Category Salyut – The First Space Station

“DO NOT WORRY”

Day 20, Friday, 25 June

The measurement of the distribution of high-energy electrons at orbital altitude that was started nine days ago, was continued. This used the Era apparatus, which could detect charged particles in the space through which Salyut passed. Patsayev used it to study how the ionosphere varied along their orbit. He also measured the electron resonance of special antennas designed with a different configuration.

2.57 a. m.

Zarya: “Are you feeling well?”

Dobrovolskiy: “Yes, everything is normal. We feel well. Tell the managers that everything is going to plan. We are even doing some experiments which you did not plan.”

Zarya: “Understood, but do not miss your rest periods.” 3.32 a. m.

Dobrovolskiy: “We have noticed that over this last 24-hour period our eyes have become tired. We move from bright light into the shadow. And it is dark in the ship. To be honest, the illumination inside is inadequate. … We have just observed a very large cyclone at 12 degrees north and 128 degrees east.

Zarya: “Received. One minute to the end of communication.”

Dobrovolskiy: “Understood. End of communication.”

As the mission drew to an end, the cosmonauts became more tired and emotional. At the same time, the physicians recommended that they intensify their exercises to improve their ability to readapt to the Earth’s gravity.

7.20 a. m.

Volkov: “Today when I was doing physical exercise I overloaded myself, and so I am tired. However, I liked it.’’

Zarya: “That is good. The physicians are very glad that you exercise so much.’’ Volkov: “I tried to do everything as you recommended, but tired myself out.’’ Zarya: “Now you can see how good that is.’’

Volkov: “I don’t know if it is good or bad.’’

Zarya: “It is good, it is good. The physicians said it is good.’’

Later in the day, the cosmonauts made their penultimate Cosmovision telecast.

Television Report:

Dobrovolskiy: “We are wrapping up a mission that will last just over three weeks. We are packing equipment, documentation and some of the scientific apparatus, and placing it in the descent module for return to Earth. We will return with a great deal of interesting materials. The scientists, engineers and technicians are eager for them. To be honest with you, we are impatient too, because we have grown a little bored.’’

Zarya-25: “We can see you excellently. Please, could you explain what are you doing at the moment?’’

Dobrovolskiy: “Now? Well, Yantar 2 is going to sleep earlier than normal. Next it will be me, and finally Viktor Ivanovich Patsayev. Then we’ll wake up and exercise to strengthen ourselves ready for departure.’’

Zarya-25: “You know, dear comrades, we are watching your unprecedented flight with the greatest interest. We are delighted with your heroism and magnificent work. We wish you. . . a successful end to the flight and a soft landing.’’

Dobrovolskiy: “Thank you very much. We will see you later on Earth.’’ Zarya-25: “Indeed, see you later on Earth.’’

Dobrovolskiy: “Do not worry. Everything will be just fine with us.’’

Zarya-25: “We are sure of that. Have a happy flight and a successful landing.’’ Dobrovolskiy: “Thank you very much.’’

At 10.30 p. m. the Salyut crew finished their 315th orbit and exceeded by almost 50 hours the previous endurance record. According to Kamanin, observations of the crew showed that they looked tired and had a low attention span. Furthermore, they tended to provide evasive answers to questions about their health.

In the evening, the Landing Commission met again and confirmed the plan to descend on 30 June on the third orbit after undocking, but the landing point was relocated (without explanation) to 200-250 km southwest of Karaganda. The current weather forecast in the recovery zone was favourable. Nikolay Gurovskiy, one of leading aerospace physicians, reported that the medical group would be prepared for all possible situations. The physicians emphasised that the cosmonauts should remain as still as possible following landing, and await the arrival of the doctors in the recovery team. Gurovskiy again stated that it was the opinion of the Ministry of Public Health that the Soyuz 11 cosmonauts would adapt to conditions on Earth more readily than had Nikolayev and Sevastyanov after their 18-day flight.

Day 21, Saturday, 26 June

At 8.04 a. m. on 26 June Dobrovolskiy, Volkov and Patsayev started their 21st day in space. Their task was to conclude the scientific and technical experiments. Using apparatus mounted outside the station, they finished measurements of the flows of high-energy particles and the flux of micrometeorites – there were sets of sensors for micrometeorites outside the transfer compartment and the larger part of the working compartment. In addition to the radiation in the station, they measured the intensity of the heavy nuclei in cosmic rays and electrons in the 300-600 MeV energy range, all of which was to be correlated with the level of solar activity.

The positions of the micrometeoroid detectors on Salyut’s exterior.

A manually operated instrument to measure the radiation inside the station.

From Volkov’s diary:

26 June, 14:00. The 21st day has started. Zarya congratulated us on breaking the world record for the longest flight in space.[93] Their greetings were most welcome. … We were deeply touched. Our eyes were watery with emotion. The guys were sleeping when I received these greetings on my regular duty. I did not awaken them, but they somehow perceived the news and emerged from their sleeping bags.

Our sleeping bags remind us of a beehive – small holes which we enter at the sleeping time and swim out when we hear the wake-up command (that is, when the man on duty awakens you by shaking your shoulder, or sometimes your head).

By the way, something about the sleeping time. For some reason, the last two nights I slept very little – perhaps three hours in total. I could not force myself to sleep. Last night, I even tried to read Yevgeniy Onegin just before bedtime. I spent an hour reading, to no effect – even the book did not help.

On my previous flight, I did not have dreams. Now, I have as many as I want – even more than on Earth.

When the air inside the station was tested the temperature was 22°C, the pressure was 880 mm of mercury and the composition was normal. The station’s systems were performing extremely well.

10.14 a. m.

Zarya: “Yantar, this is Zarya. Why do you complain?’’

Dobrovolskiy: “I complain because of the ‘torture’ of the medical sensors. Oh my God! … Oh, oh, oh! These doctors … Oh! Right hand, left leg!’’

From Volkov’s diary:

26 June, 17:00. The working day is finishing. Tomorrow is Sunday. Before bedtime, we changed the tank of cooling-drying aggregate in the sanitary – hygiene facilities.

I have checked my [‘penguin’] flight suit for landing.

6.41 p. m.

Dobrovolskiy: ‘‘Of which investigation you are talking?’’

Zarya: ‘‘The medical one. What you have not completed today, you must precisely complete tomorrow. Also, we ask that you time your work involving the Polynom.’’

Dobrovolskiy: ‘‘We are trying to work as on Earth, but here the conditions are different. The amount of work is the terrestrial one, and that is why we are short of time.’’

From Dobrovolskiy’s notebook:

26 June. Volodya Shatalov read to me a clipping from the Pravda newspaper. At a session of the Odessa City Council, I was elected an honorary citizen of the city.

Earth has provided us with a forced physical exercise regime.

Soon will be landing time!

After finishing the scientific programme, the final days of the flight were devoted to intensive physical training, medical examinations and the other preparations for returning to Earth. In concert with controllers at the TsUP, they had already started to prepare Salyut to resume operating in its unmanned regime. They were to check

Left: Dobrovolskiy and Volkov check instructions. Right: Dobrovolskiy controls the flight programme, as Volkov (in the background) exercises on the treadmill.

The Soyuz 11 cosmonauts were very popular among the Soviet public, who followed the flight of the first space station crew with the great interest, in this case in the newspaper Izvestia.

and switch off all equipment that would not be required. The quality of the supplies of water, food and other consumables that would be needed for the next crew had to be checked. In parallel, they prepared the Soyuz, which had been powered down for more than three weeks. The scientific materials to be returned to Earth were stowed in the cramped descent module in such a way as not to alter its centre of mass or to overload it. The crew were permitted to bring back to Earth only items specified by special instruction. Bags of rubbish were loaded into the orbital module, and would be discarded with that module.

As the cosmonauts were packing up their things on that 26 June, Aleksey Isayev, General Designer of OKB-52 (Himmash) and one of the pioneers of Soviet rocketry, suffered a lethal heart attack. He was 63. Isayev led work on the development of the primary and backup engines for all Soviet manned spacecraft, including Salyut. The KTDU-1 braking engine for Vostok and Voskhod and the KTDU-35 for Soyuz had successfully de-orbited all Soviet cosmonauts. Immediately after Isayev’s death the Kremlin issued an announcement that identified him by name for the first time.

Day 22, Sunday, 27 June

On the next day, 27 June, the Soviet Union suffered another severe blow when the third launch of the N1 lunar rocket from Baykonur failed. The flight began well, but after 57 seconds a stabilisation problem caused the automatic control system to turn off all the engines of the first stage and the 3,000-tonne rocket crashed not far away from the launch pad.[94] This was a serious loss for Mishin, because it undermined his ambition to send cosmonauts to the Moon in the near future.

As the world’s first space station, Salyut was the last hope for the Soviet manned space programme. The Soyuz 11 crew had proved that the DOS design was capable of sustaining long-duration missions. In conjunction with the daily telecasts that had enabled people right across the nation to participate in the excitement of living in a space station, the research they undertook demonstrated what flying in space was all about. The Americans had landed on the Moon. So what! Soviet cosmonauts were the masters of Earth orbit, which was where the true benefits were to be gained.

In the meantime, the Salyut crew devoted their 22nd day in space to the increased exercise regime and medical tests.

2.32 a. m.

Dobrovolskiy: “We all have normal blood pressure: Yantar 3 is 115/75, Yantar 1 is 120/70 and Yantar 2 is 115/60. After exercise, our pressure and pulse went from 140/55 to normal in about a minute’s time… different from conditions on Earth.’’

The physicians rescheduled the rest times so that the cosmonauts would be fresher for the landing. However, this meant that for the first time all three men would sleep at the same time. Thus far, at least one man had been on duty at all times. Although the cosmonauts accepted this new regime for the remainder of the mission, they did not like it.

8.27 a. m.

Dobrovolskiy: “I have a question about the sleep schedule. It says that Yantar 3 is to go to sleep at 12.40, that Yantar 2 will be awakened at 14.00, and that during this time Yantar 1 will rest.”

Zarya: “Correct. We will realign you slowly. Do you understand?”

Dobrovolskiy: “The logic of this alignment is understood. Can the station remain without anyone on duty?”

Zarya: “It is the decision of the Control Group. Did you understand me correctly?

Dobrovolskiy: “I understood. However, we are not happy with it.”

Zarya: “Follow the programme. It will be alright. The station is in good order. Do not complain, just do it. The Control Group says the new plan is necessary.”

Dobrovolskiy: “Understood.”

Zarya: “It is necessary to follow the new schedule. We will monitor the telemetry, and if necessary we will awaken you. Do not worry. … Don’t forget that your task now is to rest.’’

Volkov: “We plan to nap on our leisure days, because there is not enough time for this on working days.’’

Although busy with physical exercise, medical tests and preparations to return to Earth, the cosmonauts periodically took time to observe the Earth.

1.42 p. m.

Volkov: “We observed a cyclone over South America at 22 degrees east and 46 degrees south.’’

Zarya: “Logged.”

On 27 June the cosmonauts made their seventh and final Cosmovision telecast. By now they were the best-known cosmonauts since Gagarin, Titov, Teryeshkova and Leonov. Surprisingly, this time the ‘star’ was the most reticent member of the crew – Viktor Patsayev. Interestingly, although the preparations to return to Earth were well underway, the subject was the food that they had been eating during their record-breaking stay is space.

Television Report

Zarya-25: ‘‘Many television viewers and radio listeners would like to know: how do you eat?’’

Patsayev: ‘‘Our food is either in cans or in tubes. We also have small packages of desserts such as prunes and cookies. The food is stored in two freezers – which are very large units. We keep tubes and juices in special containers. Some food can be heated – we have two heaters.’’

Zarya-25: ‘‘You have been in space for 22 days. Has your weight changed?’’

As the mission drew to an end, the cosmonauts continued to monitor terrestrial meteorological phenomena.

Patsayev: “I don’t think so.”

Zarya-25: “What do you do in your rest time?’’

Patsayev: “We don’t have much leisure time, but when we do we read – we have a small library with books by Lermontov, Pushkin and Tolstoy. And we also listen to music on our cassette player.’’

Day 23, Monday, 28 June

Their penultimate day on Salyut began on the morning of 28 June. At 12 noon the station completed its 342nd orbit with a crew on board. While the cosmonauts made their preparations to return to Earth, the landing support team at the TsUP kept up to date on the meteorological forecast for the dawn period in the recovery zone. The most important factor was the wind speed. If the descent module were to land

At Yevpatoriya, the flight controllers were happy with the progress of the mission, and were eager for the crew’s return. In the first row (left to right) are Feoktistov, Nikolayev, Kamanin (with Yeliseyev behind him), Kerimov, Agadzhanov and Chertok. (From the book Rockets and People No 4, courtesy www. astronaut. ru)

On the eve of Soyuz ll’s return to Earth, members of the State Commission arrived at the TsUP in Yevpatoriya from Moscow and Baykonur. Seated in the first row (left to right) are Raushenbakh, Chertok, Agadzhanov, Nikolayev, Mishin, Afanasyev, Kerimov, Bugayskiy (with Semyonov behind) and Shatalov.

on its side, as often happened, and there was a strong wind, then it might roll after landing, and even on a flat surface this would be unpleasant for the men inside, especially if they were feeling weak. In the worst case, if the wind speed exceeded the permitted maximum the module might be damaged on impact and the crew injured – perhaps even fatally. However, the forecast was still favourable. The Landing Commission prepared two sets of instructions for the cosmonauts: the first for the primary landing site and the second – to be used only if the first attempt were to fail – for the reserve site.

Having realised that the cosmonauts were tired, the TsUP worked with them step by step in the process of preparing Salyut to operate in its automated regime in the weeks between the departure of its first crew and the arrival of its second crew. As a result of this close supervision, which was feasible only during the periods when the station was in communication, the effort took much longer than expected. The same procedure was adopted for preparing the Soyuz spacecraft. As part of the process of ‘mothballing’ the station, it was thoroughly cleaned and the rubbish was stowed in the orbital module of the ferry for disposal.

With the landing imminent, experts from the TsKBEM and Himmash arrived at the TsUP. Headed by General Kerimov, the expert group included Boris Chertok, Boris Raushenbakh, Yuriy Semyonov and Viktor Bugayskiy. As on the occasion of the docking three weeks previously, many off-duty controllers again came into the control centre. And of course Very Important People flew in simply in order to take part. As all the preparations for the descent were well in hand, most of the guests took advantage of the delightful weather and passed the time by walking along the beach. Despite the recent launch failure of the N1 rocket, everyone at the TsUP was happy with the progress of the Soyuz 11 mission and was confident that tomorrow’s undocking would go well and that the extraordinary crew would land safely.

The fall of the Chief Designer

SALYUT’S LAST DAYS

The tragedy that befell the Soyuz 11 crew had not only dramatic effects on the plans for further use of the world’s first space station, but also the entire Soviet manned space programme. On 9 July 1971, while the investigation of the accident was underway, the State Commission decided to halt preparations for the next flight to Salyut. This was despite Leonov’s assurance that his crew was ready for a 1-month mission. But after such a terrible tragedy, no one wished to take the risk. Salyut was in very good condition, continuing to orbit in its automated regime. It executed two manoeuvres: on 19 August raising its orbit to 290 x 308 km and on 25 September lowering it to 224 x 262 km. The controllers at the TsUP in Yevpatoriya continued to monitor its systems. However, when it became clear that there was no prospect of revisiting the station, it was de-orbited on 11 October 1971 by lowering its orbit so that it would enter the atmosphere over the South Pacific, where it burned up. It had been in orbit for 175 days.

LOST AT LAUNCH

Meanwhile, the TsKBEM engineers were hard at work developing modifications to the Soyuz to eliminate the weaknesses revealed by the investigation conducted by the State Commission of Academician Mstislav Keldysh. At the recommenda­tion of Konstantin Bushuyev, the issue of pressure suits was reconsidered, and it was duly decided that henceforth cosmonauts should wear them for launch and the return to Earth, even though this would mean reducing the number of couches to two in order to accommodate the system that would automatically pump air into the cabin in the event of a decompression. In fact, this oxygen supply system was designed in such a way that the crew would be able to survive decompression even if they were not protected. Gay Severin quickly adapted the Sokol (‘Falcon’) stratospheric pressure suit, designating the cosmonaut version

the Sokol-K.1 As regards the problematic valve, this was modified in such a manner that a premature opening would cause it to reclose automatically. Once the list of revisions was agreed, it was found that the Soyuz would be overweight for its launch vehicle – at 6.8 tonnes it would be some 100 kg heavier than its predecessor. Something had to go. Because the spacecraft was to be used to ferry crews to and from space stations, and hence would require an endurance in independent flight of only two or three days, it was decided to discard the heavy solar panels in favour of chemical storage batteries. The revisions were completed within a year. One curious fact is that although the new model was significantly different from its predecessor, the 7K-T designation was not extended by an ‘M’ to indicate that it was a modified version.

The spacecraft which would have flown as Soyuz 12 to deliver Leonov’s crew to Salyut was launched unmanned as Cosmos 496 on 26 June 1972, and placed into an orbit with the parameters 195 x 342 km to test the modifications, returning six days later having suffered no problems.[115] [116] This success prompted the TsKBEM managers

The revised Soyuz spacecraft: 1, the propulsion module without solar panels; 2, the descent module for two cosmonauts wearing pressure suits; 3, the orbital module; and 4, the active docking mechanism.

Lost at launch 327

to push ahead with the manned programme by preparing the DOS-2 space station, which was identical to Salyut in terms of construction and apparatus for the reason that it had been the backup vehicle to its predecessor.[117]

In October 1971 four teams of two cosmonauts had been formed, two of which were to fly to DOS-2:

• Aleksey Leonov and Valeriy Kubasov

• Vasiliy Lazaryev and Oleg Makarov

• Aleksey Gubaryev and Georgiy Grechko

• Pyotr Klimuk and Vitaliy Sevastyanov.

Initially, Rukavishnikov was considered for the first crew, but when it was certain that Kubasov did not have tuberculosis Leonov succeeded in having him appointed

The ‘first crew’ for the DOS-2 station: Leonov (left) and Kubasov wearing the new Sokol-K pressure suit.

as his engineer. Gubaryev and Sevastyanov were carried over from DOS-1. But the fact that the new crews had an Air Force cosmonaut as commander and a TsKBEM cosmonaut as flight engineer meant that the military cosmonauts who had trained to serve as engineers for DOS-1 were dropped, which was bad news for Pyotr Kolodin and Anatoliy Voronov.[118] Lazaryev, Makarov, Grechko and Klimuk were transferred from the Contact programme, which had been terminated some time earlier, to train for DOS crews.

DOS-2 in the Assembly-Test Building at Baykonur. The insert shows the station in its shroud, ready for mating with its Proton launch vehicle. The name ‘Salyut 2’ is written on the side of the station’s main compartment.

During the first half of 1972 two of the new spacecraft were built and sent to Baykonur along with DOS-2. All the necessary preparations were concluded by the end of July. With the four crews in attendance, a Proton lifted off at 6.21 a. m. on 29 July 1972 with DOS-2, but 182 seconds later an engine on the second stage failed and the vehicle fell to Earth. If the station had made it into orbit it would have been named Salyut 2, which was the name written on its side. However, since the flight failed at such an early point, the launch was never declared, with the result that for many years the existence of this station was kept secret.

After the loss of DOS-2 the first three crews were reassigned to an autonomous mission to be flown in August-September 1972 using one of the Soyuz spacecraft, but when this was cancelled all four crews from DOS-2 began to train to operate the DOS-3 space station, the construction of which was underway. However, there was a parallel development in progress.

PYOTR IVANOVICH KOLODIN

Fate was not very kind to Kolodin. Seven years after losing his chance to fly to the first Salyut in 1971 with Leonov and Kubasov he was named as flight engineer for Soyuz 27. It would be commanded by Lieutenant-Colonel Vladimir Dzhanibekov, who, like Kolodin, had not yet been in space. The objective of the mission, planned

Pyotr Kolodin, the eternal backup.

for launch on 28 January 1978, was to dock with Salyut 6 in order to exchange the ferry for the station’s main crew. It would be a historic mission for the Soviet space programme because for the first time two spacecraft would be docked at a station. However, when the rookie crew of Soyuz 25 failed to dock on the inaugural mission to the station it was decided that in the future at least one cosmonaut of each crew must be experienced. Although Kolodin had been a member of the cosmonaut corps for 13 years he was replaced just two months before launch by Oleg Makarov, who had flight experience. In his autobiography, Kolodin used on 14 occasions phrases such as: “He was training…’’, “he was third backup’’, “second backup…’’, “was training as first backup…’’ and “member of the prime crew…’’. However he never flew in space. Among the cosmonauts, he was legendary as one on whom the stars did not shine. In April 1983 he left the Air Force’s cosmonaut group but continued to work at the TsPK. In November 1986 he retired with the rank of Colonel, then worked as a principal engineer in the Mission Control Centre in Kaliningrad.

“THE HATCH IS NOT HERMETICALLY SEALED!”

Early on 29 June Mishin, Minister Afanasyev and Academician Keldysh flew from Baykonur to Yevpatoriya. No one at the TsUP wished to talk about the N1 failure – in part because Mishin was not in the best of moods, but also because most of the people present were firmly of the opinion that the real future of the Soviet manned space programme was operating orbital stations.

Day 24, Tuesday, 29 June

Shortly after 8 a. m. the cosmonauts began their 24th day in space, but they were all asleep at that time.

4.49 p. m.

Zarya: ‘‘Hello.’’

Volkov: ‘‘Good morning.’’

Zarya: ‘‘How are you feeling?’’

Volkov: “Good.”

Zarya: “And your mood?”

Volkov: “As always. We are on your schedule. We will put on our ‘penguin’ suits now. Everything is in order. The systems of the Soyuz are normal.’’

Dobrovolskiy: ‘‘What is the weather like in the recovery region?’’

Zarya: ‘‘The weather is excellent. All is ready. We are waiting for you.’’

The State Commission met at 7.30 p. m. and confirmed the landing parameters. General Nikolayev reported that everything on the station and the ferry craft was as it should be. Re-entry was to take place on the third orbit after undocking from the station, with the landing timed for 2.18 a. m. on 30 June, approximately 100 km east of Dzhezkazgan in northern Kazakhstan. The crew were not to open the hatch, they were to await the recovery team led by General Leonid Goreglyad and the physician Colonel Anatoliy Lebedyev, who expected to arrive within 20-30 minutes in order to assist them out of the capsule.

When the communication session started at 7.45 p. m. Dobrovolskiy and Volkov reported that the ‘mothballing’ of Salyut had been finished, all items that were to be returned to Earth had been stowed in the descent module, and the cosmonauts were wearing ‘penguin’ suits and were ready to depart as planned. Yeliseyev pointed out that telemetry indicated that Volkov had forgotten to switch on Salyut’s noxious gas

Dobrovolskiy towards the end of the mission, re-entering the station after checking out the Soyuz 11 spacecraft. On his left shoulder is the TsPK patch.

filter. Volkov initially argued that the TsUP had actually recommended leaving this switched off, but when the log of the previous day’s communication was reviewed he accepted his error and returned to the station to activate the filter.

Finally ready to exit, they closed the hatches: first the hatch between the working compartment and the transfer compartment and then, after they had passed through the tunnel into the ferry, the hatch with the passive docking unit. Next was the hatch in the orbital module with the active docking unit. First Volkov, then Patsayev and finally Dobrovolskiy passed into the descent module.

A hermetic seal of the final 60-cm-diameter hatch was of key importance, because when the orbital module was jettisoned this hatch would separate the men from the vacuum, extreme temperatures and radiation of the space environment. As the last man in, Dobrovolskiy closed the hatch, which was on a single 127-mm arm and was sealed by rotating a large grip. But the Hatch Open indicator on the display panel remained lit – without a hermetic seal, the air would leak from the descent module when the orbital module was jettisoned. For the crew, who did not possess pressure suits, this would be fatal.

The TsUP heard Volkov’s strained voice: “The hatch is not hermetically sealed! … What can we do? … What can we do?’’

Yeliseyev calmly advised: “Don’t be disturbed. Open the hatch and turn the grip fully to the left, then close the hatch again and turn the grip six and a half times to the right.’’ He also directed that while the hatch was open they should use a tissue to swipe the ring of the hatch to see whether something had become lodged inside and was precluding a hermetic seal. Volkov and Dobrovolskiy carried out this operation, but the indicator remained illuminated. They repeated the procedure several times, but to no effect. After assessing the situation, the TsUP told the cosmonauts to inspect the sensors which sent the open/closed signal to the display panel.

Yeliseyev recalled of this dramatic time: “We asked the cosmonauts to verify the operation of the sensors that sent signals to the display panel. The sensors are in the form of buttons – just like a door bell. As the hatch closes, it pushes the sensors and they produce signals. All the sensors were in working order. But the guys found that the hatch hardly touched one of the buttons, with the result that it did not push down sufficiently to send the signal. We asked them to verify this repeatedly, and this was confirmed. We requested that they verify visually whether the hatch closed tightly, and they reported that it did. Because the automation would not permit carrying out further operations unless it received the correct signal from the hatch, we decided to generate the signal artificially – we simply asked them to apply a strip of insulating tape to hold the button in the correct position and then to shut the hatch. They did so, and visually confirmed that the hatch was correctly closed.’’

Once Dobrovolskiy had taped the problematic sensor, he closed the hatch and the Hatch Open indicator went out.

“It turned off! The indicator turned off! Everything is in order!’’ Volkov joyfully informed the TsUP.

During the 20 minutes that it had taken to resolve the problem, the mood both on board the spacecraft and in the TsUP had been tense.

Left: The hatch between the descent and the orbital modules. Right: Yeliseyev tells the cosmonauts how to circumvent the warning indication and hermetically close the hatch.

In the second half of the 15th orbit of the day, the pressure in the orbital module was reduced to 160 mm of mercury to verify the seal of the descent module’s hatch; it proved to be airtight. By the 16th orbit of 29 June Soyuz 11 was finally ready to undock from the station.

9.25 p. m.

Patsayev: “The Hatch Open indicator is off.’’

Zarya: “All clear. Go ahead and undock.’’

Patsayev: “The Undock command was issued at 21.25.15.’’

Volkov: “Separation achieved. Separation achieved.’’

Volkov: “I watched the undocking visually. The station moved left of us, during a turn.’’

Zarya: “The landing will occur ten minutes before sunrise.’’

At 9.35 p. m. the cosmonauts reported through the ground station in Yeniseysk in Siberia that they had achieved a normal separation. Having sufficient propellant to manoeuvre, Dobrovolskiy drew to a halt at a range of about 35 metres and then turned his spacecraft to enable Patsayev to take photographs of Salyut through his porthole in order to document its condition.

Day 25, Wednesday, 30 June

The crew of Soyuz 11 had two full orbits to make the preparations for their descent. With two hours remaining to re-entry, Kamanin (call-sign ‘No. 16’), his retirement imminent, made one of his rare calls.

0. 16 a. m.

Kamanin: ‘‘Yantar, I am No. 16, how do you hear me?’’

Dobrovolskiy: ‘‘No. 16, I hear you excellently.’’

Kamanin: ‘‘Here are the landing conditions. Above the territory of the USSR it is

After undocking, Patsayev snapped these pictures of the first Salyut space station. (Courtesy Mark Wade)

slightly cloudy: 3-4 marks. In the landing area it is clear with a visibility of 10 km, the wind is 2-3 metres per second, the temperature is 16°C, the pressures at ground level is 720 mm of mercury. During your descent, constantly report by short-wave and VHF on all antennas – especially those under the hatch of the descent module and on the parachute. After landing, follow your instructions: don’t open the hatch, don’t make any rash movements, await the medical team. I wish you a soft landing. See you soon on Earth!’’

Dobrovolskiy: “Understood: the landing conditions are excellent. Here every­thing is in order, the crew is excellent. We thank you for your help and good wishes.’’ And then a few moments later, Dobrovolskiy: “We are following the programme. The Earth will appear shortly. I am starting orientation. To the side is the station. Splendid, it is a beauty. Now, I am starting orientation.”

Patsayev: “I can see the horizon in the lower part of the porthole.’’

Volkov: “The ‘Re-entry’ indicator is blinking. The SOUD indicator is blinking. It is normal.’’ The SOUD was the system for orientation and control.

Zarya: ‘‘Yes, it is.’’

Dobrovolskiy: ‘‘Systems checked. Everything is normal. The horizon has already appeared. The station is above me.’’

Zarya: ‘‘Good-bye Yantars, until the next communication session.’’

As the crew of Soyuz 11 began their journey back to Earth, the Salyut station on which they had lived for so long receded to a tiny speck gleaming against the dark background of space.

Specific references

1. Vasilyev, M. P., Salyut on Orbit. Mashinostroenie, Moscow, 1973, pp. 107-155 (in Russian).

2. Yeliseyev, A. S., Life – A Drop in the Sea. ID Aviatsiya and kosmonavtika, Moscow, 1998, p. 81 (in Russian).

3. Kamanin, N. P., Hidden Space, Book 4. Novosti kosmonavtiki, 2001, pp. 325­332 (in Russian).

4. Harvey, Brian, The New Russian Space Program. Wiley-Praxis, 1996, pp. 278­279.

THE ALMAZ-1 DRAMA

The loss of DOS-2 was a blow to the Kremlin, which wished to have another Soviet station in orbit before the Americans launched their Skylab in May 1973. But there was still hope, because there was another project – the military Almaz (OPS). Could this be prepared in time? If so, then by naming it Salyut 2 the impression could be given that this was an improved form of the DOS design, and thus hide its military role. Vladimir Chelomey objected to having his station bear the name of Salyut, but accepted that it was important that the world did not realise that there was a military space station programme.[119] When ordered to proceed, the engineers at the TsKBM and the Khrunichev factory worked around the clock to prepare the first Almaz (No. 101-1). The sudden sense of urgency came as a welcome relief to all concerned.[120]

In September 1972, when OPS-1 was undergoing its final checks at the TsKBM, four two-man crews were selected from the 28 military cosmonauts assigned to this programme:

• Pavel Popovich and Yuriy Artyukhin

• Boris Volynov and Vitaliy Zholobov

• Gennadiy Sarafanov and Lev Dyomin

• Vyacheslav Zudov and Valeriy Rozhdestvenskiy

In contrast to the DOS crews, which combined military and civilian cosmonauts, only Air Force officers were to fly to OPS-1.

After the station was delivered to the cosmodrome in January 1973 the TsKBM’s engineers braved the extremely cold weather to make the final checks of its systems. Meanwhile, Chelomey attended the final crew training at the TsPK in February, and then all four crews flew to Baykonur for the launch.

Ten days after the station was launched, Popovich and Artyukhin were to follow in Soyuz 12. The docking was scheduled for the next day, on the station’s 160th orbit. But with the Proton standing on the pad and loaded with propellant, it was announced that owing to a technical problem the launch of Soyuz 12 would not be possible until the start of the second week of May. It was decided to go ahead and launch the station on schedule, and OPS-1 lifted off on 3 April 1973 after three months of preparation. Eight and a half years had elapsed since the decision to start the Almaz programme! In announcing the launch, TASS named the station Salyut 2 and said that it was to continue its predecessor’s programme of scientific research. Chelomey cleverly ordered that the name Salyut 2 be written on the ring on the third stage of the Proton rocket that supported the station in order that when the station shed this ring upon entering orbit it would fly on bearing only ‘CCCP’ in red on its side. The Kremlin was delighted to have successfully launched a station ahead of the Americans.

In the first phase of the flight the TsUP controllers at Yevpatoriya checked all the onboard systems, confirming that the solar panels and antennas were deployed and that the interior environment was normal. After two manoeuvres, the initial obit of 215 x 260 km was increased to 261 x 296 km. All was well when the station left the communication zone on 14 April, but when it re-entered the zone on its 193rd orbit on 15 April it was found that the main telemetry system was inoperative. When the backup system was turned on this indicated that the internal pressure had fallen and that the force of the venting air had disturbed the station in space. As the controllers watched, the station’s systems failed one by one, and soon it was dead.

It was initially supposed that the air leak was caused by a problem with the supply system, which was in the propulsion compartment. This was accepted by the State Commission. The experts at Chelomey’s TsKBM and the Khrunichev factory that manufactured the station initiated a detailed analysis of all the data which had been received from the station. While this investigation was underway, on 30 April the American magazine Aviation Week & Space Technology said that the station broke up on 14 April, and many of the fragments had since burned up in the atmosphere. At that time, preparations for a joint mission of an Apollo and a Soyuz in 1975 were at an advanced stage and Konstantin Bushuyev, the TsKBEM’s technical director for this project, returned from America with tracking data for the third stage of the Proton launch vehicle and other objects which had entered orbit with the station. In the American catalogue the station was object 1973-017A. Of the 24 other objects listed, 17 had re-entered the atmosphere prior to 14 April. What of those remaining? And were there any objects that had not been detected by the American radars? The TsKBM engineers had expected only the third stage and the joint ring to reach orbit along with the station. The ring was jettisoned 774.5 seconds into the flight, and its departure was observed by a TV camera on the station. It separated cleanly, and did not break up. The fact that the station functioned perfectly until 14 April meant that it could not have been the source of so many fragments. The analysts examined the third stage. This was jettisoned 584.4 seconds into the flight and separated in such a manner that after the first orbit it ought to have been 110 km from the station, and then re-entered the atmosphere six days later. But according to the Americans it was gone after three days! Might it have exploded? Might some of the debris from this explosion have hit the station? At engine shutdown, the third stage should have held about 290 kg of propellant, and this could have caused an explosion. If a fragment of the stage had hit the station, it would have done so at a speed of about 300 m/s. Based on a model of such an explosion, a ballistic analysis verified that 21 of the objects that were tracked by the Americans could have been pieces of the third stage. It was also found that the orbits of five of these pieces intersected that of the station. In view of this analysis, the State Commission revised its conclusion and accepted that OPS-1 was crippled by being struck by a piece of debris. The fact that the station had operated perfectly prior to this suggested that its design was sound.

In hindsight, Mishin’s procrastination in preparing the Soyuz which was to deliver Popovich and Artyukhin to the station precluded yet another tragedy. On the original plan, the Soyuz would have docked during the station’s 160th orbit. The station was crippled between its 177th and 190th orbits, while out of the communication zone. Popovich and Artyukhin would have been on the station, and quite possibly asleep. It is evident that the station lost its integrity so rapidly that it is doubtful they would have been able to escape to the Soyuz (presuming that this was undamaged) and undock as the station broke up!

Another irony is that even although the Soviets referred to the first Almaz station as Salyut 2 and gave the impression that it was to continue the scientific work of its predecessor, Western analysts soon found that the OPS transmitted at 19.944 MHz, which was a frequency commonly used by Soviet military reconnaissance satellites. Because the name Almaz was a secret, the OPS stations became known in the West as ‘military Salyuts’ – which is precisely what the Kremlin had hoped to avoid!

Left: Almaz-1 with a large solar panel on each side of the passive docking cone at the rear. On the right, Almaz-1 is mated with its Proton launch vehicle. Notice the sign Salyut 2 on upper stage’s support ring.

DOS-3: AN IMPROVED STATION

In sounds strange, but between December 1972 and April 1973 two stations were simultaneously in preparation at Baykonur, which was fairly buzzing with activity. One was OPS-1 for the military and the other was DOS-3 for the Soviet Academy of Sciences. The relationship between the TsKBM and the TsKBEM was strained by competition for access to the altitude chamber and other service/test facilities. Mishin’s engineers had also to prepare the Soyuz that was to deliver the first Almaz crew. And Chelomey’s people were also preparing two Protons: one for OPS-1, the other for DOS-3. All this activity followed the fiasco of the fourth N1 lunar rocket on 22 November 1972, which exploded after 107 seconds, a few seconds before the first stage was to have shut down and been jettisoned. The Kremlin finally accepted what had long been evident to many at the TsKBEM – the N1, and indeed the entire N1-L3 programme, was so complex that to perfect it would take much more money, resources and time than anybody had ever expected. Following the final American manned lunar landing in December 1972 the Kremlin turned its back on the Moon, preferring instead to pursue manned stations in low Earth orbit. Having lost OPS-1 precisely one month before the Americans were due to launch Skylab, the Kremlin demanded that every effort be made to launch DOS-3 ahead of its rival.

Even as DOS-1 and its backup DOS-2 were being built, the TsKBEM’s engineers were designing an improved station. Two identical vehicles were built: DOS-3 and DOS-4.[121] The testing of DOS-3 was completed at the TsKBEM in the second half of 1972, and it was delivered to Baykonur in December.

One of the limitations of the first two DOS stations was the power supply. DOS-1 had two pairs of solar arrays, one pair at the front and the other pair at the rear, and they were in a fixed alignment. To provide the maximum power output, the station had to maintain an orientation in which its arrays were illuminated by sunlight. But having to manoeuvre in such a way consumed precious fuel. And holding this solar – inertial orientation made it difficult to make astronomical or terrestrial observations. The improved DOS-3 design had three much larger solar arrays, all mounted on the narrower section of the main compartment, and which could rotate to face the Sun while the station was oriented optimally to perform specific observations. The total collection area was 60 square metres and the power was 4 kW, which was double that available to DOS-1. It is interesting that these solar arrays were borrowed from the TKS spacecraft that Chelomey had intended to use to supply his Almaz military station. But to compensate for the mass of these large solar arrays the fuel capacity of DOS-3 had to be reduced, which in turn required that the operating altitude had to be increased to about 350 km – recall that the higher a spacecraft’s orbit, the less it is required to fire its engine in order to sustain that altitude. There were also some changes in the propulsion compartment. Other additions were the Delta navigation system and Kaskada (Cascade), which was a new and more economical system for controlling the station’s orientation in space. For the first time, the water supply for

the crew would by partly recycled using a condenser in the air conditioning system. And the scientific payload was increased to about 2 tonnes. The improved DOS had the capacity to support two men for 180 days, and the plan was to send three crews, each of which would spend two months on board. It was fully expected that DOS-3 would significantly upstage the American Skylab.

In the period October 1972 to April 1973 the crews who had trained for the lost DOS-2 switched their attention to DOS-3:

• Aleksey Leonov and Valeriy Kubasov

• Vasiliy Lazaryev and Oleg Makarov

• Aleksey Gubaryev and Georgiy Grechko

• Pyotr Klimuk and Vitaliy Sevastyanov

However, although DOS-3 was successfully launched on 11 May 1973, it became one of the rare spacecraft of the manned space programme over which control was almost immediately lost. This fiasco illustrated all the institutional deficiencies that had accumulated over the years, and it is therefore worth examining in detail.

The first in a series of details that brought about the demise of DOS-3 was related to the altitude of the initial orbit. Although its overall dimensions were the same as those of DOS-1, because DOS-3 carried more scientific equipment it was a little bit heavier. Whereas the Proton had been able to insert the lighter DOS-1 into an orbit of 200 x 222 km, the best that it would be able to achieve with DOS-3 would be 155 x 215 km. The station’s first assignment would therefore be a series of manoeuvres designed to achieve its 350-km circular operating orbit. Before each engine firing, it would have to orientate itself appropriately. An ionic sensor was to be used to sense the orientation of the station relative to the ionosphere through which it was passing. DOS-3 was the first station to be provided with this sensor. An analysis showed that the station would have at most four days to escape from its initial orbit, as after this the orbit would have decayed to such an extent that the engine would not be able to achieve the desired operating orbit. It was therefore vital to raise the orbit as soon as possible.

A second factor which contributed to the loss of DOS-3 was the use of the ionic sensor. Because such a sensor detects not only ions but also glowing particles from the attitude control thrusters, it is an unreliable means of finding the orientation of a spacecraft that is manoeuvring. In fact, before the activation of the ionic orientation procedure, the station’s thrusters must be fired to orient it to maximise the number of ions entering the sensor’s tube. Measuring their angle of entry provides a point of reference for controlling the station. Once the station has rotated to place the ionic flow at the desired angle, the KTDU-66 main propulsion system can be activated to manoeuvre towards a higher orbit. If the orientation is not performed accurately, a spacecraft can end up in the wrong orbit, possibly decreasing its altitude instead of increasing it – in the worst case diving back into the atmosphere! But the problem with the ionic orientation method is that the tube is exposed to particles in the efflux of the thrusters, which can confuse the analysis. A further complication is that the efficiency of ionic orientation varies with the strength of the Earth’s magnetic field, and so with the station’s geographical latitude. In given conditions, ionic orientation

Left: Kubasov and Leonov training for the first mission to DOS-3. Right: a model of DOS-3 at the TsPK, with the descent module of Soyuz 2 visible in the distance and cosmonaut Shatalov on the left.

The ‘second crew’ for DOS-3: Lazaryev (left) and Makarov.

can mislead the attitude control system, and thereby increase the consumption of fuel. The DOS designers were aware of this, and decided to operate the thrusters at their weakest level in order to minimise the efflux. However, the disadvantage in using weak thrusters was that it would take a long time – possibly several hours – to achieve a major change in orientation, and the longer the time the greater the risk of the control system being misled. Unfortunately, because the system was new, it had not been tested in space to measure its susceptibility to thruster efflux. Nevertheless, the flight controllers were told to perform the ionic orientation as soon as the station was released into its initial orbit.

The last in the sequence of mistakes which led to the loss of DOS-3 was the weak organisation of the terrestrial NIP sites. While Mishin’s team focused on testing the station and preparing it for launch, no real thought was given to the unique aspects of controlling it in flight. In fact, the greatest weakness of the Soviet system at that time was flight control – and not just for Salyut, for Soyuz too. On the one hand the designers failed to prepare the documentation in time to enable the flight controllers to appreciate the dynamical operations which DOS-3 would be required to perform. On the other hand the TsUP neglected to liaise with the experts that developed the control systems to draw up an effective plan for providing all the commands which the station would need during its hectic first few days in orbit. In the past, this kind of inadequate planning had been overcome by Pavel Agadzhanov, Boris Chertok, Yakov Tregub and Boris Raushenbakh, all of whom served on the Chief Operative and Control Group (GOGU). But of this group only Tregub was in the TsUP when DOS-3 was launched and, to make matters even worse, he was short of orientation system operators. General Agadzhanov, the head of the GOGU, was absent. He was represented by his assistant, Colonel Mikhail Pasternak. And, of course, the seven control stations across the Soviet Union were operated by the Army. As a result, the experts in telemetry and control who would require to coordinate closely in order to fly DOS-3 through its vital manoeuvres were isolated from each other. The flow of information through the system was slow, owing to the number of checks, protocols and certifications, and when flying a spacecraft through complex manoeuvres time is precious. Furthermore, as it had been accepted that it was impractical to continue to operate stations for months by communicating long lists of information passed by telephones and telegraphs, an automatic system for data processing was being tested at that time. So we see that the TsUP in Yevpatoriya was ill-prepared to swiftly and efficiently provide the commands which DOS-3 would require if it were to reach its operating orbit.

In fact, the leaders of the TsKBEM, Army and the Ministry of General Machine Building were aware of the difficulty of controlling manned spacecraft. Although a great deal had been done since 1966 to improve the system, it still suffered from the fact that the Army ran the ground stations and the technical communication systems and the civilian specialists were responsible for analysing the data and preparing the commands to be issued to the spacecraft. As yet, no one had attempted to unify the system in the manner that NASA had done a decade earlier by establishing Mission Control in Houston, Texas, and directly linking it to the global chain of tracking and communication stations.

Inspecting the DOS-3 simulator. Note the Soyuz docking probe on the right.

The first attempt to launch DOS-3 on 8 May 1973 had to be halted when a vent on one of the six oxidiser tanks of the first stage developed a leak 20 minutes prior to the scheduled time of lift-off. It prompted a major altercation between Mishin, who was the technical director of the DOS programme, and Chelomey, in charge of the rocket. Recalling that a launcher failure had been responsible for the loss of DOS-2, Mishin demanded that the station be transferred to a new rocket. Chelomey insisted that all that was required was to replace the vent. Chelomey prevailed, and the work was done at the pad. But Mishin persisted in demanding that the rocket be changed! Because this would impose a delay of at least a month his TsKBEM colleagues and members of the State Commission urged him to accept the rocket, so he reluctantly acceded. DOS-3 was successfully launched on 11 May 1973, just three days before the Americans launched Skylab.

The Proton delivered DOS-3 into the planned 155 x 215 km orbit without incident. The NIP-3 tracking facility at Sarishagan in Kazakhstan was the first to hear from the station and confirmed that the antennas and solar panels had deployed correctly. Twelve minutes into the flight, NIP-15 at Ussuriysk on Kamchatka, at the eastern end of the Soviet ground network, sent a command to activate the ionic orientation system. But despite the fact that the NIP-15 documentation specified that the thrusters were to be fired at minimum power, they were commanded to operate at their maximum! An investigation found that the order stating that the orientation engines must fire at full power was issued to NIP-15 by the TsUP in Yevpatoriya. A TsKBEM theorist who had modelled the performance of the thrusters in both regimes prior to going to the TsUP had discovered that if they were to be operated at their minimum power the slow pace of the orientation meant that there was a chance of the process halting during the station’s second orbit. He therefore recommended that the orientation be conducted as rapidly as possible. This was forwarded to Tregub, who was the flight director. He accepted the reasoning, and ordered that a telegram be sent to NIP-15 to act accordingly. NIP-15 was in communication with the station for ten minutes, which was sufficient time to establish that the station had begun the orientation. But the only person present who was capable of doing so was isolated by the fact that all transmissions from the station had first to be registered by the Army’s telemetric experts, who, after recording the data in their diaries, passed it to their superiors for further processing. When the TsKBEM’s expert at NIP-15 received the data on the orientation he was shocked to see that the rate of rotation was ten times faster than the planned speed! Chertok later drew an analogy to convey what was happening to the station – it was like when a dog swings around suddenly to try to bite its tail. The thrusters were firing continuously at maximum power in an effort to stabilise a ship weighing 19 tonnes. The TsUP in Yevpatoriya should obviously have been notified immediately, but rather than just picking up the telephone, the operating procedure obliged that a telegram be written, signed by the appropriate senior officer and then entered into the NIP-15 log before being sent. Once the telegram reached the TsUP, it had to be printed out, logged and sealed before it could be delivered. In fact, the procedure was so time-consuming that meanwhile the station had completed its first orbit and entered the communication zone of NIP-16 in Yevpatoriya!

Because the TsUP controllers had expected that by this time the station would be correctly oriented to perform the first of the manoeuvres required to raise its orbit, they had everything ready to command this. But to their astonishment the data from the experimental automated data processing system indicated that it was not in the desired orientation, and that it had used a vast amount of fuel. The first thought was that the data processing system must not be working correctly; it was experimental, after all. But two young engineers, one an expert in the ionic orientation system and the other an expert in flight control, suspected that the data were correct. They ran to the room where the data was received, in order to examine the original tape, and confirmed that the orientation system had used so much fuel that if it continued to operate as it was doing then the tanks would soon run dry. Because the telephone in that room was not working they ran to the main control room and urged Tregub to command that the orientation system be switched off immediately – the station was still in communication with NIP-16, so this was feasible. But Tregub, who had rejected the plan to perform the orientation slowly and had directed that it be done rapidly, was reluctant to turn off the orientation system. He faced a dilemma. What would happen if he were to take the advice of the young engineers and it transpired that they had been wrong? Would it be possible to resume the orientation process in time to make the manoeuvre to increase the orbit? Unfortunately, he was unable to contact the TsKBEM leadership, as they were driving from Baykonur to the airport in order to fly to Yevpatoriya; they would not reach the TsUP for at least six hours. While Tregub pondered what he should do, the station flew out of range of NIP-16. It would not be able to be contacted again until it reached NIP-15 at Ussuriysk. All this time it continued to spin around ‘hunting ions’, consuming further fuel. Finally, Tregub decided that the best option would be to halt the orientation. He grabbed the telephone and ordered the NIP-15 operator to do this, but unfortunately the station had passed out of range two minutes earlier!

In the 40 minutes before DOS-3 flew back into range of Yevpatoriya, the experts at the TsUP analysed the available data and decided that the young engineers were right to have recommended immediately switching off the ionic orientation system. This was verified when contact was established and it was ascertained that the fuel was totally exhausted. If the orientation had been halted by NIP-16 at the end of the first orbit, it may have been possible to complete the task on the second orbit by firing the thrusters at their minimum level and then raise the orbit. But now it was lost! When the TsKBEM, Air Force, State Commission and MOM representatives reached Yevpatoriya they could not believe that the third space station in a row had been lost – all in a period of only ten months.

To disguise its identity, DOS-3 was announced by TASS as Cosmos 557; and for some reason its orbit was misquoted as 218 x 226 km. It re-entered the atmosphere on 22 May. Meanwhile, the Americans launched Skylab on 14 May. Although that station was damaged during its ascent through the atmosphere, its first crew of three took up residence on 25 May. They returned to Earth after 28 days, having beaten the record of the ill-fated Soyuz 11 cosmonauts. The second and third Skylab crews spent 59 and 84 days in space respectively, leaving the station ‘mothballed’.

Flight director Yakov Tregub (left), cosmonaut Grechko (centre) and flight controller Vadim Kravets at the TsUP in Yevpatoriya.

REMINISCENCE AND LEGACIES

But the real heroes of this outstanding epoch in the Soviet space programme are Georgiy Dobrovolskiy, Vladislav Volkov and Viktor Patsayev. In the towns of their births, Odessa, Moscow and Aktyubinsk, there are monuments to them at which colleagues, friends, relatives and ordinary people with a passion for space leave flowers. Every year, on the anniversary of their tragic deaths, members of the current cosmonaut corps pay their respects at the niches in the Kremlin’s wall where the ashes of their fallen colleagues are interred.

Also, when the Apollo 15 astronauts David R. Scott and James B. Irwin landed on the Moon a month after the Soyuz 11 tragedy they left behind a plaque which bore the names of all the astronauts and cosmonauts then known to have died, including Dobrovolskiy, Volkov and Patsayev. In addition, they gave the name Salyut to one of the craters near their landing site, which was alongside the rim of Hadley Rille at the base of the Apennine mountain range. The International Astronomical Union has named craters on the far side of the Moon after the Soyuz 11 crew. The crater Dobrovolskiy is at 12.8°S, 129.7°E and is 39 km in diameter; Volkov is at 13.6°S, 131.7°E and is 35 km (or 40 km according to another source); and Patsayev is at 16.7°S, 133.4°E and is 55 km in diameter. They are all located near the large crater named after Konstantin Tsiolkovskiy, the ‘father of cosmonautics’, which was first seen in 1959 when a Soviet space probe took the first pictures of the far side of the Moon.

In June 1977 three small asteroids were named after the Soyuz 11 crew. Asteroid 1789 Dobrovolskiy (1966QC) was discovered in August 1966, orbits the Sun at an average distance of 1.79 AU and is 33 km in diameter.[141] Asteroid 1790 Volkov (1967ER) was discovered in March 1967, orbits at 2.01 AU and with a diameter of

Cosmonauts place flowers at the niches in the wall of the Kremlin of their fallen colleagues.

42 km is the largest of the trio. Asteroid 1791 Patsayev (1967RE) was discovered in September 1967, orbits at 2.35 AU and has a diameter of 29 km.

Tracking ships of the scientific research fleet that communicated with spacecraft were also named for the Soyuz 11 crew.18 Cosmonaut Vladislav Volkov was launched on 18 October 1977. It was joined by Cosmonaut Georgiy Dobrovolskiy on 14 October 1978 and Cosmonaut Viktor Patsayev on 19 June 1979. All three ships have a mass of 8,950 tonnes, are 122 metres in length, 17 metres wide, and are served by a crew of over 60 people. After the Soyuz 11 tragedy it was suggested that the old tracking ship Bezhitsa be renamed Cosmonaut Georgiy Dobrovolskiy but it was decided that a new vessel must be built. Cosmonaut Viktor Patsayev was based on a ship which was launched in 1968 and was modified in 1977/1978 to suit the new requirements. In addition to controlling automated satellites and interplanetary probes, these ships were used extensively in operating the Salyut 6 and Salyut 7 space stations. And in 1988 the Buran space-plane was controlled by Cosmonaut Vladislav Volkov in the Atlantic and Cosmonaut Georgiy Dobrovolskiy in the Pacific. Cosmonaut Vladislav Volkov made its 17th and final cruise in 1992, Cosmonaut Georgiy Dobrovolskiy its 17th in 1993 and Cosmonaut Viktor Patsayev its 14th in 1994. In 2001 Cosmonaut Georgiy Dobrovolskiy and Cosmonaut Viktor Patsayev, which were now owned by the Russian Space Agency, were docked at Kaliningrad on the Baltic and in 2005, against the opposition of veterans, Cosmonaut Georgiy Dobrovolskiy was sold to a foreign company and is still sailing the seas. Cosmonaut [142]

Three craters near the large crater Tsiolkovskiy on the far side of the Moon have been assigned the names Dobrovolskiy, Volkov and Patsayev.

Tracking ships named after cosmonauts Volkov (left), Dobrovolskiy (top right) and Patsayev (bottom right).

Viktor Patsayev remained in Kaliningrad, and in April 2001 opened as a permanent Space Odyssey exhibition. Although it never sails, occasionally its antennas link the TsUP with the crew of the International Space Station. All the other tracking ships were discarded in the years following the collapse of the Soviet Union.[143]

Sports competitions are also associated with two of the Soyuz 11 crew. In 1972 a traditional cup in parachuting was named after Georgiy Dobrovolskiy. A year later, a cup in acrobatics was named in honour of Vladislav Volkov. Since 2002 this has been permanently celebrated at the town of Velikiy Novgorod, and it was recently opened to international participation. Interestingly, a solar observatory in Auckland in New Zealand was named Dobrovolskiy. A museum was opened in October 1974 on the grounds of the Aviation Institute in Moscow in honour of Vladislav Volkov, and a nearby street was named after him and a bust of him placed at its end. Streets in Vladivostok, Rostov-na-Donu and Mariupole in Ukraine were similarly named. Schools No. 10 in Odessa and No. 54 in Vladivostok were named in honour of Dobrovolskiy, as were streets in several Russian and Ukrainian cities and towns. A monument to him was placed in a square in Odessa, and a memorial plate was placed in the small town of Mogilyev.

Dobrovolskiy is an honoured citizen of Odessa, Volkov of Kaluga and Kirov, and Patsayev of Aktyubinsk. A monument to Patsayev was placed in the main square of Aktyubinsk and one of the main streets was named after him, as indeed was a street in Kaluga where Konstantin Tsiolkovskiy lived. The museum at Aktyubinsk has a collection of personal objects that belonged to Patsayev. His wife Vera donated the flight suit which he wore in preparing for his space flight. It bears the mission patch designed by Leonov. The museum also has two books from Patsayev’s library, rare photographs, and a star map that Patsayev used on Salyut as the first man to work a telescope in space. A famous school for young pilots in Aktyubinsk was named in his honour. It became a tradition that at the conclusion of their studies the cadets were awarded their diplomas by Maria Sergeyevna, Patsayev’s mother. She had been in Aktyubinsk paying her daughter a visit when the deaths of the Soyuz 11 crew were announced. She decided to spend the remainder of her life in the place where his monument was placed, and died there in August 2004 at the age of 91.

In the presence of Vera Patsayeva, a memorial was erected at the place where the Soyuz 11 capsule landed. Marina and Natalia Dobrovolskaya, Lyudmila Volkova and her granddaughter, and cosmonaut representatives visited it on the 20th anniversary. Marina recalls: “Curiously, it was a dry June, it had not rained in a month, and then as we began the ceremony, suddenly, and right on the spot of the landing, it started to rain.’’

However, perhaps the most commemorative tradition is the one that is performed at the Air Squadron in Sevastopol in which Georgiy Dobrovolskiy served as a pilot. Ever since September 1971 his name is called each evening during the roll call, as if he were still a member of the regiment. A pilot explains his absence: “Hero of the Soviet Union Lieutenant-Colonel Georgiy Timofeyevich Dobrovolskiy has lost his life in service to his country, obeying his duty in testing space technology.’’ On 30 June 2006 Marina Dobrovolskaya marked the 35th anniversary of her father’s death by attending this roll call.

The wives of the fallen cosmonauts never truly recovered from the shocking news of the accidental and tragic deaths of their husbands.

Lyudmila Dobrovolskaya died in 1986. Marina Dobrovolskaya is a teacher of literature at Moscow State University (MGU). She is married and has one daughter. Natalia Dobrovolskiy is in Moscow and looks after her family. Lyudmila Volkova is retired, while Vladimir Volkov works abroad as a TV camera operator.

As an expert in atmospheric physics and remote-sensing of the Earth from space, Vera Patsayeva had an opportunity to access original materials relating to the flight of Soyuz 11. In 1973, with the aid of a group of enthusiasts, colleagues and friends, she published the book Salyut in Orbit, drawing extracts from the diaries written by the crew. Svetlana Patsayeva says: “I can only now understand how much strength she needed to gain permission to publish the book, which presented information on the Soyuz and the Salyut station which, at that time, was highly confidential. At the same time, she was surviving her own tragic loss. Sadly, during those times it was impossible to write completely openly on the subject. The manuscript was censored and the most important part on the causes of the tragedy were deleted from the book. Later, she collected the designers’ opinions, as well as the opinions of scientists and doctors, and interviewed eminent people whose names she could not reveal. She did this with the goal of determining whether the tragedy could have been avoided – and who was responsible for the accident. This is all in the manuscript, but it could not be published in the Soviet era. Later, unfortunately, her health deteriorated and she was unable to complete it.’’

Monuments to the memories of Vladislav Volkov (top left) and Viktor Patsayev (top right). Bottom: Svetlana and Dmitriy Patsayev (second from the right) with their sons visiting Red Square on 30 June 2007. (Copyright Svetlana Patsayeva)

As mentioned earlier, Vera Patsayeva had kept a diary during the Soyuz 11 flight. Of this, Svetlana said: “f dream about publishing mom’s and dad’s diaries in one book, as a day-by-day record of what was happening in space set alongside my mother’s feelings about the things which she had to endure during that period.’’ Vera Patsayeva died in 2002. Viktor Patsayev’s children have finished studies at Moscow State University. Both have followed the interests of their parents. Dmitriy Patsayev works at the Space Research fnstitute of the Russian Academy of Sciences on the development of instruments to investigate the planets Mars and Venus. He is married and has two sons. Svetlana Patsayeva is married and has one son. She is an assistant professor at the Physics Department of Moscow State University, holds a master’s degree in science, and is an expert in the application of spectral analysis in ecology.

Cosmonauts dead on landing

SOYUZ LANDING OPERATIONS

The most critical and dramatic phase of a manned space flight is the return to Earth. For a Soyuz mission, it starts with the orientation of the spacecraft for the braking manoeuvre and ends approximately 90 minutes later with the landing of the descent module on the Kazakh steppe and the evacuation of the crew. This phase involves a sequence of twelve specific actions, the successful completion of which is vital for the safety of the crew. Indeed, to date, the worst accident in the history of the Soviet manned space programme – the death of Vladimir Komarov – occurred during the return from orbit.

The OKB-1 designers based the return operation on the presumption of excellent visibility in orbit for the orientation and braking manoeuvres, as well as on Earth for the landing. Traditionally, the in-space activities were done on the daylight part of the orbit so that the crew could confirm the orientation of their spacecraft relative to the illuminated horizon, and landing was timed to occur at dawn. Setting up for re­entry is crucial, as even a small misalignment of the braking engine in relation to the direction of travel could result in the descent module missing the landing site by hundreds of kilometres. In addition, if the entry angle were too shallow, the descent module might only ‘graze’ the atmosphere and remain in an extremely low orbit which, although it would soon decay, would likely not do so before the crew ran out of air. The orientation and control system (SOUD) developed in Department No. 27 of the OKB-1 under the leadership of Boris Raushenbakh was used to orientate the spacecraft with its main braking engine facing in the direction of travel. Normally, the braking manoeuvre to initiate the descent trajectory occurs 25 minutes after the completion of the orientation manoeuvre, while travelling northeast at an altitude of about 250 km over the Gulf of Guinea towards the coast of Africa. The KTDU-35 had a single combustion chamber, and was designed by Isayev’s OKB-2 bureau. It delivered a thrust of 417 kg, and could be fired up to 25 times for periods between one and several hundred seconds, accumulating a total time of at least 500 seconds. It was this engine that performed the manoeuvres of the rendezvous with Salyut. An

almost identical engine with a thrust of 411 kg served as a backup for the braking manoeuvre. The propulsion module contained four tanks (two for fuel and two for oxidiser) containing approximately 900 kg of propellant.

At the onset of the braking manoeuvre the cosmonauts feel a gentle jolt, followed by uniform deceleration. Depending on the ballistics of the descent, the engine fires for between 145 and 194 seconds to reduce the speed from the 8 km/s required for orbit by 100-120 m/s to initiate the descent. In passing over the Mediterranean at an altitude in the range 110-150 (usually 130) km, the spacecraft adopts an orientation in which its longitudinal axis is more or less perpendicular to the direction of travel, with the orbital module ‘on top’ and the propulsion module ‘beneath’ so that when the three modules are separated, aerodynamic drag cannot cause a collision with the descent module. At the time of separation, less than ten minutes after the braking manoeuvre, explosives simultaneously jettison the orbital and propulsion modules and discard from the descent module all unnecessary elements such as its antennas and periscope. Only the descent module is equipped with the shielding required to survive the thermal stress of entry into the atmosphere; all the discarded items burn up. Owing to mass limitations and the relatively short time of its autonomous flight – about 30 minutes – the descent module is not equipped to issue telemetry. Instead, at all stages of the descent following separation the commander loudly calls out the progress of the automated sequence of operations and on conditions in the descent module, and this commentary is encoded in the form of Morse code and transmitted by a small VHF antenna on the outer part of the hatch at the top of the capsule – the

The main breaking engine KTDU-35 visible at the rear of a Soyuz spacecraft.

one which had provided access to the orbital module, and had thermal protection on its exterior. In addition, telemetry from various systems on board is recorded by the ‘Mir-3’ device, which has a duration of 76 minutes.1

In contrast to the spherical Vostok and Voskhod capsules, the descent module of the Soyuz is capable of controlling its path through the atmosphere. This phase of the descent starts over eastern Turkey, 16 minutes after the braking manoeuvre and about 6 minutes after separation. The module has six 10-kg thrusters positioned on its sides which draw their propellant from tanks located in the base, directly behind the couches. The flight control system fires these thrusters as necessary to maintain the broad base facing the direction of travel. In addition, because the module has an offset centre of mass to generate aerodynamic lift, the thrusters can roll the capsule to steer left or right and upward or downward so as to aim for a given landing point. Furthermore, an aerodynamic flight subjects the crew to a lesser g-load than does a ballistic path. The entire module is coated with an ablative material for protection against the heat of re-entry, but the base, which is subjected to the most extreme thermal stress, is covered by a thick shield of azbetextolite material. The maximum thermal and deceleration forces occur while over the Caspian Sea. The Kazbek-U couches enable the cosmonauts to return with their backs facing the direction of travel and in the optimal body-position to endure the deceleration.[95] [96] At this time, the module is sheathed by a hot plasma which, being opaque to radio waves, inhibits communication. The module bounces and shakes in response to the aerodynamic forces of its passage. It is a very noisy time. After the time of greatest thermal stress, the incandescence of the surrounding plasma fades to show blue sky. As the module continues to slow down, the strong vibrations cease and there is a welcome silence.

The parachute deployment begins at an altitude of about 9.5 km. First a cover is jettisoned to allow a small pilot chute to pull out a drogue chute with a canopy area of 14 square metres. This is designed to stabilise the module, and it is released after 17 seconds to initiate the deployment of the main chute at an altitude of about 7 km. This chute is stowed in an egg-shape container behind the heads of the crew that has a volume of just 0.27 cubic metres. It deploys in several stages to produce a canopy of 1,000 square metres by an altitude of 5 km. Small VHF and short-wave antennas on the shrouds transmit signals to the recovery helicopters. By 50 seconds after the start of the deployment of this chute the rate of descent ought to have been reduced to 6-8 m/s. If the rate of descent exceeds the maximum permissible value, the main chute will be jettisoned and the reserve chute of 570 square metres deployed. This is stowed in a separate container adjacent to that for the main chute, with a volume of 0.17 cubic metres. If used, the reserve chute will deploy at an altitude of 4.6 km and achieve the minimal landing speed of 10 m/s.

ш (ШШ)

Ш:1

Immediately after the braking manoeuvre, the Soyuz spacecraft separates into three modules to enable the descent module (in the middle) to re-enter the atmosphere on its own. (From the book Soyuz – A Universal Spacecraft, courtesy Rex Hall)

The normal deployment of the Soyuz parachute system: (1) the pilot and drogue chutes deploy in turn; (2) on the drogue chute; (3) jettisoning the drogue deploys the main chute; (4) while on the main chute, two ventilation valves open; (5) the base heat-shield is jettisoned; (6) the harness of the main chute is repositioned for landing; (7) retro – rockets fire 1 meter above the ground to soften the impact; and (8) the descent module lands and the chute is jettisoned.

Three last operations of the previous graphic are shown by this collage of pictures of a Soyuz descent module landing. The final pre-landing operations proceed as the capsule descends on its main chute (top left); dust is raised as the retro-rockets fire (top right), and the cloud of dust continues to obscure the capsule as the parachute is jettisoned.

After the deployment of the parachute, a pair of valves on the top of the module automatically open to allow the internal pressure to match that outside. At this time, in preparation for landing, each cosmonaut makes sure that his body is comfortable in his contoured couch and shock-absorbing rods elevate the couches from the floor. At an altitude of 3 km (75 seconds after descending through an altitude of 5.5 km), the basal shield is jettisoned to expose four solid-propellant retro-rockets (DMP) to be used to cushion the landing. With the heavy shield discarded, the rate of descent slows. On a nominal descent, there is ten minutes remaining to landing. Each retro – rocket has 22 jets arranged in two rings near the edge of the module’s base. They are fired simultaneously by an altimeter at a height of 1-1.5 metres over the ground to reduce the impact speed to 2-3 m/s, with the shock being absorbed by the couches.[97] Once the Soyuz is on the ground, the parachute is jettisoned in order to preclude this from dragging the module across the surface if there is a strong wind.

The landing area is on the flat Kazakh steppe. The ‘landing window’ usually starts three hours before dawn and ends just before sunrise. In addition to enabling the in­orbit manoeuvres to be made in daylight, this schedule permits the recovery team to observe the descent module without being blinded by the rising Sun. If the descent is on target, the recovery helicopters will soon settle close alongside. If the recovery crew is unable to arrive quickly, the spacecraft commander will open the hatch and exit. Because the hatch swings into the cabin towards the flight engineer’s side, the research engineer is second to exit, after which the flight engineer transfers to the central couch prior to exiting.

As cosmonauts are under stress during the descent they suffer an ‘adrenalin rush’, and even when everything functions as intended they can be taken by surprise. For example, the crew of Soyuz 7 were initially confused when, after the deployment of the main chute, they felt fresh air rush into the cabin through the valves designed to equalise the pressure. And on Soyuz 4 the crew were surprised when the shock – absorbers raised their couches just before the landing. The first mission to return in abnormal conditions was Voskhod 2 in March 1965, with cosmonauts Belyayev and Leonov. When the automatic orientation failed, Belyayev did so himself and landed 400 km off-target in a snowy forest, and they had to spend two nights in the frozen capsule surrounded by wolves and bears. Another serious incident occurred in January 1969 during the return of Soyuz 5 with cosmonaut Volynov, when the propulsion module failed to separate and blocked the heat shield as the spacecraft entered the atmosphere. Volynov was alarmed by the rise in temperature and smell of soot in the cabin, but fortunately at an altitude of 80 km the connections between the modules melted, the propulsion module was torn away by the atmospheric drag, and the descent module stabilised. However, it was off-target and the landing was so hard that Volynov suffered broken teeth. Of course, the worst accident occurred during the return of Soyuz 1 in April 1967. Owing to the lax technical discipline of the people who applied the thermal treatment to the descent module, the volumes of the main and reserve parachute containers were reduced, with the result that when

The recovery team opens the hatch to help the cosmonauts out of the capsule. On some occasions the capsule comes to rest upright, but here it is on its side, which can be uncomfortable for the crew.

the parachutes were inserted they were packed too tightly.[98] At an altitude of 9.5 km the hatch of the main parachute container was jettisoned, as planned. This drew out the pilot chute, which deployed the drogue chute. Unfortunately, the drogue was not able to pull the main chute from its container. Seventeen seconds later, the hatch of the reserve chute jettisoned and pulled out the reserve chute. What happened next is disputed: one account says that the reserve chute was in the so-called aerodynamic shadow of the drogue; another says that it became twisted with the other lines. But both accounts agree that the parachute was unable to deploy fully.[99] In any event, the module struck the ground at a speed exceeding 50 m/s, causing the main instrument panel to break free and crush the chest of Komarov, killing him.

THE DISMISSAL OF VASILIY MISHIN

Set against the tremendous success that the Americans had with Skylab, the dismal losses of DOS-2, OPS-1 and DOS-3 severely disappointed the Kremlin. The case of DOS-3 was unforgivable. A special investigating Commission was formed, chaired by Vyacheslav Kovtunenko, who was a Deputy Chief Designer at KB Yuzhnoye. Its members included experts in guidance and control – most notably Academician Nikolay Pilyugin, who was a colleague of Sergey Korolev, a legendary member of the Council of Chief Designers, and therefore had decades of experience in the development of rocket guidance. The KGB conducted a parallel investigation. What particularly caught the attention of the Commission was the change in the plan and the order to perform the orientation of the station by using the thrusters at their maximum level. Given that ionic sensors were in use, this sealed the fate of DOS-3. At an academic level, the question was why it had been decided to use the ionosphere, which is an extremely unstable part of the atmosphere, for such a crucial orientation process. A great deal of data on the operation of the sensor in such conditions should have been collected before attempting to use it in this manner. Finally, the Commission was confused by the fact that there was not a Chief Designer for guidance systems in the TsKBEM’s structure. The last-minute proposal to change the plan by operating the thrusters at their full power ought to have been put to such a Chief Designer who, knowing the implications, would certainly have refused. Dozens of people who were in one way or another linked to the debacle were questioned, ranging from the TsKBEM managers to the people whose actions or inactions directly caused the loss of the station. The tempestuous outburst from the Kremlin that followed the Commission’s report was of a nature never before seen in Soviet cosmonautics – not even after the deaths of cosmonauts.

The burden of blame fell on Yakov Tregub, the DOS-3 flight director. On being urged to leave the TsKBEM, he transferred to the design bureau which had built the Igla automatic docking system. Ex-cosmonaut Aleksey Yeliseyev was appointed in his place, and proceeded to completely revise the organisation and structure of the mission control operation. In addition to transferring the technical facilities from the Army to the TsKBEM, it was decided to create a new TsUP in Kaliningrad, not far from the TsKBEM.[122] After this became fully operational in early 1975, the facility in Yevpatoriya was used only for military space missions.

Also criticised was Boris Raushenbakh, who led the group that developed control and guidance systems. When one of his engineers said that modelling indicated that it would be better to perform the DOS-3 orientation process with the thrusters set at maximum power in order to complete the task as rapidly as possible, Raushenbakh had verbally agreed. When this engineer (whose identity remains unreported) made the suggestion to Tregub, he ordered the revision. Raushenbakh was relieved of his duties and replaced by Viktor Legostayev. Although Raushenbakh was retained as a consultant, he found this unacceptable and soon left the TsKBEM. His boss Boris Chertok was in charge of the general development of control and guidance systems, and received instructive admonition from both Minister Afanasyev of the MOM and the Communist Party organisation at the TsKBEM. Disciplinary measures were also taken against others involved in developing the ionic orientation system, as well as those from the TsKBEM and the Army who were at the TsUP and whose actions or inactions directly contributed to the loss of the station.

The DOS-3 debacle also highlighted weaknesses in the leadership structure at the TsKBEM. At the top was Vasiliy Mishin, who had regarded the DOS programme as a distraction. It had started because in late 1969 a group of his deputies and senior designers had, without his knowledge, put to Ustinov the idea that the Almaz which Chelomey was developing for the military could be made into a station for scientific research. Mishin had argued against the idea when he found out, but was told by the Kremlin to implement it. Wishing to concentrate on the N1-L3 lunar programme, in February 1971 Mishin had suggested to Ustinov that DOS should be handed over to Chelomey, but Ustinov, who did not like Chelomey, had refused to do this. Then in April 1972, during preparations to launch DOS-2, Mishin made an agreement with Chelomey that after four DOS were launched the programme would be transferred to the TsKBM, to enable the TsKBEM to concentrate on its N1-L3 work. The most important point of this Mishin-Chelomey ‘contract’ called for the production run of DOS stations to be limited to the four which were specified in February 1970 by the Central Committee of the Communist Party and the Council of Ministers. In a letter to Minister Afanasyev, Mishin and Chelomey recommended that future research in space intended to aid the national economy be done by the Almaz programme. This did not mean that Mishin was uninterested in space stations – he fully supported the TsKBEM’s Multipurpose Orbital Complex (MOK). This was based on the Modular Space Base Station (MKBS) and would be launched by an N1 rocket. Pointing out that the MOK would be larger than either the OPS or its DOS derivative, and hence would have greater requirements, Mishin and Chelomey suggested that the TKS be used to resupply it. Finally, they broached the subject of the joint mission with the Americans planned for 1975. One suggestion had been that an Apollo should dock with a DOS station, but Mishin and Chelomey rejected this, arguing instead that the docking should be between an Apollo and a Soyuz. Mishin and Chelomey sent their ‘contract’ to Minister Afanasyev, who gave it his endorsement.

Mishin had evidently not consulted his deputies prior to drawing up his agreement with Chelomey, for it provoked intense reactions in the TsKBEM. It was supported by those who sympathised with Mishin – most notably Yuriy Semyonov, a leading figure in the DOS programme,[123] and Sergey Okhapkin, one of Mishin’s deputies for the N1 rocket. It was opposed by Konstantin Bushuyev, Boris Chertok and Dmitriy Kozlov. It was Bushuyev and Chertok who had recommended Mishin to supersede Korolev as Chief Designer in 1966. The critics also included Konstantin Feoktistov, who had led the conspiracy to approach Ustinov with the DOS proposal, and Sergey Kryukov, a close colleague of Korolev who had led the development of the R-7 missile and then been reduced in rank when Mishiin took over. In 1970 he moved to the Lavochkin Design Bureau, and became its manager in August 1971 after the death of Chief Designer Georgiy Babakin. The TsKBEM was therefore split into two factions, one of which favoured concentrating on the N1-L3 and the other wished to focus on space stations. As a result, the design, testing and preparations to launch DOS-3 occurred in a strained and unpleasant atmosphere. To the group centred on Bushuyev and Chertok, DOS was a more realistic project and of greater relevance to the nation. But to Mishin, DOS represented a distraction which he wished to rid himself of as soon as possible.

Afanasyev and Ustinov had for some time been concerned by the situation at the TsKBEM, and in February 1973 a working efficiency assessment conducted by the Ministry for General Machine Building criticised the TsKBEM’s performance over the last several years. Deficiencies in the organisational structure directly influenced the entire organisation and had, in particular, resulted in the degradation of both the quality and the safety of its systems. Mishin was not mentioned by name, but the message was clear: the Kremlin was losing patience with his leadership of what was supposed to be the nation’s principal space organisation. Soon after this assessment, Bushuyev, Chertok, Kozlov, Feoktistov and Kryukov, with the support of Ustinov, who as we have seen had rejected an earlier attempt by Mishin to offload the DOS project to Chelomey, sent a joint letter to the Central Committee of the Communist Party and the Council of Ministers in which they criticised both Mishin’s work and the state of the TsKBEM, particularly expressing their dissatisfaction with both the manner in which Mishin ran projects and the fact that he ignored their criticism of his management. They concluded by demanding that Mishin be replaced.

Ustinov paid an unannounced personal visit to the TsKBEM. Such behaviour can be interpreted as being meant to signal to Mishin that the Politburo was concerned. As it was, when Mishin arrived Semyonov was showing Ustinov a scale model of DOS-3 and they were discussing the possibility of fitting a station with two docking ports. Of course, this idea was not new. The designers had been considering it since right after the first Salyut was launched in June 1971. It would enable an occupied station to be supplied with fuel, food, water and air. With regular servicing, a DOS would be able to be operated for years. The idea had been proposed by Semyonov, Feoktistov and Viktor Ovchinikov, an expert in spacecraft system development. But because Mishin was eager to hand the entire programme over to Chelomey he had refused to waste time on improvements beyond the DOS-3/4 configuration. Taking advantage of the moment, Semyonov asked if Ustinov would personally support the development of further DOS stations. Noting that Ustinov saw promise in the idea, Mishin figured that if he reversed his position and agreed to continue to build DOS stations, then he might gain Ustinov’s support against those who had demanded his resignation. And that is how it turned out. Alone in Mishin’s office, Ustinov pointed out that a station with two docking ports would have tremendous potential, and then he said in a friendly manner that Mishin should give some thought to his position at the TsKBEM. It was clear to Mishin that the only way in which he could remain as Chief Designer would be to support continued DOS development. This rendered the agreement with Chelomey obsolete. As Mishin’s opponents had hoped, this behind the scenes manoeuvring ensured that the TsKBEM focused its efforts on operating space stations – which was just as well, because the N1-L3 lunar programme was in deep trouble from which it was destined never to recover. And, of course, by acting in this way Ustinov was able once again to frustrate Chelomey.

As a result, the TsKBEM directed its efforts towards designing a new generation of DOS with two docking ports, the first of which was launched in September 1977 as Salyut 6. It was manned by five long-term crews, four of which were able to set successive endurance records. By being supplied a dozen times by automated cargo ships and occupied for a total of 684 days, it was a spectacular demonstration of the soundness of the design.

Despite the appearance that Mishin had secured his position, he was undermined by the list of failures by the TsKBEM since his appointment as Chief Designer in January 1966:

• November 1966 – The first unmanned Soyuz (Cosmos 133) suffered a series of faults; it was deliberately destroyed during its return in order to prevent it landing in China.

• February 1967 – Although the second Soyuz (Cosmos 140) was better than the first, it also suffered various difficulties, and ended up on the floor of the Aral Sea.

• April 1967 – Despite two less than satisfactory unmanned test flights, it was decided to start manned flights. Soyuz 1 suffered serious problems early on, and cosmonaut Vladimir Komarov was killed on impact after the parachute failed to deploy.

• October 1968 – Cosmonaut Georgiy Beregovoy failed to dock his Soyuz 3 with the unmanned Soyuz 2.

• January 1969 – The first launch of the N1 lunar rocket failed.

• July 1969 – The second N1 failed.

• October 1969 – The docking of Soyuz 8 with Soyuz 7 had to be cancelled in flight as a result of the failure of the Igla automated rendezvous system.

• November 1969 – The circumlunar L1 programme was abandoned without even one cosmonaut flying in the spacecraft.

• April 1971 – Soyuz 10 failed to completely dock with the first DOS space station owing to a technical failure.

• June 1971 – The third N1 failed.

• June 1971 – After spending a record time in space on board the first DOS space station, the Soyuz 11 crew died on their way home.

• July 1972 – The second DOS space station failed to reach orbit owing to a technical failure in the Proton launcher – although to be fair, this was not the fault of the TsKBEM.

• November 1972 – The fourth (and as events would prove, final) N1 failed.

• May 1973 – DOS-3 was lost soon after it achieved its initial orbit as a result of procedural errors.

As a result of losing DOS-2 and DOS-3, there were five Soyuz spacecraft sitting in storage. They could not be kept indefinitely, since their systems would gradually degrade to the degree that they would be unreliable. The State Commission decided that two would be flown unmanned and two would fly with crews on solo missions. On 15 June 1973, in the guise of Cosmos 573, a Soyuz spacecraft was launched into a 206 x 268 km orbit; it returned after two days. On 27 September 1973, more than two years after the Soyuz 11 tragedy, Soyuz 12 was launched. Aleksey Leonov and Valeriy Kubasov, veterans of the DOS-1 programme, had trained as the first crew for DOS-2, then for DOS-3, and immediately after DOS-3 was lost they were reassigned to the joint mission with the Americans that was to fly in 1975. The Soyuz 12 mission therefore went to Vasiliy Lazaryev and Oleg Makarov, who had trained as the second crew for both DOS-2 and DOS-3. On their two days in space they checked the Sokol-K pressure suit and the operation of all the revised systems. The spacecraft changed its orbital parameters several times. And, for the first time, NASA’s Mission Control Centre played a role in controlling a Soviet mission, as an exercise in preparation for the joint mission.

On 30 November 1973 another Soyuz was launched to a 195 x 295 km orbit in the guise of Cosmos 613. This was the craft in which Leonov and Kubasov would have flown to DOS-2. It remained in orbit for two months to assess how well the systems stood up to prolonged exposure to the space environment, and then returned safely. DOS-2 had carried an Orion advanced astrophysical telescope, but DOS-3 had not, so it was decided to install this apparatus on a Soyuz by substituting it for the active docking system and make observations of Comet Kohoutek as this passed

Soyuz 12, the first manned mission of modified Soyuz spacecraft, was flown by Makarov and Lazaryev (foreground).

Soyuz 13, the last mission before Vasiliy Mishin was dismissed as Chief Designer, was flown in December 1973 by Klimuk (left) and Lebedyev and was primarily to conduct astrophysical research.

In May 1974 Vasiliy Mishin was dismissed as the TsKBEM’s Chief Designer.

near the Sun. In addition, solar panels were added to enable the spacecraft to remain in orbit for a week. Cosmonauts Pyotr Klimuk and Valentin Lebedyev flew this Soyuz 13 mission between 18 and 26 December 1973. The fifth spacecraft from the DOS-2 and DOS-3 stock was used for engineering tests of the special docking system made for the Apollo-Soyuz mission.

Soyuz 13 was the last manned mission to be launched under Mishin’s leadership. His downfall came as no surprise to his TsKBEM colleagues – for many of whom it was long overdue. It would appear that after consulting Ustinov, Brezhnyev decided that Mishin would have to go, and Afanasyev, Mishin’s protector, was powerless to intervene.

The formal decision was made at a meeting of the Politburo in mid-May 1974. As a result, Academician Pilyugin informed Chertok that Mishin was to be replaced by Valentin Pavlovich Glushko, the famous designer of rocket engines and, after Korolev, the most imposing figure in the early Soviet space programme. Chertok has written that it was clear from the behaviour of his colleagues that they knew what was going on, and yet no one wished to talk about it. In fact, Mishin must have been aware. On 22 May Afanasyev and Glushko arrived at the TsKBEM unannounced. Mishin was in hospital, but all of his deputies were convened. Afanasyev announced that the Politburo had decided to replace Mishin with Glushko. In shaking up the TsKBEM, Glushko merged it with his own bureau,[124] creating the Research and Production Association Energiya (NPO Energiya) with himself as Director and General Designer. This organisation became a veritable empire which addressed all areas of the manned space programme, from the development of motors and rockets, transport spacecraft, space stations, and even lunar bases. In mid-1974, therefore, a new era in the history of Soviet cosmonautics began.

Specific references

1. Chertok, B. Y., Rockets and People – The Moon Race, Book 4. Mashinostrenie, Moscow, 2002, pp. 422-434 (in Russian).

2. Afanasyev, I. B., Baturin, Y. M. and Belozerskiy, A. G., The World Manned Cosmonautics. RTSoft, Moscow, 2005, pp. 231-232 (in Russian).

ZARYA AND ZVEZDA

When the Almaz and DOS programmes were initiated, no one could have predicted that such hardware would form the core of a space station at the turn of the century, but the Russian-built Zarya (‘Dawn’) and Zvezda (‘Star’) modules are key parts of the fnternational Space Station. And certainly not even Sergey Korolev could have dreamed that his Soyuz spacecraft would still be in use ferrying crews to this station. This legacy is truly the best of monuments to the lost crew of the first space station.

One day, a space crew will depart from a space station to head once again for the Moon, as a stepping stone to the planets. These future space travellers will owe a tremendous debt of thanks to cosmonauts Georgiy Dobrovolskiy, Vladislav Volkov and Viktor Patsayev, whose names are by now written between the stars.

The Mir orbital complex. (Courtesy NASA)

Two Soyuz TMA spacecraft docked with the International Space Station. (Courtesy NASA)

The Zvezda and Zarya modules that form the core of the International Space Station are the direct legacy of Salyut and its heroic crew. Korolev’s legacy is evident from the two Soyuz and one Progress spacecraft docked with the station. (Courtesy NASA)

Specific references

1. Mishin, V. P., Why Didn’t We Fly to the Moon? Znaniye, 12/1990, Moscow, 1990 (in Russian).

2. Gubaryev, V. S., Russian Space, Book 3. Exmo, Algorithm, Moscow, 2006, pp. 390-412 (in Russian).

3. Loskutov, A., ‘Tenable Gene’ (Interview with Mishin’s daughter), Daily News, Moscow, No. 8, 18 January 2007.

4. Novosti kosmonavtiki (in Russian)

No. 12, 2002 (Eulogy for Nikolay Rukavishnikov)

No. 3, 2003 (Necrology for Kerim Kerimov)

5. Molchanov, V. E., About Those Who Did Not Reach Orbit. Znaniye, Moscow 1990 (in Russian).

6. Soviet Cuban (Krasnodar), No. 29, 5 August 2005 (Interview with Konstantin Feoktistov).

7. Biographies of cosmonauts www. astronaut. ru

8. Tracking ships www. ski-omer. ru

Interviews by the author:

1. Marina Dobrovolskaya, 24 May 2007

2. Svetlana Patsayeva, 1 August 2007

3. Dmitry Patsayev, 5 September 2007

The immortal crew of the world’s first space station – Viktor Patsayev, Georgiy Dobrovolskiy and Vladislav Volkov.

[1] KETs – Konstantin Eduardovich Tsiolkovskiy

[2] DOS – Long-duration Orbital Station

[3] The ‘O’ in the abbreviation OKB-1 is the word ossobeniy, which can also be translated as ‘particular’ or ‘experimental’.

[4] The UR-500 rocket first flew in July 1965, and became known as the ‘Proton’ after its first scientific payloads.

[5] Funktsionalno-Gruzovoy Blok.

[6] Transportniy Korabl Snabzheniya.

[7] In effect, it was a Hubble Space Telescope designed for observing the surface of the Earth.

[8] This KSI capsule had the designator 11F76.

[9] A kilovolt-ampere (kVA) is equivalent to a kilowatt (kW).

[10] In the case of Soyuz-P, the ‘P’ stood for Perehvatchik, meaning ‘interceptor’.

[11] The ‘R’ stood for Razvedchik, meaning ‘intelligence gatherer’.

[12] Such a rapid time scale would prove to be impracticable, owing to the slow pace of the development of the Soyuz spacecraft on which Zvezda was based.

[13] The designation ‘VI’ stood for Voenniy Issledovatel (Военый исследовател), meaning Military Researcher.

[14] ‘TK’ stood for Transportniy Korabl, meaning ‘transport spacecraft’.

[15] The designers of the American MOL made the same compromise, placing the hatch in the heat shield of the Gemini spacecraft. An unmanned test flight demonstrated that the hatch could survive re­entry, but no manned mission was ever flown.

[16] This special-purpose gun was designed by Aleksandr Emmanuelovich Nudelyman.

[17] In fact, the Americans did not have such a capability.

[18] The ‘S’ stood for Snabzheniya, meaning ‘supply’, so the role of this spacecraft was to transport a crew and their immediate supplies.

[19] The ‘G’ stood for Gruzovoy, meaning ‘cargo’, so the ‘SG’ model was a cargo transporter.

[20] A decade later, a modified form of the 7K-SG was launched as Progress 1 to resupply Salyut 6.

[21] Note that whereas the large Almaz was able to accommodate a straightforward conversion of an aircraft cannon, Nudelyman had to develop a much more compact weapon for the smaller Soyuz-VI.

[22] The main habitable compartment of the Skylab space station was the fuel tank of the second stage of a Saturn IB launch vehicle, so the basis for Raushenbakh’s idea is obvious.

[23] This was to be the 7K-T (‘T’ for Transportniy, or ‘transporter’) version of the Soyuz spacecraft.

[24] It was one of these cores which, some 13 months later, was successfully launched as the world’s first space station.

[25] On the original Almaz, this forward hatch would have enabled the crew to enter the station from the capsule mounted on the front at launch.

[26] According to Mishin, Ustinov ordered that the first visit to the station should last one month.

[27] The pioneering spacewalker was Aleksey Leonov in 1965.

[28] Soon after this, Shonin was admitted to the Burdenko Hospital in Moscow suffering from depression. On being discharged in March 1971 he was urged to undergo a lengthy medical treatment. He recovered, but never flew in space again. He died from a heart attack in April 1997.

[29] In accordance with Soviet tradition, the first space station did not bear the number ‘1’. If the first example of a new type of spacecraft were to be numbered, it would make evident that a series of such vehicles were planned, and the Soviet Union went to great lengths to keep its plans secret.

[30] The ships were named Morzhovets, Kegostrov and Academician Sergey Korolev.

[31] Kubasov’s mind may have been distracted at this time, because in Moscow his wife was giving birth to their second child: son Dmitriy.

[32] The first two Soviet spacewalkers were Aleksey Leonov, on the Voskhod 2 mission in March 1966, and Yevgeniy Khrunov, who made the transfer from Soyuz 5 to Soyuz 4 several minutes ahead of Yeliseyev.

[33] After the death of Stalin in 1953, Stanislav Kuraytis was rehabilitated and granted a PhD degree, but he died soon thereafter.

[34] The eight TsKBEM engineers selected for the first group of civilian cosmonauts were Sergey Anyokhin (commander), Vladimir Bugrov, Vladislav Volkov, Georgiy Grechko, Gennadiy Dolgopolov, Valeriy Kubasov, Aleksey Yeliseyev and Oleg Makarov.

[35] Later in 1966, Yeliseyev divorced his first wife and married Larisa Ivanovna Komarova, who was an engineer at the TsKBEM.

[36] After 1975 TsUP-E controlled only manned military missions to the Almaz stations.

[37] The Molniya (Lightning) satellite was in a highly elliptical orbit with a 12-hour period and the highest point of its orbit over the Soviet Union.

[38] In December 1971 Cosmonaut Yuriy Gagarin joined the network. At 45,000 tonnes, it was made the flagship of the fleet. All ten tracking ships had their home ports either at Odessa in the Black Sea or at Leningrad in the Baltic.

[39] In cyrillic the Union of Soviet Socialist Republics (USSR) is Союз Советских Социалиста веских Республик (СССР). It is sometimes written as Soyuz Sovetskikh Sotsialisticheskikh Respublik (SSSR).

[40] Soyuz 5 was able to be launched with three cosmonauts and two EVA suits because it was a 7K – OK, as opposed to a 7K-T, and because by serving as the passive vehicle in the Soyuz 4/5 mission it had carried less propellant and no active docking system – it had the lighter passive unit. Furthermore, for half of its three days in space Soyuz 5 had only one man on board. The fact that the 7K-T that would have flown as Soyuz 12 would have been required to carry the extra air, water, food and apparatus needed to sustain the planned 30-45-day visit to DOS-1 would have made it difficult to accommodate in the orbital module two spacesuits and the ancillary air tanks.

[41] In fact, two days before Apollo 13 was due to launch in April 1970 NASA had exchanged a member of the prime crew with his backup, owing to a medical concern.

[42] Георгий Тмиофеевич Добвольский

[43] In 1968 this institution was renamed the Y. A. Gagarin Academy.

[44] In his 13 years as a military pilot Dobrovolskiy accumulated 330 hours of flying time in UT-2, Yak-11, La-9, R-39 and MiG-15 aircraft. At first sight this might appear an unimpressive figure, but it should be remembered that as of 1955 his job combined flying with administrative duties, and later he worked more as a manager than as a pilot. Although a total of 330 hours was one of the lowest accumulated flying times among the pilots of the second group, it was still one-third greater than that of most members of the first group!

[45] At this point the L1 group had 11 men; the military cosmonauts were Leonov, Popovich, Byelyayev, Volynov, Klimuk, Voronov and Artyukhin, and the civilians were Makarov, Rukavishnikov, Grechko and Sevastyanov.

[46] If all had gone well with Soyuz 1 in April 1967, this docking would have been with Soyuz 2. The loss of Vladimir Komarov created an opening in the crew assignments for the second attempt at this important task, and Volynov was added to the group.

[47] In June 1967 a civilian cosmonaut from the Soviet Academy of Sciences, Yershov (who was an expert in navigation systems) joined the 11-man L1 group, then in January 1968 Voloshin replaced Byelyayev and at the same time Bykovskiy and Kuklin were added to the group; making a total of 14 cosmonauts: 9 military and 5 civilians.

[48] Владислав Николаевич Волков

[49] In fact, Anyokhin was a colonel in the Air Force and a former test pilot. Interestingly, despite losing an eye in 1945 during a test flight, 21 years later he was nominated by the TsKBEM as a civilian cosmonaut and given command of the group of cosmonaut-engineers.

[50] It is impossible to prove, but it is likely that Kamanin ordered the Air Force doctors to pass only half of the cosmonaut-engineers sent to the TsPK by the TsKBEM, in order to minimise the number of civilians available to compete with his military cosmonauts for flights.

[51] These two were Nikolay Rukavishnikov and Vitaliy Sevastyanov.

[52] Red Star, the newspaper of the Soviet Army.

[53] Виктор Иванович Пацаев

[54] The tatar warriors were from Mongolia.

[55] By this time, Viktor could already speak German. He mastered English several years later, while working at OKB-1.

[56] To be precise, if all three members of Leonov’s crew wore the patch, then in the case of Kubasov it is not apparent in the photographs available to the author.

[57] The commander’s couch was in the centre, the flight engineer to the commander’s right and the research cosmonaut to the commander’s left. Spanning the cabin in front of them was a panel of instruments, switches and indicator lights.

[58] ‘Zarya’ means ‘Dawn’.

[59] Spacecraft radio call-signs were stones – Soyuz 10 was ‘Granit’ (‘Granite’) and Soyuz 11 was ‘Yantar’ (‘Amber’); Dobrovolskiy was ‘Yantar 1’, Volkov was ‘Yantar 2’ and Patsayev was ‘Yantar 3’.

[60] When Sputnik was launched in 1957, this town was the nearest large population centre on the track of the rocket’s ascent, so the launch site came to be known as the Baykonur cosmodrome.

[61] The Kettering team’s first success was Sputnik 4 in 1960. Its achievements included detecting signals from the Voskhod spacecraft in October 1964 prior to the completion of its initial orbit; identifying the location of the Soviet cosmodrome at Plesetsk in 1966; and the first Western detection of signals from the first Chinese satellite in April 1970.

[62] Although commonly described by Western observers as the ‘orbital module’, the Russian term for this part of the Soyuz spacecraft, bitovoy odsek, is more appropriately translated as ‘habitat module’.

[63] The ‘free volume’ of a module was that which was available to the crew after all of the apparatus had been installed.

[64] The managers had accepted Rukavishnikov’s suggestion that sleeping bags be carried on the Soyuz.

[65] American astronauts would refer to this as ‘lock on’.

[66] Whereas a bactericidal kills bacteria outright, a bacteriostatic is capable of inhibiting the growth or reproduction of bacteria, and so serves to improve the immune system.

[67] The acronym for the Athlete suit was TNK owing to its cyrillic name of Trenirovachniy Nagruzniy Costyum (Training Loading Suit).

[68] On Soyuz 9 Nikolayev and Sevastyanov had tested an apparatus (Athlete-1) intended for this purpose, but it was fixed to the wall of the orbital module and they could use it only at specific intervals.

[69] At an altitude of 300 km, the station’s orbit would be lowered by about 90 metres per day.

[70] This unit is now popular by the Chibis name.

[71] A contemporary Soviet source said that each man was to have two sessions in the ODNT per week, but owing to technical problems this was not feasible, and only two cosmonauts performed the ‘vacuum’ test, and only once during the mission. One was Dobrovolskiy and the other was very probably Volkov.

[72] The term Cosmovision was coined by the journalists for the TV shows from Salyut, not the name of the television programme(s) that participated in broadcasting them.

[73] Astronauts on some Gemini missions had previously conducted astronomical photography.

[74] An angstrom is 1 x 10-10 metre, and is the unit in which spectra are measured. The human eye is sensitive from 4,000 to 7,000 angstroms, running from violet to red respectively. The Orion telescope was designed to observe in the ultraviolet.

[75] Dobrovolskiy had concluded that the enthusiasm of a man exercising alone soon waned; it would be better for the crew to exercise jointly, since then they would be able to encourage one another. As commander, he may have been thinking of Volkov, who had missed several exercises earlier in the mission.

[76] Dobrovolskiy’s frustration at the workload was in part because the mission planners had drawn up the schedule of scientific experiments without appreciating the time that it would take to perform them in the weightlessness environment of space – it always took longer than it had during terrestrial training. Even before they could start an experiment, they had to prepare the apparatus, locate and read the instructions, unpack any samples or devices and install them. Naturally, as commander, he worried about his crew’s performance. It was demoralising for them to be judged by the TsUP to have fallen behind the schedule. However, in retrospect, it is evident that this crew was inadequately trained to conduct a large scientific programme – they were simply not ready.

[77] Although Salyut had four solar panels and could draw on the panels on the docked Soyuz, it had much more apparatus, and to supply the required electricity the designers had had to reduce the brightness of the illumination in some parts of the station. (Indeed, in pictures taken during the mission it is hard to see the details at the rear of the main working compartment.) This made it difficult to operate the apparatus which was installed in these areas.

[78] Specifically, they measured accommodation and convergence.

[79] Mayak (Beacon) was a popular radio programme.

[80] If this were to be done, and the Soyuz 12 launch was on schedule, then Rukavishnikov would establish the world record for the shortest interval between successive missions: 101 days.

[81] In Russian: radiochastotniy masspektrometer (радио-частотный масс-спектрометар).

[82] Recall that 7K-T was the model of the Soyuz in use at that time.

[83] Kamanin was already planning to fly to Yevpatoriya on 16 June at 4 p. m. Prior to his flight, he went to the TsPK and met Popovich (on the eve of the latter’s trip to Paris with Sevastyanov), Khrunov (about to visit the United States) and Volynov (who again asked Kamanin to be included in one of the forthcoming crews). Around 1 p. m., when Kamanin was having lunch, Shatalov approached him with the news of the fire on the station. Kamanin went straight to the airport and at 2.05 p. m. his Tu-104 departed for Yevpatoriya.

[84] Vera Patsayeva worked at the Central Scientific Research Institute of the Academy of Sciences (TsNIIMash), which was adjacent to the TsKBEM’s main building in Kaliningrad.

[85] In fact, Soyuz transmissions continued until 21 June, then nothing more was heard until 24 June.

[86] On Russian trains which travel for many days and nights, some wagons provide roomettes in which passengers can have privacy.

[87] In assuring the controllers that he was taking meticulous notes, Volkov, who was well aware of how he caused problems for his colleagues, flight controllers and even his boss Mishin, may have been trying to make amends as the mission approached its conclusion.

[88] Specifically, Kegostrov was to monitor the braking manoeuvre if this were scheduled for the second orbit after Soyuz 11 undocked from Salyut, and Bezhitsa would do so if it occurred on the third orbit.

[89] He observed the star Vega (alpha Lyra).

[90] Mignonette is the common name for a small family of herbs and shrubs that inhabit arid regions.

[91] The Era investigation, which began on 16 June, was to detect high-energy electrons at orbital altitude.

[92] Dobrovolskiy was referring to the speed at which the human eye adapts to rapidly changing lighting conditions. Although he was able to determine the direction of the station’s motion after watching the surface of the Earth for a while, if he quickly switched his attention to another area that was differently illuminated then it took a while to perceive the motion which he knew to be occurring.

[93] Note that although the Soyuz 9 record was 18 days, the International Astronautics Federation required an endurance record to be exceeded by 10 per cent to recognise it as having been ‘broken’; hence the delayed congratulations.

[94] The situation could have been worse – the catastrophic N1 launch failure of July 1969 had destroyed the launch pad! Fortunately, two N1 pads had been constructed.

[95] When Vladimir Komarov’s capsule struck the ground at high speed, the ‘black box’ was destroyed by a combination of the shock and the subsequent fire. The design had been strengthened in order to survive a recurrence of such an event.

[96] When the direction of the force is from the feet toward the head, the body is exposed to the maximum load. The optimal position is when the force acts at an angle of 10-15 degrees to the chest-to – backbone direction (known as ‘breast-spin’) because this minimises the component from the head to the feet.

[97] The height sensor is a gamma-ray altimeter (Таммалучевой высотомер’).

[98] The root cause of Komarov’s death was the thermal treatment of the descent module and the placing of the parachutes into their containers. Because the parachute containers of both the Soyuz 1 and Soyuz 2 descent modules did not have hatches when they were sent for the application of their thermal treatment, the technicians decided not to ask for the hatches to be supplied and instead ‘closed’ the openings using improvised covers that did not form a hermetic seal. During the treatment, some molecules of the thermal protective material penetrated the containers and coated their walls, thereby both reducing their volumes and making the smooth interior surfaces rough. When the treatment was finished, the technicians tried to put the parachutes into their containers and, on finding that they would not fit, opted not to inform their managers but instead (according to Mishin) to use some kind of tool to force them in. It is ironic that the early problems suffered by Soyuz 1 led to the cancellation of the launch of the second spacecraft for this joint mission, as otherwise both crews would almost certainly have been killed.

[99] The recovery team found the pilot, drogue and reserve parachutes at the landing site; the main chute was destroyed inside its container by the fire that followed the crash.

[100] While sailing towards the assigned station, the crew of Bezhitsa heard the terrible news of Soyuz 11 on Radio Moscow.

[101] A further complication was that owing to the difficulty in achieving a hermetic seal of the hatch prior to undocking, the cosmonauts were initially 20 minutes behind the flight plan.

[102] In addition, neither Stafford or Leonov knew that in 1975 they would command the two spacecraft of the joint mission involving an Apollo and a Soyuz spacecraft.

[103] The poet referred to Viktor Patsayev as Vitya, Georgiy Dobrovolskiy as Gosha and Vladislav Volkov as Slava.

[104] Aleksandr Matrosov was made a Hero of the Soviet Union during World War II for sacrificing himself in an assault on an enemy bunker, and in so doing preserving the lives of his colleagues.

[105] This was reported by The Sunday Times, but there is no direct evidence for this in the radio communications following undocking. However, it is not inconceivable that the cosmonauts had problems with breathing after a long day of transferring the final materials to the Soyuz and the stress resulting from the difficulty encountered in closing the hatch.

[106] In all other respects, of course, the Soyuz was more sophisticated than the Voskhod, particularly in having an escape system in case of a malfunction in the launch vehicle.

[107] Three pressure suits would have weighed a total of about 80 kg, and there would have to have been additional apparatus to support them independently of the cabin environment. The Soyuz spacecraft simply was not designed for such a configuration.

[108] In making this remark, Mishin gave the impression that he expected that a cosmonaut would hold his finger in place to stem the air leak right through the re-entry process, until the capsule was in the atmosphere. However, the real value in interrupting the leak in this manner would have been to buy the time required to close the manual shutter on the valve. Yet there was no tank to replenish the lost air.

[109] Kamanin has interpreted Mishin’s remark about a cosmonaut stemming the air leak by holding his thumb over the hole literally, and is criticising the expectation that this could have been sustained as the deceleration loads increased and forced the crewman back into his couch. In fact, if all that was intended was to buy time to close the manual shutter in the valve, then this criticism of the idea does not apply.

[110] When asked about this by the author, the cosmonauts’ children Marina Dobrovolskiy and Svetlana and Dmitriy Patsayev could not confirm Leonov’s remark. Also, his remark about Vera Patsayeva is not recorded in her meticulous diary.

[111] Here Feoktistov told Vera Patsayeva of the defect noted by Shatalov. The automatic shutter took the form of a ball fixed in its ‘nest’ by a screw, but the screw on valve No. 1 was not fastened properly and the shock of the pyrotechnics unseated the ball from the nest.

[112] As explained earlier, there was a small pyrotechnic charge in each valve to release the ball from its nest. Both valves were on the same electric circuit.

[113] As may be inferred from Mishin’s remarks, he made contradictory accounts in interviews given many years later. The fact that Leonov says he discussed the valves with the crew proves that they were aware of their settings, because they decided to use the settings which were specified in their onboard instruction. The thrust of Mishin’s argument was that he wished to place the blame on the crew’s training (which was the responsibility of Kamanin) rather than on the design of the craft by his bureau.

[114] In view of the poor workmanship and the fact that there were no post-flight checks until after the Soyuz 11 accident, a decompression at this phase of the mission was an accident waiting to happen, and if it had not occurred on Soyuz 11 it may well have done so on a later mission.

[115] In Sokol-K, the ‘K’ was for ‘космос’, the Russian word for ‘space’.

[116] This test could last six days because the unmanned spacecraft placed a lower load on its batteries.

[117] DOS-2 was DOS-7K No. 2, 17K No. 122.

[118] Although recruited as military cosmonauts, the fact that Kolodin and Voronov were not military pilots meant that they were unlikely to be assigned as spacecraft commanders.

[119] The irony, of course, was that Salyut was a civilian development of Almaz, and as Ustinov had realised early on, launching a scientific station first would serve as a maskirovka to hide the real project.

[120] Rodion Malinovskiy and Andrey Grechko (Ministers of Defence from 1957 to 1967 and 1967 to 1976 respectively) and Marshals Konstantin Vershinin and Pavel Kutakhov (Commanders in Chief of the Air Force from 1957 to 1969 and 1969 to 1984) had persistently urged that that the construction of the first Almaz station be accelerated.

[121] DOS-3 was 17K No. 123 and DOS-4 was 17K No. 124.

[122] The Kaliningrad mission control facility was designated TsUP-M, to distinguish it from TsUP-E at Yevpatoriya.

[123] Although Semyonov was a leading figure in the DOS programme, he probably supported Mishin on this issue simply through loyalty to his boss. However, it is also possible that Semyonov realised that owing to the problems faced by the N1 the lunar programme was likely to be cancelled, whereupon the TsKBEM’s only option would be the DOS programme.

[124] OKB-456, later to become Energomash.

[125] The loss of the OPS-1 station does not count in this context, because it was not a TsKBEM project.

[126] When launched, this was named Radio1.

[127] ‘Почему мы не слетали на Луну?’

[128] Mishin outlived his mentor, Sergey Afanasyev, by five months.

[129] It is now part of the Khrunichev Centre.

[130] RKK stands for Raketno-Kosmicheskaya Korporatsiya, which means Space Rocket Corporation.

[131] Fizichesko-Tehnicheckiy Institut.

[132] ‘Ракеты и люди’.

[133] ‘Семь шагов в небо’.

[134] ‘Траектория жизни’

[135] In fact, Kamanin’s ceased to be in charge of cosmonaut training on 25 June 1971, a few days before Soyuz 11 was due to return to Earth.

[136] ‘Скрытый космос’.

[137] Interestingly, it was at this time that the Voskhod 3 mission was cancelled, and Shatalov had been a member of the backup crew.

[138] ‘Трудные дороги космоса’.

[139] ‘Ждзнь – капля в море’.

[140] In 1999 this became the Russian Cosmonautics Federation.

[141] One Astronomical Unit (AU) is defined as the mean radius of the Earth’s orbit of the Sun.

[142] Such ships had already been named after Sergey Korolev, Vladimir Komarov, Yuriy Gagarin and Pavel Belyeyev.

[143] The fate of Cosmonaut Vladislav Volkov is uncertain. It was very likely sold to a private company and scrapped. After the collapse of the Soviet Union, the largest tracking ships Academician Sergey Korolev and Cosmonaut Yuriy Gagarin were anchored in Odessa in Ukraine. Despite protests from Russia, both were sold to a private company that broke them up and sold the scrap to India in 1996.

THE SILENCE OF THE COSMONAUTS

Dobrovolskiy, Volkov and Patsayev knew well the risks of the return operation, but on the third orbit after undocking from Salyut they were in excellent spirits and impatient for the landing. At 1.10 a. m. on Wednesday, 30 June, while out of radio contact over the Pacific Ocean approaching Chile, Dobrovolskiy, assisted by Volkov, oriented Soyuz 11 to position its main engine facing the direction of the flight.

One of many disputed issues concerning the final phase of this mission is the time of the last words from the crew.

The last officially published communication from Soyuz 11 was at 00.16 a. m., when Kamanin in the TsUP spoke to Dobrovolskiy, who reported that they were in the process of preparing for the orientation manoeuvre. At that time they could still see the Salyut station. Then the controller signed off with: “Good-bye Yantars, until the next communication session.”

The official sources do not give a chronology of the last conversations with the Soyuz 11 crew, or between the cosmonauts.

In his 1971 book Soviets in Space, Peter Smolders cites the following words from Dobrovolskiy as the last communication received by the TsUP: “I am beginning the descent procedure.”

Yeliseyev’s book offers the following account of the final words received by the TsUP: “The last communication session is ending. Immediately before leaving the zone of radio visibility, Volkov managed to call loudly to say: ‘Prepare cognac, see you tomorrow!’ …” However, owing to the phrase “see you tomorrow” the time of this reported communication is unclear – was it on 29 June or 30 June. Nevertheless, the words “Prepare cognac” would be a typical final message prior to an imminent reunion. It may well have been that immediately before the loss of communication Dobrovolskiy said he was “beginning the orientation” and then in the final seconds Volkov managed to add his remark.

Between 1.22.00 a. m. and 1.31.25 a. m. Soyuz 11 passed over South America and then set off across the Atlantic Ocean. As noted, for optimal visibility at the landing site the braking manoeuvre was to be made on the third orbit after undocking from the station. This was why Soyuz 11 had a different re-entry trajectory than previous missions. One circuit of the Earth lasted on average 89 minutes. During this interval the planet rotated through 22.2 degrees, so Soyuz 11 was north of the equator at the moment that the engine fired, somewhat to the north and west of the typical braking position for a Soyuz descent. The engine was fired automatically at 1.35.24 a. m., as planned. At that time, Soyuz 11 was over the Atlantic between the northeast coast of South America and the coast of Africa. The engine fired for the planned duration of 187 seconds and was automatically switched off after reducing the speed of the spacecraft by the requisite 120 m/s. Another interesting detail – in contrast to most of the previous flights, in this case the braking manoeuvre was made during the descending portion of the orbit – i. e. after the ship had passed the apogee point. Following the braking manoeuvre, the automated control system would reorient the vehicle for the separation of the modules, perform the separation, control the path of the descent module through the atmosphere in order to aim for the target, manage the parachute deployment sequence, jettison the heat shield, fire the retro-rockets and jettison the parachute. The crew were not required to participate in any of these critical operations.

Did the tracking ships in the Atlantic Ocean detect signals from Soyuz 11 during the braking manoeuvre? Chertok’s memoirs and Kamanin’s diary, two of the most widely cited sources, offer contrary accounts.

Chertok wrote:

After undocking from the station, two orbits are allowed to prepare for the descent. The crew will conduct manual orientation while out of our visibility

Soyuz ll’s descent track. (Courtesy Sven Grahn)

zone and pass control to the gyro instruments. The command for the start of the descent activity will be emitted from NIP-16, with NIP-15 as the reserve. The KTDU will fire for braking at 1 hour 47 minutes on 30 June. …

All indications on the panel were normal, and the cosmonauts reported the achievement of all operations on time. … Everything went according to the timetable. The tracking ships received information as the spacecraft passed above, and reported to the TsUP that the braking engine had operated for the estimated duration and was switched off by the integrator [when the correct velocity had been attained]. The control-measuring complex and the GOGU were satisfied with the control of the spacecraft on the landing orbit.

After engine cut-off, the spacecraft exited the communication zone of the tracking ships in the Atlantic. The orbital module and the propulsion module were jettisoned from the descent module while passing over Africa.

Based on this, we can conclude that the TsUP had information from “the tracking ships” that the braking engine was fired and shut off as expected, and that Soyuz 11 then re-entered as planned. Also, Chertok implies that several ships were involved in tracking this particular re-entry! Furthermore, he said that Soyuz 11 left the radio zone of the ships when the main engine switched off, which is a point also made by the official TASS report (see the next chapter). However, he was mistaken in giving the time of the braking manoeuvre as 1.47 a. m. (this was the time that the modules were separated) and incorrect in saying that the separation occurred above Africa (it was the typical scenario for the previous Soyuz missions, but not in this case).

Another author, Colonel Ivan Borisenko, the ‘Sporting Commissar’, has said that communication was briefly established with Soyuz 11 about this time, then lost at the moment of the separation of the modules.

However, in his diary entry of 30 June General Kamanin says:

According to the re-entry programme, the KTDU must start at 01.35.24 and should turn off after 187 seconds. We impatiently waited for a report of the braking manoeuvre. Shatalov repeatedly called Yantar on line, but there was no response from the crew. …

At 1.47.28 the separation must occur, … but there are no reports about this. We did not know whether Soyuz 11 had begun the descent, or had remained in orbit. The period of communication calculated for the case of the ship not leaving orbit (01.49.37-02.04.07) began. There was an oppressive silence in the room. There was no communication with the crew or any new data about Soyuz 11. Everyone understood that something had occurred aboard the spacecraft, but no one knew what. The minutes of expectation passed terribly slowly.

So, according to Kamanin, no one in the TsUP knew whether the main engine had fired on time or if the braking manoeuvre had been completed. He did not mention receiving the information from the tracking ships in the Atlantic that Chertok cited. There was no response from the spacecraft to Shatalov’s calls. The silence from the spacecraft shortly before, during, and after the braking manoeuvre,

which was about ten minutes before the separation of the modules, is another interesting detail. With the exception of Kamanin, no other source (Chertok, Yeliseyev, Feoktistov, Rebrov, and others) spoke of the silence of the crew in the braking period – while Soyuz 11 was passing over the tracking ships. Yeliseyev, who was in the TsUP with Kamanin, Chertok, Feoktistov and others, did not refer to tension in the control room owing to uncertainty concerning the braking manoeuvre. He wrote nothing about the tracking ships and signals they might have received from Soyuz 11; only of data from the radar stations which detected the descent module after its path had carried it onto Soviet territory.

So what really happened? Let us consider the tracking ships in the Atlantic. Due to the position of Soyuz 11 during the braking manoeuvre, only a ship located in the equatorial region could have received a transmission during this time. Bezhitsa was at its operating station near the coast of Africa in the Gulf of Guinea, at 1.5 degrees south, 13 degrees west, until 29 June. From this station, it would have had two or three opportunities each day to monitor the success of the braking manoeuvre. But it had been at sea for four months, and was low on provisions. It was to sail to Las Palmas in the Canary Islands in early July for replenishment. Since this station was of crucial importance to monitoring Soyuz 11 during its braking manoeuvre, it was decided that Kegostrov, in the South Atlantic at 22 degrees south, 24 degrees west, should move to relieve Bezhitsa. On 29 June Bezhitsa received an unexpected order to leave its station. Amazingly, it left before Kegostrov arrived to replace it! On the morning of 30 June, local time, when it was realised that Kegostrov would not be in position before Soyuz ll’s braking manoeuvre, the head of the Soviet Naval Fleet personally ordered Bezhitsa’s captain to urgently return to his previous station so as to monitor the braking manoeuvre – not just the telemetry but also the commentary from the crew. However, it was apparent that Bezhitsa would not be able to resume its former station in time.[100]

Why was Soyuz 11 allowed to proceed with the undocking and return to Earth if a tracking ship to monitor the braking manoeuvre was absent? As noted, in planning the mission there were discussions about whether it should be for 45, 30 or 25 days. Finally, guided by the ballistics, Mishin had decided to accept the ‘25’-day duration and shorten it by one day, with the landing on 30 June instead of 1 July. This is the first important detail to consider when pondering the reasons for Soyuz ll’s return without a tracking ship in this key position. It would appear that in the final stage of the mission the usually excellent co-ordination between the TsUP (in fact, the State Commission) and the Soviet Naval Fleet failed, causing Bezhitsa to leave its station prior to the arrival of Kegostrov. In addition, there had been a dispute between the Air Force (Kamanin) and the TsKBEM (Tregub) about whether Soyuz 11 should return on the second or the third orbit after it undocked from the station. A return on the second orbit would have taken the familiar route across Africa, but would have meant landing in darkness. During the additional orbit, the eastward rotation of the Earth displaced the longitude at which the spacecraft would perform its

The tracking ship Bezhitsa was unable to monitor Soyuz ll’s braking manoeuvre.

northward crossing of the equator 22 degrees to the west.[101] The descent trajectory for Soyuz 11 was therefore different to the one with which everybody was familiar – as indicated by the mistake in Chertok’s account. Instead of firing the main engine while passing above the Gulf of Guinea, where Bezhitsa was to have been, the braking manoeuvre started at 10 degrees north, 40 degrees west, and was concluded at 29 degrees north, 32 degrees west. At Soyuz ll’s altitude, the communication zones of Bezhitsa and Kegostrov were about 15 degrees in radius, but beyond about 10 degrees the signal was weak. In fact, not only was Bezhitsa off-station when the spacecraft performed its braking manoeuvre, that fact that it was sailing at maximum speed in an effort to resume its station meant that it did not even attempt to listen. And Kegostrov, being even further away, could not have received a signal from Soyuz 11 at the vital time. This is why (as Kamanin noted) no one in the TsUP knew whether the spacecraft had made the manoeuvre. And, of course, even if one of these two ships had been in position, neither was equipped to relay the VHF transmission from the spacecraft to the TsUP, which is why the control room did not hear the cosmonauts’ voices, only “silence”. Academician Sergey Korolev and Cosmonaut Vladimir Komarov were equipped to relay signals from a spacecraft to the TsUP, but only when a Molniya satellite was conveniently positioned, and in this case Komarov was out of service and Korolev was in the North Atlantic and too far away to receive signals during the spacecraft’s braking manoeuvre.