Category The International Space Station

PROGRESS M-57

Progress M-57 was launched at 11: 08, June 24, 2006 and entered orbit a few minutes later. Following a standard 2-day rendezvous, the new Progress docked to Pirs’ nadir at 12:25, June 26. Unloading of the 2,578kg of cargo, including 1,161kg of dry goods, began the following day. With Progress in place, the last week of June was spent preparing for Discovery’s arrival. The crew flushed the pipes in Quest, in preparation for the Shuttle crew’s planned EVAs. Progress M-57 would be unloaded after Discovery had returned to Earth; its pressurised compartment would then be used as a temporary storage area, to hold many of the items delivered in Discovery’s MPLM.

PREPARING FOR THE INTERNATIONAL PARTNER MODULES

With Discovery gone and the P-6 ITS relocated, Whitson, Malenchenko, and Tani settled down to the remainder of their occupation. They continued their daily routine of experiments, maintenance, and exercise, but beyond that they would oversee the

PREPARING FOR THE INTERNATIONAL PARTNER MODULES

Figure 108. Expedition-16: Daniel Tani poses in his sleeping bag mounted between two EMUs inside the Quest airlock.

transformation of ISS into a truly International Space Station. The Expedition-16 crew had a quiet day on November 5, in the wake of Discovery’s departure and in advance of a busy period during which Harmony would be moved to Destiny’s ram. That work began on November 8, when the crew spent the day preparing their EMUs and the Quest airlock for a Stage EVA.

At 04: 54, November 9, Whitson and Malenchenko exited Quest to carry out work that should have been completed by the STS-120 crew, but had been resched­uled because of the urgent need to repair the P-6 ITS SAW. Making their way to Destiny’s ram, their first task was to disconnect the SSPTS cables from PMA-2, before disconnecting eight other cables between Destiny and the PMA. Whitson also removed a CETA light on Destiny, to clear the area for equipment trays to be installed at a later date. Their third task was to disconnect the rigid umbilicals on the side of Destiny. Both astronauts covered the receptacles left open by the de-mated umbilicals with dust caps as they worked. Separating, Whitson completed connec­tions for the PDGF that would be used when Harmony was relocated. Malenchenko moved up to the Z-1 Truss’ wake face to remove and replace a failed RPCM. Working together once more, they made their way back to Harmony, on Unity’s port CBM. On the new module’s exposed end, they removed a dust cover that had protected the CBM in that area. As they removed the dust cover, Tani observed from inside the station. Looking through the window here, all I can see is a big aluminium foil. It looks like turkey cooking in the oven.’’ Whitson and Malenchenko recovered the dust cover for disposal on a Progress spacecraft. Malenchenko’s next task was to re-route an electrical cable at the wake of the Z-1 Truss, while Whitson moved to the “rats’ nest’’, the area between the Z-1 Truss and the S-0 ITS, where she made changes to the electrical connections in that region. Next, Whitson recovered a base-band signal processor and returned to the airlock with it. It would be returned to Earth and refurbished. Finally, Malenchenko redistributed EVA tools between two storage bags and then moved one of those bags to the S-0 ITS. The EVA ended when they returned to Quest, at 10: 49, after 6 hours 55 minutes exposed to vacuum. Even as Whitson and Malenchenko completed their EVA, STS-121 Atlantis was moving out to the launchpad where the European Columbus Science Laboratory was already waiting in its payload container.

In orbit, Whitson and her crew began preparations on November 13, for the arrival of Columbus. On that date, Tani commanded the SSRMS from inside Destiny and used it to grapple the PDGF on PMA-2. At 04: 35 Whitson commanded the first of four mechanical bolts holding the PMA in place to unwind. The final bolt was released at 05 : 02, and Tani moved the PMA away from Destiny’s ram 10 minutes later. The SSRMS was used to manoeuvre the PMA to a position below Destiny where the station’s cameras were used to inspect its mating surfaces. When the survey was complete, Tani moved the PMA to its new position on Harmony’s outboard CBM, at which time Whitson commanded the four bolts to secure it in place. The final bolt was secured at 06: 29. Later that same day, Houston placed a ban on EVAs. A ground test of an EMU on Earth had resulted in a smell of smoke. Subsequent testing of the suit revealed no signs of burning.

The following day, Tani and Whitson repeated their roles, using the SSRMS to grapple Harmony and release the CBM bolts holding it in place. Whitson released the first bolt at 03:58 and the last at 04:21.Tani then used the SSRMS to move Harmony from its temporary position on the side of Unity and relocated it on Destiny’s ram. The relocation manoeuvre was completed at 05: 45, much earlier than planned. Capcom Kevin Ford told them, “You guys are really cooking with gas.’’ During the manoeuvre the station had passed over the Atlantic Ocean; Whitson looked out of Destiny’s window and remarked, “It’s amazing. I love my job!’’

On November 15, the P-1 radiator was deployed, increasing the area available to the station’s ammonia cooling system. On the same day, NASA cleared the EMUs on the station for future EVA work. NASA’s Lynett Madison stated, “There is no indication of combustion or an electrical event. We’ve been cleared to conduct spacewalks.” The smoke odour detected in the suit test earlier in the week was thought to have been caused by a canister of metal oxide used during ground tests of the suit.

Whitson described the two EVAs that she and Tani had originally been expecting to make to outfit Harmony, in the following terms:

“The EVAs that have to be conducted between the arrival of Node-2 [Harmony] and before arrival of Columbus are critical. We can’t accept the new module without the completion of those EVAs… [T]he two EVAs that Dan and I will conduct actually will lay what we call the umbilical trays, and they are the fluid lines that will connect the Thermal Control System that’s based in the truss. We have to run them along the laboratory module and then connect [them] to the Node-2. [T]he reason that’s important is the Node-2 has six different heat exchangers; some of those will be providing the thermal heat rejection for each of the new modules that come up later. So it’s got a big thermal job, and we have to connect all those lines that will allow it to happen. Obviously we also have to do the electrical and the data connections as well, so that we’ll be able to transmit data and receive telemetry back and forth throughout not only the Node-2 module but then later, through the laboratory modules on Columbus and the JEM … We do some mating on the inside: the internal Thermal Control System’s mated on the inside. We also have power and data connections that are done on the inside.’’

The first of those two EVAs began at 05: 10, November 20, 2007, when Whitson and Tani left the Quest airlock wearing American EMUs. Exiting the airlock as the station passed over the Atlantic Ocean, Tani remarked, “A nice day at the office here.’’

After preparing their tools, they set about individual tasks to maximise their time outside. Whitson removed an ammonia jumper, part of a temporary cooling system, on the outside of the station, vented it, and then stowed it securely in place. The jumper’s removal allowed for the establishment of the new Loop-A, one of two loops in the permanent cooling system. As she worked Whitson reported that frozen ammonia crystals were escaping from the open end of the system, “They appear

PREPARING FOR THE INTERNATIONAL PARTNER MODULES

Figure 109. Expedition-16: Peggy Whitson makes a Stage EVA following the departure of STS – 120. In the background Harmony has been relocated to Destiny’s ram, and PMA-2 is on Harmony’s ram.

frozen and just bouncing off me.’’ Houston replied, “Not a problem at this time. We’re ready to press on.’’

At the same time, Tani retrieved a bag of tools left outside the station during the EVA on November 9. He then removed two fluid caps, as part of the preparation of the permanent cooling loop. His next task was to reconfigure an electrical circuit that was used to fire a pyrotechnic during the deployment of the P-1 cooling radiator on November 15. Both astronauts then made their way to the centre of the S-0 ITS where they co-operated to unbolt the 6.5 m long Loop-A fluid tray from its storage position. In order to move the tray, they took it in turns to move ahead of the tray and secure lines to ensure that it did not drift away if they lost control of it. The tray was then moved forward and the next set of lines attached to it before the previous set of lines were released. In that manner they moved the tray to the exterior of Harmony, where they secured it in place. Next, they secured six fluid connections, two at the tray, two on the S-0 ITS, and two inbetween those two locations. Tani’s final planned task was on the port side of Harmony, where he mated 11 avionics lines, meanwhile Whitson configured heating cables and connected electrical harnesses linking PMA-2 and Harmony. With time to spare they were also able to complete a number of “get-ahead” tasks. Tani connected five avionics lines on Harmony’s starboard side, before joining Whitson to connect a series of redundant umbilicals and connect the SSPTS cables to PMA-2 in its new location. The EVA ended at 12: 26, after 7 hours 16 minutes.

Whitson and Tani’s next EVA took place on November 24 and was for all intents and purposes a mirror image of the EVA completed four days earlier. Where the earlier EVA had set up Harmony’s primary cooling loop (Loop-A), the second EVA would establish the back-up cooling loop (Loop-В). Ammonia, circulated through the umbilicals installed during these two EVAs, would take up the heat produced by Harmony’s electrical equipment and transport it to the large radiators on the ITS, where the heat would be radiated to space and the ammonia recirculated. The EVA began at 04:50, with the crew exiting from Quest wearing American EMUs. They worked together to prepare their tools, before Whitson removed, vented, and stowed the ammonia lines associated with the original, temporary cooling loop. Tani disconnected two fluid caps in preparation for the establishment of Loop-В of the permanent cooling loop. His next task was to relocate an articulated portable foot restraint from its location on the port side of Harmony, to its new position on the lower portion of the module’s ram endcone. The two astronauts then joined together to move the Loop-В cooling tray from the S-0 ITS to its permanent location on the port avionics tray on Destiny’s zenith, where they bolted it in place. They used the same method to move the fluid tray as they had during the previous EVA. With the Loop-В fluid tray in place, they made the same six connections that they had made on the Loop-A fluid lines: two on the fluid tray, two on the S-0 ITS, and two inbetween. Whitson then made her way to Harmony’s starboard side where she removed the launch restraints from the petals on the CBM that would provide soft-docking for Columbus when STS-122 delivered it. That delivery was planned for December 2007. At the same time, Tani made his way to the starboard SARJ, removed one of the thermal covers, allowing him to photograph the joint and recover samples of the metal shavings contaminating the joint. It was a repeat of the work he had carried out during the visit of STS-120. During the inspection, Tani reported, “I see the same damage that I saw before… I would say there is more damage than I saw before.’’ Tani took the thermal cover back to Quest, leaving the joint open to the video cameras on the SSRMS. The video survey would be completed after the visit of STS-122 and would include at least one full rotation of the SARJ. The EVA ended at 11: 54, after 7 hours 4 minutes. The crew had light-duty days on November 25 and 26 following their week of hard work.

On November 28, NASA announced that they feared Harmony may have developed a pressure leak, although the overall pressure leakage rate for the whole station had not increased. (All pressurised modules leak. The rate of leakage is included in the module’s design stage and confirmed during manufacture and pre­launch testing. Under normal operations the gases used to pressurise the module are supplied at a rate that will maintain the correct internal pressure in addition to the known leakage rate.) That evening, Whitson was instructed to secure the area between Harmony and Unity’s hatches, so that the internal pressure could be monitored. The fact that the overall pressure leak rate had not increased suggested that the problem might actually lie in one of the measuring instruments and might not be a leak at all. The test was repeated and again showed no loss of pressure in the space between the two hatches. As a result, preparations went ahead on the station for the arrival of STS-121, in early December, while Houston continued to monitor the “pressure leak” problem.

With Harmony now on Destiny’s ram and PMA-2 on Harmony’s ram, ISS was finally configured to receive the next few Shuttle flights, which would deliver the European and Japanese modules to the station. The astronauts from those two nations would begin flying to the station in greater numbers and with increasing regularity. Following the delivery of Node-3, with its extra sleeping facilities, the station’s crew would be increased to six people, increasing its capacity to perform first-class orbital science. The last two items of American ISS hardware, the S-6 ITS and the Cupola, would also be launched and installed. In time the European ATV and the Japanese HTV would begin delivering consumables to the station alongside the Russian Progress spacecraft.

As the STS-122 launch was delayed in November 2007, the future schedule for ISS through the end of the Shuttle programme was mapped out:

STS-122

DISCOVERY: Columbus

STS-123

ENDEAVOUR: JEM ELM-PS (placed in temporary position) and Canadian Dextere robotics system. Four EVAs to install equipment

Soyuz TMA-12

Expedition-17 crew up.

STS-124

ATLANTIS: Kibo, two EVAs to install lab and Japanese RMS. Relocate JEM ELM PS to permanent position

STS-128

ENDEAVOUR: MPLM. Establish six-person Expedition crew

H-IIA

ATV-1

STS-119

ENDEAVOUR: S-6 Truss

Soyuz TMA-13

Expedition-18 crew up.

STS-126

MPLM

STS-127

DISCOVERY: JEM-ES and JEM-EF

STS-129

DISCOVERY: EXPRESS Logistics Carrier 1 & 2

STS-130

MPLM

STS-131

DISCOVERY: EXPRESS Carrier 3 & 4

STS-123

ENDEAVOUR: Node-3 and Cupola

STS-132

ENDEAVOUR: EXPRESS Logistics Carrier 5 & 6

As the Shuttle approaches the end of its career, the Russian Soyuz will become the principal vehicle for crew delivery and recovery including the astronauts from all of the ISS International Partners. Given the support of Congress and the new President (the Presidential election is in 2008) the American Project Constellation spacecraft, Orion, and its Ares-1 launch vehicle will be developed and flight-tested. As 2007 drew to a close, only Presidential candidate Hillary Clinton had made positive statements on Orion during her campaign. Clinton’s spokesperson, Isaac Baker, had stated, “Senator Clinton does not support delaying the Constellation Programme and intends to maintain American leadership in space exploration.’’ Meanwhile, Senator Barack Obama had called for Project Constellation to be delayed for 5 years and the money spent on education and social programmes.

If they are built, Orion and Ares-1 will assume the role of American crew delivery and recovery in the ISS programme, but flying to ISS is not the principal role for which Orion is being built.

As America prepares to return to the Moon, hopefully taking their International Partners with them, what role does that leave for ISS? During the pre-launch interview for his Expedition-11 flight, Sergei Krikalev voiced his view of the impor­tance of the ISS programme to Project Constellation and the future of human spaceflight in general:

“[The International Space] Station is not the ultimate goal. It’s an intermediate goal. That may be the significance of this Station. This is an intermediate step you have to make before you go any further. Life science experiments can be con­ducted on the Station to understand how far we can go with the configuration we have right now and what else we need to do to provide more efficiency of human beings on this long-duration mission, and long-distance mission. We continue to conduct technological experiments to see how materials change and how they behave inside, and outside, the Station, to know how to build new vehicles. We are even learning how micro-organisms change inside the Station, and some of these organisms might be a biological hazard for materials inside. Certain micro­organisms can destroy insulation on wires and create big trouble. We have to be prepared especially if we are to go on long-distance missions. On these long­distance missions (not only long-duration missions, as we are flying on the Station right now) you have to be much more autonomous. Even small things that people don’t think about very often can change the quality of our development. Being [a] participant on Mir flights and now [on an] ISS flight I see that [the] experience of people, on the ground, operational experience, is very important. Unless we gain this experience, unless we do this step, we will never be able to move any farther from the Earth. It needs to be done on the Station before we can make any further steps.’’

PREPARING FOR THE INTERNATIONAL PARTNER MODULES

Recovery and restructuring

STS-121 RETURNS THE SHUTTLE TO FLIGHT

STS-121

COMMANDER

Steven Lindsey

PILOT

Mark Kelly

MISSION SPECIALISTS

Michael Fossum, Lisa Nowak, Stephanie Wilson,

Piers Sellers

EXPEDITION-13 & 14 (up)

Thomas Reiter (ESA)

STS-121 was the first Shuttle flight since the fleet had been re-grounded in the wake of STS-114. The flight would carry 4,000 kg of cargo to the station in the MPLM Leonardo, to re-stock the supplies that had been used during the intervening period. It would also deliver Thomas Reiter, the third member of the Expedition-13 crew, to the station. Reiter was the first ESA astronaut to serve on an ISS Expedition crew. The agreement to fly Reiter was signed in May 2003. Director of Human Spaceflight at ESA Daniel Sacotte explained:

“It covers the ESA astronaut’s flight in a crew position originally planned for a Russian cosmonaut. He will perform all the tasks originally allocated to the second Russian cosmonaut on board the ISS and, in addition, an ESA experimental programme.’’

Reiter added:

ESA is making important contributions to the ISS and its scientific capabilities. We are assuming significant operational responsibilities in this programme and I am confident that this mission will give Europe valuable

operational experience and scientific results which will further prepare us for the exciting and challenging times ahead.”

STS-121 would be the first launch to be controlled from the new Firing Room 4 in the Launch Control Centre, at KSC. The new Firing Room would become the principal launch control room for the remainder of the Shuttle programme, while the original Firing Rooms were converted for use in Project Constellation.

The first attempt to launch STS-121 was made on July 1, 2006. On that occasion the countdown reached the planned hold at T — 9 minutes, when it was held due to anvil clouds, potential thunderstorms, in the area. The launch was subsequently scrubbed and recycled to the following day. On July 2 the countdown was scrubbed for a second time, due to anvil clouds in the area and recycled for a further 48 hours. The new launch date was set for July 4.

On July 4 a crack in the insulating foam on the Shuttle’s ET had to be filled and an investigation was required when a triangular piece of foam fell away from the ET while Discovery stood on the launchpad. It was decided that the launch could proceed as planned. In February, Lindsey had warned the media, “We will lose foam on this flight, just like every other. The key is to make sure that any foam we do lose is of a small enough size so it can’t hurt us if it hits the vehicle.’’

Discovery finally lifted off at 14: 38, July 4, 2006 and was in orbit a few minutes later. Film from the numerous cameras on the vehicle showed that the ET had continued to shed foam and the crew were even informed that MCC-Houston thought that one piece might have struck the underside of the orbiter. The crew began their sleep period at 20: 38.

Eight hours later, they were awake and ready for their first full day in space. Beginning work shortly after 07: 00, Nowak and Wilson used the RMS to lift the

Recovery and restructuring

Figure 70. STS-121 crew (L to R): Thomas Reiter, Michael E. Fossum, Piers J. Sellers, Steven W. Lindsey, Mark E. Kelly, Stephanie D. Wilson and Lisa M. Nowak.

OBSS from the opposite edge of the payload bay and manoeuvred it so that the Laser Dynamic Range Imager, the Laser Camera System, and the Intensified Television Camera mounted on the end could image the leading edge of both wings and the orbiter’s nosecap. Meanwhile, Sellers set up Discovery’s computers and Reiter prepared the mid-deck for the transfer of equipment and stores to ISS. Sellers and Fossum were assisted by Kelly as they checked the EMUs they would wear on two, or possibly three EVAs.

On ISS, Vinogradov and Williams prepared cameras, with the 400 mm and 800 mm lenses, that they would use to photograph Discovery during its approach to the station. They also pressurised PMA-2 in preparation for Discovery’s docking.

As Discovery approached ISS, Lindsey commenced station-keeping at a distance of 200 metres, he then performed a nose-over-tail pitch manoeuvre so that Vinogradov and Williams could photograph the underside of the orbiter. The photo­graphs were down-linked to Houston for scrutiny. The rendezvous then continued and Lindsey docked Discovery to PMA-2 at 10:52, July 6. Following pressure checks the hatches between the two vehicles were opened and Discovery’s crew entered the station at 12: 30. Vinogradov and Williams greeted them and then issued the standard safety briefing. Williams told Houston, “It’s a full house. The climate has changed significantly.” The first action after that was to transfer Reiter’s couch lining and Sokol pressure suit from Discovery to Soyuz TMA-8, thereby signalling his transfer from the STS-121 crew to the Expedition-13 crew. For the first time since the Expedition-6 crew, who had been in orbit when STS-107 was lost in February 2003, the Expedition crew on ISS now consisted of three people. Vinogradov had the following to say about the arrival of the European astronaut:

“I think that it is a very important milestone… at this stage we can support a crew of three or more. But from the human standpoint, it’s important because we do have to notice that over the last two years the ISS program is kind of slowing down and the interest is not what it used to be on the part of the Russian government and Congressmen in the United States. There are certain notes of dissatisfaction on the part of the people who are working on the science and experiments on board the station because unfortunately the rate of station assembly and deployment is quite different from what they expected. And so the arrival of the third person, Thomas Reiter in our case, greatly improves the capability of the crew in terms of performing science program and experiments. The other thing is that Thomas Reiter is a representative of Europe. Europeans are important and we are working with them very closely. The European Space Agency contributes considerable effort from the standpoint of research.’’

Williams was equally keen to see Reiter join the crew:

“We’re really looking forward to the Shuttle arriving, and Thomas joining us as a crew of three. It’s obviously very significant. Since Expedition 7 we’ve been flying and sustaining the Space Station with a crew of two. Those who track that sort of thing say that it takes more than two people just to run the station, so it leaves no excess crew time for the other things. Getting back to a crew of three will help us accomplish more. It’s also significant in that we will be continuing with the assembly of the Space Station, to get it up to its full capability with the resuming of regular Space Shuttle flights, which is important, of course, to meet the vision of space exploration.”

The EMUs that Fossum and Nowak would use during their planned EVAs were also transferred, from Discovery to Quest. In preparation for the first EVA, Williams and Wilson used the SSRMS to lift the OBSS from its storage position and hand it over to Discovery’s own RMS. With Discovery docked to ISS there was insufficient clearance for Discovery’s RMS to retrieve the OBSS. During the EVA, the 33-metre long combination would undergo tests as a work platform giving access to areas of the Shuttle that were previously inaccessible.

The following day, Nowak, Wilson, Fossum, and Sellers used the SSRMS to lift Leonardo out of Discovery’s payload bay and dock it to Unity. Docking occurred at 08:15, July 7, following an initial concern that straps on Unity’s CBM might prevent a perfect air-tight seal. Following pressure and leak tests Lindsey, Wilson, and Reiter opened the hatches between the two modules and began several days of equipment transfer. Vinogradov was in no doubt of the importance of the arrival of Leonardo at the station:

“That period of joint flight with the Shuttle is quite busy in terms of the crew of the station and the Shuttle crew working together. It’s quite intense work. First you have to move a very considerable amount of cargo, you have to get it out of the MPLM and stow it on the station. It’s quite important—extremely important, I would say—because that provides the supplies for our continued flight.’’

Williams has said:

“It’s also important to get a lot of the equipment that is no longer required on station off and packed into that empty MPLM so it can come home. The station’s getting pretty crowded here in recent months and years… It’s going to be important for both crews to be very disciplined in the transfer of equipment, both to the station and returning to the Shuttle. To do that, we have a flight plan onboard. Part of that flight plan is a transfer plan. It’s a detailed choreography of all of the transfers, everything that goes across the hatches between the Shuttle and the Station, developed by the folks on the ground and trained by both crews.’’

Nowak, Kelly, and Wilson also used the RMS/OBSS combination to carry out further inspections of Discovery’s exterior, finding six areas requiring further inves­tigation, although none of them were areas of major concern. Areas of particular attention were parts of the nosecap that had been missed on July 5, and a piece of fabric near the orbiter’s nose. Fossum and Sellers spent the day preparing for their first EVA. During the day, mission managers made the decision to extend Discovery’s flight by one day, including a third EVA. Engineers in Houston also reviewed the initial photographs and laser scans of Discovery’s exterior.

EVA-1 began at 09:17, July 8, when Sellers and Fossum left Quest. Their first task was to repair the MT mounted on the S-0 ITS. The emergency cable cutter had malfunctioned and cut one of two cables that moved the MT along the truss. During a Stage EVA the Expedition-12 crew had removed the second cable from the cutter after failing to install a bolt to prevent the blade from falling and cutting it. After collecting their tools together, Sellers and Fossum made their way to the S-0 ITS, where they installed a device to block the cable cutter blade on the MT, thereby denying the ability to sever the cable in an emergency. After installing the block, they reinstalled the cable in the cutter, thereby repairing the MT and making it available to move the SSRMS along the truss during EVA-2. The second portion of EVA-1 included simulating the use of the RMS/OBSS as a workstation. Nowak and Wilson operated the RMS from Discovery’s aft flight deck, while Kelly served as intra­vehicular officer, the EVA astronauts’ guide, offering whatever assistance he could from inside Discovery. With Sellers standing on the foot restraint mounted on the end of the OBSS the combination was put through a series of pre-planned manoeuvres while sensors recorded the forces involved. Sellers remarked, “Just a general comment. It gets easier as you go along doing all the tasks on the end of a skinny little pole. A little practice makes perfect.’’ In Houston the Flight Director com­mented at his end-of-shift press conference, “The arm damped a lot quicker than we thought, based on our analysis… That gives us very good confidence we could use this as a platform for repairs.’’ In space, Fossum joined Sellers at the end of the OBSS, which was then manoeuvred to three different simulated work positions. The last of these lifted Fossum to a position where he could push up with his hands against the P-1 ITS. The EVA ended at 16:48, after 7 hours 31 minutes.

While the EVA was taking place, Vinogradov and Reiter began unloading Leonardo and transferring stores to the station, including a new sample freezer and a new oxygen generator. When installed in Destiny, at a later date, the generator would upgrade the station’s oxygen capacity to the point that it could support up to six people on long-duration Expedition crews.

As the day’s activities came to an end mission managers cleared Discovery’s heatshield for re-entry. The following day, July 9, was spent unloading stores from Leonardo and preparing items on Discovery for return to Earth. Sellers and Fossum spent the day cleaning their EMUs and preparing their tools and Quest for their second EVA, on July 10.

With the crew awake at 02: 08, preparations for the second EVA began immedi­ately after breakfast. Sellers and Fossum left Quest at 08: 14, and climbed down into Discovery’s payload bay. There, they lifted the pump module from its stowage location so that Nowak and Wilson could grapple it with the SSRMS and lift it into position. Meanwhile, Sellers and Fossum remained in the payload bay preparing for the primary task of the EVA, replacing the Mobile Transporter’s Trailing Umbilical System (TUS), the power and data cable that had been cut during the Expedition-12 occupation. Both men made their way to the S-0 ITS, where Fossum disconnected electrical cables, and Sellers then replaced the Interface Umbilical Assembly (IUA) with a new one, without a cutting blade. By that time the SSRMS had manoeuvred the pump module to External Stowage Platform 2. Sellers and Fossum made their

way to that location and secured the module to the platform, thus allowing the SSRMS to release it. The pump module was a spare, now available if it should be needed in the future.

Sellers and Fossum returned to their work on the TUS. Now working from the end of the SSRMS, Fossum removed the TUS reel assembly and carried it down to the payload bay. While he was doing that, Sellers worked in the payload bay to unpack and prepare the new reel assembly. While Fossum returned to the work site Sellers stowed the old reel assembly in Discovery’s payload bay. Back on the S-0 Truss, Fossum was joined by Sellers and they worked together to install the new reel assembly and routed it through the IUA. The work ensured that the MT would have the required redundancy to enable it to support future assembly flights. Having stowed their equipment, both men returned to Quest and the EVA ended at 15: 01, after 6 hours 47 minutes. During the EVA Fossum had to twice stop working and secure a loose connection on Seller’s SAFER. While the work was taking place outside, Vinogradov, Williams, and Reiter continued to unload Leonardo, and Lindsey transferred two bags of water from Discovery to ISS.

The following day, July 11, was spent transferring equipment and rubbish from ISS to Leonardo, for return to Earth. Wilson served as loadmaster, ensuring every­thing was secured in the correct place, thereby retaining Discovery’s correct centre of balance for re-entry and landing. Sellers and Fossum cleaned their EMUs and prepared them for their third EVA.

That EVA began at 07: 20, July 12. Sellers and Fossum left Quest, made their way into the payload bay, collected their tools, and installed a foot restraint on the SSRMS. After Sellers had mounted the SSRMS, Nowak and Wilson manoeuvred him to a point close to Discovery’s starboard wing’s leading edge, where he recorded several seconds of infrared imagery. The imagery, which recorded temperature differences, would help to identify any internal damage to the area. The manoeuvre simulated lifting an astronaut to a position where he could try to repair damage to the wing’s leading edge, as suffered by STS-107. Returning to the payload bay, Sellers joined Fossum at a workstation where both men trialled a variety of methods for repairing damage to 12 samples of Reinforced Carbon-Carbon, similar to the panels on the wing’s leading edge. Using a space-cleared caulking gun and a series of spatulas, they pumped a carbon-silicon polymer called NOAX into the simulated damaged tiles in an attempt to repair them. Over almost two hours they repaired three gauged tiles and two cracked tiles. They also imaged four of the repair samples with the same infrared equipment that Sellers had used of the starboard wing. An additional get-ahead task was added to the EVA: Sellers used a pistol grip tool to remove the fixed grapple bar used to move the pump module during the second EVA, moved over to the S-1 Truss, and installed it on an ammonia tank that was due to be moved during the Expedition-15 occupation. The EVA ended at 14: 31, after 7 hours 11 minutes. As usual, the remainder of the crew spent the day loading Leonardo.

Following their hectic first eight days, Discovery’s crew were given July 13 off, with the exception of a few interviews. July 14 was also spent in interviews and completing the final loading of Leonardo. The MPLM was de-activated and was undocked from Destiny at 09: 32, and lowered into Discovery’s payload bay, where it

Recovery and restructuring

Figure 71. STS-121: A view from the station’s wake, as STS-121 completes its fly-around, shows the station as it was before construction was resumed.

was secured at 11:00. Lindsey and Reiter then used the RMS, with the OBSS attached, to view Discovery’s heatshield and search for any damage that had occurred during orbital operations. None was found.

July 15 was the final day of joint operations as Discovery’s crew prepared for their departure. Undocking took place at 06: 08 and was followed by the crew imaging the leading edge of the starboard wing and the nosecone. Discovery per­formed station-keeping while mission managers reviewed the new images and cleared the heatshield for re-entry. The Shuttle fell behind and above ISS with the minimum of manoeuvring. Discovery’s crew spent the following day preparing for re-entry, while, on ISS, Williams depressurised PMA-2 and Vinogradov and Reiter continued the station’s maintenance and experiment programmes.

Discovery’s payload bay doors were closed at 05: 27, July 16, and retrofire occurred at 08: 07. Thereafter, Lindsey turned his vehicle so the nose was forward and high, until gravity pulled it out of orbit. The orbiter glided to a perfect landing at KSC, at 09: 15, after a flight lasting 12 days 18 hours 38 minutes. It had six astronauts onboard, one less than at launch; the seventh, Reiter, was still in orbit, as part of the now three-person Expedition-13 crew.

At the landing site Michael Griffin told the press, “Obviously this is as good a mission as we’ve ever flown… But we’re not going to get overconfident.” The Shuttle was finally back in business and the construction of ISS was set to continue. Mean­while, NASA was already busy defining the vehicle that would replace the Shuttle when it retired in 2010. When the crew returned to Houston, Lindsey told the waiting crowd, “In terms of human spaceflight… we’re back.’’ The crowd applauded loudly. Lindsey was more sombre, “I think it’s more like the beginning of the next phase… I don’t think we ever want to put Columbia behind us.’’

As Discovery landed, the published flight programme for the completion of ISS looked like this:

Launch date

Flight

Vehicle

Flight details

August 28, 2006

12A

Atlantis

STS-115

• Second port truss segment (ITS P-3/P-4)

• Second set of solar arrays and batteries

December 14, 2006

12A.1

Discovery

STS-116

• Third port truss segment (ITS P-5)

• SpaceHab Single Cargo Module

• Integrated Cargo Carrier (ICC)

February 22, 2007

13A

Atlantis

STS-117

• Second starboard truss segment (ITS S-3/ S-4) with Photovoltaic Radiator (PVR)

• Third set of solar arrays and batteries

June 11, 2007

13A.1

Endeavour

STS-118

• SpaceHab Single Cargo Module

• Third starboard truss segment (ITS S-5)

• External Stowage Platform 3 (ESP3)

Under review

ATV1

Ariane 5

• European Automated Transfer Vehicle

August 9, 2007

10A

Atlantis

STS-120

• Node 2

• Sidewall, Power and Data Grapple Fixture (PDGF)

September 27, 2007

1E

Discovery

STS-122

• Columbus European Laboratory Module

• Multi-Purpose Experiment Support Structure, Non-Deployable (MPESS-ND)

November 29, 2007

1J/A

Endeavour

STS-123

• Kibo Japanese Experiment Logistics Module, Pressurized Section (ELM-PS)

• Spacelab Pallet, Deployable 1 (SLP-D1) with Canadian Special Purpose Dexterous Manipulator, Dextere

February 7, 2008

1J

Atlantis

STS-124

• Kibo Japanese Experiment Module Pressurised Module (JEM-PM)

• Japanese Remote Manipulator System (JEM-RMS)

June 19, 2008

15A

Endeavour

STS-119

• Fourth starboard truss segment (ITS S6)

• Fourth set of solar arrays and batteries

August 21, 2008

ULF2

Atlantis (last flight) STS-126

• Multi-Purpose Logistics Module (MPLM)

Under review

3R

Russian

Proton

• Multipurpose Laboratory Module with European Robotic Arm (ERA)

Launch date

Flight

Vehicle

Flight details

October 30, 2008

2J/A

Discovery

STS-127

• Kibo Japanese Experiment Module, Exposed Facility (JEM-EF)

• Kibo Japanese Experiment Logistics Module, Exposed Section (ELM-ES)

• Spacelab Pallet, Deployable 2 (SLP-D2)

January 22, 2009

17A

Endeavour

STS-128

• Multi-Purpose Logistics Module (MPLM)

• Lightweight Multi-Purpose Experiment Support Structure Carrier (LMC)

• Three crew quarters, galley, second treadmill (TVIS2), Crew Health Care System 2 (CHeCS2)

Establish six-person crew capability

Under review

HTV-1

H-IIA

• Japanese H-II Transfer Vehicle

April 30, 2009

ULF3

Discovery

(last

scheduled

flight)

STS-129

• EXPRESS Logistics Carrier 1 (ELC1)

• EXPRESS Logistics Carrier 2 (ELC2)

July 16, 2009

19A

Endeavour

STS-130

• Multi-Purpose Logistics Module (MPLM)

• Lightweight Multi-Purpose Experiment Support Structure Carrier (LMC)

October 22, 2009

*ULF4

Discovery STS-131 (if needed)

• EXPRESS Logistics Carrier 3 (ELC3)

• EXPRESS Logistics Carrier 4 (ELC4)

January 21, 2010

20A

Endeavour

STS-132

• Node 3 with Cupola

July 15, 2010

*ULF5

Endeavour

STS-132

(if needed)

(final

Shuttle

flight)

• EXPRESS Logistics Carrier 5 (ELC5)

• EXPRESS Logistics Carrier 1 (ELC1)

ISS assembly complete

Under review

9R

Russian

Proton

Research Module

* Two Shuttle-equivalent flights for contingency.

Notes’. Soyuz flights for crew transport schedule at approximately 6-month intervals beginning in September 2006. Additional Progress flights for logistics and re-supply are not listed.

At the Farnborough International Air Show, in England, held during July 2006, ESA Director Jean-Jacques Dordain stated at a press conference, “I have a wish that Europe participate in one of the two next-generation transportation systems [the American Orion, or Russia’s Kliper]. If we don’t, I fear we will always be a second – class partner.” America had already made it clear that NASA intended to develop Orion as an all-American spacecraft, so ESA had agreed to undertake a 2-year feasibility study on crewed spacecraft architecture, for a spacecraft to be launched by a Soyuz launch vehicle from Baikonur, or from the new pad for such vehicles at ESA’s launch site in Kourou. Meanwhile, Energia had to admit that Kliper would cost more than the entire Russian space programme budget for the period 2006-2015. Therefore, the new spacecraft would not be built. Rather, the Russians would update Soyuz yet again, making it capable of Earth orbital and lunar orbital flight. At the same meeting NASA Administrator Michael Griffin explained to the audience, “Our plan is to have one more daylight [Shuttle] launch before resuming night operations … We do need to resume night operations to complete the Space Station, we’ve always known that.’’

In America, NASA had named the two new Shuttle-derived launch vehicles that would be used to support Project Constellation. The Crew Launch Vehicle would be called Ares-1 and the Heavy Lift Launcher would be Ares-5. The numerical designa­tions were salutes to the Apollo Saturn-class launch vehicles. Meanwhile, the CEV had been named “Orion”. Lockheed-Martin was named as prime contractor for the development of the Orion spacecraft in August 2006. It would be a ballistic capsule, superficially similar to the Apollo Command Service Module, and would carry a crew of up to six people. It would be launched by an Ares-1 launch vehicle consisting of a first stage derived from a Shuttle SRB and a new liquid propellant second stage. The new vehicle would use the old Apollo/Shuttle facilities at LC-39, KSC.

NASA had also launched a quest for commercial cargo access to ISS, the Commercial Orbital Transportation Service (COTS). Two industry partnerships, led by SpaceX and Rocketplane Kistler, would use NASA funding, along with private funding to develop an automated vehicle to deliver cargo to ISS and to carry away rubbish. The new vehicle would be heated to destruction during re-entry. The selected developer would be open to sell space on their vehicles commercially, and NASA would be nothing more than a commercial customer. Flight demonstrations would begin in 2008. Phase-1 development would concentrate on an uncrewed cargo vehicle, with the option to progress to Phase-2, a vehicle for delivering humans to ISS.

Project Constellation

As the Shuttle returned to flight following the loss of STS-107, initial definition was well under way on the new Project Constellation space vehicles, intended to fulfil President Bush Junior’s vision of returning humans to the lunar surface and then moving on to a human landing on Mars. The Constellation hardware consisted of two launch vehicles and two spacecraft. The Crew Exploration Vehicle (CEV), later named the “Orion” spacecraft, would be launched by the Crew Launch Vehicle (CLV), renamed the “Ares-I”. The Lunar Surface Access Module (LSAM), “Altair”, and its heavy-lift launch vehicle, called “Ares-V” are currently of no relevance to the future ISS flight programme and are therefore not reviewed in this volume.

RETURN TO THREE EXPEDITION CREW MEMBERS

Following Discovery’s departure, the extended Expedition-13 crew settled down to work. Williams and Reiter installed the ESA experiment rack, which had been delivered by Discovery, in Destiny. They activated the Minus Eighty-degree Labora­tory Freezer for ISS (MELFI), which Discovery had delivered and had been set up in Destiny. The freezer was supplied by ESA and contained four compartments offering a total of 300 litres of storage capacity. It would be used to store biological samples

RETURN TO THREE EXPEDITION CREW MEMBERS

Figure 72. Expedition-13/14: European astronaut Thomas Reiter served with the Expedition – 13 and 14 crews. He is shown working with the SWAB experiment.

prior to their return to Earth. On July 19, Vinogradov took three attempts to restart the Elektron unit and succeeded only after the bubbles had been driven out of the system. The crew also completed a check of the oxygen generation system that Discovery had carried to the station. When activated the new system would supple­ment the Elektron oxygen generator, in anticipation of future Expedition crews consisting of up to six people. Oxygen from the tanks in Progress M-56 was pumped into the station’s atmosphere on a daily basis throughout the latter half of July. The crew also began preparations for Williams and Reiter’s Stage EVA, by flushing the cooling loops in Quest and the American EMUs. On July 26, Russian controllers fired thrusters on Progress M-56 to raise the station’s orbital parameters and place it in the optimum position for the STS-115 launch, in August 2006. The Expedition-14 crew were due for launch in September 2006, on Soyuz TMA-9. The following day, Vinogradov removed the KURS system from Progress M-56 and stored it in Zarya. The last day of July was spent in maintenance of the American Common Cabin Air Assembly in Destiny. The new month began with Vinogradov transferring water from tanks in Progress M-56 to tanks in Progress M-57 and performed other maintenance tasks on the Life Support System in the Russian sector.

Williams and Reiter left Quest wearing American EMUs at 10: 04, August 3, 2006, for a Stage EVA that was planned to last 6 hours 20 minutes. Their first task was to install a Floating Potential Probe (FPP) on the S-1 ITS and extend its three sensor arms, to measure the electrical potential of the station as it orbited Earth. They quickly began to get ahead of their planned timeline for the EVA. Their second task was to install two suitcase-size Materials on International Space Station Experiment (MISSE) containers. The MISSE-3 container was installed on one of Quest’s high – pressure gas tanks while MISSE-4 was mounted on Quest’s outboard end. Following their individual installations the containers were opened to expose the material samples held inside to the space environment. Following these joint tasks, the two men set about individual tasks. Williams installed a controller for a Thermal Radiator Rotary Joint on the S-l ITS, before installing a starboard jumper and spool positioning device (SPD), also on the S-l ITS. Meanwhile, Reiter installed a Multiplexer/De-multiplexer, a computer, on the S-l ITS, replacing one that had failed in 2004, before examining a radiator beam valve module at a site where an SPD was already installed.

He then installed an additional SPD at that site. Finally, he installed an SPD on the port cooling line jumper. The jumpers were designed to assist the flow of ammonia in the radiators once the coolant was installed.

Williams then began the installation of a light to assist future EVA astronauts using the MBS to move along the assembled ITS. Following that work, he removed a malfunctioning GPS antenna. Elsewhere, Reiter tested an infrared camera designed to image the RCC thermal protection on the nose and leading edge of the wings of the Shuttle Orbiters. The camera was designed to show damage by highlighting the difference in temperature within the RCC sections. When he had completed these tasks he installed a vacuum system valve on the exterior of Destiny for use with future scientific experiments. That was the last of the planned EVA tasks, but, as the astronauts were so advanced on their timeline, Houston found a number of “get – ahead’’ tasks for them to perform. Williams relocated two articulated foot restraints in preparation for the EVAs planned for the visit of STS-115. He then photographed a scratch on the exterior of Quest. Reiter made his way to the exterior of PMA-1 to inspect and retrieve a ball-stack, used to hold equipment during EVAs. With no further tasks the two men returned to Quest and took photographs of each other. In Houston, astronaut Steve Bowen joked, “We will never let this happen again.. .Wait ’til you see next week’s schedule.’’ The pair re-entered Quest and closed the hatch at 16: 58, bringing their EVA to a close after just 5 hours 54 minutes. For the first time since 2003 a third Expedition crew member, Vinogradov, had been available to remain inside ISS and monitor systems, thereby doing away with the necessity to place the station’s systems into un-crewed mode during the EVA.

The day after the EVA, August 4, Reiter broke the ESA endurance record. When his time on Mir and ISS were combined he had broken the previous ESA combined record of 209 days 12 hours 25 minutes, set by French astronaut Jean-Pierre Haignere. Reiter’s position as the first International Partner on an ISS Expedition crew and the first International Partner to make an EVA from the station was seen by many in Europe as a forerunner of European activities following the launch of the Columbus laboratory module, then planned for September 2007. Reiter’s flight activities were being run from the Columbus Control Centre in Oberpfaffenhofen, near Munich, Germany. By the time he returned to Earth, at the end of his 5 months on ISS, Reiter would have spent more than a year in space. By that time he would have completed 23 experiments in 6 disciplines in the ESA “Astrolab” programme.

In the same week, the crew prepared for the arrival of STS-115. The Shuttle would deliver the P-3/P-4 ITS, and would see the resumption of construction on ISS. The Expedition-13 crew began packing up items that Atlantis would carry back to Earth. They also performed 2 days of routine maintenance. On August 10, controllers in Houston moved the SSRMS to allow its cameras to view markings on the exterior of ISS as part of the Space Vision System (SVS), which would be used to assist in the correct alignment of the new components that Atlantis would deliver to the station. The following day, Williams walked the SSRMS from the exterior of Destiny on to the recently repaired MT, and then used its cameras to view the exposed end of the P-1 ITS, where the new P-3/P-4 ITS would be mounted.

In the second half of August the Expedition-13 crew continued to pack items for return to Earth on Atlantis. The Carbon Dioxide Removal Assembly was tested in advance of the Shuttle’s arrival and the station’s orbit was raised by a burn of the Progress M-56’s thrusters, on August 23. The crew also continued their experiment programme, routine maintenance, and exercise regimes.

STS-115 was due for launch on August 27, but was delayed, ultimately until September 9. The crew on ISS used the extra time to complete their preparations for the Shuttle’s flight. They worked on cosmic ray studies that involved Williams spending a complete orbit in the prone position wearing a helmet with sensors to monitor his brain activity and visual perceptions. Vinogradov spent much of the time maintaining the Elektron unit.

STS-115 DELIVERS THE PORT-3/4 ITS

STS-115

COMMANDER

Brent Jett

PILOT

Christopher Ferguson

MISSION SPECIALISTS

Joseph Tanner, Daniel Burbank,

Heidemarie Stefanyshyn-Piper, Steven MacLean

(Canada)

As July turned August 2006, the American press began to fill with stories of STS-115, Atlantis, and how its six-person crew would restart the construction of ISS. The Shuttle would deliver the combined port-3 and port-4 (P-3/P-4) ITS. The inward end of the P-3 ITS would be permanently attached to the exposed end of the P-1 ITS. The P-3 ITS contained a Solar Alpha Rotary Joint (SARJ), which would allow the three outer segments of the port ITS (P-4 and the P-5/P-6) to rotate, in order to keep their SAWs directed towards the Sun. The construction would require three EVAs from Quest.

STS-115 stood at Launch Complex 39 in late August. The weather on August 25 was abysmal, rain; low, dark clouds; and thunder. At one point lightning struck the conductor on the top of the launch structure tower, causing a spike in several electrical systems. When the weather had passed the launch was delayed for 24 hours, from August 27 to August 28, in order to carry out thorough systems checks in the wake of the lightning strike. Even as the checks were completed Hurricane Ernesto was in the Caribbean, approaching Cuba. If it continued on its present course and regained strength over the open sea it might strike KSC with storm winds in excess of speeds in which it was safe for the Shuttle to remain on the launchpad. Two parallel plans were put in place. First, work continued to prepare Atlantis for launch, if the winds abated. Second, work began in preparation to roll Atlantis back to a safe haven constructed in the VAB.

Further difficulties were placed on the launch by the lighting requirements of the cameras that would film the ET during launch and the requirement to jettison the ET on the daylight side of Earth. These requirements had been placed on the first two launches after the loss of STS-107 by the CAIB. Although the current launch window ran until September 13, NASA wanted to launch before September 7, rather than delay the launch of Soyuz TMA-9 carrying the Expedition-14 crew, planned for September 14. The Expedition-13 crew were due to return to Earth in Soyuz TMA-8 on September 24, and any delay in the launch of Soyuz TMA-9 would result in a night-time recovery for Soyuz TMA-8.

Programme manager Mike Suffrendi told the media, “This flight has to occur for the next flight to occur and then the next flight and the next flight… Even though we say we take them one at a time, this one is a key. This is clearly in the critical path for assembly.”

On August 30, NASA began the 12-hour-long roll-back of Atlantis to the VAB. Four hours later, Hurricane Ernesto had altered course, having lost much of its energy over Cuba. The decision was made to stop the roll-back and return Atlantis to the launchpad. Lift-off was rescheduled for September 8.

With the countdown proceeding, an electrical short circuit caused the failure of a coolant pump in one of four power generators in one of Atlantis’ three fuel cells. The problem was that the fuel cell might fail in flight, causing Atlantis to return to Earth early, without installing the P-3/P-4 ITS. Despite everything, NASA managers decided that the risk of failure was minimal and the launch preparations continued. The crew were suited up, transported out to the launchpad, and installed in the spacecraft. As the countdown continued, a new problem arose with one of four fuel cut-off sensors within the ET. The sensor was responsible for sensing the amount of propellant in the ET’s liquid hydrogen tank and ensuring the three Space Shuttle Main Engines shut down if the main computer failed. There were similar sensors in the liquid oxygen tank. Mission Rules dictated that all the sensors be working before the launch could go ahead. On this occasion flight managers decided that the launch could not continue. The launch attempt was scrubbed and the crew removed from the spacecraft.

The following day, September 9,2006, the whole procedure began again. Follow­ing a near perfect countdown, at 11: 15 Atlantis climbed into the blue Florida sky on her first flight since 2002. Although the launch events appeared to go well, review of the numerous video tapes showed that four or five small pieces of foam shed from the

ET. These events all occurred after Atlantis had left the thick lower atmosphere and, therefore, mission managers were sure that the foam did not have enough energy to cause major damage to the orbiter. All launch events passed off as planned and video cameras on the ET captured both the SRB and ET separation. Tanner and MacLean shot hand-held video and still images of the ET as it drifted away. Programme Manager Wayne Hale remarked, “The bottom line is we are looking at nits, nothing of remote consequence. Of course, we will inspect the entire heatshield with a fine – tooth comb.” As Atlantis lifted off, ISS was over the Atlantic Ocean, between Iceland and Greenland. The Expedition-13 crew watched the launch on a NASA television link. Once in orbit the crew prepared Atlantis for sustained spaceflight. On the ground, astronaut Mike Fincke told the media, “The logjam behind is huge… We have a very solid end date for the Space Shuttle, so each mission has to happen one after another in the sequence.”

On September 10, Jett and Ferguson began the manoeuvres that would result in rendezvous with ISS. Meanwhile, Ferguson, Burbank, and MacLean used the RMS to lift the OBSS and view Atlantis’ right and left-wing leading edges and the carbon – carbon nosecone, before returning the OBSS to its stowed position. Initial reviews of the images obtained showed no damage to Atlantis from the foam shed from the ET during launch. In one place on Atlantis’ underside a shim and a tile spacer were seen protruding out from between the TPS tiles. Tanner and Stefanyshyn-Piper prepared the EMUs and EVA tools they would transfer to ISS for the three planned EVAs. On the station, Vinogradov and Williams pressurised PMA-2 in preparation for the Shuttle’s arrival.

Rendezvous with ISS took place on September 11, Flight Day 3. Houston joked, “Atlantis is headed your way with a brand new piece of the Space Station in its trunk.’’ As the Shuttle approached the station, Jett and Ferguson performed the r-bar pitch manoeuvre, to allow the station crew to take high-resolution photographs of the Shuttle’s underside. In Houston, Pam Melroy was Capcom and remarked, “Station, we see you have visitors. Tell them to give us a wave.’’

Atlantis docked to PMA-2 at 06: 48. Even as the pressure and leak checks between the two vehicles were taking place, Ferguson and Burbank activated the RMS and used it to lift the 17.5-tonne P-3/P-4 ITS out of Atlantis’ payload bay and manoeuvred it to the position where it could be handed over to the SSRMS, leaving it in that location. The hatches between the two vehicles were opened at 08 : 30, and the Shuttle crew transferred to ISS. The visitors were greeted enthusiastically by the three-man Expedition-13 crew before receiving the standard safety briefing. MacLean then joined Williams at the SSRMS station in Destiny and used it to complete the hand-over of the P-3/P-4 ITS from the Shuttle’s RMS, at 10: 52. The new ITS element was left hanging on the SSRMS overnight to become thermally stabilized in the space environment. The day continued with the EMU’s and EVA tools being transferred to Quest. It ended with Tanner and Stefanyshyn – Piper locking themselves in Quest for the program’s first use of the new “camp-out” procedures. The two EVA astronauts slept in Quest, with the pressure reduced, in order to reduce the pre-breathing time required to remove the nitrogen from their bloodstream before an EVA.

RETURN TO THREE EXPEDITION CREW MEMBERS

Figure 73. STS-115 crew (L to R): Heidemarie M. Stefanyshyn-Piper, Brent W. Jett, Jr., Joseph R. Tanner, Daniel C. Burbank, Christopher J. Ferguson, Steven G. MacLean.

RETURN TO THREE EXPEDITION CREW MEMBERS

Figure 74. STS-115 approaches the ISS carrying the P-3/P-4 Integrated Truss Structure.

Construction of ISS resumed on September 12, 2006. At 05:17, Tanner and Stefanyshyn-Piper transferred their EMUs to internal battery power, thereby offi­cially starting their first EVA. After collecting their tools the two astronauts made their way to the P-3/P-4, which had previously been moved to its deployed position at the exposed end of the P-1 ITS and held in place by the SSRMS, while motorised bolts were driven home. The pair quickly got ahead of their timeline as they worked their way through a series of tasks including connecting power cables on the ITS, releasing launch restraints on the Solar Array Blanket Box and the Beta Gimbal Assembly. They also configured the Solar Alpha Rotary Joint (SARJ), which would allow the deployed photovoltaic arrays to track the Sun. Having completed their schedule they began a series of “get-ahead” tasks in preparation for the flight’s second EVA. They removed the covers that would allow them to access and remove the launch lock bars from the SARJ. As Tanner removed one of the covers a bolt and washer detached from the SARJ and drifted away. The pair returned to the Quest airlock at 11: 43, ending the EVA after 6 hours 26 minutes. During the morning, MCC-Houston had informed Jett that additional inspections of Atlantis’ heatshield were not required. Meanwhile, the two crews spent the remainder of the day transfer­ring equipment and supplies between the two spacecraft. The day ended with Burbank and MacLean “camping out’’ in Quest.

Burbank and MacLean commenced their EVA at 05: 05 September 13. The entire EVA was devoted to activating the SARJ, with Stefanyshyn-Piper operating the SSRMS in order to use its cameras to video the activities. Both EVA astronauts released the launch locks, but had to overcome several small difficulties, including a stuck bolt and a faulty EMU helmet camera. Next, they prepared the new P-3/P-4 ITS for the MBS, which would be used to transport the SSRMS along the completed ITS. With the major tasks completed, they turned their attention to additional “get – ahead” tasks, including the removal of a keel pin and drag link. They also removed a Space Vision System target, used to align the RMS and SSRMS in order to remove the P-3/P-4 ITS from Atlantis’ payload bay. Finally, they installed a temporary rail stop for the CETA.

With Burbank and MacLean back inside at 12: 16, after an EVA lasting 7 hours 11 minutes, MCC-Houston began a 4-hour activation and checkout of the SARJ, designed to ensure all systems were working. They engaged Drive Lock Assembly 1 (DLA-1) and rotated the car-sized joint through 180°. When they engaged DLA-2 later in the day they received no talk-back indication to indicate that it had engaged properly. A back-up procedure also failed to result in the required indication of successful engagement. Deploying the P-4 SAWs was delayed while the problem was investigated overnight, and was overcome by a software work-around sent up from the ground in the early hours of the next morning.

At 04: 00, September 14, MCC-Houston commanded the SAWs on the P-4 ITS to deploy, a procedure that was not completed until 08: 44. For the STS-115 crew the day was a rest-day, while the Expedition-13 crew continued transferring equipment and stores between the two spacecraft. The 66 kilowatts of electrical power produced by the new SAWs was directed to the P-3/P-4 ITS’ own systems. It would not be distributed to the remainder of ISS until the system was rewired and the cooling system activated during the flight of STS-116, then planned for December 2006. During the day the SSRMS underwent a “walk-off”, from the MBS to the exterior of Destiny.

During preparations for the third EVA a remote power controller tripped out resulting in the loss of power to Quest’s depressurisation pump. Tanner and Stephanyshyn-Piper left the airlock and moved to the adjacent Unity module, while still pre-breathing oxygen through face masks. The problem was found to be a momentary power spike and, following checks to ensure there was no short circuit, the breaker was reset, the pump reactivated, and the two astronauts returned to the airlock to continue preparations for their EVA, which was delayed by 45 minutes.

Tanner and Stefanyshyn-Piper began their EVA at 06: 00, September 15. Once outside they separated in order to complete individual tasks. Tanner installed bolt retainers on the P-6 Beta Gimbal Assembly, which assisted in the pitch orientation of the SAWs. He also attempted to re-engage a four-bar hinge, which had failed to engage during the flight of STS-97. Meanwhile, Stefanyshyn-Piper recovered the MISSE-5 materials science experiment. Working together, the two astronauts next prepared the Space Radiator on the P-3/P-4 ITS for deployment by removing hardware installed to protect the radiator during launch. With that task completed, they deployed an S-band antenna support assembly on the S-1 ITS. They also deployed a shroud on the failed S-band antenna support assembly, which would be returned to Earth on a later Shuttle flight. Separating again, Stefanyshyn-Piper replaced a base-band signal processor and transponder on S-1, while Tanner installed a heatshield on an antenna group interface tube to help prevent overheating in the area when ISS was placed in particular attitudes in relation to the Sun. Their final tasks included installing an external wireless TV antenna and performing infrared video of Atlantis’ wing leading edges. The EVA ended at 12: 42, after 6 hours 42 minutes. After their EVA, the two astronauts joked together, “Kind of nice up there on top,’’ Tanner remarked. “Yes, but I didn’t get to look around much. At least, I can say I’ve been there,’’ replied Stefanyshyn-Piper. Tanner added, “Not too many people have.’’

September 16 was a light day for the STS-115 crew; they had the morning off after their hectic work schedule so far. After lunch they joined the Expedition-13 crew for a joint crew photograph, a press conference, and personal interviews. Jett told the media, “We are off to a good start… We have a lot of complex missions ahead. We had a few small problems, but the team did a wonderful job of resolving them. I think it bodes well for the future.’’ The two crews also performed the final transfer of equipment between the two spacecraft, as well as moving some of the items of debris, produced during the last EVA, to Progress M-57.

The two crews said their farewells on September 17. The hatches between the two vehicles were closed at 06 : 27 and, following pressure checks, Atlantis undocked at 08: 50. Twenty minutes later Ferguson began the first full fly-around of ISS since 2002. During the fly-around the crew were able to view and photograph the results of their hard work over the past few days. Atlantis manoeuvred away from ISS at 10: 30. In Russia, final preparations were underway for the launch of Soyuz TMA-9, with the Expedition-14 crew.

RETURN TO THREE EXPEDITION CREW MEMBERS

Figure 75. STS-115: Atlantis departs the station with an empty payload bay.

RETURN TO THREE EXPEDITION CREW MEMBERS

Figure 76. STS-115: construction has resumed. The station displays the new P-3/P-4 Solar Array Wings and ammonia radiator at right. Meanwhile, the Solar Array Wings and ammonia radiator are still deployed on the P-6 Integrated Truss Structure, mounted on the Z-1 Truss.

During the morning of September 18 the Expedition-13 crew, Vinogradov, Williams, and Reiter, were faced with a malfunctioning Elektron oxygen generator in Zvezda, which had been powered off for the visit of STS-115. At a request from Korolev, Vinogradov attempted to restart the Elektron, but it soon shut down again on its own. Following several other attempts the unit was finally restarted. Vinogradov was working on it when it overheated, causing smoking from a melted rubber seal, a strong odour, and the possible release of a small amount of the chemical irritant, potassium hydroxide. The crew were instructed to manually acti­vate a fire alarm to allow the station’s software to shut down the air circulation fans. They were also told to don surgical masks, goggles, and gloves. Vinogradov cleared up and bagged a clear liquid that had leaked from the unit. The Elektron was ultimately restarted and the air circulation fans powered on within the hour. On the same day the crew of STS-115 made a final inspection of Atlantis’ heatshield, nosecap, and wing leading edges. In the words of Shuttle Programme Manager Wayne Hale, “You can call it anxiety, or you can call it smart. But it’s what we do these days. We have no reason not to go look and put every concern to rest.’’

At 03: 00, September 19, Houston linked the crews of ISS, STS-115, and Soyuz TMA-9, which had been launched the previous day, to allow them to talk to each other. Williams told the Soyuz crew, “It’s a little crowded in the sky today… We look forward to having you guys onboard.’’ Jett told the Expedition-13 crew, “We’ll see you back on Earth sometime soon.’’ Following the conference Atlantis’ crew tested the orbiter’s flight control surfaces and RCS thrusters. They spent the day packing up for re-entry, but during the day the flight was extended by one day, to allow for further inspections of the Shuttle’s exterior after video cameras showed debris drifting away from the vehicle. The decision to extend was also based on deteriorating weather forecasts for the landing site. TMA-9 continued its approach to rendezvous, while the Expedition-13 crew watched the undocking of Progress M – 57 at 20: 30. The spacecraft re-entered the atmosphere and burned up just after midnight.

Having left the RMS/OBSS positioned above the payload bay overnight, so that controllers could use its video cameras to inspect the area, it was used to inspect Atlantis’ underside on September 20. A shim and a tile spacer seen in an earlier inspection were found to be gone. When no issues with the Shuttle’s heat shielding were revealed, flight managers cleared Atlantis for landing in the early hours of the following morning. Meanwhile, Soyuz TMA-9 had docked to Zvezda. The crew entered the station later that morning. Atlantis’ crew went to bed at 21:45, waking again at 21:45 to face the final hours of their flight. Atlantis landed at KSC, Florida at 06: 21,21 September, after a flight lasting 11 days 19 hours 6 minutes.

On September 22, Michael Griffin told a press conference, “It’s obvious to me we are re-building the kind of momentum that we have had in the past and that we need if we are to finish the Space Station… We have an awesome task in front of us. I think we will make it.’’

SOYUZ TMA-9 DELIVERS THE EXPEDITION-14 CREW

SOYUZ TMA-9

COMMANDER

Michael Lopez-Alegria

FLIGHT ENGINEER

Mikhail Tyurin

ENGINEER

Anousheh Ansari (spaceflight participant)

When the Soyuz TMA-9 crew were originally named, the spaceflight participant involved was Japanese entrepreneur Daisuke Enomoto, but he was grounded for undisclosed medical reasons that caused him to fail his final medical examination. Enomoto was replaced by his back-up Anousheh Ansari, the Iranian-born daughter of an adventure capitalist, supporter of the X-Prize (won by Rutan’s SpaceShipOne) and business partner to the Federal Space Agency of Russia in attempts to develop commercial access to space. Following her late allocation to the flight Ansari would perform many of Enomoto’s experiments, rather than those with which she had already begun practising, for her own flight.

Ansari flew without an Iranian flag on the sleeve of her Sokol pressure suit, and had promised her American and Russian programme managers that she would make no political speeches while in orbit. Before her launch she had remarked:

“I believe when you see the Earth without boundaries, without borders, without race, that you can see how important it is for us, everyone, to be more under­standing of our neighbours, our friends, other people’s beliefs, religions, race and not make issues to start wars… One thing that I’m hoping is that I’d like for people all over the world to see a different face of an Iranian-born individual, something different than what they see on TV and in the media… Also, I think my flight has become sort of a ray of hope for young Iranians living in Iran, helping them to look forward to something positive, because everything that they’ve been hearing is all so very depressing and talks of war and talks of bloodshed.’’

Soyuz TMA-9 was launched from Baikonur at 00:09, September 18, 2006. Following a standard rendezvous it docked to Zvezda’s wake at 01: 21, September 20. The hatches were opened at 03:34, allowing Lopez-Alegria, Tyurin, and Ansari to enter ISS. The Expedition-13 crew greeted their reliefs before giving them the standard safety briefing. The intense hand-overs of previous Expedition crews were lightened somewhat by the fact that Reiter had been on the station as part of the Expedition-13 crew since July 2006 and would remain as the third member of the Expedition-14 crew until December 2006.

Lopez-Alegria described his flight:

“The goals, first of all, are to continue the assembly of the Space Station, which has sort of been on hold for a while since the Columbia accident, so in general our mission is going to be to receive a couple of Shuttle flights, do some construction while they’re there. After they’ve gone, we’re going to be receiving three Progress vehicles, which means a lot of cargo, loading, unloading. In general, the focus is going to be construction and assembly… [E]very time something comes, you’ve got to unpack it, and that takes time. And time is going to be a significant challenge for us. The second thing is, when we unpack that stuff there’s got to be some place to put it, and the station is already pretty full of stowage. The challenge is going to be to find where to stow the stuff that’s brought up.’’

During the hand-over period, Ansari performed two ESA experiments, while the two Expedition crews worked together to ensure a smooth transition. Reiter trans­ferred his couch liner and Sokol pressure suit from Soyuz TMA-8 to Soyuz TMA-9, while Ansari took hers in the opposite direction. Throughout the period the Elektron oxygen generator remained powered off and the astronauts burned four SFOG candles each day to produce the required amount of oxygen. Despite now having 120 new SFOGs onboard the crew continued to burn the 40 out-of-date candles in order to use them up. By the end of the hand-over period only four old SFOGs remained. Vinogradov and Tyurin replaced the liquids unit in Elektron and powered it on. It failed shortly thereafter and was designated to be “hard-failed’’ by Korolev. New spare parts would be delivered by Progress M-58, in October 2006. Throughout the period both Expedition crews participated in ongoing experiments in both sectors of the station. Vinogradov has described the hand-over period saying:

“[T]here also is a bit of a symbolic significance, when the commanders shake hands and say, here, you accept the station and I hand the station over to you and have a successful flight and all. This is quite an important moment associated with a lot of responsibility, and it’s quite busy. Then the previous crew leaves and you stay there alone; it’s kind of sad, actually. And in a way it’s a little bit worrisome. You’re there, and you don’t have anyone to ask or clarify things. When you part, it’s quite an emotional moment. I don’t think that there is a single crew that leaves with joy saying, oh fine, it’s finally over and I’m going to be home. It’s always a sensation that you’re leaving your home because always it’s that time that evokes a certain amount of sadness. Of course you understand the landing, your family, your kin and friends and all the joys of living on Earth, but it does make you want to go back and it’s quite a sad time when you have to leave the station.’’

Williams explained:

“The plan in the future is to rotate two out of three crewmembers on Soyuz every six months, as we have been doing for the last few years. The third crewmember will rotate on Shuttle; and by default that means that there’s a phased rotation. So Thomas gets there after we’ve been there a little while, and when we get ready to depart, with the next Soyuz, and its crew arrival in the fall, when we depart Thomas will stay on board. He’ll be the experience and help with the hand-over of the beginning of… Expedition 14.’’

RETURN TO THREE EXPEDITION CREW MEMBERS

Figure 77. Expedition-14: American/Iranian spaceflight participant Anousheh Ansari flew to the ISS on Soyuz TMA-9 with the Expedition-14 crew. She returned to Earth with the Expedition-14 crew.

On September 24, Vinogradov and Williams completed systems checks in Soyuz TMA-8 before a full dress rehearsal of the undocking and re-entry procedures, with Ansari the following day. The official hand-over took place on September 27. After a week-long hand-over, followed by fond farewells, Vinogradov, Williams, and Ansari shut themselves in Soyuz TMA-8. Undocking occurred at 17: 53, September 28. After a routine re-entry, Soyuz TMA-8 landed at 21: 13, the same day. Vinogradov and Williams had been aloft for 182 days 22 hours 43 minutes. Ansari’s flight had lasted 10 days 21 hours 5 minutes. Following standard recovery procedures the crew was flown to Kustani for the official welcome home ceremony and then to Zvezdny Gorodok for their 45-day rehabilitation and debriefing. Vinogradov had reviewed his definition of success before launch:

“First of all I would say it’s this internal feeling that you’ve done everything that you could. The satisfaction with the flight actually comes later, after some evaluations are performed and it’s all kind of reviewed and summed up. But the most important thing I would say is the appreciation of your work, of the crew, is when the next crew comes in and can tell you, guys, thanks for doing this and that, it’s because of you that we were able to, sort of standing on your shoulders, continue this work. I would say that this is probably the most important assess­ment of your work on the station that those who are coming after you would be using your experience, would stand on the basis of the results of your work.’’

By those standards Expedition-13 had been a great success.

On September 26, NASA Administrator Michael Griffin visited Chinese space facilities. He told a press conference:

“This is an exploratory visit. This is a first date—if you will. I think we need to let it evolve. There are differences between our nations on key points. One of the major points is the control of missile technology. We have been very firm on that in the past, and I believe we will continue to be firm on the importance of appropriately controlling missile technology. China has clearly made great strides in a relatively short period of time… I have been very impressed with the capabilities, experience and intellectual quality of the people we have met. The facilities we have seen have been first rate.”

Griffin made it clear that there were no plans to invite China to join the International Space Station partnership in the near future.

Meanwhile, Russia had increased the cost of their spaceflight participant flights to ISS on a Soyuz taxi flight from $20 million to $21 million. Elsewhere, Space Adventures, the company that markets spaceflight participant flights on behalf of the Russian Federal Space Agency, had also begun talking about an option for their customers to perform a 90-minute EVA whilst docked to ISS. Training for and performing an EVA would cost the customer an additional $15 million on top of the new $21 million fee. Meanwhile, Russian space officials told the media that their country could expect to fall behind “irreparably” if they failed to develop the six – person Kliper spacecraft. Russia and Europe were also considering the development of a new heavy-lift launch vehicle, the Oural programme, as a possible replacement for the Soyuz-2 and Ariane-V launch vehicles at some point in the 2020s.

ARES-I CREW LAUNCH VEHICLE

The Crew Launch Vehicle (CLV) had been named Ares-I. Ares being the Greek god of Mars, and the “I” designation being given in recognition of the Saturn-I/IB, America’s first heavy-lift launch vehicles developed specifically for spaceflight. Ares-I will consist of two stages.

First stage

The Ares-I first stage will be constructed at Lockheed’s Michoud facility, where the Orion spacecraft will also be constructed. It is derived from a single five-segment SRB similar to those used on the Shuttle. Five segments is one more segment than a Shuttle SRB. This will burn the standard Shuttle-shaped charge solid propellant called polybutadiene acrylonitride. The first stage will burn for 2.5 minutes, raising the CLV to an altitude of 59,000 m and a velocity of Mach 6.1. When the propellant is consumed the SRB will shut down and will be jettisoned. It will make a controlled fall into the ocean under a single parachute and will be recovered, and returned to the

manufacturer for breakdown, cleaning, re-fueling, and re-use, in a similar manner to the present Shuttle SRBs. The Ares-I first stage will be manufactured by Alliant Techsystems, who produce the current Shuttle SRBs. The first two tests of the new pilot parachute were made in August 2007. A test subject was dropped from beneath a US Army Chinook helicopter at Yuma Proving Ground. The first in a series of drop tests for the new main recovery parachute for the longer SRB took place in October 2007. The parachutes used to recover the solid rocket boosters on both Ares launch vehicles and the Orion spacecraft will be refurbished in the existing Parachute Refurbishment Facility.

A new inter-stage adapter will mate the top of the first stage to the bottom of a new second stage. The adapter will carry separation rockets to ensure positive separation from the first stage when it is jettisoned. After completing that task, the interstage ring will also be jettisoned and will fall into the Atlantic Ocean. It will not be recovered. The interstage will be manufactured from composite materials, by Boeing, as part of their contract to produce the Ares-I second stage.

EXPEDITION-14

Lopez-Alegria, Tyurin, and Reiter quickly settled into a daily routine of performing experiments, housekeeping, maintenance, and exercise. Lopez-Alegria described some of his increment’s experiments:

“We’re trying to understand better the effects of long-duration spaceflight on humans, because our goal is to extend our presence not just in low Earth orbit but to go back to the moon with some kind of a longer-term presence, and hopefully on to Mars someday. So, a lot of the science is dedicated to human physiology. We are studying, everything… on a very small level. There’s an experiment called SWAB, which measures bacteria levels on surface[s], water, and air; it’s sort of an environmental thing—what actually grows up there and how do we have to worry about reacting with it. Another sort of related idea is something called Epstein – Barr virus. We see how our immune system reacts over time while we’re up there. We have a nutrition experiment that will, through taking blood and urine samples, track our intake and how we metabolize the food that we’re eating up there, because, in general, people tend to lose weight in space. In space they lose weight, but when they come back they’re usually a little bit lighter and over a lot of time, that obviously can be debilitating. [C]ertainly muscle function, bone loss are very important. We’re doing an experiment called TRAC [Test of Reaction and Adaptation Capabilities], which is pretty interesting neuron – reaction time—it’s an experiment [where] we’ve got to have a tracking task in one hand, where you’re trying to get a ‘pipper’ to stay over a target, and in the other hand you’re reacting with a keyboard, trying to do things as quickly as possible. Unfortunately because of the assembly and because of the stowage, time challenges, we don’t have as much science as we’d like. I guess it’s an investment. We’re investing the time now to build the Space Station, so that we can have a lot more science time available in the future.’’

The crew spent their first solo week onboard ISS preparing to move Soyuz TMA-9. They also practised an emergency egress from the station, checking all safety equipment in the process. Lopez-Alegria and Tyurin also completed their first medical experiments. Reiter completed loading unwanted items into Progress M-57 and carried out the standard off-loading of liquid waste from the ISS toilet to the empty water tanks in the Progress. The hatches between the two spacecraft were sealed on October 5. The following day, all three men completed monthly fitness evaluations on the station’s stationary bicycle. Tyurin also spent some time during the week troubleshooting the Elektron and replacing components of the instrument panel. The Elektron continued to intermittently malfunction and further repairs were delayed until replacement parts could be delivered on Progress M-58. Meanwhile, the station drew additional oxygen from the tanks mounted on the exterior of Quest. The last of the old design SFOGs had been burned and the igniters in Zvezda were changed out for new ones matching the design of the new SFOG candles now onboard.

CMG-3 began vibrating on October 9 and was shut down, leaving three CMGs to maintain the station’s attitude. This was a normal fall-back configuration and had no knock-on effect on the flight. The CMG would be replaced during the visit of STS-118, planned for August 2007. The malfunctioning gyroscope would be stowed on the station before its return to Earth on STS-122. In the meantime the station continued to function normally.

Having set ISS up for unoccupied flight, the three men sealed themselves in Soyuz TMA-9 and undocked from Zvezda’s wake at 15: 14, October 10, and re-docked to Zarya’s nadir at 15: 34. They then re-entered the station and reconfigured its systems for human occupation once more. The relocation manoeuvre cleared Zvezda’s wake for the arrival of Progress M-58, later in the month. The crew performed routine medical experiments and maintenance while continuing to load Progress M-57 with unwanted items. On October 23, Houston began a 5-day workout of the Thermal Radiator Rotary Joint (TRRJ) on the S-1 and P-1 ITS. NASA explained that the joints would, ‘‘… enable the radiators to auto-track, or revolve, when required to dissipate heat from the Truss’ avionics equipment…’’

Second stage

The new second stage will be developed specifically for the Ares-I launch vehicle and will be powered by a single J-2X rocket motor burning liquid oxygen and liquid hydrogen to produce 1,300 kN of thrust. The second stage will lift its payload to an altitude of 116km before shutting down and being jettisoned. The Orion spacecraft’s service module propulsion system will complete the climb into a circular orbit at an altitude of 340 km. Boeing has been awarded a $515 million contract to support the NASA-led development of the Ares-I second stage and then produce the stage once definition is complete. Under the contract, Boeing will produce a single Ground Test Article, three Flight Fest Articles, and six production stages.

The second stage will be manufactured in the standard pattern, with the pro­pellant tanks positioned one on top of the other and joined by an aluminium skirt. The main stir-welded aluminium stage structure and propellant tanks will be covered by insulating foam similar to that currently employed on the Shuttle’s External Tank. The Shuttle’s ever-present risk of damage from insulation foam falling off of the External Tank is negated by the fact that at launch the Orion spacecraft will sit at the top of the Ares-I launch vehicle. As a result any insulation foam shed from the exterior of the second stage during launch will already be beneath the spacecraft and should therefore be carried away by the launch vehicle’s slipstream and not impact on the Orion spacecraft.

The J-2X is derived from the original J-2 re-startable rocket motor used on the Saturn-V’s S-IVB third stage. The original motor could not be used because the aluminium alloy employed in its construction is no longer available, and some com­ponents used in the J-2 motor have since been banned for environmental reasons. The J-2X was originally part of a dual study with the J-2XD. The J-2X was to have served on the Ares-V launch vehicle and the J-2XD on the second stage of the Ares-I. The decision to use the J-2X on both vehicles was made in July 2007. On July 17, 2007, NASA awarded Pratt & Whitney Rocketdyne (P&WR) a $1.2 billion design and development contract to develop, produce, and test the first eight J-2X rocket motors. Only one will be a flight engine, with another serving as the motor for the Ares-I second-stage Propulsion Test Article, and six ground test articles. The contract runs through the end of December 2012.

In June 2007, NASA announced a contractor competition for the Ares-1 guidance avionics package, with bids to be submitted by July 30, and the contract expected to be awarded in November. The guidance package would prove inflight guidance to both Ares-I stages during the power flight phase. The package would be mounted on the second stage at Boeing’s Michoud facility, where that stage will be manufactured.

PROGRESS M-58

Progress M-58 was launched from Baikonur at 09:41, October 23, 2006 and climbed into orbit. The spacecraft performed a standard rendezvous before docking to Zvezda’s wake at 10: 29, October 26. As Progress M-58 approached Zvezda, telemetry failed to confirm that a KURS antenna on the front of the spacecraft had retracted as scheduled. If it had not retracted then it would interfere with the docking latches. Following soft-docking, Russian controllers in Korolev spent 3.5 hours trying to confirm the antenna had retracted. During this period the station’s attitude control systems were powered off and the station was allowed to drift so as not to disturb the Progress vehicle and misalign it. In this period the station’s drift led to a misalignment of the SAWs and a drop in electrical power. Following routine procedures, the crew powered off non-critical items to conserve power. Finally, the docking probe on the Progress was retracted and the docking latches engaged, securing a hard-dock at 14: 00. After hard-docking, the station’s attitude control systems were powered on and the station brought back to its correct attitude. The non-critical items were then powered on once more. Among its 2,393 kg of cargo, Progress M-58 carried replacement parts for the Elektron oxygen generator as well as 2.5 tonnes of food, water, propellant, oxygen, spare parts, supplies, and personal items for the crew.

The non-confirmation of the KURS antenna folding on the new Progress continued to worry Russian controllers in Korolev and they began planning a Stage EVA to confirm it was correctly stowed. Lopez-Alegrla and Tyurin would make the EVA on November 22. Tyurin would also hit a golf ball away from the Pirs docking compartment in a commercial “experiment” designed to result in the longest golf strike in history. Meanwhile, Reiter began packing material planned to be returned to Earth on STS-116, the Shuttle flight that would bring his 6-month stay on ISS to an end. As the preparations for the next Shuttle launch continued, the Expedition-14 crew continued with their experiments. In preparing for their EVA, Lopez-Alegrla and Tyurin attached American EVA lights to the helmets of their Orlan pressure suits. Meanwhile, controllers in Houston continued to test CMG-3, which had shown unplanned vibrations prior to being shut down on October 9. Tyurin repaired the Elektron unit in Zvezda on October 30, after which it was powered on and began supplying oxygen to the station’s atmosphere once more.

Lopez-Alegrla walked the SSRMS end over end from its position on the exterior of Destiny to the MT, which had been positioned at Workstation 4 on the ITS, on November 1. After manoeuvring the SSRMS so that both end-effectors could be photographed, the MT was moved to the far end of the P-4, where the SSRMS would be used to install the P-5 ITS during the flight of STS-116. Meanwhile, Reiter began preparing for his return to Earth. He would be relieved by American Sunita Williams. Even so, the European experiment programme on ISS continued unabated. The Elektron unit malfunctioned again, developing an internal water leak on November 7. Five days later, the crew began shifting their sleep pattern to match that of the STS-116 crew, then due for launch on November 22. They also closed the hatches between Pirs and Progress M-57.

At 19:17, November 22, Lopez-Alegria and Tyurin exited Pirs wearing Orlan suits. Expedition-14’s first Stage EVA began 1 hour late, after Tyurin had to deal with a pinched cooling hose in his suit. He had had to climb out of his suit and reposition the hose in order to release the pinch. Having re-entered the suit, closed the hinged Portable Life Support System behind him, and repressurised the suit he was finally ready to proceed. Once outside, Tyurin mounted a З-gramme golf ball on a spring mounted tee which he attached to the ladder on the exterior of Pirs. With his booted feet on the ladder he used a gold-plated six-iron to strike the ball away, towards Zvezda’s wake. Tyurin remarked, “There it goes, and it went pretty far, I can still see it as a little dot, moving away from us.’’

Controllers estimated that the ball would re-enter the atmosphere and burn up in three days. Tyurin said he was pleased with the shot and controllers chose not to have him make a second shot. The golf shot was paid for as a commercial venture by a Canadian golf company.

Moving to Zvezda’s wake, where Progress M-58 was docked, Tyurin attempted to release a latch on the KURS antenna that had failed to retract. Despite his best efforts using both his gloved hands and a crowbar, alongside commands radioed up from Korolev, the antenna continued to refuse to retract. The two men took a series of digital photographs, which would show that the antenna’s dish was stuck behind one of Zvezda’s EVA handrails. A tool to remove the antenna would be delivered on STS-116. Moving on, the two men relocated a communications antenna that would be used by the European ATV. By moving the antenna just 0.З m from its original location it no longer impeded the cover of one of Zvezda’s rocket motors. It was this antenna that had prevented an attitude control burn taking place on April 19, 2006, because the cover on the rocket motor could not be opened to its full extent. At Zvezda’s ram they installed the BTN-Neutron experiment, designed to record the flux of neutron particles found in low-Earth orbit following solar particle events. Their final task was to jettison a pair of thermal covers for the experiment. The EVA ended after 5 hours З8 minutes.

The last week of November was spent preparing for the arrival of STS-116, Discovery. The Expedition-14 crew prepared Quest for three planned EVAs and they prepared the equipment that would be returned to Earth. On November 29, Tyurin changed out batteries in both Zvezda and Zarya. On the same day, an attempt to re-boost the station using the thrusters on a Progress spacecraft was cut short due to a software problem. Over-sensitive software shut down the thrusters after detecting motion caused by the planned manoeuvre. The planned 18-minute 22-second burn lasted just З minutes 16 seconds. The manoeuvre was completed on December 4, and placed ISS in the correct orbit for Discovery’s rendezvous.

Tyurin and Reiter disassembled the Matryoshka human torso experiment in Pirs, to remove the З60 internally mounted radiation sensors. They also removed the KURS avionics packages from Progress M-57 and Progress M-58 and stowed them for return to Earth.

As November ended, the US National Research Council released a report criticising NASA for failing to obviously redirect the ISS science programme to meet the needs of Project Constellation, and in particular human flights to Mars, saying, “The panel saw no evidence of an integrated resource utilization plan for the use of the ISS in support of the Exploration Missions.” It continued, “The ISS may prove the only facility with which to conduct critical operation demonstrations needed to reduce risk and certify advanced systems.”

STS-116 DELIVERS “PUNY”

STS-116

COMMANDER

Mark Polansky.

PILOT

William Oefelein.

MISSION SPECIALISTS

Nicholas Patrick, Joan Higginbotham, Robert Curbeam, Christer Fuglesang (ESA)

EXPEDITION-14 & 15 (up)

Sunita Williams

EXPEDITION-13 & 14 (down)

Thomas Reiter

In the wake of a December 7 launch attempt that had been cancelled, due to low cloud, the fact that the ET had been filled with fuel demanded that the next launch attempt could not take place for a further 48 hours. On the second attempt, STS-116 lifted off from Kennedy Space Centre at 20: 47, December 9, 2006. In the minutes before launch, Polansky told the launch team, “We look forward to lighting up the night sky.” It was the first Shuttle night launch in over four years. He also told the media, “There are always inherent risks when you take people off the planet and try to propel them a couple of hundred miles into space. We try to mitigate the risk as much as possible. If anyone says we can take all the risk out, they are just blowing smoke.”

Fuglesang was pragmatic, saying, “I hope this will increase interest in space for Sweden, and actually for science and technology in general. This flight is a small step in the assembly of the Space Station. The station is a small step toward the Moon and Mars.”

Meanwhile, Space Station Manager Mike Suffrendi told a press conference, “Many of us consider this the most challenging Space Station flight we’ve done since we began the assembly effort. When the Shuttle leaves, ISS will not look much different than when Discovery got there, but it will be a dramatically different vehicle inside.’’

Discovery’s seven-person crew would complete three EVAs, during which they would install the port-5 (P-5) ITS and then re-wire the station’s electrical system, bringing on-line the SAWs delivered by STS-115. Sunita Williams would join Expedition-14 crew members Lopez-Alegria and Tyurin, while Thomas Reiter would return to Earth in Discovery with the STS-116 crew. The Shuttle also carried a SpaceHab pressurised module full of equipment and supplies for the station. Asked about the mid-term hand-over Lopez-Alegria explained:

“Well, I think it all stems from the notion that the Russian Space Agency,

Roscosmos, would like to have the third seat in the Soyuz available for a paying

passenger… and so the third person can’t rotate there and he or she will rotate on Shuttle. So, that’s… the scheme that we have evolved to.’’

He continued:

“I think there are certain disadvantages, certainly. If you were to build a true Expedition crew, you’d like them to be sort of lockstep with each other all the time. I think this is a little bit different because we do have a fair amount of access to the ground, talking to people, e-mailing friends and family, using the internet protocol phone to be able to converse with people. That probably eases the difficulty in being isolated somewhat that is so specific to certain types of expedi­tions. I think that the result is that the need to bond really as a single unit is not as stringent as it might be if we were going to live that kind of an experience. However, it does bring up some interesting challenges. I think there’s also some advantages because six months with the same two faces all the time, if you don’t like one of those two faces it could get old. At least, in this fashion, we will have the opportunity to change those faces once in a while.’’

Commander of Expedition-15 Fyodor Yurchikhin would express a different point of view, which I quote on p. 277.

On reaching orbit, Discovery was configured for flight and her payload bay doors were opened to expose the vital radiators mounted on their interiors. During the first day in orbit the crew powered up the RMS, and lifted the OBSS from the payload bay door hingeline. They then used the OBSS cameras and lasers to inspect Discovery’s heatshield and the leading edges of the wings. Houston confirmed, “There is nothing anyone is excited about so far.’’ The crew also installed the usual selection of rendezvous equipment and cameras and checked the EMUs they would wear during their three EVAs.

Following a standard rendezvous. Williams got her first view of the station and reported excitedly, “Tally-ho on my new home. It’s beautiful. The solar arrays are glowing.’’ After the now routine r-bar pitch manoeuvre, Discovery docked to ISS at 17: 12, December 11. As usual, the station’s bell was rung to welcome the visitors. Following pressure checks, the hatches between the two spacecraft were opened and the Shuttle’s crew were welcomed aboard the station at 18: 54. As the hatches were swung open Lopez-Alegria joked, “We’re having a ball already.’’

The first order of business was to inspect the tip of Discovery’s port wing with the cameras on the RMS, after a vibration was picked up by the wingtip sensor 18 minutes after docking. The additional inspection delayed the crew using the RMS to un-berth the P-5 ITS from its position in Discovery’s payload bay. The P-5 ITS was subsequently handed over from the Shuttle’s RMS to the SSRMS and was then positioned over Discovery’s port wing, where it was left overnight. Williams described the P-5 ITS in the following terms:

“P-5 (and S-5) is a part, that goes between the two major solar array wings. Without them, the two wings would be too close together to actually operate.

PROGRESS M-58

Figure 78. STS-116 crew (L to R): Robert L. Curbeam, William A. Oefelein, Nicholas J. M. Patrick, Joan E. Higginbotham, Sunita L. Williams, Mark L. Polansky, Christer Fuglesang.

PROGRESS M-58

Figure 79. STS-116: astronauts operating the Shuttle’s RMS prepare to pass the P-5 Integrated Truss Structure over to the station’s SSRMS for installation on the station.

They’re a pass-through for all of the thermal, electrical lines going out to the end of the truss and absolutely critical… to make sure that the two big solar array wings will be able to operate.’’

At 01:00, Williams installed her couch liner in Soyuz TMA-9 and transferred her Sokol pressure suit from Discovery, thus transferring herself to the Expedition-14 crew. At the same time Reiter transferred his equipment to Discovery and became part of the STS-115 crew. For her first two weeks on the station Williams would spend 1 hour each day, in order to familiarise with the station and the Expedition-14 crew’s routines. These hours were unstructured, allowing Williams to concentrate on whatever she felt was necessary to bring her up to speed. Williams has described the advantages of a mid-term crew exchange:

“I think I’m really lucky… they’re going to be there to help me with any… turnover things that I don’t understand. I’m a rookie; never flown before. These two are both experienced space fliers; and them, having lived there for about three months before I get there, I think if I have any questions, they’ll be the perfect people to show me the way.’’

Prior to retiring for the night, the STS-116 crew reviewed the procedures for their first EVA, planned for the following day. Curbeam and Fuglesang sealed themselves in Quest and reduced the pressure in order to “camp out’’ in the airlock overnight, as part of their EVA pre-breathing regime.

Williams, who would operate the RMS during the P-5 installation, explained:

“The first EVA, which is the P-5 install. Me and Joanie Higginbotham will be operating the robotic workstations. We’ll be taking the P-5 Truss from a handoff position from the Shuttle robotic arm and we’ll be moving it to the end of P-3/P-4 for the installation. It’s a little bit of a tricky installation because the clearances to get the P-5 into its position are pretty tight, about three inches or so. Some of the issues with that is the P-3/P-4 solar array wing is live at the time, so there’s going to be some black boxes on the end of P-3/P-4 that are live powered. And so with that clearance, the biggest worry is that you don’t hit the box that has the live power on it, ’cause that’s going to cause a lot of problems. So, we’ve practiced this very intensely with the spacewalkers Bob Curbeam and Christer Fuglesang. They’ll be out on opposite ends of the P-3/P-4 truss, guiding us in. So this is a very complicated, entire-crew-involved event to try to get this guy installed… Part of that EVA is also starting up the main bus power switching units, MBSU, and while we’re making sure that that’s all starting up correctly, the two space- walkers, Bob Curbeam and Christer Fuglesang, will be moving the CETA carts to the opposite side that they’re on, in preparation for the next solar array, which is the S-3/S-4 installation. So, we’ll be working with the spacewalkers again as we’ll be picking them up and driving them over to the truss, while they’ll be grabbing on to the CETA carts. We’ll be flying them over to the other side of the MBS.’’

The first EVA began at 15:31, December 12, when Curbeam and Fuglesang transferred their suits from external power to internal batteries. Exiting Quest, they prepared their tools and then made their way across to the P-5 ITS. The two astronauts guided Higginbotham as she lifted the P-5 ITS into its installation position at 17:45. With the new ITS section in place, the two EVA astronauts bolted it into position, completing the task at 18: 21. Moving on, the two astronauts replaced a failed camera, removed the launch restraints and an RMS grapple fixture from the P – 5 ITS as well as a cover that would allow the P-6 ITS to be bolted to it when it relocated from its present position on the Z-1 Truss’ zenith. With the two astronauts back inside the airlock the EVA ended at 22:07, after 6 hours 36 minutes. During the day mission managers confirmed that Discovery’s heatshield was in good condition for re-entry at the end of the flight.

After a night’s sleep, phase two of the flight’s objectives got underway. The crew spent 6 hours, beginning at 18: 17, December 13, sending a series of over 40 com­mands to retract the port SAW on the P-6 ITS, which had been in place on the station since it was deployed in 2000. The retraction did not go well and the arrays had to be partially retracted, re-deployed, and retracted again. Despite everything, they failed to retract as planned. The guidewires became snagged with only 17 of 31 panels retracted, but it was enough to allow the day’s work to continue. At 20: 00, the P-4 SAWs began rotating to their operational position. When the ITS was complete and all the SAWs were deployed, they would be able to rotate to track the Sun as ISS orbited Earth. On the evening of December 13, 2006, P-4 became the first SAW to rotate. The manoeuvre was completed without difficulty, and just before 23: 00 the valves were opened to allow ammonia to flow into the ITS and the huge radiators mounted there. This was the first stage towards providing permanent cooling for the avionics and electronics on ISS. Inside, the two crews spent the day transferring equipment from Discovery’s SpaceHab module and mid-deck to the station.

Meanwhile, in Houston, mission managers met to discuss the various options for completing the retraction of the P-6 SAW. One option was to assign additional EVA tasks, to be performed by the Expedition-14 crew after Discovery’s return to Earth, in order to carry out the task manually. The meeting concluded that the partially retracted P-6 port array was in a safe configuration to be left for the remainder of the STS-115 flight and, if necessary, the arrival of the next Progress, planned for launch in January 2007. Despite the difficulties with the P-6 SAW the management team agreed to proceed with the second EVA as planned. As a result, Curbeam and Fuglesang spent a second night camping out in Quest under reduced atmospheric pressure. The two crews began their sleep period leaving the P-4 array rotating as it tracked the Sun and the ammonia flowing through the new cooling system, while they slept. Attempts to transfer orientation of the station back to the CMGs failed, possibly due to increased atmospheric drag as a result of increased solar activity. Discovery remained in control of the combination for the time being.

December 14 began with a planned major power-down of many of the ISS’ electrical systems. The systems were powered down because the electrical system that supplied them with power was about to be switched from the P-6 ITS SAWs to the P-4 ITS SAWs. Orientation of the Shuttle/ISS combination was controlled by

Discovery, which maintained orientation by firing the orbiter’s thrusters as demanded by its own attitude control system. Curbeam and Fuglesang began their second EVA at 14:41, approximately 30 minutes ahead of schedule. During their 5-hour EVA they worked swapping cable connectors to establish the station’s permanent cooling and power systems. By 16: 30, one of the external cooling loops was shedding heat into space and the direct-current-to-direct-current converter units were regulating electrical power. By 16: 45, controllers were applying power to Channels 2 and 3 for the first time. Additional tasks included relocating one of the CETA handcarts that would run along the ITS. Having caught up a further 30 minutes by performing their tasks more quickly than planned, the two astronauts returned to Quest and ended their EVA at 19: 41. Williams and Higginbotham had operated the SSRMS throughout the EVA.

December 15 was a day of internal work. During the first half of the day the crews transferred equipment between the two spacecraft. Following that work they performed two press conferences before taking the remainder of the day off. At 21: 04, Williams commanded the stuck P-6 SAW to deploy slightly and then retract by the same amount. The attempt left the SAW in exactly the same position as it was when she started, with just 17 of its 31 panels folded. In Houston, mission managers were still discussing the possibility of a fourth, unplanned EVA to try to complete the folding up of the P-6 SAW. Curbeam and Williams camped out in Quest during the night with the pressure reduced, in preparation for their third EVA the following day.

The flight’s third EVA began at 14: 25, December 16, but not before controllers in Houston had shut down half of the station’s electrical systems: the opposite half to that shut down on December 14. Curbeam and Williams left Quest and prepared their tools. They spent their time swapping electrical connectors once more to bring the station’s electrical system to its final configuration. In future, when additional ITS elements were added no new reconfiguration of the electrical and cooling system would be required, except to connect the new ITS elements to the existing system. By 16: 18, controllers in Houston were applying power to Channels 1 and 4 for the first time, as they brought the station’s electrical and cooling systems back on-line. Their primary task complete, the two astronauts fitted a grapple fixture to the SSRMS and positioned three bundles of radiation shielding for the Russian sector on the exterior of the station. The shielding would be installed in its final locations on a later EVA. Their final task was to position themselves on either side of the partially retracted P-6 photovoltaic array and take turns to shake their respective sides of the SAW while their colleagues inside the station attempted to retract it. Looking at the guidewires on the SAW, Curbeam reported, “It’s definitely hanging up.’’ He shook the array and it cleared temporarily allowing it to be further retracted before it snagged again. It was a frustrating procedure that had to be repeated several times.

“This is definitely the right approach. I think we are starting to get there,’’ encouraged Lopez-Alegria from inside the station.

In the control room in Houston, Steve Robinson watched the live television pictures and remarked, “That is an impressive amount of motion and very effective.’’ Curbeam replied, “I’m here to serve.’’

Curbeam shook the array 19 times and Williams 13 times while the retract command was issued 8 times. At the end of their efforts only 11 panels on the array remained unfolded. The EVA ended at 21:56, after 7 hours 31 minutes.

Whilst the third EVA was underway, mission managers in Houston confirmed that Discovery’s flight would be extended by one day to allow Curbeam and Fuglesang to make an unscheduled fourth EVA, in an attempt to finish the retraction of the P-6 SAW.

Working inside the station on December 17, the crews were slightly ahead of schedule in their work to transfer equipment between the two spacecraft. As a result, they spent much of the day preparing for the fourth EVA. Work included positioning the SSRMS and Discovery’s RMS to support the EVA. Cameras on the latter would be used to video the astronauts’ actions. Discovery’s crew also transferred two EMUs to Quest for use during the EVA. Curbeam and Fuglesang spent the night camped out in Quest with the airlock’s pressure reduced.

Curbeam and Fuglesang left Quest at 14: 12, December 18. Having collected their tools Curbeam mounted the SSRMS and was lifted over to the balky array. Fuglesang made his way manually to the P-6 ITS. Curbeam would attempt to free the stuck guidewires and push on hinges to ensure that they folded the correct way while Fuglesang would stand behind the “blanket box’’, into which the array was being folded and push it in an attempt to encourage retraction. With the manual work on­site completed controllers in Houston sent commands to retract the SAW one panel at a time. The SAW was finally fully retracted at 18: 54, and the two blanket boxes were locked at 19: 34. The EVA ended at 20: 50, after 6 hours 38 minutes. In making this unscheduled EVA, Curbeam became the first Shuttle crewmember to make four EVAs during a single flight.

During the farewell ceremony held on the station as Discovery’s crew prepared to return to Earth, Polansky said, “It’s always a goal to leave a place in better shape than it was when you came. I think we have accomplished that.’’

Williams told Reiter, “I hope Discovery takes you home as smoothly and safely as it brought me here.’’

With Oefelein at the controls Discovery undocked from ISS at 17: 10, December 19, and completed a half-circuit fly-around before finally manoeuvring away. During the fly-around the crew photographed the station in its new configuration. On the following day, Polansky, Oefelein, and Patrick used the RMS-mounted OBSS to survey Discovery’s heat protection system. The remainder of the crew began stowing equipment for landing. On the ground, NASA’s Phillip Engelhauf remarked, “We are assuming the vehicle is in a ‘go’ condition for landing unless somebody illuminates an issue out of that data. The assumption is that everything is fine.’’

At 19: 19, December 20, a pair of coffee cup-size Micro-Electromechanical System Based PICOSAT Inspector (MEPSI) satellites were launched from Discovery’s payload bay as a single unit, which then separated into its component parts. The technology was designed to allow similar satellites to photograph/film the larger vehicle from which they are launched. A pair of Radar Fence Transponder (RAFT) satellites were launched from the payload bay at 20: 58, the same day. They were designed by a group of students at the US Naval Academy to test the American

PROGRESS M-58

Figure 80. STS-116: Christer Fuglesang rides the SSRMS to relocate a Crew Equipment Translation Aid (CETA) cart on the Integrated Truss Structure.

PROGRESS M-58

Figure 81. STS-116: as the Shuttle departs the station its lop-sided configuration is obvious. The S-4 Solar Array wings are shown at left and one set of the P-6 Solar Array wings are deployed. The other set of P-6 Solar Array wings were folded and stowed by the STS-116 crew in anticipation of the P-6 Integrated Truss structure’s relocation in 2007. The P-5 ITS is partially hidden behind the P-1 ammonia radiators.

Space Surveillance Radar Fence designed to identify hostile objects approaching the continental United States from space.

Preparations for returning to Earth began in earnest on December 21. Oefelein and Curbeam tested Discovery’s aerodynamic surfaces and manoeuvring thrusters. Polansky and Oefelein practised simulated landings on a laptop computer. At 12: 23, Fuglesang and Higginbotham launched the Atmospheric Neutral Density Experiment (ANDE) micro-satellite from Discovery’s cargo bay.

On December 22, the first opportunity to land at KSC was waved off due to the stormy weather conditions there. An opportunity to land at Edwards Air Force Base, California was also waved off due to gusty winds. As the day continued weather in Florida improved and Discovery was able to utilise the second landing opportunity at that site. Polansky glided his spacecraft to a perfect touchdown, just after sunrise, at 05: 32, having spent 12 days 20 hours 44 minutes in flight. Reiter had been in space for 171 days. NASA Administrator Michael Griffin was present to greet the crew. He told the assembled crowd,

“This was a big year… I’ve said if we could take the time to get things going properly, we could get back to an operational tempo and finish the station by the time it’s necessary to retire the Shuttle… We have a new understanding in this country that each and every time we do this, it’s a minor miracle.’’

On returning to JSC, Polansky told gathered workers and their families, “It’s awesome to see so many people. This is not about us, it’s not about this crew. This is about everybody that shares the same dream, the same drive and really believes in what we are doing with human space flight.’’

“ORION” CREW EXPLORATION VEHICLE

After a review process in which contractor alliances, led by Lockheed-Martin and Boeing, produced designs for the CEV, Lockheed-Martin was named prime contractor for the new spacecraft on August 31, 2006. The Lockheed spacecraft was promptly named “Orion”. Development of the new spacecraft was spread over three schedules.

• Schedule-1: September 2006-September 2013, a $3.9 billion contract to support

the design, development, test, and evaluation of the Orion spacecraft.

• Schedule-2: September 2009-September 2019, a $3.5 billion contract to support

post-development orders for the spacecraft.

• Schedule-3: September 2009-September 2019, a $750 million contract to support

additional spacecraft engineering services.

Orion will be the replacement for the Shuttle when that vehicle is retired in 2010. The new spacecraft is being designed to carry four astronauts to ISS, or to the Moon, and six to Mars. It will consist of a conical crew module and cylindrical service module, which function as one spacecraft until just before re-entry, when the unpro­tected service module will be jettisoned. Only the crew module is protected to allow it to survive re-entry. Orion will have an overall appearance that is superficially similar to the Apollo Command and Service Module. The crew module will be a cone with a 5-metre diameter, a mass of 25 tonnes and 3 times the volume of the Apollo Command Module. The access hatch and windows will all be on one side of the vehicle, with a docking system and a transfer tunnel, surrounded by recovery para­chutes, in the apex. Manoeuvring thrusters will be located around the base and in the apex of the module. The rounded base of the crew module will be covered by a circular heatshield, the backshell, for which Lockheed currently intends to use the Phenolic Impregnated Carbon Thermal Protection System developed by NASA Ames Research Centre. Meanwhile, JSC has also purchased Shuttle thermal protec­tion material (blankets) for use on the sides of the cone where the heating regime is less severe. This purchase will also ensure that a Thermal Protection System is available for Orion’s early flights to ISS, if problems delay the Thermal Protection System required for the more severe re-entry from a lunar or deep-space flight. The primary recovery zone will be on land, in the open spaces of North America. Final descent will be supported by parachutes, and landing impact loads will be negated by use of retrograde rockets, or inflatable airbags. The use of airbags with their heavy deployment and inflation systems would require the spacecraft’s backshell to be jettisoned prior to their deployment, while the lighter solid propellant retrograde rockets could be mounted on the parachute harness and the backshell retained in place. Work continues to decide which of these systems will be used. A launch abort, or failed ascent to orbit would require a water landing in the Atlantic Ocean. The water-landing option will also be available as a back-up in the event that land landing is not possible at the end of a completed flight. The crew module will be reusable for up to ten flights.

The crew module will be constructed from aluminium lithium employing stir­welding technology and will provide 10.2 m3 of habitable volume. Life support systems, providing a two-gas oxygen-nitrogen environment, will be manufactured by Hamilton Standard and the flight control avionics by Honeywell, both members of

“ORION” CREW EXPLORATION VEHICLE

Figure 111. Constellation (early concept): the component parts of the new Orion spacecraft are from top to bottom: Launch Abort System with Boost Protection Cover, Crew Compartment, Service Module with circular Solar Array Wings, and launch vehicle adapter.

Lockheed-Martin’s original CEV alliance. The flight avionics will be based on the automated systems employed on the Boeing-787 commercial jet liner. The space­craft’s main instrument panel will be a “glass cockpit’’, employing four large computer screens to display relevant information to the crew. The screens will be accessed via computer keypads and mechanical switches will be kept to a minimum. This is in keeping with modern military jet fighter technology, with which the present and future groups of pilot astronauts will be increasingly familiar. Rather than having repeated controls on both sides of the console, or having need for crew members to swap seats in order to perform particular functions, astronauts will merely call up the relevant data on the computer screen nearest to them. The computers will display easy-to-read visual representations of major systems, rather than the endless strings of numbers so common during the Apollo Moon flights. Almost the entire flight will be automated, with manual override available at critical points. Three primary computers would provide redundancy to the point that two could fail completely and the third could still return Orion to Earth from any point on a lunar flight. A fourth emergency computer will also be installed and will be completely independent of the three primary computers, to the point that it will employ different hardware and a different electrical supply. Rendezvous and docking will employ automated systems, probably based on NASA’s Demonstration of Autonomous Rendezvous Technology (DART) technology, which was tested, not altogether successfully, in 2005. The Orion spacecraft would carry NASA’s new Low Impact Docking System (LIDS).

The Orion service module will serve a similar role to its Apollo predecessor, namely the mounting for the spacecraft’s main propulsion system and reaction control system, and storage of propellants, water, and avionics. The module will be a cylinder 5 metres in diameter and will contain the service module propulsion system, the principal propulsion system in the spacecraft. This engine, which will burn liquid methane in liquid oxygen, has yet to be developed. Manoeuvring thrusters will be mounted in clusters at 90° around the exterior of the module. The spacecraft’s electrical power will come from two large circular photovoltaic arrays mounted at the rear of the service module. These will be folded at launch and deployed once the spacecraft is in orbit. The photovoltaic arrays will provide electricity to storage batteries in the spacecraft. A completely independent battery set will provide emergency power in the event of a major power system failure.

In December 2007, NASA selected Boeing to develop the guidance system for the Orion spacecraft. Jeffrey Hanley, Constellation programme manager for NASA, told a press conference:

“Finally, with the last team in place, we can move on with the development of this new system… This last contract was a key piece that will now allow us to go to the preliminary design phase with a full team in the new year and begin to build and test this new system.’’

The new spacecraft is intended to return humans to the Moon, and then progress to Mars, but in the first instance it will be used for crew rotation on ISS. The first crewed flight to ISS is planned for no later than 2015. In comparison with the Shuttle, this new combination is estimated to be 10 times safer due to the in-line design of the stack, with the crewed spacecraft placed above the launch vehicle, rather than along­side it. The positioning of the Orion spacecraft, on top of a vertical launch vehicle, means that NASA can return to the use of the rocket-propelled Launch Abort System (LAS) to pull the crew module clear of a catastrophic launch vehicle failure during or

just prior to launch. The Orion LAS design is similar to that used for Apollo, with the Crew Module sitting beneath a Boost Protection Cover. In the event of a launch vehicle emergency just prior to launch, or during the Ares-I first-stage boost phase, the solid propellant rocket motor in the LAS would be fired to lift just the Crew Module to an altitude from which it could make a safe parachute recovery. At that point the LAS would be jettisoned and the crew module would descend under its own parachutes. In the event that the LAS was not required it would be jettisoned at the same time that the Ares-I first stage was jettisoned. In both scenarios the LAS will fall into the Atlantic Ocean and will not be recovered. In August 2007, wind tunnel testing of various LAS configurations showed that a Sear-Haack design provided considerable aerodynamic advantages over earlier designs. The LAS will be devel­oped by Orbital Sciences, while the solid propellant rocket motor for the escape rocket itself will be developed by Alliant Techsystems. In November 2007, the first boilerplate Orion spacecraft were being manufactured, for use during flight-tests of the LAS, which will be subjected to a series of pad abort and launch abort tests at the White Sands Missile Range, New Mexico, starting in November 2008.

Orion was originally to be developed in three configurations.

• Block-1A: for low-Earth orbital flights.

• Block-IB: an uncrewed cargo vehicle (subsequently cancelled).

• Block 2: for crewed lunar flights.

As the Shuttle programme works towards its final flight, NASA has begun planning the changes to the Launch Complex 39 facilities that it uses at Cape Canaveral.

The Ares-I/Orion spacecraft combination will be stacked on the mobile launch platform inside the Vertical Assembly Building (VAB), just like Apollo and the Shuttle before it; that procedure will take place in High Bay I. Ares-I/Orion is 150 feet taller than the present Shuttle and will be accessed by folding work platforms similar to those used to access the Saturn/Apollo vehicles.

Apollo’s 3 Mobile Launch Platforms (MLPs) were re-configured to carry the Shuttle and will be reconfigured once more for the Ares launch vehicles. NASA is considering building a fourth MLP, so that two Ares-I and two Ares-V launch vehicles can be prepared at the same time. The new MLP design will include a Launch Umbilical Tower. The contract to design the Ares-1 MLP has been awarded to Reynolds, Smith & Hills Incorporated, a local company based in Merritt Island, Florida.

The two Apollo era Crawler Transporters that currently carry the Shuttle to the launchpad will continue in that role for the Ares launch vehicles. Although no additional work is required before the Crawler Transporter can carry the Ares-I to the launchpad, additional strengthening will be required in order to carry the Ares-V.

Launch Pad 39B will be converted to launch the Ares-I/Orion combination. Launch Pad 39A will be converted to launch the Ares-V. Work to convert Launch Complex 39, Pad B to take the Ares-I is planned to start in the spring of 2008. It will include removing the fixed and rotating service structures. A new launch tower will be constructed on the mobile launch platform, in a similar manner to that used for the Saturn/Apollo launch vehicle. Elevators and swing arms will give access to all areas of the Ares-I launch vehicle and the Orion spacecraft. The current emergency escape system, baskets sliding down a wire, will be replaced with a system that resembles a roller coaster, consisting of a car riding down a rail.

In the LaunchControl Centre next to the VAB, Firing Room 1 will be re-fitted to handle Ares-1 launches from Pad 39B. The room is presently vacant, but will be fitted with the ground support equipment required to support the preparation and launch of the Ares-I/Orion combination. The new vehicle is much simpler than the Shuttle, and therefore NASA is looking to use a smaller launch control team than 200 people required to launch a Shuttle.

The original Orion/Ares-I launch schedule was announced as

• April 2009: un-crewed Ares-1 four-segment SRB (inert fifth segment), dummy second stage, and ballast replacing the Orion spacecraft.

• October 2009: option to repeat of first flight if original fails.

• July 2012: un-crewed Ares-1 with five-segment SRB and live second stage.

• Late 2012: un-crewed flight of Ares-1 and Orion spacecraft.

• Fall 2014: un-crewed flight of Ares-1 and Orion Spacecraft.

• September 2014: first crewed flight of Ares-1 and Orion spacecraft.

When Project Constellation was announced, President Bush promised NASA a small annual budget increase to support the programme. Congress has failed to support that budget increase almost every year since then, with the exception of FY2007, when the budget request was actually increased by Congress. In late 2007, NASA announced that the first crewed Orion/Ares-1 launch had slipped into 2015 and all subsequent launches had been delayed accordingly.

As 2008 began, NASA announced that the first two Orion spacecraft to fly to ISS would each deliver a docking adapter, one of which would be left on PMA-2 on Harmony’s ram and the other on PMA-3 at Node-3’s nadir. One end of the adapter would provide for docking with the Russian-designed Androgynous Peripheral Attach System (APAS) currently used to dock the Shuttle to ISS, while the other end would support the American-designed LIDS to be used by the Orion spacecraft. During docking with ISS the LIDS docking system would be used to mount the docking adapter at the apex of the conical Orion Crew Module. The exposed APAS docking system would then be used to dock to the relevant PMA. At undocking, the Orion spacecraft’s LIDS would be released, leaving the docking adapter mounted on the end of the PMA with its LIDS docking system exposed. Future Orion spacecraft would use their own LIDS docking systems to dock to the new adapters. The docking adapter has been named the APAS-To-LIDS Adapter System (ATLAS).

In May 2006, NASA officials and representatives of 13 other countries agreed 6 reasons that justified the Project Constellation effort to return human astronauts to the Moon. These are listed in the next section.

THE MOON’S PLACE IN A US-LED INTERNATIONAL INITIATIVE TO EXPLORE THE SOLAR SYSTEM

1. A training ground for human and robotic exploration of Mars and more distant destinations.

2. Scientific studies that answer fundamental questions about the early history of the solar system and provide sites for astronomical observatories.

3. A place to acquire the technical skills to sustain a human presence on another world.

4. A growth point for the global economy.

5. A means to forge new global partnerships and strengthen old ones.

6. A source of inspiration.

NASA’s Deputy Administrator Shana Dale told the media:

“These are huge endeavours we are embarking upon. We have seen the benefits of collaboration on the International Space Station. As we move forward, we want to make sure we are working very collaboratively with both the international and the commercial sector… In the long run it makes for a much more sustainable program. This is definitely not just the United States doing this on its own.’’

America will continue to use ISS to concentrate its research on the reactions experienced by the human body to the unique environment of long-duration space­flight. At the same time America will seek partners for Project Constellation. The new spacecraft will initially serve as the principal American crew delivery and recovery vehicle for ISS. In time it would carry humans back to the Moon. Although Orion would remain in lunar orbit while a number of Altair Lunar Surface Access Modules were used to develop a permanent base on the lunar surface, the ISS experience would not be forgotten. No doubt new hardware will be tested on ISS, but ISS will also give back to Constellation. When the Moon base is established the astronauts working on the surface would be rotated on 6-month increments, just as ISS crews are today. Their wellbeing will be supported by the medical data that today’s astronauts are collecting on ISS. Their missions will be controlled using techniques developed by NASA and the Russians over decades of human spaceflight.