK08 re-entry head being set up at Woomera.

Was Black Knight Good Value for Money?

Certainly the individual vehicles were cheap enough. A letter from Saunders Roe to the Ministry of Aviation in October 1958 has this to say:

In answer to the enquiry you made concerning the cost of additional Black Knight rounds, I quote below a Memorandum from our Commercial Manager which I hope provides you with the information you wanted:-

The approximate cost of the production of the vehicle is £41,000 as it leaves our factory at East Cowes. This figure includes the Armstrong Siddeley engine at a cost

of £15,000 each but excludes the cost of items of normal Embodiment Loan Equipment.

In addition there is the cost of testing and setting up the vehicle at High Down and later in Australia. As you will appreciate this is a very difficult figure to assess but I would suggest it is about £7,000 per vehicle. It is possible that this would be reduced if series production was underway but it would appear that we shall be constantly modifying each individual Equipment in the next year or two, and £7,000, therefore, would be a fairly safe figure to use.7

To modern eyes, these figures are astonishing. The idea that the Gamma 201 rocket motor cost only £15,000 tells us a great deal about inflation between then and now – but also that Black Knight was not exactly overpriced. This contrasts with a Treasury memo of January 1961, talking about Black Knight.

The memo begins with some general comments, which show some misconceptions: ‘In 1956, we agreed to the expenditure of £5m., for which it was expected to get 12 firings a year… ’ The mistake seems to lie with the Treasury – there was never any suggestion of 12 firings a year. The memo then goes on to say, ‘The first ten firings will work out at a cost of about £%m. each!’ There is a certain note of incredulity in the author’s tone, which makes one wonder what sum of money the Treasury would think reasonable for a programme in which the re-entry heads are shot 500 miles out into space. The total expenditure of the programme to date had been around £6 million, and the Ministry of Aviation were now asking for more funds. The author goes on to say:

On balance I think I recommend approval of this proposal – just. Any doubts I have are stilled by one further consideration which may appear cowardly but is, I believe, realistic: I do not think we have any hope at the present moment of killing the Black Knight series of experiments: and even if we had, to persuade Ministers to do so now would ruin our chances of killing the Blue Streak launcher project, for we could not hope to persuade Ministers to face the political odium of two further cancellations close together. Black Knight, although pretty expensive (and I would expect the C.&A. G.* at some time to get on to it) is at least working successfully. It has had a good press. It provides a useful vehicle for a certain amount of incidental upper atmosphere research of the kind Universities can share in. Its cancellation would be very strongly opposed in the Ministry, would draw a great deal of adverse criticism in public-after all, we have now got over the most expensive early stages – and would only save less than £1m. a year. Far better, I think, to keep our sights on the larger fish, Blue Streak, than to spoil Ministerial appetites with this smaller fry.8 [*C.&A. G.: Comptroller and Auditor General – part of the National Audit Office]

The author is proposing that the Treasury should let the Black Knight programme carry on simply because it gives it a greater chance to cancel Blue

Streak. For cynicism and superciliousness (‘a certain amount of incidental upper atmosphere research… ’) this is difficult to beat.

The author noted that since the next series of flights were to be done in co-operation with the Americans, it would be difficult to reduce the programme further. After all, ‘Given that we indulge in this hobby at all, co-operation with the US is surely sensible and desirable’9.

One of the functions of the Treasury is to keep a close eye on government expenditure: it does help if they get their facts right, and are rather more careful when it comes to making comment on technical matters which are somewhat beyond their grasp. [15]

Use of Spadeadam for Space Firings

The document below is the full text of the note written by Sir Steuart Mitchell, CGWL, to the Minister of Aviation, Peter Thorneycroft, concerning the possibility of using Spadeadam to launch Blue Streak.

The following are hastily prepared views on the above.


Spadeadam certainly would be feasible, and in nearly every way technically would be better than anywhere else.

2. Costwise. (Capitol plus operating) Spadeadam would be as cheap as Woomera, and cheaper than anywhere else.

3. Method

Trajectory about north 35 east.

Overflies Kelso. Crosses coast ever Eyemouth.

Passes 25 miles east of Aberdeen, and 100 miles west of the Norwegian coast.

Down range station, very well placed, would be in Spitsbergen (Norway, open all year round). Alternative would be at Tromso, which is possible but not so well placed.

First stage impact 200 miles off Norwegian coast abreast Namsos. (This is west of the Narvik – North Sea ore traffic lane).

Second stage impact on the polar ice cap.

4. Risks

Quick and Rough estimates are:-

1. The chance of having to cut down the missile on to UK territory beyond the Spadeadam Range Area is approximately:-

/% to 2% during the development period.

2. The chance of a missile having to be cut down and then landing in a “populated area” is approximately :-

1/50% to 1/5% during the development period

3. The chance of killing a person is approximately 1 in 10,000 per round fired in the development phase.

4. The risk to Norwegian territory is negligible.

5. The risk to shipping, is negligible.

5. Nature of the Risk

The cut-down risk is numerically greatest within the first mile. The Spadeadam Range area extends to just over a mile from the launch.

A missile cut down within five miles would have a considerable fire risk from fuel and oxidant. Outside five miles a cut-down missile is primarily a fragment risk not a fuel oxidant risk.

6. Comparison with Aircraft Risks

Aircraft crashes over the last 5 years in the UK average about 90 per annum. The probable total damage to lives and property of persons on the ground per annum from firings from Spadeadam is estimated to be about 1/10 of that from aircraft crashes in the UK per annum.

One Boeing 707 crashing near take off from London airport with full tanks and 128 passengers, or two Boeings colliding over London, would be far more serious than any conceivable accident with a space launcher.

7. Black Knight experience

None of the total of eleven firings so far done with Black Knight would have landed in UK territory if they had been fired from Spadeadam.

8. Conclusion

Spadeadam is technically both feasible and attractive. From the cost point of view, it is approximately the same as Woomera, and is much cheaper than any alternative.

It must be accepted, however, that some cut-downs on to UK territory would inevitably occur if we fire from Spadeadam. The chance of serious damage to life and property from such cut-downs are numerically small.

The risk of damage to foreign countries, or to shipping, is negligible.

The crucial point is the political acceptability of the risk in the UK Hitherto this has been regarded as unacceptable, and it would be no less now than when previously considered. My advice is that the risk is appreciable and should not be accepted.

S. S.C. M. C. G.W. L. 27th October 1961

[Taken from TNA: PRO AVIA 66/7]

Ministry of Defence

From 1946 to 1964 five Departments of State did the work of the modern Ministry of Defence: the Admiralty, the War Office, the Air Ministry, the Ministry of Aviation and an earlier form of the present Ministry of Defence. These departments merged in 1964, apart from the defence functions of the Ministry of Aviation which were merged into the Ministry of Defence in 1971.

The main purpose of the Ministry of Defence in the early 1950s was to co­ordinate the three services. At this point in its history it did not have the powers that it would later have. Duncan Sandys was appointed Minister in 1957 by Macmillan, and was given much extended powers. He is remembered for his 1957 Defence White Paper, which was (unfairly) blamed for the demise of a large part of the aircraft industry. It would be more correct to say that Sandys was the first to articulate changes that were inevitable and probably overdue.

The Ministry of Defence did have considerable influence on policy by means of the extremely powerful DRPC. It was this committee that decided general defence policy needs and hence which projects should proceed. The cancellation of the rocket interceptors was a direct consequence of a change in policy initiated by the DRPC, and the requirement for a ballistic missile originated with the DRPC.

The Treasury

The final arbiter was the Treasury. For a project such as Blue Streak, which could be considered as one of national priority, considerable delays were incurred as a result of Treasury refusal to release funds. The Spadeadam facilities were delayed for some six months as a consequence of Treasury reluctance, as this memo from the Ministry of Defence indicates.

You will remember that in February the Minister of Supply wrote to you in connection with the project to develop a rocket testing site in Spadeadam and emphasised the necessity of settling as quickly as possible the fate of our medium range ballistic missile project. We agreed at the time that nothing should be done about this letter since we had not yet settled the problems raised by the Long Term Defence Review. The Ministry of Supply, however, are now being held up by Treasury refusal to agree any expenditure at Spadeadam until the Financial Secretary has seen your reply to the Minister of Supply’s letter of 15th February [1956].2

Sir Frederick Brundrett, Chief Scientist at the Ministry of Defence and chairman of the DRPC, wrote:

There is no doubt whatever that the political uncertainties stemming originally from the reports of the meeting at Chequers, and particularly the bitter hostility of the Exchequer and the Treasury to the project, have contributed to the difficulties, and in particular, specifically caused the work at Spadeadam to proceed at a speed less than the maximum that would have been possible had money been available.3

Again, an excerpt from a minute to the Minister of Defence in October 1957 reads:

During most of 1956 we were defending the very existence of Blue Streak against savage attacks by the Treasury.4

But amidst the controversy the military case was being made that

the conclusion from these arguments is that of all the weapons under consideration only the ballistic missile looks like having a reasonable chance of remaining comparatively invulnerable by 1970. What is more the firing sites for ballistic missiles will be difficult targets to destroy. It is clear, therefore, that unless we change our present policy of maintaining continuously in being an effective contribution of our own to the strategic deterrent, we must retain in the programme the ballistic missile.5

If, in 1957, Britain intended to maintain its deterrent, then it needed a ballistic missile, and Blue Streak was the only option, whatever the Treasury might have thought. Often delays meant that, in the long run, the whole project cost even more. Then came the financial crisis of 1958, when the entire Government

Treasury team resigned in protest at the size of public spending. £100 million had to be cut from Government expenditure, with the consequence that Macmillan wrote to the Minister of Defence and the Chancellor in December 1958: ‘on Blue Streak we should take all steps to reduce expenditure which can be taken without giving any widespread impression that the approved programme is being abandoned or retarded. … of the order of £1M.’6

It is difficult to see why the Treasury seems to have opposed the project so bitterly: other defence programmes such as the V bombers or the nuclear programme had been equally costly. It is impossible to judge how such economies affected the project, but it would not be unreasonable to say that the first flight of Blue Streak would have been put back by at least six to twelve months by the delays imposed whilst obtaining Treasury clearance. The point was also made more than once by Sandys that such economies would mean that as a consequence of the delays, the system would be late in service, and its useful service life concomitantly reduced.

Designs in Detail The F138/SR53

As mentioned, the original Operational Requirement in July 1951 did not specify a jet engine; the aircraft was to be purely rocket propelled. A meeting of the OR Committee at this time said that ‘it would be a very local defence weapon’ and so ‘The possibility of fitting a small turbine to assist the landing was then discussed but ruled out on the score of weight’. The armament was to be a battery of 2-inch air-to-air rockets. As an indication of the number of aircraft firms that there were at that time, tenders were invited from Bristol, de Havilland, Fairey, AVRoe, and Short Brothers. Copies for information were sent to Armstrong Whitworth, Blackburn, Boulton Paul, English Electric, Gloster, Percival, Saunders Roe, Supermarine, Westland, Folland, Handley Page and Scottish Aviation!

In the minutes of the F.124 tender Design Conference in July 1952, it was announced that ‘General agreement was reached that only the Saunders Roe, AVRoe and Bristol A design remained in the competition..and that ‘Saunders Roe had submitted very good designs on two previous occasions and he felt that their design team were so good that it would be a mistake for it to be disbanded as would be the case unless the firm received a contract soon.’

There are two curious points about this: the fact that it had taken a year to evaluate the designs, and the comment on the Saunders Roe design team: contracts were often awarded for seemingly obscure reasons. The recommendation was made that three prototypes be ordered each from Avro and from Saunders Roe.

However, the huge increase in the defence budget in 1950 could not be sustained, and economy again became the watchword. This meant that three prototypes could not be afforded; despite RAF preference for the AVRoe design, the Ministry of Supply decided to press on with the Saunders Roe design, but with only two prototypes.

But there is an interesting comment from the OR committee sometime later, in June 1953:

… the changes in requirement that have been brought in from time to time have moved the design some way from the basic conception of a simple rocket aircraft – and there is some danger, in my opinion, that the final weapon will be less effective than it might be.

Indeed, in a sense this remark could be said to be the essence of the whole story.

However, work progressed rapidly with the SR53: in October 1952 there was a structures meeting between Saunders Roe and the RAE, and a preliminary mock up meeting in Cowes in September 1953.

The final delay in the completion of the first aircraft, XD 145, was delivery of the Spectre I motor: this could not be delivered to Cowes before mid-December 1955. The motor had earlier been installed in Canberra for flight trials. By mid- June 1956 the aircraft was completed, then dissembled for transport to the Aero­plane and Armament Establishment at Boscombe Down. Here it was put together again, and the first rocket engine firing was on 16 January 1957. The first flight took place on 16 May. The second aircraft, XD 151, was first flown on 18 December 1957.

The SR53 was intended to be a lead in for the P177, and the cancellation of the P177 meant that it had lost its purpose. However, it was felt that in many ways that the SR53 was a unique aircraft that could be used for aerodynamic research, rather as the X planes in America. Accordingly, proposals were put forward for enhancing the performance2. It was estimated that the Spectre 1 rocket motor in its then state of 7,000 lb thrust, and S. I. of 190s gave a maximum velocity of Mach 1.8 at 60,000 ft and a maximum height of 76,000 ft. Thus a meeting in May gave some options for further development:

(i) Spectre 5 engine 95,000 ft or M1.8;

(ii) Twin Spectre 125,000 ft or M2.3;

(iii) Spectre 5 and airlaunch at 40,000 ft and M0.8 gives 115,000 ft or M2.9.

The Spectre 5 was an improved version of the rocket motor; the Twin Spectre, as its name suggests, stacked two such motors together.

Figure 31 shows various scenarios for improving the performance of the SR53, and the results that might be obtained.3 It must be said, however, that some parts of this scenario do look a little optimistic. A further problem was that the SR53 as designed was not that well suited for the task, and most of this kind of research had already been done by 1958. As it stood, there were constraints on the airframe, being all aluminium. Kinetic heating meant that certain key parts of the airframe would have to be replaced by stainless steel, and work was done on this by the design team at Osborne House on the Isle of Wight.

Several scenarios were sketched out: with no armament, more fuel could be carried. The jet engine could be removed, and with a more powerful rocket engine and still more fuel, the flight envelope could be extended further. Also suggested was the use of solid fuel Mayfly rockets to assist take-off, and, in the piece de resistance, air launching from a Valiant was proposed. All this would have made XD154 Britain’s answer to the X-15! The Valiant could take the aircraft up to 40,000 ft at a speed of Mach 0.8. Unlike the American X-15, which was underslung, the proposal was to mount the SR53 on top of the Valiant.

In the meantime, flight trials went ahead with XD145 flying supersonic for the first time at around 45,000 ft on its 31st flight, in May 1958. But disaster overtook the programme in June when XD151 crashed during an aborted take-off on its 12th flight. A long and thorough investigation followed. Here is an excerpt from the report4.


Designs in Detail The F138/SR53 Designs in Detail The F138/SR53
Подпись: ■■ 0.000 LB
Подпись: 60000
Designs in Detail The F138/SR53
Подпись: 300.000

Designs in Detail The F138/SR53TRUE SPIKED – FT./SEC.

Figure 31. The SR53 as a research aircraft – although some of the ideas do seem on the optimistic side for such an aircraft.

The aircraft taxied out at 1200, and the Spectre was started at 1203. Approximately 5 seconds elapsed before the engine went ‘hot’ but this is understood to be normal. The aircraft lined up on the runway and after cockpit checks were completed, and 10° flap selected the aircraft commenced to take off. The aircraft accelerated normally and the nose wheel was raised. About 30 seconds after the pilot had reported ‘hot’, he was heard to call ‘Panic Stations’ and then a moment later, ‘Come and get me will you’. The anti-spin parachute was seen to stream, but the aircraft ran off the end of the runway. Upon impact with a runway marker light pole, a chain fence with concrete posts and finally a large marker light the aircraft broke up and caught fire. The pilot was killed.

An analysis of the film shows that the take-off was abandoned at a very critical stage when the aircraft was half way down the runway and on the point of becoming airborne. The rocket is shown to have ceased to run hot i. e. no flame, at this point. It could not be determined whether or not the rocket was deliberately throttled back by the pilot. There is no sign of the airbrakes having been opened and the aircraft left the runway at an estimated speed of about 145 knots.

The aircraft was on its take-off run, just becoming airborne, when the rocket motor abruptly cut. Whether the pilot took this action was never established, like so many other details of the accident. The aircraft braked hard, but overran the runway. It might still have survived but for a wing catching an obstruction, a runway lamp post. As the aircraft disintegrated, the rocket fuel ignited in a fierce conflagration. No cause for the accident was ever established, and there was no evidence of pilot error. Saunders Roe’s chief test pilot, John Booth, was killed in the accident.

With the investigation producing no clear result, the flight test programme continued, and XD145 made a total of 56 flights, or 22 hours flying time. Peter Lamb, Booth’s successor, described the SR53 as ‘an extremely docile and exceedingly pleasant aircraft to fly’, which, given the kick the rocket engine must have produced, says a lot about the aircraft. It reached a maximum speed of Mach 1.33, not an exceptional speed, altitudes of up to 55,000 ft, but certainly lived up to expectations with a climb rate of 29,000 ft per minute.

By the time the Ministry had decided to go ahead with the possible research project, Saunders Roe had been taken over by Westland. Westland’s policy was to drop fixed wing aircraft development to concentrate on helicopters (and Saunders Roe would later become, for a time, the British National Hovercraft Company). Saunders Roe’s Chief Designer, Maurice Brennan, responsible for all the fixed wing designs, had moved to Hawker Siddeley. The Ministry talked to Hawker Siddeley, but concluded that

… it was not clear for some time whether Westland would be willing to take on this work using the existing Saunders Roe team for the purpose, but they eventually decided to concentrate their activities on helicopter work and decline all fixed wing business. We had no alternative but reluctantly to accept their decision. However, Saunders Roe’s Chief Designer had by this time joined Hawker Siddeley and asked the latter to consider taking the job on. Having examined the matter with them, we reached the conclusion that we could not obtain by this means the programme of work that we wanted within the amount we had set aside for it.

The programme was finally closed in July 1960.

XD154 was set aside at RPE Westcott, and fortunately has been preserved. It is now in the Aerospace Museum at Cosford, with many other famous prototypes including the TSR 2 and Bristol 188.


One of the ironies of the Blue Streak saga is that the UK spent a very considerable sum on its development and on the Europa satellite launcher as part of ELDO, sums of the order of £200 million at 1950s/1960s prices, with absolutely nothing to show for it at the end of it all.

However, over a period of around 15 years from 1957 onwards, designs and proposals for an indigenous satellite launcher based on Blue Streak came and went. The design which most nearly came to fruition was known inelegantly in official files as the Blue Streak Satellite Launch Vehicle, or BSSLV for short. This chapter looks at the various designs proposed over the years. Not surprisingly, since Blue Streak, Black Knight and Black Arrow were the only liquid fuel ballistic rockets being developed by the UK, most of the designs tended to revolve around these vehicles, but in addition liquid hydrogen stages were often proposed. Alternative HTP designs could have been produced from de Havilland’s Spectre or Armstrong Siddeley’s Stentor motors, but were never considered by the RAE or Saunders Roe, where most of the designs originated.

The design of Blue Streak was finalised by around the start of 1957. At the same time, Black Knight had been set in motion, and it might be useful to give some approximate data for each vehicle.

Подпись: Black Knight 3 ft 16,400 lb 12,000 lb Blue Streak

Diameter 10 ft

Thrust 300,000 lb

Weight 196,000 lb

Blue Streak was around 15 times more massive than Black Knight, and this highlights one of the difficulties which designers of the time faced. The most efficient way to design a satellite launcher is to match the size and performance of the individual stages, but instead designers of the period were taking rockets designed for entirely different functions and putting them together into a
launcher, however mismatched they might be. This might be less efficient, but it saved time and money.

But to step back for a moment, the origins of the BSSLV are both obscure and interesting.

It is well known that the Pentagon was interested in reconnaissance from satellites in the mid-1950s, but was held back by a legal consideration. Aircraft from one country could not overfly another country without permission – to do so would be violating the second country’s airspace. What had not yet been legally established is the height of a country’s airspace – did it end at the top of the atmosphere or stretch out to infinite space? And how would ‘top of the atmosphere’ be defined?

Thus one of the reasons why the satellite proposed as part of the 1957 International Geophysical Year would be launched by a civilian rocket was so that it could not be described as military in nature by the Soviet Union. Its purpose would be entirely scientific, but at the same time it would set a legal precedent.

All this, of course, became moot with the launch of Sputnik 1. The Soviet Union could no longer complain if American satellites passed over Russian territory, and had no way of knowing what instruments or cameras the satellites were carrying. Over the next few decades, America was to spend literally billions of dollars on satellite reconnaissance. In March 1967, President Johnson was quoted as saying,

… we’ve spent thirty-five or forty billion dollars on the space program. And if nothing else had come out of it except the knowledge we’ve gained from space photography, it would be worth ten times what the whole program has cost. Because tonight we know how many missiles the enemy has and, it turned out, our guesses were way off. We were doing things we didn’t need to do. We were building things we didn’t need to build. We were harboring fears we didn’t need to harbor.’

For comparison, the GDP of the UK in 1967 was $111 billion.

But it was not only America that was interested in reconnaissance. So was Britain.

Towards the end of 1954 the D. R.P. C. appointed a working party to consider the problems of long-range reconnaissance. This working party reported in November 1955 and one of the recommendations in the report was that the most promising line of research and development would be an orbiting satellite to carry optical reconnaissance equipment.1

Desmond King-Hele of the Guided Weapons Department, RAE, was given the task of writing a report outlining the advantages and disadvantages of reconnaissance by satellite. RAE GW reports are usually very prosaic documents, designed to convey technical information only. It comes as something of a surprise, therefore, to read King-Hele’s introduction to his paper2.

Escaping from the earth, this ‘dim vast vale of tears’, has long been one of man’s recurrent dreams, a dream enshrined in primitive myth and exploited in many later European writings, among them Dante’s famous Divina Commedia, which includes visits to all the known planets, the sphere of the fixed stars, and beyond, even to the empyrean. Neither Dante nor most of his successors could specify a realistic means of propulsion, and it is only since the advent of the modern rocket motor the dream has shown any possibility of being fulfilled. Now that plans are afoot in Britain for a long-range ballistic rocket missile, the first step towards fulfilment – an unmanned satellite circling the Earth – has advanced beyond a possibility to a logical development.

The equally recurrent military need for continual reconnaissance also appears to be satisfied by a satellite vehicle, provided its launching is not denounced as a warlike act. If launched in high or middle latitudes it will inevitably pass over enemy as well as friendly territory, and much better photographs should be obtained from a satellite than from high altitude aircraft ‘peeping over the frontier’ through hundreds of miles of haze.

Bringing the satellite safely back to earth would be almost as difficult as placing it in an orbit; so the satellite is here assumed to be expendable, i. e., it is doomed at best to die in a brief blaze of glory, lighting up the night sky to the wonderment of some remote tribe, and at worst to drop with dull thuds in recognisable pieces on an enemy city.

Some of his rhetorical flourishes are not entirely successful: ‘to drop with dull thuds’ strikes a note of surely unintentional bathos, and political correctness today might cause ‘the wonderment of some remote tribe’ to be reconsidered. After this rather ornate introduction, the prose becomes more mundane and more suited to the matter under consideration.

The problems as he saw them were firstly, providing adequate propulsion and structure without exceeding the stringent limits on weight; secondly, methods of guidance, control and power generation; and thirdly, recording and transmitting back to Earth a picture of interesting territory which the satellite passes over.

King-Hele was aware that the satellite would not be able to provide ‘live’ data that is, when it was above the territory to be photographed, it would not be able to relay the information back directly, as the receiving station would be over the horizon and thus out of radio contact. What is slightly more surprising is that he rejected the idea of recovering film directly from the satellite after re-entry on the grounds that atmospheric decay of the orbit would be too unpredictable. The possibility of commanded re-entry did not seem to have been considered at all.

As to the resolution obtainable:

A continuous strip record would be taken while over interesting territory, by infra­red photography. This record would be processed or otherwise stored until transmission back to the ground, which would take place over friendly territory at low data rate. For an orbital altitude of 200 nautical miles quite good resolution, 100-200 ft, should be obtainable with a camera of about 50" focal length, and a strip 40-50 miles could be covered.

Power supply for the satellite was another problem. Among King-Hele’s suggestions was:

A third and more direct method is the Bell solar battery, in which electricity is generated directly by light falling on thin strips of pure silicon impregnated with traces of boron. The first models of the solar battery had an output of about six watts of exposed surface but by improved techniques output has now been raised to about 11 watts (11% efficiency of conversion). The standard 2000 lb satellite assumed here has a surface area of about 150 sq ft, so the area requirements are within the realms of possibility. The present high cost of the Bell device (quoted elsewhere as around half a million dollars per kilowatt) would however have to be reduced.

Interestingly, given the provisional status of Blue Streak at this date, King – Hele suggested that:

It will obviously be advisable to profit as far as possible from work on the Blue Streak surface-to-surface ballistic rocket missile, and accordingly the type of propulsion and structure at present proposed for Blue Streak are used here.

He obviously took this further in a later Guided Weapon Department report of May 1957, entitled ‘The Use of Blue Streak with Black Knight in a Satellite Missile’. This was the first time that a full analysis of Blue Streak as the first stage of a satellite launcher had been carried out… five months before the launch of Sputnik! His calculations showed that the Blue Streak/Black Knight combination could put a payload of 2,280 lb (very close to 1,000 kg) into low earth orbit. The conclusions of the report were that:

It should be possible to place quite a massive satellite vehicle in an orbit by using a three-stage missile which consists of (1) the first stage of Blue Streak, (2) the first stage of Black Knight and (3) the final satellite. Some structural strengthening would be required, in Blue Streak especially: increases in structure weight of 1000 lb on Blue Streak and 100 lb on Black Knight have been assumed here. Under these assumptions, and with an 850 ft/sec advantage from the earth’s rotation, the satellite payload would be about 2400 lb for 200 n. m. orbital altitude and 2200 lb for 400 n. m. orbital altitude.3

That is a remarkably accurate prediction, made all the more impressive since the two vehicles in question were still in existence only on the drawing board! King-Hele’s proposal can be seen in Figure 54. Looking at the design more closely reveals that the 3 ft diameter Black Knight sits uneasily on the 10 ft diameter Blue Streak. Making a one ton satellite that would fit into a 3 ft payload fairing might also be a challenge (for comparison purposes, the average saloon car is about a ton in weight).



Подпись: THIRD STAGE L WEIGHT 3000 LB. LENGTH 30 FT.BSSLVBSSLVIn 1957, there was also considerable security surrounding both Blue Streak and Black Knight, and it was not until 1959 that Geoffrey Pardoe of de Havilland was able to present various satellite launcher designs, using the same ideas, to a meeting of the British Interplanetary Society (BIS). The design that emerged as the favourite perhaps took the answer to the geometry problem a little too far: instead of being a slim 3 ft cylinder, the upper stage had become a 10 ft sphere!4 There is considerable logic behind this design, but there was also a practical difficulty relating to cost and facilities, which was much less obvious.

Подпись: Figure 54. King-Hele's proposal.Saunders Roe had designed their test facility at High Down for a 3 ft diameter vehicle; the stands could be relatively easily adapted for designs up to 54 inches Beyond that, there would, apparently, have to be considerable rebuilding. The cost of this was held up as an objection to design after design, until Black Arrow with its two metre diameter lower stage was produced – without any objection from anyone!

Although there was no specific requirement for a satellite launcher, RAE had considerable autonomy and pressed on with studies. The minutes of the ‘First Meeting in Ballistic Missile Division to Discuss the Development of Satellite Vehicles’ are dated February 19585. These meetings were obviously a follow on

from King-Hele’s paper, and discussion centres around Blue Streak. Curiously, the minutes of a later meeting in October 1958 mention that:

Mr. Longden reported that de Havilland had been doing satellite performance estimates. He understood that using only Blue Streak and Black Knight they could get a ton into orbit.

Mr. Cornford said that this work should not be encouraged.


Figure 55. Pardoe’s design for a Blue Streak launcher. The complete vehicle is shown on the left; the somewhat unusual second stage is shown in enlargement on the right.

Unfortunately, the minutes give no explanation as to why!

In May 1959, Harold Macmillan was asked in the House of Commons by Mr Richard Fort (Conservative Member for Clitheroe; sadly, he was to die in a car accident four days later): ‘if he is yet in a position to make a statement about space research’.

This was probably a ‘planted’ question so as to give the Prime Minister an opportunity to make his statement. As part of his answer, Macmillan said:

Meanwhile, however, design studies are also being put in hand for the adaptation of the British military rockets which are now under development. This will put us in a position, should we decide to do so, to make an all-British effort.

I have asked my noble Friend, the Lord President of the Council, in consultation with my Right Hon. Friend the Minister of Supply and other Ministers concerned, to exercise general supervision of these new developments.

He then went on to say:

I cannot give any figure of the cost of using the British rocket should it be decided to do so. What we are doing now is to spend a substantial but modest sum, more in hundreds of thousands than in millions, first for the design of the instruments, which is the first element, and secondly, for making the necessary designs for modifications of the British military rocket should it be decided when the time comes to use it for this purpose.

There were some sceptics in the House:

Mr. Chetwynd [Labour member for Stockton-on-Tees]: Is the Prime Minister satisfied that there is intrinsic value in this scientific work or is it just an attempt to keep up with the Joneses?

To which the Prime Minister replied in true Macmillan style:

I am not by nature or, I am afraid, by education very favourably inclined to swallow all that the scientists tell me, because, alas, I do not understand it, but I am impressed by the universal opinion of these very distinguished people whom we have consulted, and I feel certain that in this scientific instrument work it is clear that Britain ought to play her part in this advancing scientific effort. As to the method of launching these instruments, what I felt right to do, and what, I think, the House will think sensible, is to make preliminary work at not very large expense which will put us in a position to use our own rocket should, when the time comes, we decide to do so.

As a result of the announcement, Dr Robert Cockburn (who at that time was CGWL) at the Ministry of Supply was asked for design studies for a rocket and for the satellite itself by the Office of Lord President of the Council, Lord Hailsham, who was also acting as Minister for Science6. The RAE set up a series of panels to produce a detailed design late in 1959, resulting in the brochure produced by Saunders Roe, entitled ‘Black Prince’.

It was obvious that Saunders Roe had been involved before the announcement had been made. In a meeting back in April, ‘Saunders Roe tabled and presented several schemes for RAE consideration and discussion’.

As a result of all this work, a brochure for a launcher was ready in time for the military cancellation7. The brochure was prepared by Saunders Roe and RAE, and the vehicle is called, rather optimistically, Black Prince. Its design is very conventional: Blue Streak as the first stage, a 54-inch Black Knight second stage, with the Gamma engine uprated to 25,000 lb thrust, and various configurations suggested for a third stage, depending on the mission. This would also use HTP and kerosene, with a small four chamber rocket motor, designated the PR.38, from Bristol Siddeley.

The weight breakdown for the launcher in the initial design brochure was:

Подпись: Propellants 173,000 lb 16,000 lb 2,400-4,300 lbПодпись: Thrust 270,000 lb (sea level) 25,000 lb (vacuum) 2,000 lb (vacuum) All burnt weight First stage 12,500 lb Second stage 1,520 lb Third stage 500 lb

This would mean that the upper stages would be about 1/10th of the vehicle weight – a distinctly inefficient design. The vehicle would have a first stage diameter of 10 ft; the upper stages 54 inch or 4% ft. It would be nearly 98 ft tall.

But the brochure points up another flaw in the whole project. Different versions of the third stage were to be tailored to three specific missions: a low earth orbit of 300 nm ‘for experiments in stellar U. V. spectroscopy’, a 300/7000 nm orbit ‘enabling investigations of the Earth’s radiation belts to be undertaken’, and a 300/100,000 nm orbit for a ‘Space Probe’. Such imprecise missions do not engender confidence, nor answer the question: what was the point of Black Prince?

However, as part of the announcement of the cancellation of Blue Streak as a weapon in April 1960, stress was laid on its conversion to a satellite launcher. To be cynical, it could be said that this was a useful ploy to deflect criticism; it was argued by Watkinson, the Minister responsible for the cancellation, that the considerable expenditure to date had not been wasted, since Blue Streak was now being used for another purpose. The hollowness of this argument can be demonstrated by the fact that the expenditure to date had been in the order of £60-80 million; another £60 million would be needed to complete the project, and yet no Ministry was prepared to put up more than a few million pounds out of their own budgets. Watkinson, against the advice of his civil servants such as Sir Edward Playfair, was prepared to offer £5 million, but this would have to come out of existing budgets – not an easy option. Similarly, Hailsham was not
prepared to raid the science budget, and there seemed no obvious other source of finance, unless the Treasury were to fund it over and above existing expenditure – which was highly unlikely!

Подпись: NITROGENПодпись: Figure 56. From the Saunders Roe brochure for ‘Black Prince’.BSSLVThis is shown very clearly in a letter from Hailsham to Sandys (now Minister of Aviation) in April 1960, just after the announcement of the cancellation of Blue Streak as a military weapon.

The Advisory Council on Scientific Policy said in its last report that to leave vital scientific needs unsatisfied ‘in order to shoulder the crippling cost of a large programme of space exploration on a purely national basis would be, in the Council’s view, the grossest folly.’ At that time, of course, we were going ahead with Blue Streak for military purposes and the Council said ‘we do not consider that the technological advantages likely to accrue from the development of a British rocket and satellite programme designed for civil purposes over and above the effects of the existing military missile programme, would be sufficient to justify the very considerable expenditure involved’.

Using vehicles already developed for military purposes was one thing, but for the science budget to take on all the development costs of a launcher would be a very different matter. If Blue Streak had gone ahead as a military missile, then most of the development costs would have been covered by the defence budget, but that was no longer an option. Certainly the cost of the programme could not be justified from a very limited science budget.

There was little military interest too: the Chiefs of Staff, in conjunction with the DRPC stated in December 1959 that ‘The Committee agreed that, while
satellite research was important nationally, there were not at present any strong reasons to justify the spending of Defence funds on it.’

On the day the announcement of the cancellation was made, CGWL at the Ministry of Aviation (Sir Steuart Mitchell had returned to the post) wrote to all the firms involved – Rolls Royce, de Havilland, Sperry and others – and mentioned: ‘The Government is now considering whether to continue Blue Streak in the role of a Satellite Boost Vehicle, but it is unlikely that a decision will be reached on this until about June.’ Optimistically, he noted that ‘The intention would be to complete development by early 1964 with the firing of not more than 8 rounds, at a rate of approximately 3 per year’. (There was a curious British usage of the time which referred to the launches as ‘rounds’, rather as if they were shells or bullets.) At a meeting between RAE and Saunders Roe in May, the firing programme was outlined thus:

The initial 1st stage firing would be planned for October 1961. Thereafter there would be three firings in 1962, three in 1963 and one in 1964. The following more detailed firing breakdown was given: –

(a) 1st firing – As Blue Streak F1 but simplified…

(b) 2nd firing – As above.

(c) 3rd firing – Plus separation bay and dummy 2nd and 3rd stages.

(d) 4th and 5th firings – As above.

(e) In 1963 – 6th firing using live 2nd and 3rd stages plus a small simple satellite.

In the event, not even the first flight had occurred by early 1964!

Later in April Mr Syme of the Ministry of Supply in Melbourne, Australia, noted:

The programme would involve firing three Blue Streak missiles of current design, three modified ones carrying dummy upper stages, and two complete three stage versions, making eight firings in all, extending from the first firing in mid 61 to the last in early 64 at about four monthly intervals.

And the Ministry of Aviation had similar visions:

… [the] first missile on the launcher by April 61, static firing in July and first flight October 1961. Thereafter flights in March, July and October 1962 and 1963, terminating with the eighth flight in March 64.

Flights one and two would be unmodified Blue Streaks; firings 3, 4, and 5 would carry dummy upper stages; firings 6, 7 and 8 real upper stages. In addition, the Black Knight plus third stage require firing from Area 5 [the Black Knight launch site at Woomera]. Three flights suggested between September 1962 and May 1963.

The latter reference is to separate flight testing for the second stage. Thus the first complete vehicle would be F6 in March 1965.

To further these considerations, a Cabinet committee was set up, chaired by the Cabinet Secretary, Sir Norman Brook. Not surprisingly, he took advice from the Government’s Chief Scientist, Sir Solly Zuckerman, who did not have a high opinion of Blue Streak and its technology. A flavour of the advice he gave can be seen in a quote from Brook: ‘The main advantage would be to keep a leading position in liquid fuel technology, but this was an obsolescent skill.’

The value of his advice can be gauged from the consideration that derivatives of both the Thor and Atlas rockets, somewhat older than Blue Streak, are still in regular use 40 years after this advice was given, and there are still no large satellite launchers that do not use liquid fuel in at least part of their design. To be fair, however, from the military point of view he was quite correct. Then there was the question of cost: Zuckerman pointed out that ‘the whole UK R&D expenditure is £500M [per annum],’ of which £238 million was for defence, whereas the launcher would cost £15 million per annum, with a total cost of £64 million. (Much later, in June 1966, Zuckerman was to say of the launch of the first French satellite: ‘We could have anticipated and greatly exceeded this achievement had we decided in 1960 to adapt Blue Streak for this purpose and added Black Knight to it as a second stage’. It is a pity he had not been more forceful at the time.)

Senior civil servants are not noted for their extravagant use of language, yet in all the files that survive from the Cabinet Office and the Ministry of Aviation, no enthusiasm for the project ever shines through. Instead, Blue Streak, even in a civilian guise, is seen as an unfortunate inheritance from a military programme, and the very strong impression is that the project is maintained for political reasons rather than through any intrinsic merit.

But to return to money: cost estimates for aerospace projects are a notorious minefield, and the launcher was to prove no exception. Hasty initial estimates gave £35 million.8 This was solely for vehicle development costs. But there would be other costs as well – the vehicles themselves (around £2 million each) and the satellites that would be carried. This pushed the total estimate up to £64 million by July – although this included in addition the cost of three satellites, which the early estimate did not. An analysis was also done of the unit cost of a launcher, once development was complete, and these estimates were in the region of £1.8-£2.1 million, depending on the number of launches per year.

After the cancellation, a Missile Conversion Committee was set up, and the Ministry of Aviation gave some costings for the programme:

£31.0 m

2 Подпись:firings £15.8 m

3 firings £13.4 m

3 firings £9.7 m

If the same programme of work were spread over five years, then:

Подпись: 1960/61 1961/62 1963/64 1964/65 1965/66 £31.4 m

2 firings £12.4 m

2 firings £10.2 m

2 firings £10.2 m

2 firings £9.1 m

In total, the four year programme would cost £69.9m; the four year programme £73.3m.

But, noted the Treasury gloomily,

… the Ministry of Aviation… have very grave doubts about the five year programme on technical grounds. They are not at all sure that a firing every six months is in fact a viable arrangement. [ELDO managed only one launch a year between 1968 and 1971, with one gap lasting 16 months.] It would inevitably mean that many of the expert staff would be twiddling their thumbs for some time between each firing.

Later, the memo summarised the position by saying:

. the most that can be said is that the five year programme might put off by a year the (? evil) day when the scientists would be able to come along with their next big leap into space.

The difference in US and UK resources, or the proportion of their resources that they were prepared to devote to space research, is shown up quite starkly in a conversation recorded by Zuckerman in December 1960 with the US Assistant Secretary for War, who suggested that the UK joined the US in space work. ‘When I told him our total [annual defence] budget for R and D was £220M, he immediately replied that, even if we put all our defence R and D money in, we were obviously not starters in a US/UK collaboration programme in rocketry and satellites’9. If £220 million was not enough, how far would £15million take the


Funding for Blue Streak itself after the cancellation was kept at a ‘tick over’ rate, and although the Chancellor had initially agreed to provide money for the project, the beady eye of the Treasury was always on it. But this points up
another factor: the lack of any firm decision. This was summed up in an internal Ministry of Aviation paper soon after the cancellation:

The current BLUE STREAK programme will have run down to the level needed for the development of a satellite launcher by about the middle of July. A decision on the future of BLUE STREAK must therefore be taken within the next few weeks.

The possible courses are:

(a) To cancel BLUE STREAK completely.

(b) To undertake a programme of space research based on the joint Anglo/Australian development of BLUE STREAK as a satellite launcher.

(c) To undertake a programme of space research as at (b) and to explore the possibilities of co-operative programmes with European and Commonwealth countries.

(d) To take no final decision on space research, but to continue the development of BLUE STREAK at the minimum level while the possibilities of co-operation with Europe and the Commonwealth are explored.

If course (d) were adopted, then interim measures would be needed to ensure that this country retains the ability to develop a satellite launcher and undertake a space research programme, until the necessary decisions are made. The extension of the current BLUE STREAK contracts on a month-by-month basis could not last for

Подпись: Figure 57. Artist’s impression of Black Prince from the Saunders Roe brochure. more than 2 or 3 months, since it would be unsatisfactory and uneconomic, and would prevent contractors from entering into the longer term commitments involved in the supply of materials. Contracts would probably have to be extended for at least 12 months. In practice course (d) would be difficult to present to Parliament and the public, particularly if it resulted in the abandonment of space research after a year or so.

But, as we can see, course (d) is what the Government ended up with. Often a lack of any firm decision is worse than any of the decisions that could have been taken. Immediate cancellation would have saved money, pressing on with the project would have produced an end product.

There was no room in the military budget despite Watkinson’s offer. There was little money for anything: the Ministry of Aviation had been given £50,000 for the initial design study for a satellite launcher, and they were told by the Treasury in April 1960 that if they want £250,000 for wider studies then they must apply for it. More realistically, Sir William Downey asked for another £35,000 in May. This is hardly an extravagant budget. In addition, money had to be provided for the ‘tick over’ contracts at the likes of de Havilland and Saunders Roe.

So in May meetings began between RAE, Saunders Roe and Bristol Siddeley to continue the development of the design. Mention was made of an intention to ground launch the upper stages as part of the development programme. Saunders Roe set about the business of designing the second stage in detail and producing a test tank structure. De Havilland began the design of the interstage section, and Bristol Siddeley was keen to press on with the new engine for the third stage.

The RAE took the design very seriously: just as there had been a series of panels for the missile on guidance, propulsion and so on, a series of similar panels were set up for Black Prince. However, in July CGWL wrote a memo decreeing that:


Figure 58. The third stage of the proposed Blue Streak launcher (left), which would have been powered by the PR.38 motor (right).

It has been decided that the proposed 3-stage satellite launching vehicle based on Blue Streak, Black Knight, and a third stage, and the subject of current project design studies, shall be known as the BLUE STREAK SATELLITE LAUNCHER.

The names Black Prince and Blue Star, which have been used semi-officially, are not to be used.

But even so, there was continued Government vacillation on the programme. The then Minister of Aviation, Peter Thorneycroft, had visited both Canada and Australia, and, as part of his mission, had attempted to interest both countries in a Commonwealth satellite launcher.

Подпись: Figure 59. The third stage would have been powered by the PR.38 motor. Here a chamber interested other than supporting the for that motor is being test fired. work being done at Woomera. With any New Zealand contribution likely to be ‘modest’, and with South Africa no longer part of the Commonwealth, such a joint programme seemed unrealistic. However, whilst the Commonwealth expressed no interest, France did. Very soon after the initial cancellation, French officials made various discreet contacts with British diplomats to ask about Blue Streak. However, they were as much aimed at finding out design information for their own ballistic missile project as enquiring about a joint satellite launcher programme. While the indecision dragged on, RAE and Saunders Roe continued with the development of the BSSLV. On a meeting in December 1960, RAE mentioned that the second stage diameter of 54 inches was producing control problems, and that they would prefer a larger diameter stage. Given existing facilities at Canada’s reply was that she was already investing enough in space; privately the Canadians told the British that they were spending considerable sums on Alouette, a Canadian satellite to be launched by NASA, and on various sounding rocket programmes. Indeed, they admitted that the total expenditure was far more than publicly acknowledged, and no other commitments were possible. Similarly Australia was not

High Down, the greatest diameter possible would have been 58 inches and Saunders Roe were asked to produce a design for such a stage.

The third stage design is shown in Figure 58, with the PR.38 motor on the right. Some test chambers for the motor were constructed and fired, as can be seen in the photographs10 in Figure 59.

However, the initial performance calculations for Black Prince gave a figure of around 1,750 lb in low Earth orbit. Communications satellites needed to be in a much higher orbit – preferably geosynchronous, although RAE and the Post Office had been interested in 8-hour and 12-hour orbits as alternatives. In addition, Woomera is poorly placed for launching such satellites, with its range restrictions necessary to prevent overflying of populated areas, and also too far south for geosynchronous launches. Estimates of the cost of an equatorial launch site were in the region of £20-30 million. Black Prince’s payload decreased rapidly with altitude and with launch direction: it was estimated that for a 2,500 nm orbit at 40°W of N, the payload was down to 600 lb.


Two stage. Launched 21 June 1960 at 19:35. Apogee 301 miles.

BK09, the second two-stage vehicle, was very successful. Separation of the second stage, initiation of the second stage boost and separation of the head from the second stage boost was satisfactory. The second stage boost ignited at the correct height on the downward trajectory prior to re-entry, and a re-entry velocity of 15,000 ft/second was achieved at 200,000 ft. The tape recorder in the head recorded data during re-entry down to 80,000 ft. Just prior to this an abnormal and completely unexpected increase in head oscillation occurred. The head broke up shortly after this and unfortunately the last inch or so of tape which had passed through the tape head was lost. This corresponded to the period immediately prior to head break-up. The break-up of the head at a low height during re-entry indicated that either the plank construction of the head was unsatisfactory or abnormally high loading was applied during re-entry, maybe resulting from an unstable oscillation.

The attempt to observe the re-entry with the Gaslight system showed that the instruments were not sensitive enough, that a better acquisition system was necessary, and that increased Black Knight performance was needed to raise the level of observables.


Figure 93. The BK09 re-entry head.


Single stage. Launched 25 July 1960 at 21:24. Apogee 330 miles.

BK07 was a single-stage vehicle with a high drag heat shield head equipped to give data on heat transfer and re-entry dynamics. Extensive instrumentation was put in the motor bay to investigate base heating and pressure distribution. In addition, lightly loaded spring flaps were fitted to the pressure bleed holes in the propulsion bay to check the direction of flow through these holes. Their movement was monitored by telemetry.

Propulsion was satisfactory except that towards the end of the burning phase one of the four motors reverted to ‘cold’ thrusting and this resulted in a reduced re-entry velocity. This motor fault was subsequently attributed to a failure of a kerosene feed pipe.

The head separated from the main body but the additional thrust units in the head, provided to give increased separation, did not operate, nor did the turn over and spin thrust units. However, the head did re-enter nose first, but at a large initial incidence. The recovered head shows that impact was on the nose and that there was no re-entry burning on the afterbody. Head telemetry was extremely good and re-entry data was obtained. Complete dynamic analysis of the re-entry head was possible and head temperatures during re-entry were obtained.

The tracking lamps which were fitted for the first time to this vehicle were seen clearly by the guidance telescope operator and the kinetheodolite operators after engine flame-out until about 200 seconds. The electronic flash unit failed to function.