Observer Feedback

“The flight crewmen were provided an exceptional array of highly useful data,” Gibson explained. “We had displays in white light and at a wavelength called hydrogen-alpha, both very useful and also visible on the ground. We were provided individual displays of the sun in extreme ultraviolet and x-rays as well as a display of the corona. Lastly we had a highly versatile display in the ultraviolet that allowed us to read the intensity of radiation across the ultraviolet spectrum at a point or over a region of the sun at a sin­gle wavelength.”

Although all Pis firmly supported the central role of the in-flight observ­er in the data acquisition, the astronauts had an insatiable appetite for dis­play of far more real-time data than the instrument designers could afford or provide without degrading reliability. In the design phase a classic chick – en-and-egg controversy ensued: “Why do you astronauts need to see the atmosphere of the sun in real-time? We’ve never seen any rapid changes from down here!” versus “But we don’t know for sure what the sun’s atmosphere is doing unless we look at it. If we only take data at preprogrammed times, we’re likely to miss some very important observations.” Over many months the spirited discussions oscillated between lofty observational philosophy and detailed nut-and-bolts design. Fortunately, the instrument designers were able to make a few accommodations, which, knowing what we know now, produced some very important real-time understanding of the sun for both ground and in-flight observers and the capture of data on events that otherwise would have been missed.

Optimum Observer Response

Given the exceptional instrument array and real-time feedback on solar struc­ture and events, it was then up to the flight crew to respond in ways that max­imized the new and important information in the returned data. Thus, the task before flight was to provide the observers with the best possible train­ing. But the training program had a few challenges: the time available was

limited by the approaching launch dates and demands of other mandatory training and by the backgrounds of the observers ranging from test pilots with little science expertise to scientists who had a good understanding of physics and some of solar physics. In the end each crewman had to possess a working knowledge of solar physics and an expertise in performing the atm tasks. The first challenge was a given, and all that could be done was done to carve out as much time as humanly possible. In meeting the sec­ond challenge, each and every potential observer demonstrated the nature and mental disposition to maximize their learning. Some understood that they would be expected to operate the instruments with negligible errors as a highly skilled technician. Others understood that they would be required to be not only highly skilled technicians but to also alter the in-flight oper­ations in real time as their scientific judgment dictated. All nine crewmen who flew responded to the very best of their individual abilities.

Along with the excellent procedures trainer that was provided, a major amount of solar physics classroom instruction was accomplished. “Our class­room trainer was a godsend: Dr. Frank Orrall, a practicing solar physicist and observer, a highly dedicated instructor, and a man of exceptional humor and patience,” Gibson recalled. “His knowledge and enthusiasm left their marks on every one of us. Upon the conclusion of his instruction, he was presented a picture signed by each of the crewmen he instructed. The photo was one of the whole sun that clearly displayed its supergranulation, the large, nearly circular cells that crowd together on the surface. Some of the crewmen who had previously made lunar flights labeled a few of the cells with the names of craters they had studied on the moon—a way to pull Frank’s chain about how much they had learned about the sun. He loved it.”

Flexible Observatory Operation

At the beginning of every orbit, the crews had a planned set of observa­tions but also the freedom to deviate if they saw a more information-bear­ing feature or event on the sun’s surface; that is, they approached the obser­vatory operations with an open mind but not an empty one. The planned observations, which were usually sent up from the ground on a teleprinter pad, were organized into Joint Observing Programs that defined how each instrument was to be operated as a particular feature was observed, such as a solar filament, bright point, or active region. They also had a jop to cover the occurrence of a flare, a very time critical and film-consuming set of joint observations. Very useful background data on the solar state was also provided from noaa (National Oceanic and Atmospheric Administra­tion) and the Pis. Periodically they also had voice conferences with the Pis, which turned out to be useful but rather stiff because of the many restric­tions on communication with the crew. Fortunately these restrictions have softened since then, and Shuttle crews are now able to discuss joint exper­iment concerns and procedures with ground-bound observers in a less for­mal and restraining way.

The rapid rearrangement of magnetic field structures on the sun often leads to large explosive flares that are accompanied by large coronal mass ejections. Large masses of gas are hurled high into the solar atmosphere some­times with enough energy to escape the sun entirely. Occasionally some of that mass in the form of high-energy particles enters the solar wind and sub­sequently rains down on Earth, causing the northern and southern lights (the aurorae) and major disturbances in electrical distribution grids. The ejection of these masses upward through the corona was dynamic, majestic, and very rewarding if captured in the data from beginning to end. On the third Skylab manned mission, a major cme was recorded from its inception because of a real-time tip from an observatory in Hawaii that saw a large prominence start to lift off. Later in the mission, the largest such event was observed by Skylab. “This liftoff of a major arch of gas, which covered one – eighth of the solar circumference, has become an icon of the Skylab solar observations,” Gibson explained. “Much to our embarrassment, it was all recorded by the ground’s remote operation of our instruments as we float­ed in our sleep.”

The grand prize for any Skylab observer was to record the birth and life of a flare. All the clues on how and why a flare occurs are revealed by the details of its inception. “Our flare warning systems told us when a flare was occurring, but not when and where one was about to occur,” Gibson said. “Also, since the jop for a flare demanded a high burn rate of the limited film housed in most instruments, a shotgun approach was unacceptable; we had to find a way to pick off one with a rifle. The answer lay in patience and close inspection of the most energetic active region as seen in x-rays and the xuv. As the magnetic field structure of an active region became more unstable, one or more bright points would surge and pulsate in intensity. It gave one the impression of a pot of water just starting to boil. The trick was to pick the right bright point, then the right time to call a surge in brightness the early eruption of a flare. This technique practiced on the third mission rewarded us with the capture of a flare rise just as were about to conclude our obser­vations and come back home. It was rewarding yet frustrating—why didn’t we fully develop this technique earlier?”

Though certainly not designed for it, the atm took advantage of a real target of opportunity: Comet Kohoutek. The comet was much fainter than anticipated and certainly very much fainter than the bright solar features that the atm was designed to observe. “Nonetheless, we did get some inter­esting yet faint pictures, some with the coronagraph as we pointed at the center of the sun and some as we pointed the whole Skylab cluster at the comet before and after it swept around the sun,” Gibson said. “These later maneuvers were cumbersome (twenty keystrokes were required for a single maneuver) yet a testimony to the ingenuity of the ground control team that we could make any off-sun observations with the atm at all!

“In addition to what we could capture on film, we recorded on paper what our most sensitive and versatile optical instruments onboard could detect—the human eye,” Gibson continued. “The comet came out from behind the sun on the day we had scheduled a spacewalk to replace the atm film. Even with the strong filtering of our space helmet visors, the spike of brightness that pointed at the sun and away from the tail was evident. Over the next week we monitored Kohoutek, especially its sunward spike, and made sketches of what we saw, which are now on display in the Smithso­nian in Washington DC.”

Ed Gibson said, “The operation of the atm observatory was complex, exhilarating, frustrating, rewarding, tiring, and totally absorbing. All refer­ence to where the space station was over the ground would be lost; only the time remaining in daylight was of importance. The c&D panel was com­plex, demanded one’s full attention, and invited errors—even after all the effort that went into its design. I sometimes forgot some of its nomenclature, even though I was central in the design process. Some of the readouts were in decimal (base ten) and some were in octal (base eight), which could also cause confusion. The combined procedures were sometimes very complex or required alerts and timers to remind the observer of actions to take or inter­locks to make sure the some actions were not taken. During design we all tried our best to put these alerts, timers, and interlocks in place, but we fell short of optimum. Also the more an observer knew about solar physics, the larger the dilemma he faced: ‘Do I use some of our valuable time in daylight to search the sun for potentially more rewarding targets than sent up from the ground, or do I just punch the buttons on cue as requested?’ The com­promises made were often followed by many could-of’s and should-of’s.

“And yet, as the weeks went by a simplicity of operations emerged for me: If one fully understood the capabilities of each instrument, the physics of the sun’s surface, and the needs of each pi, the jops could be pushed into the background. The task really became one of matching the state of the sun’s surface with the capabilities and needs of each instrument; that is, the sheet music (jops) were put away and the atm played by ear (full utilization of one’s knowledge and intellect). Of course, I never took this extreme lat­itude on those days that the atm was scheduled to be operated. However, on Sundays, our day off, I chose to give the Pis some bonus data and operate the observatory in this way. I felt somewhat like a piano player in the silent movie theater; the instrument was played to match the visible action. After six to seven continuous orbits of observation, I felt exhilarated yet drained, rewarded yet frustrated by what was left undone.

“Of course, each of us could have performed better with more in-flight time, more training, additional displays and interlocks, and more direct com­munication with the ground scientists. Even so, the atm observatory oper­ations were a milestone that far surpassed the contributions that a scientif­ic operator in orbit had so far demonstrated and set the bar high for future human utilization on space missions.”

The Future

Despite the extraordinary effort, sizeable investment, and success of the atm solar observatory, the question remains: For future solar observatories in Earth orbit, should not the observers and instrument operators remain on the ground? After all, several unmanned solar observatories have flown since the atm and made exceptional scientific contributions. Gibson believes the answer depends on the nature of the flight opportunity, the seriousness with which a manned solar observatory mission is approached, and sever­al other factors.

Certainly electronic data collection capabilities and air-ground teleme­try rates have seen explosive growth in the past few decades. Also, except for repair and instrument upgrades, such as utilized on the Hubble Space

Telescope, the expense, extra complexity, use of less-than-fulltime and best – qualified solar physicists as observers, and other restrictions of manned mis­sions argue in favor of the observer remaining on the ground. However, if a manned mission will be in orbit and solar observations can be accommo­dated, the lessons of atm are applicable. The International Space Station might present this type of opportunity — if it can be continuously manned by six to eight crewpersons in total with at least three of them full-time, best-qualified solar physicists who are devoted 99 percent to observations. This situation will not likely become a reality unless cheap, frequent, and dependable transportation to and from iss becomes a reality.

The extrapolation of the lessons of atm suggests the inclusion of:

A routine observations program with a prioritized shopping list of targets of opportunity and the freedom to modify operations as judged best by the operator.

A dedicated observatory with round-the-clock operations and stable solar pointing on the day side of the orbit.

Full-time dedicated observers who are best qualified to operate the observatory whether in flight or on the ground.

Dedicated continuous communication loops with ground scientists for two-way, free exchange of data and commands.

Stability, instrument resolution, and display resolution that match­es the best available capability (currently approaching 0.1 arc second).

Instruments that synergistically cover the visible down to the x-ray range of wavelengths.

At least one instrument that observes the sun’s magnetic field, which drives all solar phenomena in and above its surface.

At least one instrument that observes the Doppler shift of several wavelengths to detect line-of-sight velocities at various heights in the solar atmosphere.

Onboard quick-look capability for most data sent to the ground.

“Unfortunately, considering our current manned spaceflight programs and proficiency, it is not likely that the opportunities and capabilities for a manned solar observatory are likely to materialize in the near future,” Gib­son said. “Thus, the atm mode of operation should be viewed as a rare mile­stone that will not be soon duplicated or surpassed.

“However, two general conclusions can be drawn from the atm experi­ence. First, mental challenges of the type offered by the atm operations are essential on long-duration flights if for no other reason than for intelligent and motivated crewmembers to retain their mental sharpness and positive outlook. Second, there is no good reason that Nobel Prize-quality science, utilizing the space environment, cannot be accomplished in an orbiting lab­oratory just as we realize in our best laboratories here on Earth.”

Garriott would prefer a more modest (and perhaps realistic) goal for the scientifically trained crewmember. From his perspective, and thinking in terms of the next fifty years or so, spaceflight is still expected to be a mar­velous, but seldom encountered, personal opportunity. It seems more like­ly to him that scientifically trained people will be most valued as general­ists and not specialists in one (or even two) disciplines. They will be needed as observers working in close cooperation with the best researchers around the world, helping them in conducting their specialized activity. This is not unlike the roles of the Skylab science pilots but extended as hardware capa­bilities and knowledge expands. While Nobel-competent astronauts are not to be excluded, he believes their “Ah-ha” insights leading to new scientific discoveries and even a Nobel nomination are more likely to arrive in quiet contemplation near their home office or in team meetings with their fellow specialists in interdisciplinary discussions on the ground.

Sprinting a Marathon

You lost a crewman? How could you lose a crewman inside a spacecraft?

Skylab III Mission Announcement

The third manned Skylab mission is scheduled for launch November io
at 11:40 a. m. EST for a mission duration of 60 days or more,

William Schneider, Skylab Program Director, announced.

The mission will be planned as a 60-day open-ended mission
with consumables aboard to provide for as many as 85 days.

Mission extensions would be considered on the 56th, 63rd, 70th and 77th days of the
flight based on the medical well being of the crew,
consumables and work load. The extension of the mission to
85 days would substantially increase the scientific return.

NASA—Press Release, 26 October 19/3

Skylab ill was to break new ground in mission duration and accomplish­ments. And it would do it with an all-rookie crew. When they launched, the three crewmembers did not have a single day of spaceflight experience amongst them. But when they returned, each would have spent more con­tinuous time in space than any other human being.

For the mission’s commander, Jerry Carr, and its pilot, Bill Pogue, the Skylab assignment started off as practically a consolation prize. “I was ten­tatively scheduled to fly on Apollo 19,” Carr recalled. “Our crew was to be Fred Haise, the commander; Bill Pogue, the Command Module pilot; and

me, the Lunar Module pilot. We got started on that assignment and began our training program. Then if my memory serves me correctly, it was around 1970, early 1970 or so, when it was decided that Apollos 18, 19, and 20 would be canceled. So that was a bad day at Black Rock for the three of us. We had lost our opportunity to go to the moon.

“We moped around for quite a few weeks,” he said. “Then Tom Stafford called me into his office and informed me that I was to be the command­er of the third Skylab mission and asked, ‘Do you think you can work with Bill Pogue and Ed Gibson?’ And I said, ‘Of course I can.’ At that time they took us off our roles as the backup crew for Apollo 16 and put another crew in there, and we began focusing on the Skylab mission.

“I was delighted to get a seat, and I was absolutely floored that they would select me to be a commander because there hadn’t been a rookie command­er at NASA since, what was it? I guess it was probably Armstrong on Gemi­ni 8. And so I was really flabbergasted to be selected and very happy to do it. What delighted me the most was that I was going to be working with Al Bean, Pete Conrad, and people like that again, which was really a won­derful thing.”

Ed Gibson recalled: “When assigned to the mission, I knew I was in fast company. Bill Pogue initially appeared to be just an average mild-mannered mathematician, who he had been; but he was also once grounded for flying too low behind enemy lines, was an Air Force test pilot, and flew with the Thunderbirds. He is a sharp, aggressive guy. Jerry Carr had a good educa­tion in aeronautics and was a Marine aviator, which pretty much said it all. The all-rookie crew aspect didn’t faze me. I was just happy to get a seat, and flying with guys I really respected. In retrospect, I lucked out. I got to do great science, be fully immersed in all aspects of astronaut activities, and fly high-performance aircraft. It just couldn’t get any better than that!”

While the three rookie astronauts were excited to be getting their chance to fly, they had little idea that before Skylab ill even launched, it already had two major strikes against it—the past and the future. The strike in the future was the next great thing looming over the horizon—the Space Shut­tle program. Early development of the Shuttle was already underway by the time of Skylab, and the orbiter contract had been signed the month before the sl-i launch with a critical design review scheduled for 1975. However, the program still faced opposition in Congress. A major part of the system was a one-shot pilot-controlled landing from orbit with no go-around capability. There were those who felt that landing would be too large a challenge, par­ticularly if the pilot were suffering from space sickness. The Skylab ill crew had been made aware of how important it was that they not give the orbit – er’s enemies ammunition against the program in that respect.

The past affected them in the form of the two Skylab missions that flew before them. Both Skylab I and II had been behind their timeline early in flight. In both cases there were obvious factors that contributed to these slow starts. The Skylab I crew had to deal with the high temperatures and power shortages on a crippled spacecraft. The Skylab II crew was slowed by motion sickness. Those obvious factors, though, obscured the fact that the major cause was simply that people had to get considerable on-the-job training to efficiently perform tasks in weightlessness—especially when large habitable volumes are involved. With repetition the second crew in particular became extremely efficient and was accomplishing more than their scheduled sci­ence work by the end of their mission. While the actual factors involved in the slow starts of the first two crews would become a major issue once the third crew was in orbit, the efficiency the second crew developed over the course of the mission had an impact on the third crew while Carr and his colleagues were still on the ground.

Upon learning of the 150 percent return of the Bean crew, scientists and mission planners saw an opportunity. Clearly, they had not sent enough work for the second crew to do—and they began making sure the third crew was going to have plenty of work to accomplish. “We got to Skylab ill, which was going to be the last mission in the program,” flight director Neil Hutchinson recalled in a NASA oral history interview. “The train was leav­ing the station, and all kinds of experiments and experimenters were run­ning for a seat.”

In addition NASA decided to use the third crew’s flight to capitalize on another opportunity. In late December 1973 and early January 1974 the Com­et Kohoutek would be passing through the inner solar system. Tasking the third crew with observing Kohoutek from Skylab would let the agen­cy show off the potential of orbital astronomy by performing an unprece­dented feat—no comet had been observed from space before. “Some other training we got at the last minute included that on Comet Kohoutek,” Pogue recalled. “Early in the year it was discovered at the Hamburg Observatory in West Germany that this comet was headed toward the sun and was going to reach its perihelion about Christmas Day of 1973. There was a lot of talk about the period of the comet being about two thousand years, which led to speculation that it was actually the Christmas comet, the one cited in Bib­lical stories of the new star. At any rate, we did some studying and training for that experiment as well.”

Press releases from the time illustrate the situation that confronted the third crew.

nasa-jsc Release No.: 73-107

nasa today announced tentative plans to observe the Comet Kohoutek during the Skylab iii mission which is planned for launch on or about November у from the Kennedy Space Center. The November date is the original planned launch date for Skylab iii. The Comet Kohoutek was identified earlier this year and will be clearly visible from Earth. It is expected to be the brightest object in the night sky except for the Moon in late December and early January. Skylab’s Apollo Telescope Mount instruments, designed to obtain data on the Sun, will observe Kohoutek during its nearest proximity to the Sun late in December.


The first two major priorities of Skylab were space medicine and solar phys­ics. The third was habitability. How was a space station to be designed so that humans could live and work in it effectively?

Engineers had been designing spacecraft for human operability since the Mercury program, but they hadn’t yet made a methodical study of the sub­ject. Skylab was their opportunity because of its generous weight and vol­ume available and its long missions. The opportunity was recognized and taken.

Two experiments were submitted and approved. The first was M487, hab­itability/ crew quarters, the purpose of which was “to measure, evaluate and report habitability features of the crew quarters and work areas of Skylab in engineering terms useful to the design of future manned spacecraft.” Its lit­tle brother was M516, crew activities/maintenance study, designed “to eval­uate Skylab man-machine relationships by gathering data concerning the

crew’s capability to perform work in the zero-g environment on long dura­* * 3?

tion missions.

Plans for gathering data were made, prominently including crew voice reports and questionnaires, film and video, and measurements of how long tasks took to accomplish. Tools were provided to measure light, sound, air movement, temperatures, and forces. Procedures were tested during the smeat simulation and improved. The engineering approach suited the crews, who recognized the importance of the effort and were glad to furnish their evaluations and opinions. The experiment was continued into design. Many different types of restraints, handholds, equipment tethers, and even door openings were provided, so that the crews could show and tell which worked and which didn’t.

It’s been said by some observers that the astronauts were constantly com­plaining about Skylab systems and accommodations. Actually, they were doing their jobs. They thought it more important to describe inefficiencies and suggest solutions than to praise successes, although there was plenty of the latter, especially postflight. And the human-factors engineers behind the experiments, ably led by Bob Bond, knew how quickly memories fade and wanted the evaluations during the missions, not after. So there was a lot of air-to-ground communication on how things worked and how to make them work better.

The results, gathered over the ensuing two years into “Skylab Experience Bulletins,” filled seventeen volumes.

Two very important, unanticipated observations were made about the crews’ bodies: first, they became taller by one to two inches; second, they adopt­ed a characteristic “zero-G posture,” flexed at knees, hips, and neck. These two facts greatly affected the way the people fit into space suits and at work­stations of all sorts and led to some important recommendations for future spacecraft. One was “No Chairs!” The body doesn’t want to flex into a chair; it’s uncomfortable and unnecessary. (On the space shuttle, chairs are used for launch and entry and stowed in orbit.) Don’t make an individual crouch at a workstation by putting key instruments below his or her eye level; it’s not feasible to slump. Without gravity to help, bending over to tie your shoes is harder. And size the space suits and clothing with some extra length. Future engineers would look with interest and amusement at the photo of the fifth percentile girl beside the ninety-fifth percentile guy, and spend some extra time designing one workstation that will fit either.

If chairs are no good, how can you restrain a person to do a task? Foot restraints are the answer, and the best ones give a firm purchase that allows both hands to be occupied with the task. More casual restraints were ok for one-handed tasks.

There was quite a bit of debate before flight about whether people would feel more comfortable in a work space that looked like an Earthly room with floors and ceilings and all the signs oriented the same way, or whether in zero-G they could operate nicely on walls and ceilings, allowing space to be more effectively utilized. The answer to both questions was “yes.” The report says: “The Skylab crewmen were able to operate equipment easily from any orientation. They quickly established their own coordinate sys­tem in which the location of their feet signified ‘down.’” But the one-grav­ity architecture of the ows crew compartment was preferred to the put-it – anywhere radial arrangement in the mda. The latter was a bit disorienting when you entered it; it was ok once you’d reached your workstation. With­in a workstation everything had to be oriented to the same “up.”

Improvements were suggested in the overall layout of Skylab too. “Don’t ever put the airlock in the middle again,” was a good example. Having the airlock right on the main pathway between the systems center in the mda and the work and living center in the workshop meant that nothing could be stowed in the airlock lest it impede traffic. It also meant that if the air­lock hatch wouldn’t close after a spacewalk, the workshop became unin­habitable and the mission was over.

This work, combined with systems evaluation, resulted in a very thor­ough set of design criteria for future spacecraft, especially permanent space stations. It had some impact on Shuttle design, although Shuttle was already well into its design process when the Skylab results were promulgated in 1975. It had considerable impact on the European Spacelab module in whose development several Skylab astronauts participated. And it significantly assisted the Russians in the design of Mir, although no Americans were invited to take part directly in that space station’s initial design. Later, of course, NASA astronauts would live and work with their Russian counter­parts aboard Mir.

In the eighties the Skylab human-factors lessons and several other sources

were combined into one massive habitability design book, NASA Standard 3000. It was used in the design of Space Station Freedom and its successor, iss. What other lessons from Skylab were not learned by the designers of iss is material for another book.

Aircraft-borne Lasers to

Profile Earth and Sea during Final Skylab Flight—

As Skylab’s third crew collects data on the Earth’s resources from 270 miles out in space, two aircraft from the Johnson Space Center (jsc) will skim near the surface using laser instruments to provide an exact profile ofthe land and water at more than a dozen sites. During the coming months, nasa aircraft will use laserprofilometers over portions of the North Atlantic Ocean, the Gulf of Mexi­co, the Puerto Rican Trench, and the Great Salt Lake to support Skylab remote­sensing passes over the same areas.

Skylab Gypsy Moth Research Project—

One thousand gypsy moth eggs in two special vials will be launched aboard the third and final Skylab mission on November 10. The first moths in space are part ofa research project sponsored by the U. S. Department of Agriculture’s Agricul­tural Research (aphis) in cooperation with nasa. Agriculture scientists are try­ing to find out ifthe state ofweightlessness might be the key to altering the gypsy moth’s life cycle. If weightlessness does prove to be the factor, the key point may be found in rearing insects by the missions and thus controlling a whole class of insect pests with similar life cycles.

Third Skylab Crew to Expand Knowledge
of Earth’s Resources—

Astronauts Gerald Carr, Edward Gibson and William Pogue will be well equipped to survey the Earth during a final Skylab mission that could last nearly three months. Their training included 40 hours of special lectures on Earth observa­tions and they’re taking along a detailed handbook for viewing Earth from space and the largest store of film and computer tapes ever supplied for a Skylab mis­sion. Meanwhile, the 20,000 Earth photographs and 24 miles of computer tape obtained during the two previous Skylab flights will be undergoing extensive analysis by iff Principal Investigators and their staffs in the United States and 18 foreign countries. Before the first ereppass of the final Skylab mission can be undertaken, Science Pilot Ed Gibson, assisted by his fellow crewmembers, will attempt to repair the antenna drive system for the microwave radiometer-scat- terometer-altimeter (sipj). Gibson will work on the Sip3 instrument during the crew’s first walk outside the space station, scheduled for the week following launch. Pilot Bill Pogue will join him outside.

Student Experiments

“The Skylab Student Program came into being because some of us involved in the space program were concerned over the decline in interest of our youth in science and engineering fields in ‘post-Apollo’ days, the first moon land­ings in 1969 having recently been made,” said Jack Waite, who served as the student experiment project coordinator while at Marshall Space Flight Cen­ter. “A number of NASA headquarters and field center personnel (msfc and msc, now jsc) discussed ways to stimulate the American youth interest in these fields. It became apparent that they could, even should, be an integral part of the Skylab Experiment Program. At headquarters Joe Lundholm was a key player, along with the program directors Bill Schneider and John Disher, Reg Machell at msc, and myself from msfc.”

Waite’s position as head of the Experiment Development and Integration Office at Marshall and also as a representative on the Manned Space Flight Experiment Board allowed him to facilitate this work over the next several years and to follow up the student careers for decades to follow.

The program developed was a nationwide contest for seventh – through twelfth-grade students and patterned very much like formal university space­flight projects are selected. A “Request for Proposals” was sent to all fifty states and nine overseas high schools. These proposals were to be related to research experiments in seven basic areas of study: astronomy, botany, Earth observations, microbiology, physics, physiology, and zoology. The Marshall Skylab Experiments Office, which Waite headed, was designated to manage the student program. A total of 3,409 proposals were submitted and evaluated by the National Science Teachers Association, with partici­pation from National Council for the Social Studies, NASA, and even Sky­lab flight crewmembers. From that total, twenty-five were selected as win­ners and twenty-two ended up being incorporated into the Skylab flight program, some carried out on each of the three missions. Most involved some modest hardware elements that were designed by the student principal investigators working with engineers at Marshall and structured as would be any professional program. Crew safety was always considered as well as

Student Experiments

4.6. Students chosen to participate in the Skylab science program gather on the steps of Marshall Space Flight Center’s headquarters building.

compatibility with all other experiments and systems. Design reviews and mission operations were reviewed, as were all other experiments by the Mar­shall Experiments Office.

The student program was and is considered a tremendous success. A yard­stick for success should be the degree to which student interest and enthusi­asm has carried over into career activities. While it is not possible to objec­tively measure the degree to which high-school students nationwide may have been moved to a better science and engineering awareness and career involvement, it is possible to follow most of these particular students, which Waite has done with great perseverance for decades. Among the twenty-two projects which ended up with approved and flown activities, the student Pis achieved careers as follows: six became science teachers (elementary, sec­ondary, and university levels), seven were engineers and/or scientists, three became medical doctors, four had business careers, one was a military offi­cer, and one became a monk. Many university advanced degrees are pres­ent in their biographies as well.

“Likely the most publicized experiment performed was the one proposed by Ms. Judith Miles from Lexington, Massachusetts, to observe how ‘Cross’ spiders spin their webs in space,” Waite said. “At our Skylab thirtieth anni­versary celebration in 2003, we were pleased to have Judy and some of her

family in attendance. The widespread publicity associated with the two spi­ders’ adaptation to weightlessness apparently so fascinated the general pub­lic that many adults still remember the experiments conducted over thirty years ago and have related their stories to new elementary students, so that they also now ask questions about the experiment.”

But some youngsters well before high-school age were already thinking about the mysteries of space and the sun. One of the youngest was Amy Eddy, the then-seven-year-old daughter of Jack Eddy who was a coinvesti­gator and the crews’ teacher in solar physics. His daughter’s poem was pub­lished in the NASA science publication A New Sun: The Solar Results from Skylab along with a drawing:

Operation Skylab/Barium

Skylab’s third and last crew ofastronauts, now in orbit and embarked on a full program of scientific research, is scheduled to add another important data-col – lecting task to an already full agenda. In addition to continuing investigations of the sun, Earth resources, and medical effects of long duration space flight begun by preceding Skylab crews, the astronauts are going to participate in an experiment to trace geomagnetic field lines with barium ions. Beginning with the morning of November 2j, Marine Lt. Col. Gerald P. Carr, civilian scientist Dr. Edward G. Gibson, and Air Force Lt. Col. William R. Pogue will join a widespread network of observation stations waiting for the launch of a Nation­al Aeronautics and Space Administration Black Brant iv rocket from the Poker Flat Range near Fairbanks, Alaska. The rocket payload is designed to create a high-explosive-driven jet ofbarium vapor and inject it into the Earth’s magne­tosphere. It is hoped that the barium vapor, ionized by solar ultraviolet radia­tion, will illuminate geomagnetic field lines and make them visible to sensitive optical equipment for many thousands of kilometers.

Special Camera to Photograph
Comet Kohoutek from Skylab—

As the Comet Kohoutek streams through space at speeds exceeding 160,000 kilome-
ters an hour (100,000 miles per hour), astronauts aboard the Skylab space station

will use a special camera to photograph features not visible from Earth’s surface. The camera, called a Far Ultraviolet Electronographic Camera and designated Experiment S201, was built by the Naval Research Laboratory (nrl) in Wash­ington dc. Dr. George R. Carruthersprepared the instrument for use aboard the space station during a three-month crash program.

Release No.: 73-156

The Sun

how did the sun get in her place with her round and shiny happy face who cast the shadows high and low.

I do not know, I do not know.

Science on the Cheap

One example of the diversity of the scientific experiments on Skylab was a contribution by rescue and backup crewmember Don Lind. During Apol­lo, Lind had worked with Dr. Johannes Geiss of the University of Bern in Switzerland on an experiment that would use thin metal foils to capture solar wind particles on the lunar surface. That relationship would carry over into the genesis of a similar experiment on Skylab.

“When Dr. Geiss came over for the first Apollo launch,” Don Lind said, “he stayed at our home. And he and I were over in the simulator building one day, standing in the Skylab mock-up that was getting ready for this next mission series. And one of the two of us said, ‘Can we do any good sci­ence on Skylab?’

“We said, ‘Hey, we could put some of those foils on the outside struts that hold up the atm’ and we could pick what were called precipitating magne­tospheric particles. These are particles that were coming down the magnet­ic tail of the Earth, headed toward the Earth. When they struck the Earth’s atmosphere, that’s what caused the aurora. Now the assumption was those may be solar particles, because the energy that they had was exactly what the dynamo effect would produce from the solar wind.

“We proposed that this be added to the list of experiments, and it was called S230. Every NASA center had to evaluate all of the experiments, so they sent out this proposal to all the different space centers. Every space center said, ‘We recommend that it not be approved, because all the other experi­ments were approved a year and a half ago, and it’s simply too late.’

“But I knew exactly what had to happen. It was to be mounted on a fab­ric background, so I went over to the guy at Marshall, and said which fab­ric is the best?’ He said ‘armalon,’ so we proposed armalon.

“I went down to the Cape and said, ‘What is the best installation sequence that will not give you guys any problems?’ He said if we would install the sleeve at one point in the countdown and the foil panels at a different time, there would be no stowage problem. That is exactly what we requested.

“So nobody had any reason not to approve it, except that it was, quote ‘too late.’ But there was really no technical objection to it, so it was proposed, and it was the last experiment that came in.

“All the guys had to do on the flight was, every time they went out to pick up the atm film canisters, they had to pass this spot on one of the trusses, and they’d just take off the next foil and bring it in and bring it home and that would expose the next foil below it.

“A typical space experiment costs a million dollars or ten million or some­thing, and it usually weighs a couple hundred pounds, and it takes several hours of astronaut time. Well, our experiment cost $3,500, and it weighed less than ten pounds, and all it did was require an astronaut to take literally thirty seconds to pick up one of these things on a traverse that he was going to do anyway. And we made a significant scientific discovery for $ 3,500.

“Kenny Kleinknecht, who was the head of the Skylab program at that time, said to me one time, ‘Lind, this is my favorite experiment.’ ‘Well, why’s that?’ ‘It’s the cheapest.’”