Category The Secret of Apollo

The Rise of the Weapon System Concept

The air force had to develop two kinds of technologies. The majority of the projects were concerned with component development. On account of their great cost and complexity, however, large-scale weapons such as bombers, fighters, and missiles took up the bulk of the air force’s R&D resources. To manage these so-called weapon systems, air force officers found that their loosely organized prewar methods did not suffice. For the new systems, the air force looked to new models of centralized project management.

Two World War II aircraft projects fit the bill. The complex B-29 and P-61 projects both used committees to coordinate the development ofthe airframe, electronics, and armament during development, instead of after airframe manufacture and testing.20 For the complex and pressurized B-29, engineers designed armament and communications together from the start, because the aircraft’s computer-controlled fire-control systems were integrally connected to the airframe. For the B-29 and the P-61, officers considered the entire air­craft a system that included manufacturing and training as well as hardware.21

Another influential World War II program was the Manhattan Project to build the atomic bomb. Gen. Leslie Groves of the Army Corps of Engineers managed the project, gathering physicists, chemists, and engineers at Los Alamos, New Mexico, to design the bomb. Groves administered the project with a staff of three and made major decisions with a small committee con­sisting of himself, Vannevar Bush, James Conant, and representatives of each of the services. Army officers directed day-to-day operations at each of the project’s field sites, most of which had traditional hierarchical organizations, albeit cloaked in secrecy. Because of technical and scientific uncertainties, the project developed two bomb designs and three methods to create the fissile material.22

The organization at Los Alamos differed from the organization at other project sites. Director Robert Oppenheimer wrested a degree of freedom of speech for the scientists and ensured that they remained civilians. Oppen- heimer, to respect the traditional independence of scientists and maintain open communication, initially adopted the loose department structure of uni­versities. This changed in the spring of 1944, when tests showed that the pluto­nium gun assembly bomb would not work. The tests led to an acceleration of work on the more complex implosion design. As R&D teams grew, the project needed and obtained strong managers like Robert Bacher and George Kistia – kowsky, who transformed the project’s organization from an academic model to divisions organized around the end-product — a project organization.23

Americans also learned from the organization of the German V-2 proj­ect, headed by Wernher von Braun. Reporting to General Arnold on Ger­man scientific capabilities at the end of World War II, von Karman stated that one of the major factors in the success of the German V-2 project was its organization:

Leadership in the development of these new weapons of the future can be as­sured only by uniting experts in aerodynamics, structural design, electronics, servomechanisms, gyros, control devices, propulsion, and warhead under one leadership, and providing them with facilities for laboratory and model shop production in their specialties and with facilities for field tests. Such a cen­ter must be adequately supported by the highest ranking military and civilian leadership and must be adequately financed, including the support of related work on special aspects of various problems at other laboratories and the sup­port of special industrial developments. It seems to us that this is the lesson to be learned from the activities of the German Peenemunde group.24

In the Ridenour Report of 1949, the SAB remembered the lessons of the Manhattan and V-2 projects for organizing large new technologies. They noted that new systems were far more complex than their prewar counter­parts, making it necessary for some engineers to concentrate on the entire system instead of its components only. Project officers also needed greater authority to better lead a task force of ‘‘systems and components specialists organized on a semi-permanent basis.’’ Because the air force had few qualified technical officers, the committee recommended that the air force draw upon the ‘‘very important reservoir of talent available for systems planning in the engineering design staffs of the industries of the country.’’25

Despite the recommendations of the Ridenour Report, AMC officers at Wright Field continued to organize projects on functional lines mirroring aca­demic disciplines and to coordinate projects through small project offices. As late as 1950, typical project offices had fewer than ten members, and engi­neering expertise, parceled out from Wright Field’s functional divisions, were, as one historian put it, ‘‘only casually responsible’’ to the project office.26 At the time, AMC’s Col. Marvin Demler stated: ‘‘Due to the complexity of the mechanisms which we develop, and our organization by hardware special­ties, a very high degree of cooperation and coordination is required between organizations at all levels. In fact, an experienced officer or civilian engineer coming to Wright Field for the first time simply cannot be effective for perhaps six months to one year while he learns ‘the ropes’ of coordination with other offices. The communication between individuals necessary for the solution of our problems of coordination defy formal organizational lines.’’27

For large projects, this informal structure was not to continue for much longer. When the Korean War broke out in late 1950, the air force found itself with numerous unusable aircraft. In January 1951, Vice Chief of Staff Nathan Twining instructed DCS/D Gen. Gordon Saville to investigate the air force’s organization to determine whether it contributed to the poor aircraft readiness. Saville ordered the formation of a study group, led by Colonel Schriever, to investigate the problem. The group returned to the comments of the Ridenour Report regarding the lack of technical capability in the air force and the problems caused by separating airframe development from compo­nent development.28

Schriever’s group completed its study in April 1951 and released an influen­tial paper called ‘‘Combat Ready Aircraft.’’ It pinpointed two major problems with current aircraft: requirements based on short-term factors, leading to continuous modifications, and insufficient coordination and direction of all elements of the ‘‘complete weapon.’’29 The latter concern probably arose from the Ridenour Report and the examples of the B-29, the V-2, and the Manhat­tan Project.

To solve these problems, the group recommended that the air force cre­ate an organization and process with responsibility and authority over the complete weapon by adding ‘‘planning, budgeting, programming, and con­trol’’ to the functions of the responsible air force organizations. The organiza­tions would have complete control over the entire projects, enforced through full budget authority.30 Examples of this kind of organization already existed in the air force’s guided missile programs. These weapons differed substan­tially from piloted aircraft, and the separate procurement of airframe, en­gines, and armament (payload) made little sense.31 The study group suggested that the air force let prime contracts to a single contractor to integrate the entire weapon and that the air force organize on a project basis.

Changes to the procurement cycle had to be addressed as well. The group noted that in World War II, decisions to produce aircraft occurred haphaz­ardly and that aircraft rolled off the assembly line directly to combat units at the same time as they were delivered to testing. Because production con­tinued rapidly and little testing occurred, invariably the operational units found numerous problems, leading to the grounding of aircraft for modi­fications. Believing the current emergency did not allow for the fly-before – you-buy sequential approach and that the delivery of the production aircraft to combat units was dangerous and wasteful, the group selected a solution that was a compromise. It recommended eliminating the X – and Y-model air­craft but slowing the initial production line until test organizations found and eliminated design bugs. Only then should production be accelerated, it said. The air force would select contractors based on the best proposal instead of through a ‘‘fly-off’’ of aircraft prototypes. These ideas, along with project – centered organization and simultaneous planning of all components through­out the weapon’s life cycle, defined the weapon system concept.32

Brigadier General Putt, now commander of Wright Air Development Cen­ter, immediately campaigned for the weapon system concept among the com­ponent developers at Wright Field. He had a difficult sell because the new organization had moved power from the functional organizations to the proj­ect offices. The project office was to act on a systems basis, making compro­mises between cost, performance, quality, and quantity. Putt admonished the component engineers: ‘‘Somebody has to be captain of the team, and decide what has to be compromised and why. And that responsibility we have placed on the project offices.’’ He also stated in no uncertain terms who had the au­thority, telling the component engineers that they needed to be ‘‘sure that all the facts’’ had ‘‘been placed before’’ the project office. ‘‘At that time,’’ he told the engineers, ‘‘your responsibility ceases.’’33

Without a large number of technical officers, the air force handed substan­tial authority to industry. Under the weapon system concept, the air force ‘‘purchased management of new weapon system development and produc­tion.’’ However, contractors had to ‘‘accept the Air Force as the monitor of his [the contractor’s] plans and progress, with the cautionary power of a partner and the final veto power of the customer.’’ The air force stated that it could not ‘‘escape its own responsibility for system management simply by assigning larger blocks of design and engineering responsibility to industry.’’ Although the new process gave industry a larger role, air force officers would not remain passive.34

Adoption of the weapon system concept throughout the air force did not go smoothly, because of continuing disagreements between the DCS/D and ARDC on one hand, and the deputy chief of staff, materiel (DCS/M), and AMC on the other. The key question that divided the fledgling ARDC and its parent, AMC, was when ‘‘development’’ ended and ‘‘production’’ be­gan. If production started early in a weapon’s life cycle, then AMC maintained greater control, whereas if development ended relatively late in the cycle, then ARDC acquired more power. Not surprisingly, AMC leaned toward a defi­nition of production that encompassed earlier phases of the life cycle, while ARDC opted for late-ending development. Because development continued as long as changes to the weapon occurred, and because production began

Weapon System Project Office implementation of the ‘‘system concept.’’

the moment the first prototype was built, no objective definition tipped the scales one way or another. Under such circumstances, the air force’s official arbitrator between ARDC and AMC, James Doolittle, had to intervene.

In April 1951, Doolittle reported that because development continued through a system’s entire life cycle, the ARDC definition should hold. In con­sequence, ARDC should control production engineering.35 The new agree­ment led to the issuance of Air Force Regulation (AFR) 20-10, ‘‘Weapon Sys­tem Project Offices,’’ in October 1951. The regulation specified that every major project should have a Weapon System Project Office (WSPO), with offi­cers from ARDC and AMC in charge.

A marvel of diplomacy, the document stated that during the early portions of development, the ARDC representative would be the ‘‘team captain,’’ and in the later portions, after a decision to produce the article in quantity, the AMC representative would be the ‘‘team captain.’’ In practice, the line between the two was fuzzy, leaving the two officers to work it out for themselves based on circumstances or personalities. The team captain coordinated the activi­ties for the entire project but did not have authority over the other officer. If the two could not agree, they would both have to take the problem to higher authorities, potentially all the way up to the DCS/D and DCS/M at air force headquarters.36

The resulting ambiguities continued to cause organizational headaches, leading once again to intervention by Doolittle. This time Doolittle did not feel comfortable forcing a solution, so he recommended another Air Staff study to investigate the problem. His only proviso was that the group pro­tect the importance of R&D. The Air Staff gave the DCS/M, Lt. General Orval Cook, responsibility for solving the interface problems. In cooperation with DCS/D Laurence Craigie, Cook appointed a task group, the ‘‘Cook-Craigie Group,’’ to work on the issue. Group members decided that ARDC should keep responsibility for weapon systems until the Air Staff stated in writing that the weapon should be purchased.37 The new process, known as the Cook – Craigie Procedures of March 1954 and formalized by modification of AFR 20-10 in August of that year, momentarily ended the bickering between the development and materiel groups. Their unity would be tested severely with the development of the air force’s most radical new weapon, ballistic missiles.

The NASA School of Hard Knocks

In the summer of 1961, JPL engineers prepared the first Ranger spacecraft for flight. Having successfully passed through a series of structural, electrical, and environmental tests, Ranger 1 was scheduled for launch in July. After two hardware component failures in the spacecraft and one in the launch vehicle delayed the launch, the Atlas-Agena took off in August. Within minutes, engi­
neers found that the Agena upper stage did not ignite, stranding Ranger 1 in Earth orbit. The spacecraft operated properly but burned up in Earth’s atmo­sphere on August 30. Ranger 2 launched in November. Its Agena also failed, placing Ranger 2 in a low orbit, from which it soon disintegrated in the Earth’s atmosphere. The air force launched an investigation of the failures and pres­sured Lockheed for solutions.54

Ranger 3 was the first of JPL’s Block 2 design, which included new science experiments as well as a television camera to take lunar surface photographs for Apollo. In January 1962, the air force’s launch vehicles placed Ranger 3 on a trajectory that would miss the Moon, but JPL decided to operate the spacecraft as close as possible to the normal mission. While performing the first-ever trajectory correction maneuver (firing thrusters to change the space­craft’s course), a reversed sign between the ground and flight software re­sulted in the spacecraft’s course changing in exactly the opposite direction from that desired. Two days after launch, the spacecraft computer failed, end­ing the mission prematurely.55

Launching in April 1962, Ranger 4’s computer failed almost immediately after separating from Agena. This made the spacecraft blind and dumb-able to send no data to Earth and unresponsive to commands. Its trajectory was nearly perfect; the spacecraft crashed onto the Moon’s surface three days later. Although NASA and the newspapers proclaimed the mission a great success, which it was for the air force’s launcher, it was a complete technical failure for JPL. Engineers hypothesized that the failure was due to a metal flake floating in zero gravity that simultaneously touched two adjacent electrical leads.56

JPL next scheduled its two Mariner R spacecraft for launch. The first launch on July 22 failed after five minutes, when Atlas’s guidance system malfunc­tioned. Air force and General Dynamics engineers traced the problem to a missing hyphen in a line of software code. Mariner 2 launched in August and successfully flew past Venus in December. Its outstanding performance kept Congress and NASA headquarters from losing all confidence in JPL.57

Burke and his team made several changes to Ranger’s design and organi­zation between Ranger 1 and Ranger 5. On early flights, division chiefs inter­fered with spacecraft operators, so Burke reserved authority to command the spacecraft to project managers and engineers. Engineers also added redun­dant features to the spacecraft. Despite proof that heat sterilization compro-

Подпись: Image not available.

Ranger. The failures of the first six Ranger flights led to NASA and congressional pressure to strengthen project management. Courtesy NASA.

mised electrical component reliability, lunar program chief Cliff Cummings maintained NASA’s sterilization policy. In any case, Ranger 5’s components had already been subjected to sterilization. Project engineers formed investi­gation groups to study interfaces and spacecraft subsystem interactions. They also added a system test to check interfaces and interactions between the spacecraft and flight operations equipment and procedures.58

These changes did not completely resolve the project’s problems. Ranger 5 launched in October 1962 and began to malfunction within two hours. This

time, the power system failed, losing power from the solar panels. Shortly thereafter the computer malfunctioned, and the battery drained within eight hours, causing complete mission loss. The spacecraft’s disastrous failure con­vinced JPL and NASA headquarters managers that the project was in serious trouble. Both launched investigations.59

The headquarters investigation board’s findings left no doubt that JPL’s organization and management of Ranger were at fault. They criticized JPL’s dual status as a contractor and a NASA field center, noting that JPL received little or no NASA supervision. Project manager Burke had little authority over JPL division chiefs or the launch vehicles and no systems engineering staff and showed little evidence of planning or processes for systems engineering. JPL’s approach-using multiple flight tests to attain flight experience-had strong traces of its army missile background. The board believed this “mul­tiple shot’’ approach was inappropriate. Spacecraft had to work the first time, and testing had to occur on the ground, not in flight. The board character­ized Ranger’s approach as ‘‘shoot and hope.’’ Supervisors left design engi­neers unsupervised, and design engineers did not have to follow quality as­surance or reliability recommendations.60 The Board’s position was clear: ‘‘A loose anarchistic approach to project management is extant with great empha­sis on independent responsibilities and individual accomplishment. . . This independent engineering approach has become increasingly ingrown, with­out adequate checks and balances on individual actions. Pride in accomplish­ment is not a self-sufficient safeguard when undertaking large scale projects of international significance such as JPL is now undertaking for NASA.’’61

JPL’s rapid growth also caused problems. From 1959 to 1962, JPL’s budget grew from $40 million to $220 million, while its staff grew from 2,600 to 3,800. Most of the new budget went into subcontracts, yet JPL’s business manage­ment capability did not expand accordingly. Often JPL personnel ‘‘failed to penetrate into the business and technical phases of subcontract execution.’’ This was due in part to JPL’s ‘‘two-headed’’ nature, as a contractor to the gov­ernment, and as a de facto NASA field center. NASA did not require JPL to use NASA or Department of Defense regulations, treating it as a contractor. On the other hand, NASA headquarters did not supervise JPL tightly like a con­tractor, because of its quasi-field center status.62 Ranger managers had neither

the authority and resources to carry out their mission nor the oversight that might lead to discovery and resolution of problems.

Failure in the race for international prestige was no longer acceptable to NASA headquarters.63 The board recommended strengthening project man­agement, establishing formal design reviews, eliminating heat sterilization, assigning launch vehicles either to NASA or to the air force, instituting a fail­ure reporting system, clarifying Ranger’s objectives, and eliminating extra­neous features. To spur JPL into action, the board recommended that NASA withhold further projects until it resolved Ranger’s problems.64

JPL Director Pickering quickly replaced lunar program chief Cummings with Robert Parks and project manager Burke with former Systems Divi­sion chief Harris Schurmeier. He gave them the authority that Cummings and Burke only dreamed of: power over division chiefs in personnel matters. He also created an independent Reliability and Quality Assurance Office with more than 150 people and gave this office authority over the engineers.65

Schurmeier instituted process changes to strengthen Ranger’s systems en­gineering. He levied an immediate design review, adopted Mariner’s failure reporting system, and ensured that engineers took corrective action. Schur­meier also instituted Mariner’s system of engineering change control and de­sign freezes. Ranger expanded the use of its Design Evaluation Vehicle to test component failure modes and inter-subsystem ‘‘cross-talk and noise.’’ Schur- meier required that engineers plan and record each test on new test data sheets. Ranger 6 also adopted conformal coating, a method to cover all ex­posed metal wiring with plastic to preclude short circuits from floating debris. NASA headquarters and JPL delayed the next Ranger flight until early 1964 to ensure that the changes took effect.66

During 1963, JPL scheduled no launches but concurrently worked on Ranger 6, Surveyor, and Mariner Mars 1964 (MM64). MM64 was JPL’s next planetary project, planned to launch in November 1964 to fly by Mars. Ad­ministrative mechanisms for Ranger 6 and MM64 converged during this time, while managers paid relatively little attention to Surveyor, which JPL con­tracted to HAC.67

The first test of Ranger’s enhanced management was Ranger 6’s launch in January 1964. Whereas Ranger 5 had fourteen significant failures in testing prior to launch, Ranger 6 had only one subsystem failure during its life cycle testing, boding well for its future. The only hardware that caused trouble was the single new major element, the television camera from Radio Corporation of America (RCA). Ranger 6’s launch was flawless, except for an unexplained telemetry dropout. So too were its cruise and midcourse correction. Expecta­tions rose as Ranger 6 approached its final minutes, when the spacecraft was to take pictures just prior to crashing onto the surface. Reporters, engineers, managers, and scientists waited anxiously in a special room at JPL during the last hour for the first pictures to be broadcast. None ever came. Pickering, who arrived just prior to Ranger 6’s impact, was humiliated, saying ‘‘I never want to go through an experience like this again—never!”68

Investigations ensued, followed this time by congressional hearings. JPL’s board isolated when the failure had occurred and which components had failed. Board members could not determine the cause of the failure but none­theless recommended engineering changes to deal with the several possible causes. NASA Associate Administrator Robert Seamans assigned Earl Hilburn to lead the headquarters investigation of the troubled program. Hilburn’s re­port claimed that the spacecraft had numerous design and testing deficien­cies and called for the investigation to be expanded to the entire program. Project personnel vehemently disagreed with the tone and many specific rec­ommendations. JPL incorporated some minor changes but refused to modify its testing practices.69

Minnesota congressman Joseph Karth headed the congressional investiga­tion, which focused on JPL’s status as a contractor and NASA field center as well as its apparent refusal to take direction from NASA headquarters. Con­gress recommended that JPL improve its project and laboratory management. Pickering complied by strengthening project management, but he hedged on hiring a laboratory operations manager to assume some of his responsibili­ties. When NASA Administrator James Webb refused to sign JPL’s renewal contract unless it complied, JPL finally hired Maj. General Alvin Luedecke, retired from the air force, as general manager in August 1964. While the suc­cessful flight of Ranger 7 in July 1964 finally vindicated the troubled project, NASA managers became concerned with JPL’s third program, Surveyor.70

By late 1963, JPL managers spotted trouble signs as Surveyor moved from design to testing. Despite indications of escalating costs and slipping sched­ules, personnel limitations and preoccupation with Ranger and Mariner pre­vented JPL managers from adding personnel to Surveyor.71 However, NASA headquarters managers held a design review in March 1964 to investigate.

The headquarters review uncovered difficulties similar to those on Ranger. Surveyor’s procurement staff at JPL was ‘‘grossly out of balance’’ with needs, far too small given that the project consumed one-third of JPL’s budget. The review team recommended that both JPL and HAC give project managers more authority over the technical staff. It also recommended that JPL have ‘‘free access to all HAC subcontractors,’’ that JPL schedule formal monthly meetings with HAC and the subcontractors, and that JPL’s Reliability and Quality-Assurance Office closely evaluate hardware and testing. HAC’s man­agement processes also received criticism. The HAC PERT (Program Evalua­tion and Review Technique) program did not account for all project elements, leading to inaccurate schedule estimates. HAC’s change control system, in­herited from manufacturing, was unduly cumbersome. Most critically, HAC did not ‘‘flag impending technical problems and cost overruns in time for project management to take corrective action.’’72

JPL engineers began their own technical review in April, using twenty ex­perienced Ranger and Mariner engineers. Their primary finding was the in­adequacy of HAC’s systems engineering. HAC divided the spacecraft’s tasks into one hundred discrete units, instead of the eight to ten subsystems typical for JPL. JPL found that many groups ‘‘showed a surprising lack of informa­tion or interest’’ about the impact their product had on adjacent products or on the spacecraft as a whole. The spacecraft’s design showed HAC had per­formed few trade-offs between subsystems, leading to a complex design. This led to reliability problems because HAC’s design had more components and critical failure points than necessary.73

The design reviews came too late to fully compensate for three years of in­attention. In April 1964 the first lander ‘‘drop test’’ came to a premature end when the release mechanism failed and the lander crumpled upon ground impact. JPL management responded by increasing JPL’s Surveyor staff from under one hundred in June 1964 to five hundred in the fall of 1965. In the meantime, five independent test equipment and spacecraft failures doomed the second drop test in October 1964.74

HAC partially complied with NASA recommendations — it strengthened

its project organization in August 1964. JPL resisted the headquarters pres­sure to change, but after some pointed letters from Office of Space Sciences and Applications head Homer Newell, and not-so-subtle pressure from Con­gress and Administrator Webb, JPL relented and “projectized” Surveyor and its other programs. Both JPL and HAC added personnel and improved bud­geting, scheduling, and planning tools. JPL created the Project Engineering Division, which assisted flight projects in ‘‘launch vehicle integration, system design and integration, system test and launch operations and environmental requirements.’’75

JPL reassigned engineers from Ranger and Mariner to Surveyor, and it in­stituted an intense program of contractor penetration. While JPL stated that this led to a clearer picture of problem areas and a better relationship be­tween JPL and HAC, HAC engineers and managers frequently viewed it as an exercise in educating JPL personnel, instead of letting them fix the pro­gram’s myriad problems. In 1965, HAC estimated that approximately 250 JPL engineers were at HAC’s facility on any given day. Numerous changes led to months of intense contract negotiations between the two organizations.76

Surveyor’s problems caught Congress’s attention, leading to a House in­vestigation in 1965. The subsequent report identified “inadequate prepara­tion’’ and NASA’s inattention as the primary problems, resulting in ‘‘one of the least orderly and most poorly executed of NASA projects.’’ Congress did not believe further changes to be necessary but severely criticized NASA for its past performance. The investigation concluded, ‘‘NASA’s management per­formance in the Surveyor project must be judged in the light of a history of too little direction and supervision until recently.’’ Nonetheless, five of Surveyor’s seven flights eventually succeeded.77

Ranger and Surveyor were JPL’s trial by fire. Embarrassing failures and cost and schedule overruns plagued early efforts in both programs. They humbled JPL and provided leverage for Congress and NASA headquarters to impose their will on JPL. JPL managers and engineers learned that they needed strong project management, extraordinary attention to design details and manufac­turing, change control, and much better preliminary design work before com­mitting to a project.

When Pickering finally agreed to change JPL and its processes, Jack James’s

Mariner project provided the model. JPL survived its early managerial and technical blunders on Ranger and Surveyor primarily because of its solid suc­cesses on Mariner. Jack James’s strong project organization, backed by pro­gressive design freezes and change control, made Mariner a much different organization than Ranger or Surveyor. Based on the Mariner model, later projects would earn JPL its reputation as the world’s leader in the art of deep space exploration.

Disaster and Dissolution

To uncover technical problems prior to the upcoming test flights, ELDO con­tracted with Hawker Siddeley Dynamics to develop an electrical mockup of the Europa I and Europa II launchers at its facility in Stevenage. The company, in conjunction with engineers from other contractors, assembled complete stage mockups (sometimes without engines) prior to the F5 through F11 tests and flights. Hawker Siddeley ran several kinds of tests, including injection of faulty signals, electromagnetic interference, and flight sequence testing. These uncovered numerous design problems, which Hawker Siddeley then reported to the ELDO Secretariat and participating companies.52 Although Hawker Siddeley engineers found numerous problems, they did not find enough of them.

ELDO’s next major flight test, originally scheduled for 1965, mated France’s Coralie second stage with Britain’s Blue Streak first stage. After engineers aborted eight launch attempts because of various technical glitches and un­favorable weather, the ninth finally flew in August 1967, with the first stage operating properly. The second stage successfully separated, but its engines never fired, sending the stage crashing prematurely to Earth. Subsequent in­vestigations showed that the problem stemmed from an electrical ground fault in the second stage, which deenergized a relay in the first stage, leading to a failure of the second stage sequencer, which then failed to issue commands for the second stage to fire. In short, the launch failed because of an electrical interface problem between the first and second stages.53

The next attempt with Coralie came in December 1967. It failed just as the first flight had, with its engines ‘‘failing to light up.’’ In this case the failure occurred because of an electrical interface problem between the second stage and its connection to the ground system on the launch pad. Electromagnetic interference also hampered communication with the vehicle’s safety system, causing the loss of flight data and the potential of an inadvertent explosion.54

After the loss of the first Coralie in August, the French considered second stage problems to be minor. However, with another failure of French equip­ment, French authorities reacted with urgency. In a major internal reorganiza­tion, the French contracted with SEREB to manage the second stage program. SEREB had been involved with the program until 1963, performing feasibility studies and initial designs. After that time, authority rested with the military Laboratory for Ballistic and Aerodynamic Research (LRBA) and the Bureau Permanent Nord Vernon. The French Space Agency now interposed SEREB between itself and LRBA to ensure closer surveillance and management of the program.55

SEREB proposed a major vehicle redesign to improve reliability. The pro­posals involved performing more qualification tests on Coralie components and replacing several major components with others that SEREB used in its Diamant rocket design. ELDO’s technical group rejected the French propos­als because they were very costly and, more importantly, because they would disrupt the entire program, including designs for the first and third stages.56

ELDO engineers supported LRBA rather than SEREB, rejecting SEREB’s proposal to replace components. They stated, ‘‘The approach adopted by the French authorities is mainly due to the formation of a new technical di­rection team which is naturally anxious to use equipment with which it is familiar while being less familiar with the equipment it proposes to replace.’’ ELDO engineers chided SEREB: It ‘‘will have to make great efforts to be as familiar with the programme as the present team—which has ‘lived with’ the EUROPAI launcher for five years and is at present very experienced — not only in order to develop its equipment but also to take account of the specific con­tingencies of ELDO.’’ The member states rejected SEREB’s proposal in favor of ELDO’s proposal to upgrade and test existing second stage components.57

While the French regrouped, ELDO management assessed the impact of the project management reforms. The Secretariat divided its Project Manage­ment Directorate into two divisions, ‘‘one responsible for technical and time­scale aspects and the other for financial and contract aspects,’’ while other directorates provided support to them. Secretary-General Carrobio noted, ‘‘The principle is now acknowledged, inside and outside the Secretariat, that additional work or modifications to approved work require the prior agree­ment of the project management directors.’’ The coordination between mem­ber states and the Secretariat was improving, but still there were problems with schedule reporting (member states delivered PERT reports late) and cost control (member states did not thoroughly check contractor proposals). On Europa II, ELDO’s system of monthly progress reports and meetings worked smoothly.58

In the next Europa I flight, in December 1968, ELDO engineers felt vin­dicated in their earlier resistance to SEREB’s proposals because both Blue Streak and Coralie worked perfectly. Even though the German Astris exploded shortly after separation, ELDO and German engineers believed that they would isolate and repair the propulsion system problems they thought re­sponsible.59

Their confidence was unfounded, for on the next attempt, in July 1969, Astris failed precisely as before, with an explosion within one second of sepa­ration from the second stage. The Germans realized, just as the French had two years before, that they had major problems. The Germans formed four committees: a government committee to investigate the failure, a committee to investigate the rest of the design, an internal committee of the contractor ASAT, and a committee to oversee and coordinate the other three committees. Contrary to expectations, the investigators found that the explosions resulted not from a third stage propulsion problem but from an electrical failure in the interface between the third stage and the Italian test satellite that ignited the safety self-destruct system. The Italians had already noticed sensitivity in these German circuits during their tests, but neither they nor the Germans recognized the importance of the finding.60

German engineers fixed the electrical troubles, but the third stage showed new problems in the last flight of Europa I, in June 1970. This time, the result­ing investigation showed two third stage failures. First, an electrical connector disconnected prematurely, preventing separation of the Italian test satellite. Engineers traced this mechanical failure to the pressure between trapped air in the mechanism and the vacuum of space. Second, the third stage propul­sion feed system failed, probably because of contaminants that kept a pressure valve open. These failures led the ELDO Council to create a quality assurance organization in 1970, but because of a lack of staff, it could not cover all sites and processes.61

In November 1971 Europa II flew for the first and last time. This vehicle, which included a new Perigee-Apogee stage, blew up two and one-half min­utes into the flight because of an electrical malfunction caused by a failure of the third stage guidance computer. This too was an interface problem; the computer had been manufactured in Great Britain and delivered to Ger­man contractor ASAT, which took no responsibility for proper integration. At last, ELDO member states reacted strongly. As stated by General Aubi – niere, ELDO’s new secretary-general, ‘‘The failure of F11 in November 1971 brought home to the member states — and this was indeed the only positive point it achieved — the necessity for a complete overhaul of the programme management methods.’’62

The ELDO Council appointed a committee to review every aspect of the program. The committee, which included senior engineers and executives from government and industry in the United States and Europe,63 issued a devastating indictment of ELDO’s organization and management, finding nu­merous technical problems that resulted from the lack of authority and inade­quate communications. Poor electrical integration in the third stage was the immediate problem, having caused the failures of flights F7-F11. This was a function both of the poor management of the German company ASAT and of the contracting of the Secretariat, which did not assign integration authority to any of the contractors working on third stage components. Failures resulted from interface problems with components delivered by foreign contractors to ASAT, and between ASAT’s two partners, MBB and ERNO.

Communications between ASAT and its two partners were extremely poor. ASAT was a small organization created by the German government solely to coordinate the large companies MBB and ERNO on the ELDO third stage. Communications between ASAT and other firms supplying third stage com­ponents were even worse, leading to a design that obeyed ‘‘none of the most elementary rules concerning separation of high and low level signals, separa­tion of signals and electrical power supply, screening, earthing, bonding, etc.’’ This made the British guidance computer and sequencer extraordinarily sen­sitive to noise and minor voltage variations, which in turn caused it to fail in the F11 flight.64

By far the most significant recommendations were to abolish indirect con­tracting and to ensure the definition of clear responsibilities for interfaces. Member states at last gave the Secretariat the authority to place contracts. Now desperate for solutions, ELDO adopted a number of American tech­niques, including the full adoption of phased planning, work breakdown con­tractual structures, and preliminary and final design reviews for the Europa III program, ELDO’s hoped-for improvement to Europa II.65

General Aubiniere, the new secretary-general and former director of the French Space Agency, hoped that stronger project management would turn ELDO around. Unfortunately, ELDO never got another chance. After the British withdrew financial support in 1971, the remaining partners had to de­velop a new first stage or purchase Blue Streak stages. Disillusioned after the F11 failure, the Germans threatened to withdraw. With continuing political disagreements over launch vehicles and over cooperation with the United States space shuttle program, ELDO’s support evaporated. The member states eliminated Europa II while the F12 launch vehicle was on its way to Kourou in April 1973. ELDO bid for a part in the American shuttle program, but when the Americans withdrew its proposed Space Tug, a vehicle to boost payloads to higher orbits, ELDO’s time was up. The member states dissolved it in Feb­ruary 1974.66 Twelve years of negotiation, compromises, and struggle came to an end.

Conclusion

Political and industrial interests drove the formation of ELDO, Europe’s larg­est cooperative space project. All of the major powers preserved national interests through indirect contracting, by which national governments main­tained authority. Even after being strengthened in 1966 by adding a Project Management Directorate and an integrating organization, SETIS, the Secre­tariat was limited to collecting information and distributing it through the Technical Directorate to the ELDO Council. Member states compounded the Secretariat’s weakness by changing objectives, as British support weakened and French leaders lobbied to create a more powerful rocket that could boost communications satellites to geostationary orbit.

ELDO’s weakness resulted in a series of failures caused by interface prob­lems. The ELDO Secretariat could neither create nor enforce consistent docu­mentation, processes, or quality. Nor could it force contractors to commu­nicate with each other. These problems resulted in badly designed electrical circuitry between the British, French, and German stages as well as internal to the German third stage because of the poor management and attitude of Ger­man and British contractors. Six consecutive failures were the result, all but one because of interface failures traceable to poor communications between member countries and contractors.

While rocket and space programs in the United States and the Soviet Union all confronted numerous failures in the process of learning how to build these complex technologies, inadequate organizational structures and processes compounded ELDO’s problems. Like James Burke, the Jet Propulsion Labo­ratory’s first Ranger project manager, Europa I project managers had no con­trol over major elements of the project. ELDO’s unbroken series of failures mirrored Ranger’s early problems, showing the criticality of organizational issues. Europeans had the capability to build rockets, as shown by successes with Nazi Germany’s A-4 in World War II, and the postwar British Blue Streak and French Veronique and Diamant. However, all of these projects benefited from strong, centralized organizations and close working relationships be­tween government and contractors to ensure better communication. The ill – fated Europa launchers had none of these advantages.

ELDO combined many of the worst management ideas into a single, piti­ful organization. Its engineers, managers, and directors struggled against a fatally flawed management structure that was almost the exact antithesis of systems management in the United States. Where systems management pro­moted strong authority for the project manager, in ELDO the manager’s au­thority was virtually nil. Systems management required critical attention to interfaces, but ELDO initially ignored them; no single individual or group ever analyzed both sides of the interface to ensure compatibility. Compo­nent quality assurance-through inspections, testing, and documentation — was standard in the United States but only randomly present in ELDO. ELDO’s hapless record and defective structure was a warning to European leaders that cooperative technology development required true cooperation. Europeans would begin launcher development again, but this time on a much sounder basis. The new effort would build upon Europe’s successful science satellite group, ESRO.

SEVEN

ICBMs and Formation of the Inglewood Complex

Missiles, particularly ballistic missiles,38 disrupted the air force’s culture, oper­ations, and organization in several important ways. First, and most obviously, missiles had no pilots, relegating humans to only pushing a button. Second, maintenance and long-term operations of missiles amounted to storage and occasional refurbishment, as opposed to the ongoing repairs typical for air­craft. Third, because missiles were used just once, missile testing required the creation of a missile production line. Unlike aircraft, where a few prototypes could be built and tested with dozens or hundreds of flights each, every mis­sile test required a new missile. This implied that the fly-before-you-buy con­cept, where aircraft could be tested before instigation of full-scale production, no longer applied. For missiles, testing required a production line. Finally, missiles involved a variety of challenging new technical issues, as described in the previous chapter. Simply put, many of the air force’s existing organiza­tional and technical processes did not work for missiles.

Ballistic missile programs languished at a low priority during and after World War II, as the air force concentrated its efforts first on manned bomb­ers, and then on jet fighters for the Korean War.39 The rapidly escalating Cold War provided the impetus to transform the loosely organized missile projects. Successful testing ofthe Soviet atomic bomb in 1949 spurred the United States to develop a fusion weapon. In March 1953, Assistant for Development Plan­ning Bernard Schriever learned of the success of American thermonuclear tests from the SAB. Recognizing the implications of this news, within days Schriever met renowned mathematician John von Neumann at his Princeton office. Von Neumann predicted that scientists would soon develop nuclear warheads ofsmall enough size and large enough explosive power to be placed on ICBMs. Because of their speed and in-flight invulnerability, ICBMs were the preferred method for nuclear weapons delivery, ifthe air force could make them work. Realizing that he needed official backing, Schriever talked with James Doolittle, who approached Chief of Staff Vandenberg to have the SAB investigate the question.40

The Nuclear Weapons Panel of the SAB, headed by von Neumann, reported to the air force staff in October 1953. In the meantime, Trevor Gardner, assis­tant to the secretary of the air force, volunteered to head a Department of De­fense (DOD) Study Group on Guided Missiles. Gardner learned of Convair’s progress on its Atlas ICBM and met with Dr. Simon Ramo, an old friend and head of Hughes Aircraft Company’s successful air-to-air missile project, the Falcon. Based on the results of his study group, Gardner and Air Force Sec­retary Talbott formed the Strategic Missiles Evaluation Committee, or Teapot Committee, to recommend a course of action for strategic ballistic missiles.41

Von Neumann headed the group, and Gardner selected Ramo’s newly cre­ated Ramo-Wooldridge Corporation (R-W) to do the paperwork and man­age the day-to-day operations of the study. Ramo had partnered with fellow Hughes manager Dean Wooldridge to form R-W.42 In February 1954 the Tea­pot Committee recommended that ICBMs be developed ‘‘to the maximum extent that technology would allow.’’ It also recommended the creation of an organization that hearkened back to the Manhattan Project and Radiation Laboratory of World War II: ‘‘The nature of the task for this new agency re­quires that over-all technical direction be in the hands of an unusually com­petent group of scientists and engineers capable of making systems analyses, supervising the research phases, and completely controlling the experimental and hardware phases of the program — the present ones as well as the subse­quent ones that will have to be initiated.’’43

On May 14, 1954, the air force made Convair’s Atlas its highest R&D pri­ority. Because Convair and the majority of the aircraft industry hailed from

Southern California, the air force established its new ICBM development or­ganization, the Western Development Division (WDD), in a vacant church building in Inglewood, near Los Angeles airport. Air force leaders placed newly promoted Maj. General Bernard Schriever in command on August 2, 1954. Because the Teapot Committee had recommended creation of a ‘‘Man­hattan-like” project organization, one of Schriever’s first tasks was to see if this made sense and determine who would oversee the technical aspects ofthe project.44

Schriever rejected the Manhattan Project organization because ICBMs were significantly more complicated than the atomic bomb.45 Because neither he nor the scientists believed that the air force had the technical expertise to manage the program, Schriever could hire Convair as prime contractor, or he could hire R-W as the system integrator, with Convair and other contrac­tors as associate contractors. The air force used the prime contractor proce­dure on most programs, but this assumed that the prime contractor had the wherewithal to design and build the product. Schriever was already unhappy with Convair because he believed Convair kept “in-house” elements such as guidance and electronics in which it had little experience, to the program’s detriment.46

Scientists with whom he had worked for nearly a decade also deeply influ­enced Schriever. Von Neumann and his fellow scientists believed the Soviet threat required a response like the Manhattan Project a decade earlier, bring­ing together the nation’s best scientists to marry ballistic missiles to thermo­nuclear warheads. Schriever later explained:

Complex requirements of the ICBM and the predominant role of systems engineering in insuring that the requirements were met, demanded an across – the-board competence in the physical sciences not to be found in existing orga­nizations. Scientists rated the aircraft industry relatively weak in this phase of engineering, which was closely tied to recent advances in physics. The aircraft industry, moreover, was heavily committed on major projects, as shown by existing backlogs. Its ability to hire the necessary scientific and engineering tal­ent at existing pay-scales was doubted, and with the profit motive dominant, scientists would not be particularly attracted to the low-level positions accorded to such personnel in industry.47

Organization of the Inglewood complex: the Western Development Division, the Special Aircraft Projects Office, and Ramo-Wooldridge.

Many years later Schriever described his admiration of the scientists: ‘‘I be­came really a disciple of the scientists who were working with us in the Penta­gon, the RAND Corporation also, so that I felt very strongly that the scientists had a broader view and had more capabilities. We needed engineers, that’s for sure, but engineers were trained more in a, let’s say a narrow track having to do with materials than with vision.’’48

To capitalize on the vision and expertise of physical scientists and mathe­maticians such as von Neumann and von Karman, Schriever created an or­ganizational scheme whereby the leading scientists could guide the ICBM program. Following the von Neumann committee recommendations, Schrie­ver selected R-W for systems engineering and integration.49 Free of civil ser­vice regulations, R-W could hire the requisite scientific and technical tal­ent. The air force could more easily direct R-W than Convair, because R-W had few contracts and no production capability. The aircraft industry dis­puted this unusual arrangement, fearing that it established a precedent for ‘‘strong system management control’’ by the air force and also that it might create a powerful new competitor with inside information about air force con­tracts and contractor capabilities. On both counts, the aircraft industry was correct.50

Selecting the best and brightest technical officers from ARDC, Schriever’s talented staff quickly took charge of ICBM development. Because AMC re­tained procurement authority, it set up a field office known as the Special Air­craft Projects Office (SAPO) alongside Schriever’s ARDC staff in Inglewood. By September 1954, air force headquarters approved Schriever’s selection of R-W, confirming the triumvirate of the WDD, the SAPO, and R-W. Schriever’s next battle would be to establish the authority and credibility of his team in the face of skepticism at air force headquarters and the outright hostility of the aircraft industry.51

The Premier Planetary Spacecraft Builder

While Ranger and Surveyor floundered, the Mariner project showed JPL’s technical and managerial abilities at their best. After the successful flight of Mariner 2 (also known as Mariner R) past Venus in 1962, JPL targeted Mari­ner 3 and Mariner 4 at Mars, planning to launch during the next opportunity in November 1964.78 Together, they composed the MM64 project, which ex­tended methods adopted from Mariner R and Ranger.

MM64 manager Jack James used committees established on Ranger to help coordinate across the contributing organizations: JPL, Cape Kennedy, Lock­heed, and Lewis Research Center. Four committees coordinated guidance, control and trajectories, tracking and communication, launch operations, and launch vehicle integration. They had no official authority but made recom­mendations to project management. Headquarters named JPL the project management institution to which the other organizations reported.79

James improved communication between the project office, JPL’s techni­cal divisions, and external organizations. Mariner managers and engineers extended the concept of the hardware interface to include operational and management interfaces, including the spacecraft, launch vehicle, space flight operations, project and technical division management, science instruments, and operations. James enlisted the cooperation of JPL technical divisions by creating the Project Policy and Requirements document, which served as a ‘‘compact between the JPL Project Office and the JPL Line Management for execution of the project.’’ Each project manager met weekly with division rep­resentatives to consider ‘‘the most serious problems facing his particular area.’’ JPL also added a monthly meeting with division managers to ensure that they

By 1964, JPL learned by experience the typical profile of engineering changes and, con­sequently, how better to predict costs and schedules, as shown in this change request chart for Mariner Mars 1964. Adapted from From Project Inception through Midcourse Maneuver, vol. 1 of Mariner Mars 1964 Project Report: Mission and Spacecraft Develop­ment, Technical Report No. 32-740,1 March 1965, JPLA 8-28, 32, figure 20.

were familiar with Mariner’s problems and that they released personnel to work on them. These measures ensured sufficient attention to Mariner and made JPL’s matrix structure work.80

Change control had been one of James’s innovations on Mariner R, and he formalized it for MM64. The change control system expanded to include progressive ‘‘freezing’’ of specifications and interface drawings as well as hard­ware, culminating in a final spacecraft design freeze in January 1964 and a support equipment freeze in June 1964. After a freeze, changes could be made only through a change board, which allowed only modifications required for mission success. Project managers kept statistics on changes, noting that the majority of the project’s 1,174 changes occurred at subsystem interfaces and in subsystems that contained state-of-the-art equipment.

Project managers also formalized other processes developed first on Mari­ner R. MM64 management added requirements for parts screening, problem reporting, in-process inspection, comprehensive documentation, and “rigor­ous status monitoring.’’ The managers continued environmental tests, sys­tem tests, and quality assurance procedures developed from Corporal through Ranger. James also continued the Mariner R practice of the ‘‘P list.’’ Any problem making the P list received special attention, with ‘‘the most effective people available’’ assigned to solve the problem.81

James monitored progress through the use of three sets of schedules and through regular and special reports. The primary schedule reported top-level events and milestones in Gantt (bar) chart format to headquarters. The sec­ondary schedules consisted of Gantt charts for each subsystem, major com­ponent, or task. JPL managers called their third set of schedules flow charts, which represented the flow of all of the equipment destined to be integrated in the system test.82 These network charts ‘‘resembled PERT in format and intent’’ but were “intentionally not so extensive as to require handling by a computer.’’ Network flow charts showed the project’s critical path and sched­ule interactions of all subsystem components, integrated and updated from data supplied by JPL’s divisions. The project required updated schedules every other week, in conjunction with a formal report that compared progress with the schedule. Every two weeks, project personnel compiled the data on manual sort-cards that managers manipulated to discern trends and financial implications. Managers monitored some 1,100 flow chart events.83

When combined with the experience of JPL’s engineering staff, Mariner’s organizational techniques ultimately yielded success. Mariner 3 launched in November 1964, only to be declared dead within nine hours. The problem was in the design of the launch vehicle shroud protecting the spacecraft, de­signed by NASA’s Lewis Research Center. JPL took charge of the investigation and quickly developed a solution, leading to the flawless launch of Mariner 4 on November 28. Although the spacecraft had some in-flight difficulties, JPL engineers guided the craft to a spectacular conclusion in July 1965, as the spacecraft beamed 21 pictures of Mars back to Earth, as well as analyzing Mars’s atmosphere. JPL’s success contrasted sharply with five Soviet failures to reach Mars.84

Later Ranger and Surveyor flights confirmed that JPL had dramatically im-

proved its spacecraft management and engineering expertise. Ranger’s last two flights, in February and March 1965, were technically superb. Between June 1966 and January 1968, JPL launched seven Surveyor spacecraft to land on the Moon, five of which succeeded.85

Surveyor’s management underwent significant changes late in the project. In September 1966, JPL managers changed the task structure of the HAC con­tract to a new system known as work package management,86 which realigned cost accounting and monitoring of tasks ‘‘to the individual performing groups in the contractor’s organization.’’ Along with the work breakdown structure, JPL required that HAC submit monthly financial reports with more detailed technical, cost, and schedule information. JPL and HAC management met once per month to cover these topics, with a further ‘‘consent to ship’’ meet­ing scheduled prior to the shipment of each spacecraft to review its test his­tory and problems. HAC and JPL managers developed a thorough ‘‘trouble and failure reporting system’’ that they considered innovative enough to pub­lish a special report on it. The process recorded all test anomalies, required failure analysis by cognizant engineers, involved independent assessments by HAC and JPL organizations, and provided status of failure reports and actions categorized by mission criticality.87

The Mariner Venus 1967 program (MV67) further formalized JPL’s man­agement and systems engineering. Taking advantage of this, MV67 used the MM64 design as a baseline. Project manager Dan Schneiderman, former spacecraft systems manager for Mariner R and MM64, defined a new manage­ment approach at the beginning of the project in a document entitled ‘‘Project Policy and Requirements.’’ He froze the entire MM64 design at the outset, re­quiring change control for any modifications necessary for the Venus mission. The project used three test models: one for antenna and development test­ing, another for temperature control testing, and the third for flight hardware environmental qualification. Engineers also used the qualification model for simulation and command checking during mission operations. Quality as­surance and reliability engineers screened parts, tracked and analyzed failure reports, performed failure mode analyses, verified test procedures, and wit­nessed tests.88

Schneiderman gave the spacecraft system engineer substantial responsi­bility, including preparation and publication of design specifications books for the flight and test equipment. Subsystem engineers supplied “functional specifications” for their subsystems and support equipment. The spacecraft system engineer also maintained current interface and configuration draw­ings and mediated ‘‘disputes arising out of disagreements between subsystem circuit designers.’’ Change control procedures and subsequent design modifi­cation lists were also that engineer’s responsibility. The system manager, the spacecraft system engineer’s supervisor, ran periodic reviews, which included the spacecraft systems interface and subsystems design review, the spacecraft hardware review, the spacecraft preshipping acceptance review, the launch readiness review, and quarterly headquarters reviews.89

MV67’s managers and engineers also trained spacecraft operators through the testing process. System testing checked interfaces between subsystems, be­tween the spacecraft and the launch vehicle, and between the spacecraft and the mission operations system and operators. JPL engineers found that they could train mission operators prior to flight by involving them in the inte­grated system testing at JPL and on the launch pad. The mission operations team members communicated with the spacecraft during these tests using their normal commands and equipment, and they ran compatibility tests with the Deep Space Network. Mariner 5, launched in June 1967, arrived at Venus in October. It functioned well, returning data from its atmospheric experi­ments.90

Later JPL managerial innovations included separation of configuration control paperwork and project scheduling from the system engineer. This routine work was given to a separate Project Control and Administration organization. JPL ultimately required all engineering change requests to in­clude cost and schedule impacts along with the technical changes, in effect recreating a version of the air force’s configuration management.

JPL went on to pursue new missions to Venus, Mars, and Mercury. Even­tually there were the famous Voyager missions to Jupiter, Saturn, Uranus, and Neptune. The laboratory’s success showed the maturity of its processes and experience. JPL’s preeminence in deep space exploration was undisputed.

ESRO’s American Bridge. across the Management Gap

Firms have shown themselves anxious to collaborate with ESRO as a means of gaining useful experience of the newer management techniques which are indispensable for the effec­tive control of the financial as well as the technical aspects of large and complex projects.

— J. J. Beattie and J. de la Cruz, 1967

The European Space Research Organisation (ESRO) presented a welcome contrast to the ongoing embarrassments of the European Space Vehicle Launcher Development Organisation (ELDO). Created as a service organiza­tion for European space scientists, ESRO overcame its initial organizational difficulties and developed a successful series of scientific satellites. Its achieve­ments proved that effective European space cooperation was possible. Al­though ELDO had been the Europeans’ prime organization to develop space technology, its failure paved the way for ESRO to become the route of choice across the management gap between the United States and Europe.

ESRO’s success owed a great deal to its greater contractual authority (com­pared to ELDO) and to American assistance. While European industry and powerful interest groups focused on the military and economic significance of launchers, ESRO’s scientific satellites seemed insignificant. ESRO’s Conven­tion and procedures consequently had fewer provisions to protect national economic interests than did ELDO, giving ESRO authority that ELDO never had. In addition, whereas Americans did not want to aid Europeans in rock­etry or communications satellites, they cheerfully gave technical and financial assistance to European science.

These factors help explain ESRO’s rise from a small service organization

to the core of Europe’s integrated space organization. Through the authority of its Convention, the ability of its engineering and managerial staff, and the help of the United States, ESRO and its descendant, the European Space Agency (ESA), mastered the art of systems management.1

Establishing the WDDS Authority

With Schriever’s organizational foundations set, the immediate task was to push ICBM development rapidly forward and create a detailed plan within a year. Headquarters control and oversight would come through the budget process, so Schriever knew that until he had his plans worked out, he had to keep the budget profile low. He reallocated budgets from several air force organizations and was careful not to ask for too much at the start. Over the long haul, Schriever knew that the massive budget that he needed would re­quire congressional appropriations and that he would have to vigorously de­fend his plan and its costs. To put off this day of reckoning, in October 1954 he requested a relatively small budget, realizing that there would have to be a major readjustment in the spring. ‘‘This support can be obtained by carefully planned and formalized action at the highest levels in the administration,’’ he recognized. In this breathing space, he developed his technical plans, costs, justifications, and political strategy.52

Selection of Atlas contractors was the next task of Schriever’s team. With the design still in flux, this would have to be done based on company capabili­ties instead of design competitions. Bypassing standard procurement regula­tions, Schriever ordered R-W to let subcontracts to potential suppliers to in­volve them in and educate them on the program. This allowed R-W to assess contractors as well as speed development and procurement. Schriever could not ignore all of the air force’s procurement procedures. He had his team cre­ate performance specifications and perform “prebidding activities’’ to pre­pare for a competitive bidder’s conference. Because of the in-depth knowledge R-W had gained through its subcontracts, Schriever had R-W contribute to the Source Selection Boards, providing inputs as requested by the air force. This was a serious (and possibly illegal) departure from standard procure­ment policy, which required that only government officials control contractor selection.53

Schriever directed R-W and his air force team to reassess the Atlas de­sign and to determine Convair’s role. Convair, which had been developing Atlas since January 1946, understandably believed that it deserved the prime contract to build, integrate, and test the vehicle. It vigorously campaigned against Schriever and the upstart R-W. Convair’s leaders sparred with Schrie – ver’s organization for the next few months before they resigned themselves to R-W’s presence. To appease the air force’s scientific advisers, and to gain electronics capability, Convair executives hired highly educated scientists and engineers. For his part, Schriever placed restrictions on R-W to maintain some semblance of support from the aircraft industry. In a memo dated Feb­ruary 24,1955, the air force prohibited R-W from engaging in hardware pro­duction on any ICBM program in which it acted as the air force’s adviser and systems engineer.54

R-W had three tasks: to establish and operate the facilities for the Ingle­wood complex, to assess contractor capabilities, and to investigate the Atlas design. R-W made its first important contribution in the design task. The re­quired mass and performance of the missile depended upon the size of the warhead and the reentry vehicle, for small changes in their mass led to large changes in the required launch vehicle mass. Working with the Atomic Energy Commission and other scientists, R-W scientists and engineers found that a new blunt cone design decreased the nose cone’s weight by half, from about 7,000 to 3,500 pounds. This in turn decreased required launch vehicle weight from 460,000 to 240,000 pounds and reduced the number of engines from five to three. This dramatic improvement discredited Convair’s claim to expertise and convinced Schriever, his team, and his superior officers that the selection of R-W had been correct.55

The most significant technical issue facing Schriever’s group in the fall and winter of 1954 was the uncertainty of the design. Group members simply could not predict which parts of the design would work and which might not. R-W had been investigating a two-stage vehicle, and the initial results looked promising. In March 1955, Schriever convinced Lt. General Thomas Power,

Pre-Gillette organization of ballistic missile development.

the ARDC commander, that a two-stage vehicle should be developed as a backup to Atlas. By May 1955, the WDD was working on Atlas, the two-stage Titan, and a tactical ballistic missile (ultimately known as Thor) as well.56

In the meantime, Schriever considered how best to fund the program. One possibility was to allocate the funds to a number of different budgets, then pull them back together in Schriever’s group. This approach would hide the true budget amounts from effective oversight. However, the budgets required were too large to hide in this manner. With programmatic invisibility un­likely, Schriever’s deputy, William Sheppard, argued that the best approach was to have a “separately justified and separately managed lump sum.’’57

Schriever had already discussed this approach with Gardner, and the two of them plotted a political strategy. Many of Schriever’s budget actions required coordination with and justification to various organizations. Frustrated with the delays inherent in this coordination, Gardner and Schriever decided that they had to increase Schriever’s authority and funding and decrease the num­ber of organizations that could oversee and delay ICBM development. Both Schriever and Gardner recognized that they needed political support, so they vigorously sought it in Congress and within the Eisenhower administration. Gardner and Schriever briefed President Dwight D. Eisenhower in July 1955, eventually convincing him and Vice President Richard M. Nixon — with John von Neumann’s timely support — to make ICBMs the nation’s top defense priority.58

With the president’s endorsement in hand by September, Schriever pre­sented to Gardner the entire air force approval process, which required 38 air force and DOD approvals or concurrences for the development of ICBM testing facilities. Appalled, Gardner had him show it to Secretary of the Air Force Donald Quarles, who asked them to recommend changes to reduce the paperwork and delays. Gardner and Schriever formed a study group, load­ing it, as Schriever put it later, ‘‘pretty much with people who knew and who would come up with the right answers.’’ Hyde Gillette, the deputy for budget and program management in the Office of the Secretary of Defense, chaired the group, which was to recommend management changes to speed ballistic missile development.59

Despite objections from AMC, which did not want to lose any more au­thority, the Gillette Committee agreed with Schriever that the multiple ap­provals and reporting lines caused months of delay. In consequence, the ‘‘Gillette Procedures,’’ approved by Secretary of Defense Charles Wilson on

Ballistic missile organization — Gillette Procedures. Solid lines with arrows show the direct chain of authority. The air force’s commands have no authority over ballistic missile development, and the Air Staff has input only through the Department of Defense Ballistic Missile Committee.

November 8,1955, funneled all ballistic missile decisions through a single Bal­listic Missile Committee in the Office of the Secretary of Defense. Although evading ARDC and AMC for approvals and decisions, Schriever’s organiza­tion needed to provide them information. Schriever stated: ‘‘We had to give them information because they provide a lot of support, you see, so it wasn’t the fact that we were trying to bypass them. We just didn’t want to have a lot of peons at the various staff levels so they could get their fingers on it.’’60 The Ballistic Missile Committee reviewed an annual ICBM development plan, and the Office of the Secretary of Defense would present, approve, and fund the ICBM program separately from the air force’s regular procedures. In the development plan would be information on programming (linking plans to budgets), facilities, testing, personnel, aircraft allocation, financial plans, and current status. By 1958, AMC managers had trimmed industrial facility lead time from 251 to 43 days, showing the effectiveness of the new process.61

The Gillette Procedures relegated AMC, ARDC, and the operational com­mands to aiding the ICBM program, without the authority to change or delay it. From a parochial air force viewpoint, the only good thing about the pro­gram was that the completed missiles would eventually become part of the Strategic Air Command. Many in the air force did not take ballistic mis­siles seriously enough to fight for control over them. Col. Ray Soper, one of Schriever’s trusted subordinates, noted that ‘‘the Ops [operational com­mands] attitude, at the Pentagon, was to let the ‘longhairs’ develop the sys­tem — they really didn’t take a very serious view of the ballistic missile, for it was thought to be more a psychological weapon than anything else.’’62

With the adoption of the Gillette Procedures, Schriever garnered authority directly from the president, with a single approval of a single document each year required for ICBM development. Schriever’s organization drew upon the best personnel and air force services, without having them interfere with his authority or decision processes. These new procedures represented the first full application of project management in the air force, where the project manager had both technical and budget authority for the project. Prior to this time, each project drew funds from several budgets and thus required separate justifications for each. The Gillette Procedures made the air force’s financial and accounting system consistent with the authority of the project manager, although Gardner was unable to separate the ICBM budgets from the rest of the air force.63 With these procedures in hand, Convair and the contractors under control, and the air force’s regular bureaucracy shunted out of the way, Schriever drove the ICBM program at full speed, with little heed to cost, using the strategy of concurrency.

Conclusion: The JPL System

From its early beginnings as a student research project, JPL relied on its own expertise. Its engineers developed new technologies prior to and during World War II and contracted their successful solid-rocket innovations to in­dustry. Corporal and Sergeant continued this pattern, with JPL performing the initial analysis, design, and development and contracting to industry for manufacturing. In the NASA era, JPL continued to develop new technologies, contracting for small items that it did not want to manufacture, or as with Surveyor, when it did not have enough personnel to take on more work.

Recognition of the ‘‘systems concept’’ marked JPL’s transition from re­search to engineering development. JPL engineers found that they could not develop entire weapons and their operations using research structures and processes. Engineers had to develop all aspects of the missile, not just those that were “technically sweet.’’ By the mid-1950s, the difficult experience of Corporal led to the systems approach on Sergeant, with formal methods to ensure reliability and operational simplicity. In the late 1950s, JPL reverted to informal processes to create small spacecraft in a great hurry, leading to a spotty reliability record. By the mid-1960s, after disaster on Ranger, JPL engi­neers and managers had learned once again not to rush into building systems before laying the groundwork.

Reliability was another concept JPL learned from Corporal and Sergeant. Corporal had an abysmal operational record, partly because of the failure of electronic components when shaken by rocket engine vibrations, and partly because of a design never intended for operational use. These two lessons formed JPL’s primary belief regarding reliability: good design, solid manufac­turing practices, and rigorous testing made a reliable product. This approach served JPL well — but not well enough for deep space. New kinds of failures plagued JPL’s early spacecraft, including short circuits caused by floating par­ticles, and software errors. JPL solved these problems through performing component inspection, using simpler designs, coating exposed wires with in­sulating materials, and instituting ‘‘systems tests’’ to flush out interactions be­tween subsystems and in command sequencing.

Change control became one of JPL’s primary means to control projects. Jack James, project manager for Mariner Venus 62 and MM64, developed pro­gressive design freeze on Sergeant to ensure delivery of design information from JPL to Sperry. James and his supervisor, Robert Parks, used the concept again on the Mariner Venus 62 project, then formalized its use on MM64. The Ranger project began to use James’s new process after the Ranger 5 investiga­tion.

Systems engineering, which began as coordination between technical divi­sions and between JPL and its contractors, became a hallmark of JPL. By 1963, JPL engineers taught space systems engineering at Stanford, where Sys­tems Division Deputy Chief John Small described systems engineering as the “coordination of several engineering disciplines in a single complex effort.’’ According to Small, systems engineers looked at the interfaces and resolved ‘‘problems so as to benefit the overall system.’’ They also coordinated the over­all test program, defined command sequences to operate the spacecraft, and analyzed ‘‘the various interactions’’ between subsystems to determine where subsystem redundancy would most improve chances for mission success.91 Other engineers described systems analyses and tradeoffs performed to de­termine the best mix of components and operations for a given mission.92

JPL engineers repeatedly found that many technical problems could be solved only by using organizational means. Problems with missile reliability demanded engineering design changes, parts inspections, and test proce­dures. Systems engineers solved interface problems by maintaining interface drawings, mediating subsystem disputes, and chairing change control meet­ings to track and judge design modifications. By 1965, JPL’s managers and engineers had learned these lessons well and had become the technical leaders they always believed they were.

JPL developed organizational processes equivalent to those created for the air force’s ballistic missile programs. Strong project management, systems engineering, and change control formed the heart of JPL’s system, just as they had in Schriever’s organization. Both organizations developed them as re­sponses to reliability problems and to political pressures from higher authori­ties. For JPL and the air force, engineering processes for reliability and change control as well as managerial processes for project and configuration manage­ment formed the basis for large-scale development. Although JPL influenced robotic spacecraft development and organization at NASA, it had relatively little influence on NASA’s manned programs. The manned programs could have learned from JPL’s experiences of the 1950s and early 1960s. Instead, they underwent their own crises. Rather than asking for help from their sister field center, they instead turned to the air force.

FIVE

The Inception of ESRO

The creation of ESRO began with the activities of Edoardo Amaldi, Italian physicist and one of the founders of the Conseil Europeen pour Recherche Nucleaire (CERN [European Committee for Nuclear Research]). In the sum­mer of 1958, after a conversation with his friend Luigi Crocco, a rocket pro­pulsion expert and professor in Princeton University’s Department of Aero­nautical Engineering, Amaldi proposed a European space program modeled on CERN. The new space organization should have high goals, Amaldi said, comparable to efforts in the United States and the Soviet Union, but have ‘‘no connection with whatsoever military agency.’’ He believed that it should be ‘‘open, like CERN, to all forms of co-operation both inside and outside the member countries.’’2

Amaldi learned from Crocco and from American aeronautical engineer Theodore von Karman some difficulties in modeling a European space orga­nization on CERN. Because the military had developed virtually all rockets, excluding the military would be difficult. Crocco also believed that it would be difficult to convince European parliaments to spend the huge sums necessary for space-based science research. Von Karman thought it necessary to include the military at the beginning to jump-start the civilian effort. He suggested working through the North Atlantic Treaty Organization. Amaldi demurred and eventually found a strong ally for his purely scientific space organization in his friend Pierre Auger, a French physicist and CERN ally.3

When Amaldi contacted Auger in February 1959, Auger was organizing the French Committee for Space Research. Auger was supportive ofAmaldi’s pro­posal and suggested the French organization as a model. French scientists and administrators were considering a two-phase program: a small initial effort based on sounding rockets, and a more ambitious program to include satel­lite launches and lunar or solar probes. After the two men met in April 1959,

Amaldi helped establish an Italian space research committee on the French model. Amaldi also sent a paper titled ‘‘Space Research in Europe’’ to promi­nent scientists and science administrators in Western Europe.4

These contacts led to an informal meeting of scientists from eight different countries at Auger’s Paris home in February 1960. At the next meeting, held in April 1960 at the Royal Society in London at the behest of the British National Committee for Space Research, the British presented their extensive space re­search plans and the possibility that the British government might offer the Blue Streak rocket as the basis for a European launcher. Auger hosted the next meeting in Paris in June 1960 to consider ‘‘A Draft Agreement Creating a Pre­paratory Commission for European Collaboration in the Field of Space Re­search.’’ 5 During the second Paris meeting, British delegates removed launch­ers from discussion because of negotiations under way between the British and French governments concerning the use of the Blue Streak. With launcher considerations eliminated, the scientists and scientific administrators focused on creating a European space research program using sounding rockets and satellites.6

Further discussions clarified the purpose and scope of ESRO and estab­lished goals for its initial scientific program and facilities. ESRO would sup­port space scientists throughout Europe. It excluded launch vehicles, although at the request of the Belgian delegation, it did include the development of sup­porting technologies. ESRO planners envisaged a two-phase effort: an initial program using sounding rockets, and a more advanced program of sophisti­cated scientific satellites.

Bruising negotiations determined the sites of ESRO facilities. To expedite coordination with ELDO, ESRO’s headquarters wound up in Paris. ESRO’s most important facility was its engineering unit to develop spacecraft and integrate scientific experiments, the European Space Technology Centre (ESTEC). Originally located in Delft, The Netherlands, ESTEC soon moved to the small coastal town of Noordwijk, north of The Hague. The telemetry data analysis center went to Darmstadt, West Germany, the sounding rocket range to Kiruna, Sweden, and a small science research center to Delft. A new sci­entific research center with ill-defined functions, located near Rome, satisfied Italian demands for an ESRO facility. In 1967 ESRO officials moved satellite tracking to Darmstadt, where combined with the data analysis center it be­came the European Space Operations Centre. ESRO established remote track­ing stations in Alaska, Norway, Belgium, and the Falkland Islands.7

European scientists originally conceived of ESRO as an organization run by scientists, for scientists, on the model of CERN. CERN provided an infra­structure for European physicists to perform experiments with particle accel­erators. In CERN’s organization, scientists determined the technical content of projects and infrastructure, and ran daily affairs. Administrators had little control over CERN’s funding, and significant overruns developed.

ESRO provided a similar service function to space scientists through provi­sion of sounding rockets, satellites, and data collection and analysis facilities. Scientists selected ESRO’s experiments, but, unlike in CERN, engineers devel­oped and operated the infrastructure. The British insisted on strong financial controls, ensuring that if ESRO overran its budget, it would cut projects in­stead of forcing governments into funding overruns.8 Because the founding scientists did not want ESRO’s scientific expertise to rival that of the member states, they restricted ESRO’s scientific research capabilities, making its engi­neering character more pronounced. ESRO’s engineering culture made it a very different organization from CERN.

Ten countries signed the ESRO Convention of June 1962: the United King­dom, France, Italy, West Germany, Belgium, The Netherlands, Sweden, Den­mark, Spain, and Switzerland. ESRO came into official existence on March 20, 1964, with Pierre Auger as secretary-general.

Concurrency

Rapid development of ICBMs required parallel development of all system ele­ments, regardless of their technological maturity. Schriever called this con­currency, a handy word that meant that managers telescoped several typically serial activities into parallel ones. In serial development, research led to ini­tial design, which led to prototype creation, testing, and manufacturing. Once the new weapon was manufactured, the operational units developed main­tenance and training methods to use it. Under concurrency, these elements overlapped. Schriever did not invent the process but rather coined the term as a way of explaining the process to outsiders.64

Schriever’s version of concurrency combined concepts learned over the previous decade. Parallel development had been practiced during World War II on the Manhattan and B-29 projects. Management structured around the product instead of by discipline had also been used on these projects. The combination of ARDC and AMC officers into a project-based office was a method applied since 1952, and Schriever’s use of R-W to perform systems analyses like the Atlas’s nose cone design had also been foreshadowed by the RAND Corporation’s development of systems analysis after World War II. Schriever claimed that concurrency was a new process. But was it?

One difference was that in the 1950s parallel development, once a wartime expedient, became a peacetime activity. With Congress exercising detailed oversight typical of peacetime, Schriever had to explain his processes in more detail than his wartime predecessors had. As Secretary of the Air Force James Douglas later told Congress, ‘‘I am entirely ready to express the view that.. . you have to subordinate the expenditure… to the urgency of looking to the end result.’’ Or as Gardner succinctly stated, ‘‘We have to buy time with money.’’ The term ‘‘concurrency’’ helped explain and justify their actions to higher authorities.65

A second major difference was in the nature of the technologies to be inte-

Concurrency. Adapted from Benjamin N. Bellis, L/Col USAF Office DCS/ Systems, ‘‘The Requirements for Configuration Management During Con­currency,” in AFSC Management Conference, Air Force Systems Command, Andrews Air Force Base, Washington, D. C., AFHRA Microfilm 26254, 5-24-3.

grated into ICBMs. In pre-World War II bombers, for example, engineers simply mounted machine guns at open side windows. However, with the B-29 bomber, and for postwar aircraft, operators maneuvered machine guns with servomechanisms within a pressurized bubble, itself part of the airframe. Similarly, missiles had to be built with all elements planned and coordinated with each other from the start. Postwar weapons were far more complex than their prewar counterparts and more complex than the nuclear weapons of the Manhattan Project. Concurrency in the Cold War required far more detailed planning than previous concurrent approaches.

One application of concurrency was in selection of contractors for Atlas, and then for Titan and Thor. R-W performed the technical evaluations and gave input to ad hoc teams of WDD and SAPO personnel. The AMC-ARDC committees selected which companies they would ask to bid, evaluated the bids, and selected a second contractor for some subsystems. Selecting a con­current contractor increased chances of technical success, stimulated better contractor performance by threatening a competitive contract if the first con­tractor performed poorly, and kept contractors working while the air force made decisions. To speed development, the SAPO issued letter contracts, de­ferring contract negotiations until later. In January 1955, the SAPO formal­ized the ad hoc committees, which became the AMC-ARDC Source Selection Board.66

To maximize flexibility and speed, Schriever initially organized the WDD with disciplinary divisions modeled on academia. Only in 1956 did the pro­liferation of projects lead him to create WSPOs for each project, consisting of AMC and ARDC representatives, as required by the weapon system con­cept. Until that time, most work occurred through ad hoc teams led by officers to whom Schriever had assigned the responsibility and authority for the task at hand. For example, when the WDD began to develop design criteria for facilities in March 1955, Schriever named Col. Charles Terhune, his technical deputy, ‘‘team captain’’ for the task. He also requested that R-W personnel as­sist. Terhune then led an ad hoc group to accomplish the task, and that group dissolved upon task completion.67

The fluid nature of the ad hoc groups and committees may well have maxi­mized speed, but they also played havoc with standard procedures of the rest of the air force, which after all had to support ICBM development. Schriever initiated a series of coordination meetings with AMC, Strategic Air Com­mand, air force headquarters, and other commands in December 1954. After the December meeting, the AMC Council decided it needed quarterly reports from the WDD to keep abreast of events. Over the next six months, AMC planning groups bickered with WDD personnel over reporting and support, as AMC needed information for personnel and logistics planning. AMC tried to plan tasks from Wright Field, whereas the WDD (and soon the SAPO) ac­complished planning rapidly on-site, with little documentation or formality. AMC accused the WDD of refusing to provide the necessary data, whereas the WDD accused AMC officers of a lack of interest.

Disturbed because Schriever’s crew had neither WSPOs nor Weapon Sys­tem Phasing Groups (normally used to coordinate logistics), AMC had some reason to complain. As stated by the assistant for development programming, Brig. Gen. Ben Funk, ‘‘The normal organizational mechanisms and proce­dures for collecting and disseminating weapon system planning during the weapon system development phase did not exist,’’ leading to gaps in the flow of information necessary for coordination. By the summer of 1955, SAPO per­sonnel at the WDD made concerted efforts to pass information to AMC head­quarters and to bring AMC planning information into the WDD.68

Schriever’s need for speed led to extensive use of letter contracts through 1954 and 1955. Procurement officials in the SAPO and technical officers in

the WDD realized that they needed to track expenditures relative to technical progress, but the rapid pace of the program and the lack of documentation quickly led to a financial and contractual morass. Complicated by the WDD’s lack of personnel and the new process of working with R-W to issue technical directives, contractual problems became a major headache for the SAPO and AMC and another source of friction between Schriever and AMC leaders.69

The SAPO had authority to negotiate and administer contracts but initially lacked the personnel to administer them over the long term. Instead, SAPO personnel reassigned administration to the field offices of other commands ‘‘through special written agreements.’’70 This complicated arrangement led to trouble. Part of the problem was the difficulty of integrating R-W into the management of the program. R-W had authority to issue contractually bind­ing ‘‘technical directives’’ to the contractors, but instead of using these, R-W personnel sometimes ‘‘used the technical directive as a last resort, preferring persuasion first through either periodic meetings with contractor person­nel or person-to-person visits between R-W and contractor personnel.’’ This meant that many design changes occurred with no legal or contractual docu­mentation. Because officers in the SAPO did not have enough personnel to monitor all meetings between R-W and the contractors and were not initially included in the ‘‘technical directive coordination cycle,’’ matters soon got out of hand.71

This problem emerged during contract negotiations, as SAPO procure­ment officers and the contractors unearthed numerous mismatches between the official record of technical directives and the actual contractor tasks and designs. As differences emerged, costs spiraled upward, leaving huge cost overruns that could not be covered by any existing or planned funding. A committee appointed to investigate the problem concluded in June 1956 that ‘‘almost everyone concerned had been more interested in getting his work done fast than in observing regulations.’’ It took the committee some­what more than six months to establish revised procedures acceptable to all parties.72

The initial application of concurrency in Schriever’s triad of the WDD, the SAPO, and R-W sped ICBM development but also spread confusion, dis­rupted communications with other organizations, and created a mountain of contractual, financial, and, as we shall see, technical problems. Flexible com­mittees flicked in and out of existence, while supporting organizations out­side of Schriever’s group struggled to acquire the information they needed to assist. The strategy of parallel development, separated from the air force’s normal routine, produced quick results, but the mounting confusion begged for a stronger management scheme than ad hoc committees.

Conclusion

World War II and the Cold War enabled the military to consolidate and ex­tend its relationships with both academia and industry. When in 1947 the Pro­curement Act gave the DOD the permanent authority to negotiate contracts, military officers enlisted the support of academia and industry. Air force offi­cers such as Hap Arnold, Donald Putt, and Bernard Schriever used scientists to create a technologically competent and powerful air force. Two models for relationships between the air force and the scientists evolved. First, RAND, the SAB, and the RDB continued the voluntary association of scientists with the military, as had occurred in World War II. However, the DCS/D and ARDC represented new air force efforts to gain control over the scientists through a standard air force hierarchy. Both models would continue into the future. Through these organizations and their personnel, air force officers hoped to develop the air force of the future.

When ICBMs became a possibility in late 1953, Schriever capitalized on his scientific connections, urging John von Neumann to head the Teapot Com­mittee, which recommended that ICBMs be developed with the utmost speed and urgency. While Schriever and Assistant Secretary of the Air Force Trevor Gardner maneuvered behind the scenes to promote ICBMs, the Teapot Com­mittee recommended the creation of a scientific organization on the Los Ala­mos model to recruit scientists to run the ICBM program. Unsure of the in­dustry’s capability to develop the Atlas ICBM, Schriever and Gardner hired R-W to serve as the technical direction contractor, an adviser to air force offi­cers, and a technical watchdog over the contractors.

Feeling bogged down in ‘‘Wright Field procedures,’’ external approvals, and funding difficulties, Schriever and Gardner appealed to President Eisen­hower to break the logjam. The president complied, and so Schriever, armed with a presidential directive, hand-picked a committee to develop procedures that gave him the authority to acquire the services he needed from the air force without having to answer to the air force. The Gillette Procedures carved out a space in which Schriever, his officers, and scientific allies could craft their own development methods, largely separated from the air force’s standard processes.

Under ‘‘concurrency,’’ Schriever’s complex of the WDD, the SAPO, and R-W created and adopted a number of methods to speed ICBM development. With funding a nonissue, these organizations and their contractors tossed aside standard regulations and developed alternate technical systems such as the Titan ICBM to ensure success. The air force’s regular methods, based on academic-style disciplinary groups, no longer sufficed. Schriever broke away from dependence on Wright Field’s technical groups and committees, but in the first years of ICBM development, he merely substituted his own officers and contractors, unencumbered by paperwork. The WDD, the SAPO, and R-W recreated an ICBM-oriented Wright Field on the West Coast, albeit with­out the years of history and bureaucracy.

The proof of their efforts would come when ICBM testing began in the late 1950s. As long as the Cold War remained hot and his scientific friends de­livered technical success, Schriever could sustain concurrency. Unfortunately, tests would show that these new wonder weapons had major problems. Under these circumstances, politicians and managers would rein in the rapidly mov­ing ICBM programs, replacing Schriever’s all-out concurrency with a new, centralized bureaucracy that incorporated some of the key lessons of ICBM development.

THREE