On 7 November 1968 George Mueller declared that AS-503 was fit for a mission to the Moon. On 11 November Sam Phillips recommended to the Manned Space Flight Management Council that Apollo 8 enter lunar orbit. Later that day, Mueller told Thomas Paine that he had discussed the mission with the Science and Technology Advisory Committee and with the President’s Science Advisory Committee, both of which had endorsed the proposal, and he recommended that it should be undertaken. After speaking to Frank Borman by telephone, who confirmed his willingness to fly the mission, Paine gave the formal go ahead and told Phillips to make the necessary arrangements. The next day, NASA announced that Apollo 8 would be launched on 21 December and attempt a lunar orbital mission. Earlier in the year, Michael Collins had withdrawn from the crew to undergo a surgical procedure, and had been replaced by his backup, James Lovell.

Tom Stafford, John Young and Gene Cernan were announced on 13 November as the prime crew of Apollo 10, backed up by Gordon Cooper, Donn Eisele and Edgar Mitchell. This established the precedent for a crew backing up one mission, skipping two, and becoming the prime crew of the mission after that. It had yet to be decided, however, whether Apollo 10 would fly the ‘F’ or the ‘G’ mission.[51]

On 9 October 1968 AS-503, complete with CSM-103 and LTA-B, was rolled out to Pad 39A. The countdown demonstration test was completed on 11 December, and the actual countdown began at 00:00 GMT on 16 December. The launch window ran from 20 to 27 December, and it had been decided to try for 21 December to enable the astronauts to inspect the ALS-1 landing site in eastern Mare Tranquillitatis soon after local sunrise.

Frank Borman, James Lovell and Bill Anders entered the spacecraft with a little under 3 hours on the clock. There were no unplanned holds, and Apollo 8 lifted off at 12:51:00 GMT on 21 December for the ‘C-prime’ mission.

The ascent was nominal and the deviations from the trajectory when the S-IVB cut off at T+ 684.98 seconds were + 1.44 ft/sec in velocity and -0.01 nautical mile in altitude, which was almost perfect. At 002:27:22, after the S-IVB and spacecraft had been thoroughly checked, Collins, serving as the CapCom in Mission Control, made the momentous call, ‘‘Apollo 8, you are ‘Go’ for TLI.’’

The 317.7-second translunar injection was started at 002:50:37.8 and produced a velocity of 35,505.4 ft/sec. The spacecraft separated 30 minutes later and the four SLA panels were jettisoned. After turning around, the spacecraft’s ability at station­keeping with the spent stage was assessed. A 1.1-ft/sec manoeuvre was performed at 003:40:01 using the reaction control system of the service module to move clear of the stage, and a 7.7-ft/sec manoeuvre at 004:45:01 increased the separation rate.

At 004:55:56.0 the S-IVB opened its hydrogen vent valve and at 005:07:55.8 it passed oxygen through the engine. At 005:25:55.8 the auxiliary propulsion system was ignited and burned to depletion. The accumulated velocity increment placed the stage on course to fly by the trailing limb of the Moon at an altitude of 681 nautical miles and pass into solar orbit. The spacecraft’s service propulsion system executed a 2.4-second, 20.4-ft/sec midcourse manoeuvre at 010:59:59.2. A 24.8-ft/sec change had been planned, but the engine delivered less thrust than expected and a correction was made at 060:59:55.9 to refine the trajectory. These burns served to calibrate the service propulsion system in advance of calculating the orbit insertion manoeuvre.

In contrast to Apollo 7, this time all three crewmen experienced nausea as a result of rapid body movement, with the symptoms lasting up to 24 hours. The first of six TV transmissions started at 031:10:36 and ran for 23 minutes 37 seconds. The wide – angle lens gave an excellent view of the inside of the spacecraft, where Lovell was preparing a meal, but the telephoto lens passed too much light and pictures of Earth were poor. After a procedure was devised to tape a filter of the still camera onto the TV camera, it produced improved pictures of Earth during a transmission starting at 055:02:45. At 055:38:40 the astronauts were alerted that they had become the first people to enter a region where the gravitational attraction of another body exceeded that of Earth. The spacecraft had been slowing as it climbed up from Earth, but now it began to accelerate as it was drawn in by the Moon. However, they were not yet committed. If a reason developed not to brake into lunar orbit, then Apollo 8 would simply continue on its ‘free return’ trajectory around the back of the Moon and be ‘slingshot’ back to Earth. Although everything was going well, the translunar coast was frustrating in the sense that at no time were the crew able to see their objective owing to the spacecraft’s trajectory in relation to the positions of the Moon and the Sun.

The lunar orbit insertion manoeuvre began at 069:08:20.4 at an altitude of 75.6 nautical miles above the far-side of the Moon, and the 246.9-second burn produced an orbit ranging between 60.0 and 168.5 nautical miles with its high point above the near-side. After the post-burn checklist had been attended to, and while still passing over the far-side, the astronauts had their first opportunity to inspect the surface of the Moon up close. At 071:40:52 they gave a 12-minute TV transmission showing the passing terrain. In contrast to geologists, the astronauts described the surface in terms of ‘‘a battlefield’’, ‘‘a sandbox torn up by children’’, ‘‘a volleyball game played on a dirty beach’’, ‘‘plaster of Paris’’, or (vaguely scientifically) as ‘‘pumice’’. Bright ray craters appeared just as if they had been made by a ‘‘pickaxe striking concrete’’. The colour was varied, sometimes appearing to be black and white, yet other times displaying a distinctly brownish tan. In terms of mood, the surface was ‘‘desolate’’, ‘‘bleak’’ and ‘‘forbidding’’. A 9.6-second burn at 073:35:06.6 circularised the orbit at 60 nautical miles.

As this was the first opportunity for humans to directly observe the Moon at close range, James Sasser of the Apollo Spacecraft Project Office in Houston had served as the ‘project scientist’ for the mission. He formed an advisory team and this drew up a program of photography and visual observations for the crew to perform using a Maurer 16-mm movie camera and a Hasselblad with a 250-mm lens. In particular, the Manned Spacecraft Center wanted views of the eastern limb to assist in selecting landmarks for a lander’s navigational checks prior to the powered descent. Some of this documentation was to be overlapping vertical and oblique pictures which would enable stereoscopic analysis to determine the geographical position and elevation of each feature, but the movie camera was also to be fitted to the spacecraft’s sextant to depict the landmarks in context. In addition, some ‘scientific’ targets were marked on the flight charts as ‘targets of opportunity’ which were to be inspected if time and circumstances allowed. These were to provide either detailed coverage of specific features or broad coverage of areas which had not been adequately imaged by the Lunar Orbiters. And, of course, the ALS-1 landing site was to be inspected. Most of the scientific observing and photography was assigned to Anders, the LMP without a lunar module. Jack Schmitt, a professional geologist who was hired as an astronaut in 1965, served as the main interface between Sasser’s team and the Apollo 8 crew in training, but some briefings were provided by US Geological Survey staff. At the suggestion of Wilmot N. Hess, Director of the Science and Applications Directorate at the Manned Spacecraft Center, SasseTr’s team had set up a ‘science support’ room in Mission Control to listen to the astronauts’ commentaries and watch the TV of the lunar landscape passing below the spacecraft.

The astronauts could recognise surface features in shadows lit by Earthshine, and could see detail on sunward-facing slopes which had been ‘washed out’ in the Lunar Orbiter pictures. In fact, they could perceive detail to within 5 degrees of the ‘zero phase’ point, which is the line of sight with the Sun directly behind the observer. In planning the lunar landing the lower limit for Sun angle had been set at 6 degrees, but the astronauts could see surface detail at angles as low as 2 degrees. They were able to confirm that the upper limit of 16 degrees provided excellent definition, and their observations suggested that it might be possible to raise the limit to 20 degrees – but no higher than this. This enabled the lighting constraints for the lunar landing to be relaxed.

Of the two candidate landing sites in Mare Tranquillitatis, ALS-1 in the east was brighter; so much so, in fact, that it was debatable whether it was truly mare material or a flatfish portion of the adjacent terra. Observing it visually from an altitude of 60 nautical miles, Lovell said it reminded him of an aerial view of Pinacate in Mexico, a volcanic field which he had been shown in training.

Owing to crew fatigue, Frank Borman took the decision at 084:30 to cancel all secondary activities during the final two revolutions, to allow the crew to rest. The only tasks during this period were an alignment of the inertial guidance system and the preparations for transearth injection. But at 085:43:03 they provided the planned 27-minute TV transmission showing the Moon and Earth, and to mark the fact that it was Christmas Eve they recited the first ten verses of the Book of Genesis from the Bible prior to signing off with, ‘‘Good night, good luck, a Merry Christmas, and God bless all of you – all of you on the good Earth.’’

Radio tracking indicated that by the time Apollo 8 was ready to head for home the mascons had perturbed its initially circular orbit into one of 58.6 x 63.6 nautical miles. At 089:19:16.6, after ten revolutions of the Moon, the 203.7-second transearth injection was made on the far-side of the Moon at an altitude of 60.2 nautical miles, which was just about perfect. After returning to the Earth’s gravitational influence, the spacecraft progressively accelerated. Only one small midcourse correction was required. It was made at 104:00:00, and the 15.0-second burn by the service module reaction control system imparted a change of 4.8 ft/sec.

On shedding the service module, the command module adopted its entry attitude and at 146:46:12.8 hit the entry interface travelling at 36,221.1 ft/sec. It pursued an automatically guided profile. The ionisation bathed the interior of the cabin in a cold

An oblique view by Apollo 8 looking northwest across the eastern part of Mare Tranquillitatis. The crater in the foreground is Taruntius-F, and one of the Cauchy clefts crosses the upper part of the picture. The ALS-1 site is out of frame to the south.

blue light as bright as daylight. At 180,000 feet, as expected, the lift vector deflected the vehicle to 210,000 feet, then it resumed its downward course. It splashed into the Pacific 1.4 nautical miles from the target at 15:51:42 on 27 December. It adopted an apex-down position, but promptly righted itself. The astronauts were soon recovered and flown by helicopter to USS Yorktown.

This audacious mission, described as the “greatest voyage since Columbus”, took NASA a giant step towards achieving Kennedy’s challenge.

On 6 January 1969 Deke Slayton called Neil Armstrong, Michael Collins and Buzz Aldrin to his office at the Manned Spacecraft Center and told them that they would fly Apollo 11 and should assume their mission would involve a lunar landing.

On 10 January 1969 John Stevenson, Director of Mission Operations at the Office of Manned Space Flight, circulated a revised version of the tentative schedule for the year that was issued early in 1968. This called for launching the delayed ‘D’ mission on 28 February. As the ‘E’ mission had been rendered irrelevant by Apollo 8, this meant that if the ‘F’ mission flew in May and was satisfactory, it should be possible to attempt the lunar landing in July. The rationale for the ‘F’ mission was to obtain experience of operating in deep space, but after Apollo 8 the issue became whether another test in lunar orbit was required. The decision was postponed until LM-3 had been put through its paces.

Leave a reply

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>