Category Soviet x-plenes

Sukhoi Su-24

In the mid-1960s the tactical arm of the Soviet Air Force (FA) needed a replacement for the elderly Yakovlev Yak-28 Brewer tactical bombers. The Yak-28 proved disappointing due to short range and severe restric­tions in the use of its weapons. By the mid-1960s, two important factors became evident. The first was the superiority of equivalent US designs, such as the General Dynamics F-111, due to higher performance, wider weapons range and outstandingly superior avionics. The second factor was the rapid development in surface-to-air missile technology; this required new tactical bomber to have supersonic low-level attack capa­bility, which placed high demands on airframe strength and required automatic terrain following capability.

Thus the Sukhoi design bureau (OKB) started work on a tactical bomber which would be the Soviet counterpart of the F-111. Initially the designers settled for mid-set wings with 40° leading-edge sweep. Receiving the in-house designation S-6, it was to have a top speed of 2,500 km/h (1,550 mph) and an all up weight of 20,000 kg (44,090 lb). The two crew members sat in tandem, and the two 7,200-kgp (15,870- lb st) Tumanskiy R-21F-300 afterburning turbojets were placed side-by – side in the rear fuselage, breathing through lateral air intakes.

It soon became evident that a conventional layout was inadequate for the project, and attention was turned to variable-geometry wings and lift-jets, the work proceeding in parallel on these two lines. A com­pletely new project designated T-6 was started. The first prototype, known as the T6-1, entered flight test on 2nd July 1967 with test pilot Vladimir S. Il’yushin at the controls. It had double-delta wings with 60° leading-edge sweep on the inner wings. The crew of two was seated side-by-side. Behind the cockpit were four Kolesov RD36-35 lift engines intended to improve field performance. Initially, two Tumanskiy R-27F2-300 cruise engines rated at 10,200 kgp (22,400 lb st) in full after­burner (again fed by variable lateral air intakes) were fitted; the air for the main engines was used to cool the lift-jets. The intended 11,200-kgp (24,750-lb st) Lyul’ka AL-21 F afterburning turbojets were fitted later.

The T6-1 was intended to carry air-to-surface missiles, unguided rockets, air-to-air missiles, bombs and other stores on four wing and two fuselage hardpoints. The wing span was 10.41m (34.14 ft), overall length 23.72 m (77.8 ft), height 6.373 m (20.9 ft) and wing area 45.33 sq. m (487.9 sq. ft). Maximum TOW was 26,100 kg (57,540 lb).

In the course of trials the Soviet Air Force changed its requirements; the ordnance load was increased to such an extent that lift engines were no longer viable. Also, the contradictory requirements of attack at transonic speeds at ground level and short-field capability were still there. Studies by the Central Aero- and Hydrodynamics Institute (TsAGI) showed that variable-geometry wings compared so favourably with every other possible layout that the Sukhoi OKB radically redesigned the T-6 less than six months after the first flight.

The second prototype, designated T6-2I (the T denoting izmenyayemaya [gheometriya], variable geometry) was completed in late 1969 and took to the air on 17th January 1970, again with Vladimir S. Il’yushin at the controls. The most important change was the new VG wings; they had four sweep settings: 16° for take-off and landing, 35° for loitering and cruise, 45° for manoeuvring and 69° for transonic/super – sonic flight. The fuselage was redesigned to increase fuel capacity and the air intakes were modified. The undercarriage was strengthened to let the aircraft carry an increased warload.

Tests of the T6-2I continued until 1976. The aircraft was soon joined by two more prototypes, the T6-3I and T6-4I. The results were encour­aging and in December 1971 the bomber entered series production at the Novosibirsk aircraft factory No. 153, receiving the service designa­tion Su-24; the in-house designation at the plant was “izdeliye (product) 41”. Initial operational capability was achieved in 1973 but it was not until 1975 that the Su-24 was formally included into the inventory. This version was known to the West by the NATO reporting name Fencer-A.

Modifications to the design were continually implemented as pro­duction progressed. E. g., wing span and wing area were increased soon after the beginning of production. Problems with the variable air intakes caused the intakes to be widened from the 4th production batch onwards (1972) when the to give an increased frontal area. Pressure from the WS to increase range led the OKB to increase the capacity of the number 1 fuel tank by 1,000 litres (220 Imp. gal.) starting with Batch 8, with a concurrent saving in weight which could be used for extra fuel. Operational experience showed the airframe was strong enough to carry more weapons, so two more hardpoints were added on the cen­treline, increasing the total to eight and the weapons load to 8,000 kg (17,680 lb). Weapons delivery was controlled by a PNS-24 Tigr naviga – tion/attack system enabling automatic flight along a pre-programmed route, weapons delivery and return to base.

Important changes were introduced in Batch 15 when the shape of the rear fuselage was redesigned to reduce drag. The box-like structure around the engine nozzles was replaced by a more rounded one with a deeply dished bottom between the nozzles and the brake parachute container was moved up. Extensions were added to the fin at the top and along the leading edge; the upper extension supported the A-711 navigation antenna and the leading edge now accommodated the RSDN-10 long-range radio navigation (LORAN) antenna and a cooling air intake for the generators. SPO-15 Beryoza (Birch) passive radar warning antennae in triangular fairings were placed on either side of the fin near the top. Other changes made at this time included the addition of leading-edge flaps to the outer wings and a reduction in the number of flap sections from three to two each side. This version was known to the West as the Fencer-B. An updated version with Beryoza (Birch) radar homing and warning system (RHAWS) antennae on the air intakes and near the top of the fin was code-named Fencer-C.

By 1975 the ongoing problems with the variable air intakes were finally solved by introducing fixed-area intakes from Batch 21 onwards, which also gave a weight saving of 200 kg (440 lb). Aircraft previously built with variable intakes had that control disconnected. As a result, top speed was effectively limited to 1,400 km/h (870 mph) or Mach 1.4 at sea level, except for very short emergency bursts of Mach 2. This was considered an acceptable trade-off against the elimination of previous problems, as 1,400 km/h at S/L had become the standard attack mode. Concurrently the wings were redesigned and given a different airfoil.

Although improvements were constantly incorporated, this did not affect the designation. It was not until 1975 that enough design changes took place to justify a new designation, T6-M or Su-24M (modifi tseerovannyy – modified). The eighth prototype of the Su-24 sans suf – fixe (T6-8) was converted into the Su-24M prototype and redesignated T6-8M, making its first flight on 24th June 1977. Production began in 1978; the aircraft was known at plant No. 153 as izdeliye 44; the NATO reporting name was Fencer-D.

Major changes were made to the avionics; the most fundamental one was the fitment of a new weapons control system – the PNS-24M Tigr NS. To accommodate the new equipment the forward fuselage was extended by 76 cm and lowered by 15 cm. Apart from the reshaped nose, the Su-24M could be identified by the straight air data boom at the tip of the radome replacing the F-shaped antenna assembly of ear­lier versions, nicknamed “goose” because of its shape. A Kai’ra-24M

(Grebe) day/night low light level TV system/laser designator was fitted, enabling the aircraft to carry laser – and TV-guided missiles and "smart bombs”. Also, the number of weapons carried was increased by the addition of a ninth hardpoint.

Combat capability was greatly improved by the addition of an in­flight refuelling system. An L-shaped FPSh-5M retractable IFR probe was installed just ahead of the cockpit to allow refuelling from another Su-24M fitted with a UPAZ-1A Sakhalin "buddy” refuelling pack or an ll’yushin IL-78/IL-78M Midas tanker. A new Karpaty (Carpathian moun­tains) defence system was introduced. Rounded boundary layer fences were initially fitted on the edge of the wing glove in line with the inner wing pylons; on some aircraft they housed chaff/flare dispensers. Later, when it was discovered that the wing fences improved longitudinal sta­bility but impaired directional stability, they were removed and the dis­pensers relocated to the upper rear fuselage.

In the mid-1980s permission was granted to export the Su-24M. In the late 1980s the OKB brought out an export version designated Su-24MK (kommehrcheskiy – “commercial”, i. e., export version) or izdeliye 44M. The first flight took place in 1987 and small-scale produc­tion commenced in 1988. The Su-24MK differed little from the standard Fencer-D – mainly in the avionics (particularly the IFF system) and weapons options; for example, the Su-24MK could carry more bombs – 38 FAB-100s compared with 34 on the Su-24M and four air-to-air mis­siles instead of two. All export Su-24MKs had angular wing fences, even though they were being removed at the time from Soviet Air Force Fencers. Sales reported so far are: to Iraq (24), Libya (15), Syria (12) and Iran (9).

In 1978 the OKB started full-scale development of the T-6MR recon­naissance version of the Su-24M. Intended as a successor to the out­dated and “short-legged" Yak-27R, Yak-28R and MiG-21 R, it was to operate at a depth of up to 400 km (250 miles) from the front line, day or night in any weather. The first flight took place in September 1980; two prototypes (the T6MR-26 and T6MR-34) were tested and the aircraft entered production and service as the Su-24MR ([samolyot-] razved – chik, reconnaissance aircraft) or izdeliye 48. The NATO code name was Fencer-E.

The comprehensive BKR-1 Shtyk (Bayonet) reconnaissance suite included a Shtyk MR-1 synthetic aperture side-looking airborne radar (SLAR) in the nose covering an area of 4 to 28 km (2.5-17.3 miles) from the centreline; a Zima (Winter) thermal imager; an Aist-M (Stork-M) TV camera; a Kadr (Photo exposure) PHOTINT system comprising an AP-102 panoramic camera and an AFA-A-100 oblique camera; an Efir-1 M (Ether-1 M; pronounced efeer) radiation monitor in a pod under the starboard outer wing; and a Tangahzh (Pitch, in the aeronautical sense) radio monitoring pod or a Shpil’-2M (Spire-2M) laser line-scan pod providing an image of almost photographic quality on the fuselage centreline. Data was recorded on tape but could be instantly transmit­ted to ground stations if required. Three underfuselage hardpoints and the built-in cannon were removed; two R-60 or R-60M air-to-air missiles could be carried under the port wing for self-defence.

Design work on the Su-24MP Fencer-F (izdeliye 46) electronic countermeasures (ECM) aircraft began in 1976; its mission was elec­tronic reconnaissance and neutralisation of the enemy’s air defence radars while escorting attack aircraft to their targets. The two prototypes were converted from Su-24M airframes (the T6M-25 and T6M-35) which were then redesignated T6MP-25 and T6MP-35; the P stands for postanovschchik pomekh – ECM platform. (Strictly speaking, the des­ignation ought to have been Su-24PR) The first flight took place in December 1979. Very little technical information relating to this variant has been released, but it is known to have a sophisticated suite for detecting, locating, analysing, identifying and jamming all known elec­tromagnetic emissions. The bulk of this work is handled by the Landysh (Lily of the valley) system and the aircraft can carry active jamming pods, such as the Los’ (Moose), Fasol’ (String bean) or Mimoza (Mimosette), under the fuselage with no apparent loss of performance. Only about twenty Su-24MPs were reportedly built.

Believe it or not, the Su-24 found peaceful uses as well. In the late 1990s the Flight Research Institute in Zhukovskiy operated two Su-24s – Fencer-A “15 White” (c/n 1515301) and Su-24M “11 White” (c/n 1141613) equipped with an air sampling pod for environmental moni­toring purposes.

The Su-24 achieved initial operational capability with the Soviet Air Force (WS) in 1973, even though official acceptance of the type was not given until 1975 – a move not uncommon in the USSR. After being issued to training units, Su-24s were delegated to regiments operating in the Western areas of the USSR and in the Far East. By assigning them to the Ukraine or the Baltic Republics the WS ensured they could be quickly deployed in times of trouble to Eastern Europe. Later, Su-24 units were stationed in East Germany, Poland and Hungary, but the main Fencer force remained in the USSR.

Among those types displaced from bomber divisions of the Tactical Aviation’s Air Armies were the obsolete ll’yushin IL-28 Beagle and Yak-28. A division usually included three bomber regiments, each hav­ing three squadrons with 10 aircraft per squadron. As production rate grew it was decided to equip some of the fighter-bomber divisions in the 4th, 24th and 30th Air Armies with the Su-24 capable of a more strate­gic role. These armies had been created in the early 1970s, reporting to the High Command of the Armed Forces to act as a strategic reserve (rather than to Army Fronts or Defence Districts where there was a risk of their aptitude for attacking behind the battle line being wasted in local situations). It was also easier to maintain a tighter control on the use of the nuclear bombs which these aircraft could carry.

On entering service with FA regiments that had previously operated such types as the Yak-28 and MiG-27, the Su-24 proved to be much more demanding in maintenance and service. Considering the com­plexity of its systems, this was hardly surprising and extra headaches were caused by the fact that this was the Soviet Air Force’s first experi­ence with computerised systems.

The Su-24 required appreciably more time and effort to prepare it for a sortie; on average, it needed 45 minutes work by 15 technicians. This effectively doubled ground crew workload per flight – an insup­portable situation which was tackled with alacrity. The demands of time could not be reduced because 45 minutes was the minimum time taken to spin up the gyroscopes in the navigation/attack system; some mis­sions requiring a greater degree of accuracy needed as much as 1 hour 20 minutes. Nonetheless, improvements could be made to ease the ground crews’ workload.

The biggest headaches to ground and air crews alike came from the avionics. Such was the need for this type of bomber that, as noted ear­lier, it was rushed into service before the State acceptance trials were completed. The complexity of the many systems and the use of an on­board computer stretched the knowledge and patience of the crews. Malfunctions were frequent and there were cases in the early stages of the Fencer’s career when whole squadrons were grounded for several days until remedies were found.

In-flight malfunction of the navigation and targeting system could all too easily put the crew at risk, especially on supersonic nap-of-the-earth (NOE) missions. At best the aircraft was saved but the target missed. It has been known for farms to lose valuable crops, buildings and even livestock when crews failed to realise there was a problem with the equipment and continued the attack in automatic mode, dropping their deadly load on whatever was unlucky enough to be there. There was a case of a crew getting lost, running out of fuel and having to eject because the airmen did not realise in time there was a fault.

The Sukhoi OKB went to great lengths to reduce pre-flight check time by providing easier access to engines, all systems, filters, gover­nors etc. Wheel changing was simplified by eliminating the need for lift­ing equipment. Special attention was given to the reduction of refuelling time by providing single-point pressure refuelling.

Once the teething troubles had been recognised and acknowl­edged, they were relatively easy to resolve. One particular cause for sat­isfaction was the aircraft’s ability to withstand bird strikes; a collision with a large eagle and another with seventeen sparrows resulted in no serious damage – at least not to the aircraft.

In spite of these difficulties, he pilots liked the Su-24, affectionately dubbing it “Chemodahn” (Suitcase) – an allusion to the slab-sided shape of its fuselage. They appreciated the good field of view, the well – planned flight deck and the automatic flight systems, especially on low – level operations. Flight handling was reasonably easy, even though the Su-24 could be less forgiving in certain circumstances. Slowly but sure­ly the restrictions imposed during the service introduction period were lifted until the Su-24 emerged as a first-rate tactical bomber.

The Su-24 has seen action in several armed conflicts, drawing first blood during the Afghan War where the type made its debut in the spring of 1984. With its weapons load of 7 tons (15,430 lb) – more than double that of other Soviet tactical strike aircraft, its impressive range and sophisticated mission avionics, the Fencer would make a valuable addition to the arsenal of the Soviet contingent helping the pro-Soviet Kabul government fight the Mujahideen rebels. Until then the Su-24 had been unavailable for the war, but the need for such an aircraft was now evident. It was decided to use the type from Soviet bases in Uzbekistan and Turkmenia. Thus, two regiments were seconded to the 40th Army, as the group of Soviet forces in Afghanistan was known. In early April 1984 the 143rd BAP (Bomber Regiment) with 26 Su-24Ms, then based in Georgia at Kopitnari (Kutaisi-1) airbase, was detached to Khanabad – the one in south-eastern Uzbekistan (near Karshi), not the one in Afghanistan. At the same time the 149th GvBAP (Guards Bomber Regiment) with Su-24 Fencer-Bs based at Nikolayevka AB in Kazakhstan was relocated to the fighter base at Koka’fdy near Termez, right beside the border.

The primary motive for the presence of Fencers on the Afghan the­atre of operations was the need to subdue Ahmad Shah Massoud, the most capable Mujahideen leader. As a rule, the Su-24s were used against area targets such as Mujahideen fortifications. Prior to the sor­tie, reconnaissance aircraft would photograph the target. Its coordinates would be fed into the bomber’s computer, and everything else was largely automatic; the PNS-24 nav/attack system would take the bomber there and drop the bombs. In the 149th GvBAR Sqn 1 aircraft usually carried four 500-kg bombs each and Sqn 2 and 3 aircraft were armed with twelve 250-kg bombs each; additionally, two drop tanks were always carried.

Su-24 operations in Afghanistan were not very intensive, since the ground forces were more in need of close air support than of carpet bombing. Nor were they particularly successful; the Su-24 had been designed with the relatively flat terrain of Western Europe in mind, and the radar (which could pinpoint small targets such as tanks) had trouble picking out the targets among the jumbled rocks. NOE flying was out of the question because of the many canyons and mountain ridges. Weapons efficiency was low, as guided bombs and missiles showed poor controllability in the rarefied air of the mountains. Bomb-aiming accuracy in level flight was poor; dropping bombs in a 20 to 30-degree dive produced better results but took the bombers within range of the enemy air defences. During the following months, attacks were carried out from altitudes in excess of 5,000 m (16,400 ft) – safely out of range of the Stinger man-portable air defence systems (MANPADS) supplied by the Western Alliance to the rebels.

The next time the Fencer appeared in Afghan skies was in 1988. At this stage, when the Soviet Union was already pulling out of the point­less conflict, Su-24 operations were mostly of a psy-war type, intended to exert a constant pressure on the Mujahideen and keep them busy. Sorties were flown not lower than at 7,000 m (22,965 ft) because of the omnipresent Stingers.

Generally the Su-24 had a good reliability record in Afghanistan. The few failures that did take place were mostly associated with hydraulics, flap and engine controls. Initially there were problems with the main nav/attack computer but these were quickly fixed as Afghan experience built up. Sometimes the drop tanks would refuse to give off fuel and had to be jettisoned – which the crews were reluctant to do, knowing that the tanks were in short supply. Because missions were prepared hastily, programming errors occurred and sometimes the navigation data mod­ules would even be installed on the wrong aircraft.

No Fencers were lost to enemy fire in the Afghan War. However, there were a few accidents and incidents. On the night of 13th December 1988 a 149th GvBAP forgot to set the wings and flaps for takeoff (they were always rotated to full sweep on the ground to save ramp space) and took off with the wings at maximum sweep. The fully fuelled and bombed-up aircraft managed to get unstuck at the last moment, crashing through the fence around the inner marker beacon and destroying the antenna in so doing; then it climbed away with a shocking 27-degree angle of attack and proceeded to the target. The rest of the sortie went normally, except for the flapless landing on return (the flap control unit had been annihilated when the aircraft hit a fence post). The crew was saved by the bomber’s rugged design and the fiat terrain around the base (eyewitnesses said the aircraft “could have run all the way to Afghanistan”!).

In December 1988 a 735th BAP Su-24 went off the side of the run­way when landing at Khanabad in a stiff crosswind. One of the main gear units hit a pothole and collapsed, rupturing a fuel line and causing a massive fire. The crew escaped but the WSO later died from burns.

Despite the Soviet withdrawal, the Su-24s stayed around for anoth­er month, ready to support Najibuilah’s government if the Mujahideen made an attack on Kabul. In the event, however, this was not needed and the aircraft returned to their home bases in March 1989, ending the Fencer’s Afghan involvement.

The type remained in active service in post-Soviet days. Apart from Russia, in the Commonwealth of Independent States (CIS) the Su-24 was operated by the air forces of Azerbaijan, Belarus, Kazakhstan, the Ukraine, Uzbekistan and Tajikistan.

The Russian Su-24s were also actively used in the First Chechen War (1994-96) and the Second Chechen War (1999-2001) against Chechen separatists. These missions did not always go without losses; three Fencers were shot down by MANPADS.

It is nearly 35 years since the first flight of the Su-24 prototype and 30 years since it first entered service with the WS. Despite many improvements to the airframe, avionics and systems, it does not incor­porate the latest state-of-the-art and no attempt has been made to ren­der it stealthy. Therefore, plans were in hand to replace it with a modern strike aircraft from the Sukhoi stable – the Su-34 (Su-32FN), a two-seat side-by-side derivative of the Su-27 Flanker interceptor. Yet budgetary constraints have caused these plans to be delayed, compelling the Russian Air Force to change its approach. Several Russian companies, such as Gefest&T, are offering mid-life updates for the Su-24M. Designated Su-24M2, the first upgraded aircraft having enhanced all- weather/night capability (38 White, c/n 1041643) was unveiled at the MAKS-2001 airshow. No doubt the introduction of the Su-34 will be a high-priority task, but shortage of funds (together with upgrade possi­bilities) will ensure that the Su-24M and MR will still be in Russian tacti­cal bomber and reconnaissance regiments for a few more years.

Sukhoi Su-24

Sukhoi Su-24Seen here at OKB-51 ‘s flight test facility in Zhukovskiy, the T6-1 (the first prototype of the Sukhoi T-6 tactical bomber) differed a lot from subsequent aircraft in the series. This view shows clearly the cranked delta wings similar to those of the Su – 15TM interceptor, the separately opening port and staboard canopy halves, the V-shaped window of the laser rangefinder ahead of the windscreen, the engine cooling air intakes on the rear fuselage and the land – ing/taxi lights on the sides of the nose. The closed dorsal intakes of the buried Kolesov RD36-35 lift jets in the fuselage are not vis­ible here.

Sukhoi Su-24

The T6-1 lacked a dielectric radome, fea­turing an all-metal nose ahead of the cock­pit windshield.

Подпись: • A “toad’s eye view” of the T6-1 seen head – on. Note the shape of the two-dimensional air intakes, the six weapons hardpoints, the straight pitot at the tip of the nose, the back-up pitot near the port wingtip and the nozzles of the lift jets between the under­fuselage pylons. The relatively narrow land­ing gear track is also noteworthy.

A three-quarters rear view of the T6-1, showing the rectangular section of the fuselage forming a box around the engine nozzles, the lack of ventral fins, the brake parachute container at the base of the fin and the radar warning receiver (RWR) antenna near the fin tip. Note the unusual variant of the Soviet Air Force insignia on this aircraft with a pentagon incorporated into the middle of the star.

Sukhoi Su-24

Sukhoi Su-24Sukhoi Su-24Sukhoi Su-24

After giving up on the use of lift jets which imposed an unacceptable weight penalty the OKB redesigned the T-6 radically, Incorporating variable-sweep wings to reconcile speed and field performance requirements. This is one of the prototypes of the Su-24 “sans suffixe”in the assembly shop of 0KB-51’s experimental plant in Moscow. This view shows clearly the wings at minimum sweep and the double-slotted flaps. Note that the rear fuselage, which was detachable for engine maintenance/ change, is still unpainted, indicating that the aircraft is undergoing conversion to a new variant (probably the Fencer-B proto­type). The aircraft in the background is the T10-1, the first prototype of the Su-27 fighter (NATO code name Flanker-A).

The T6-2I (coded 62 Yellow) at the flight test facility during manufacturer’s tests. Note the warning markings near the radome (“Danger, HF radiation”) and the air intake bodies (“Danger, jet intake”). Note also the Sukhoi OKB’s “winged archer” logo beneath the cockpit and the red band near the top of the fin. The land­ing lights are still built into the forward fuselage sides. The all-movable stabilizers “bled” down to maximum nose-down posi­tion when hydraulic pressure fell off after engine shutdown.

The T6-2I at the Flight Research Institute (Lll) airfield in Zhukovskiy. All six hard – points are equipped with MBD3-U6-68 multiple ejector racks carrying 250-kg (551-lb) FAB-250 bombs. Due to take-off weight limitations the two MERs under the fuselage carry five bombs each instead of six; the total number of bombs is 34, equalling a warload of 8.5 tons (18,740 lb). Note the colour of the radome, the differ­ent Sukhoi OKB badge, three test mission markers and cruciform photo calibration markings beneath the cockpit and the blue fin stripe replacing the earlier red one. An ILS aerial is mounted above the air data boom carrying pitch and yaw sensor vanes.

One more view of the fully loaded T6-2I at Zhukovskiy with wings at maximum sweep. As is the case with some Western strike air­craft, the pylons under the Su-24’s outer wings rotate as wing sweep chages, remaining parallel to the fuselage centre­line. This view shows well the intakes’ boundary layer splitter plates.

One of the Su-24 prototypes with the wings at minimum sweep. The aircraft carries 24 FAB-250s on MERs on the wing pylons and a pair of 500-kg (1,102-lb) FAB-500s on the fuselage stations, which equals an ord­nance load of 7 tons (15,430 lb).

Sukhoi Su-24Sukhoi Su-24

Sukhoi Su-24Подпись: 24 Blue, a Su-24 “sans suffixe” representing the second production version known in the West as the Fencer-B. This view illustrates some of its features - the kinked forward segment of the nose gear doors consisting of two hinged parts, the faired heat exchanger on top of the centre fuselage and the antenna faired into the fin leading edge with a cooling air intake below it. Production Su-24s featured a so-called “goose" - an L-shaped strut at the tip of the radome mounting an antenna array; the radome itself was white. Note also the faired electronic countermeasures (ECM) antennas on the air intakes and the sides of the fin near the top and the boundary layer fences forming extensions of the inner wing pylons. T

The sixth prototype Su-24 (T6-6) was coded 66 Yellow. Here the aircraft is armed with SPPU-6 gun pods with depressabie six-barrel 23-mm Gatling machine guns (here with the barrels at the maximum deflection of 45°) on the inner wing pylons, OFAB-250ShN low-drag bombs for low – level strike on the fuselage stations and Kh-23 rockets on the outer wing pylons. The T6-6I still had a straight air data boom with an ILS aerial above it and nose- mounted landing lights (they were moved to the wing roots on production aircraft); the fin top band was white.

Two views of the T6-27 (coded 27 White), another Fencer-B development aircraft, carrying three Kh-29 rockets on the inner wing and centreline pylons plus two Kh-23 rockets on the outer wing pylons. The red colour of the rockets identifies them as inert rounds for initial weapons trials; note the photo calibration markings on the rear fuselage. The wing fences were a recent addition at the time the pictures were taken – they have not been painted yet!

Sukhoi Su-24

Sukhoi Su-24

Sukhoi Su-24

Sukhoi Su-24The T6-8M, the prototype of the Su-24M (NATO code name Fencer-D), at the Lll air­field in Zhukovskiy in original guise. Note the extended nose, the extended wing leading edge root ECM fairings, the non­standard twin nose gear doors which remain open when the gear is down, the patch of bare metal and the absence of sensors on the underside of the nose where modifications have been made, the modified fin leading edge and the photo calibration markings on the fuselage. Despite the redesigned nose, the aircraft retains the "goose" typical of the initial – production Su-24 (compare this to the pro­duction aircraft on the opposite page).

Sukhoi Su-24The T6-8M at a later stage of the trials wearing an unusual three-tone camouflage and the Sukhoi OKB “winged archer” badge beneath the cockpit. The sensor array under the nose has been reinstated. The aircraft carried no tactical code.

Another view of the camouflaged T6-8M, showing the shape of the rear fuselage around the engine nozzles and the ventral fuel jettison pipes under the nozzles. These features are identical to the final production version of the Su-24 «sans suf- fixe» (Fencer-C).

Sukhoi Su-24
A

An early-production Su-24M coded «07 White». Note the long straight air data probe at the tip of the radome and the wing fences (making the NATO reporting name Fencer oddly appropriate). The port canopy half is secured by a retaining rod to keep it from slamming down on some­body’s head or hands when there is no pressure in the hydraulic system.

Another view of Su-24M “07 White’’, show­ing the characteristic profile of the nose radome. Production Su-24s and Su-24Ms were normally painted light grey overall with white undersurfaces.

Sukhoi Su-24

Sukhoi Su-24

Sukhoi Su-24

Sukhoi Su-24

Two views of Su-24s parked on a rain – lashed hardstand at Ostrov airbase near Pskov, north-western Russia. The base, whose name means “island” in Russian, hosts the Russian Navy’s Combat and Conversion Training Centre (i. e., opera­tional conversion unit).

The examples in these photos are repre­sentative of the very first production ver­sion known as the Fencer-A, as indicated by the boxy structure around the engine nozzles and the placement of the brake parachute container very close to the noz­zles. Oddly, the starboard airbrake-cum – mainwheel-well-door is open on all aircraft in the lineup while the port one is closed, as it should be on the ground. Note the fuel jettison pipe between the engine nozzles.

T

Su-24 “29 White” seen at OstrovAB in 1998 is an example of the penultimate version of the Su-24 “sans suffixe” called Fencer-В in NATO parlance. Note the 3,000-litre (660 Imp. gal.) PTB-3000 drop tank suspended on the centreline pylon.

Sukhoi Su-24A trio of Fencer-As at Ostrov AB; note the different location and smaller size of the yellow radiation and air intake warning tri­angles. While the aircraft are in flyable stor­age, the resident Fencer-As were awaiting retirement and disposal on site.

Sukhoi Su-24Su-24 “05 White” is an example of the final variant of the Su-24 “sans suffixe ” known as the Fencer-C. Theis version can be identi­fied by the ECM antenna fairings on the air intake bodies and the fin sides.

Sukhoi Su-24Sukhoi Su-24

Подпись: PTB-3000 drop tanks lying in a neat row on the edge of the hardstand. These huge tanks were used for both ferry flights and long-range operations. ► Sukhoi Su-24A

Another view of Su-24s with PTB-3000 drop tanks under the wings in storage at OstrovABin 1998. The incredible fact that two neighbouring Fencer-As in the line-up carry the same tactical code, 29 White (quite apart from the Fencer-B shown on the preceding page!), is explained by the fact that the Su-24s were ferried to Ostrov for storage from various units and all three bombers obviously belonged to different regiments.

Close-up of the PTB-3000 on the centre­line hardpoint of Fencer-B “29 White”. The fins were set at more than 90° in order to provide adequate clearance between tank and wing/fuselage. Typically of the Soviet/Russian Air Force, drop tanks and such were marked with the aircraft’s tacti­cal code to stop them from being stolen and used on another aircraft – but clearly that did not always help; this drop tank comes from a sister ship coded 23! The yellow rectangles on the fuselage carry maintenance stencils.

Front view of Su-24 Fencer-B “29 White”. The canopy is closed by a heavy canvas cover which protects the Perspex from the ultraviolet radiation of the sun, delaying the appearence of micro-cracks which gener­ate annoying reflections (this phenomenon is known as “silvering”).

The tails of these Fencer-As show how the Su-24 ’s rudder is cut away from below, with a radar warning receiver aerial at the base. On later versions the space between it and the fuselage was occupied by the brake parachute container which was moved up considerably.

Sukhoi Su-24Подпись: Another view of the Fencer-A lineup at Ostrov AB. Left to right: 26 White, 29 White No. 1, 29 White No. 2 (ex 43 White), 24 White and 74 Red. T Sukhoi Su-24Sukhoi Su-24

Sukhoi Su-24

A

Sukhoi Su-24
The Su-24’s wings were moved aft into fully swept position after landing to save space on the hardstand. This view shows the Su – 24’s large spoilers used for roll control.

Sukhoi Su-24

This Fencer-A (52 White) at Ostrov AB has had the entire forward fuselage wrapped in tarpaulins. The wraps bear the aircraft’s tactical code on a black circle. The aircraft is a late-production example, as indicated by the dorsal heat exchanger fairing usually found on later variants.

Sukhoi Su-24

Sukhoi Su-24As the wings are moved back into maximum sweep position the centre of gravity shifts aft, causing the Su-24 to assume a nose-up position. Fortunately, unlike some variable – geometry aircraft, even an unladen Fencer does not exhibit a tendency to tip over on its tail in this situation.

Sukhoi Su-24This Fencer-C undergoing maintenance has had a support placed under the tail – just in case. All wheel well doors are fully open. Note that skin panels mounting the centre portions of the ventral fins have been removed for access to some of the equip­ment in the rear fuselage.

Fencer-A “26 White” at Ostrov AB. The slope behind it faced with concrete slabs functions both as a revetment wall and as a jet blast deflector, allowing the engines to be run after the aircraft has been aligned with the taxiway.

This late-production Fencer-A (note heat exchanger) operated by the Russian Navy’s Black Sea Fleet is rather more fortu­nate. When this picture was taken in 1998 it was fully operational and based at Gvardeyskoye AB in the Crimea which the Ukraine has leased to the Russian Naval Air Arm. Note the generally better surface fin­ish on this aircraft and the different design of the nosewheel mudguard. It is hard to say why a car tire has been place on top of the aircraft. The vehicle in the background is an APA-5 ground power unit on a Ural – 375D truck chassis.

Sukhoi Su-24Sukhoi Su-24
T

Sukhoi Su-24Подпись: ◄ Front view of a Fencer-C at Gvardeyskoye. The pilot’s PPV head-up display (HUD) is visible through the windshield. Sukhoi Su-24

Su-24 Fencer-C “23 White” on the hard – stand at Gvardeyskoye AB in the summer of 1998. This view illustrates the large, high – set brake parachute container and the fin leading edge air intake which are charac­teristic of the Fencer-B/C.

Preparations are in hand for another day’s flying training over the Black Sea as a gag­gle of Su-24s basks in the sun at Gvardeyskoye AB. The nearest aircraft is provided not with the usual tarpaulin but with a modern cockpit cover made of reflective metallised fabric which also keeps the cockpit from turning into a steam bath in the summer season.

Sukhoi Su-24
T

A

Подпись: Fencer-Cs “23 White", “01 White” and “21 White” await the next sortie. Note the drop tank resting on a wooden cradle next to the latter aircraft. ▼ Подпись:Sukhoi Su-24
Gvardeyskoye AB is a large and well – equipped base with a large flight line boasting an excellent surface and a con­crete-lined jet blast deflector, in post – Soviet days, however, it was not much used, and the arrival of the Russian Fencers (the Ukraine operates the type, too) was a welcome spell of activity. Note the bicycle leaned against the aircraft; ser­vicemen cycling around CIS airbases are a pretty common sight. Small wonder, as legging it around the place can get quite tiresome.

Sukhoi Su-24

Sukhoi Su-24

Sukhoi Su-24

Sukhoi Su-24

Sukhoi Su-24

Подпись: ◄ Three-quarters front view of Fencer-C «27 White» (c/n 2315337). Note the “clip-on” ladders. Built-in boarding steps were gen-erally rare on Soviet combat aircraft.. Подпись:Sukhoi Su-24A

Su-24s «01 White», «21 White» and «07 White» in the maintenance area at Gvardeyskoye AB. The second aircraft is unserviceable, being minus the port engine.

Another angle on the maintenance ramp, with a fourth aircraft («27 White») on the left. Note the trestle under the tail of Fencer-B «21 White». Fencer-Cs «01 White» and «27 White» are obviously recod­ed, the tactical code being applied over a blotch of darker paint.

Sukhoi Su-24
A

Fencer-C “28 White” (c/n 1715324) differs slightly in the design of the «goose» and undernose aerial from «27 White» on page 26. Interestingly, the port air intake cover comes from another example coded «26 White» (c/n 2215334).

Подпись: ►

A trailer-mounted ground power unit stands beside Fencer-C «01 White» to pro­vide electric power during maintenance.

Sukhoi Su-24Sukhoi Su-24
Many operational Su-24s show consider­able signs of wear and tear, as exemplified by Fencer-C «27 White» at Gvardeyskoye. Note the unit badge beneath the wind­screen. Again, the aircraft is obviously recoded, the part of the intake body with the tactical code making a marked contrast with the rest of the weather-stained air­frame.

Sukhoi Su-24

A pair of Su-24Ms coded «53 Red» and «57 Red» makes a banked turn over the Volga River near Akhtoobinsk, seat of the Air Force Research Institute. The camera ship is a slow transport, so the bombers fly with the wings at 16° to keep formation.

This view of a Su-24M shows that the wing and stabilator leading edges are parallel when the wings are at 69° maximum sweep. The radome on this particular example is unspeakably dirty, and more dirt emanates from the wing glove fairings near the wing pivots. The retractable FPSh-5M refuelling probe is positioned on the centreline ahead of the windscreen. Note the white colour­ing of the wing/stabilator leading edges and the offset position of the dorsal heat exchanger.

Sukhoi Su-24Su-24M «67 White» parked at the Russian Navy Combat and Conversion Training Centre, OstrovAB. Note the red covers on the dipole aerial aft of the cockpit and the hemispherical sensor of the Mak-UFM missile warning sensor further aft.

Sukhoi Su-24Two more Su-24Ms, «64 White» and «68 White», under wraps at the Russian Navy Combat and Conversion Training Centre. Unlike the Fencer-As depicted earlier, these aircraft are not in storage but are actually based at Ostrov and belong to the 240th GvOSAP (Guards Independent Composite Air Regiment).

Sukhoi Su-24

Sukhoi Su-24Su-24M «66 White» is one of the Fencer-Ds belonging to the Russian Navy Combat and Conversion Training Centre. This example carries an L-080 Fantasmagoriya-A (Phantasm-A) electronic reconnaissance (ELI NT) pod on the centreline pylon.

Sukhoi Su-24Three more views of Su-24Ms «64 White» and «68 White». The main gear doors are fully open. Note the kinked nose gear door consisting of two parts, a characteristic feature of the Su-24M, and the curvature of the colour division line across the wing fences. Note that the tactical code is repeated on the «pig snout» plate at the tip of the nose pitot cover.

Sukhoi Su-24
◄ ►

Sukhoi Su-24

In accordance with the 240th GvOSAP’s status Su-24M «66 White», seen here soak­ing under a horrendous downpour at Ostrov AB, wears a Guards badge (the old Soviet – style version) on the starboard side.

Sukhoi Su-24

Sukhoi Su-24

Sukhoi Su-24

Sukhoi Su-24
Подпись: A Head-on view of a very late-production Fencer-D coded «94 Blue» (c/n 1241613), another 239th TsPAT machine.

This late Fencer-D, a Batch 10 aircraft (c/n 1041611?) belonging to the 239th TsPAT (Aviation Hardware Demonstration Centre) at Kubinka AB, represents the export ver­sion designated Su-24MK. The blue tactical code is noteworthy, but the dark green/ dark earth tactical camouflage with pale blue undersurfaces similar to the one worn by Iraqi Air Force examples is even more unusual for a Russian Air Force Su-24. Note the lack of wing fences on this aircraft.

Sukhoi Su-24

Sukhoi Su-24

A

«94 Blue» is prepared for a mission amid a jumble of ground support equipment that

comes with other Su-24s. Note the packed _______________________________________

brake parachutes on the left. 239th TsPAT Su-24MKs await the next sor-

tie. The Su-24 hardstand at Kubinka is well equipped, with an energy supply system obviating the need for mobile ground power units.

Sukhoi Su-24

Sukhoi Su-24

Two more views of Su-24MK «94 Blue» (c/n 1241613) as is taxies out for a training sor­tie at Kubinka AB, the canopy still open. Unlike the other Fencers operated by the 239th TsPAT, this aircraft wears the stan­dard grey/white colour scheme. Also, this aircraft lacks the wing fences; these were removed from many Su-24s in service.

Sukhoi Su-24

Sukhoi Su-24A

«93 Blue», another camouflaged 239th TsPAT Su-24MK (c/n 1041623), taxies out for a training sortie. The aircraft is armed with S-25-OF heavy unguided rockets on the wing glove pylons and R-73 air-to-air missiles on the outer wing pylons. The «wet» centreline pylon mounts an UPAZ – 1A Sakhalin «buddy» refuelling pod allowing the Su-24 to refuel other tactical aircraft. The angular wing fences of «93 Blue» house APP-50 chaff/flare dispensers.

«94 Blue» is prepared for engine starting, using an APA-5D GPU in this instance; the brake parachute pack lies beside, ready for loading. The APA-5’s lateral cable booms swing out to the sides, allowing the vehicle to power up two aircraft at a time

Sukhoi Su-24

A

«92 Blue», the second of three camou­flaged Su-24MKs operated by the 239th TsPAT, fires up its Lyui’ka AL-21Fafterburn­ing turbofans at Kubinka on a bleak winter’s day. The aircraft shows signs of operational wear and tear, with weathered areas on the forward fuselage side touched up in fresher blue paint.

«92 Blue» taxies out, showing the steel plates protecting the inboard portions of the wing flaps from damage when they slide inside the wing gloves as wing sweep is changed.

T

Sukhoi Su-24

A

Due to the unit’s «showcase» nature the Su-24MKs at Kubinka AB were frequently displayed to various visiting military dele­gations and at open doors days. In the upper photo «91 Blue» is seen together with a Su-25 of the Nebesnyye Goosary (Celestial Hussars) display team which was disbanded soon afterwards.

Sukhoi Su-24Two more views of Su-24MK «91 Blue» during displays at Kubinka. The aircraft is fitted with six MBD3-U6-68 MERs (two of them in tandem on the

Sukhoi Su-24Sukhoi Su-24Sukhoi Su-24Sukhoi Su-24Sukhoi Su-24

Sukhoi Su-24

Sukhoi Su-24

Sukhoi Su-24◄ A

Sukhoi Su-24
Su-24M «11 White» (c/n 1141613) belong­ing to the Sukhoi OKB performs a simulat­ed refuelling of Su-30 «597 White» (c/n 79371010101) belonging to the Ispytateli (Celestial Hussars) display team of the Flight Research Institute during the MAKS-97 airshow.

Sukhoi Su-24

SU-24MK «93 Blue» (c/n 1041623) refuels a sister aircraft coded «91 Blue» during an open doors day at Kubinka AB.

Two Su-24Ms can take on fuel simultane­ously from an IL-78 tanker, as demonstrat­ed by Fencer-Ds «17 White» and «19 White» formating with IL-78M «30 Blue» over Kubinka AB.

T

Sukhoi Su-24Sukhoi Su-24

Sukhoi Su-24

A

Su-24M «45 Red» is one of several operat­ed by the 968th IISAP (Instructional & Test Composite Air Regiment) which is part of the Russian Air Force’s 4th TsBP і PLS (Combat and Conversion Training Centre) in Lipetsk. Note the unit badge and the five mission markers on the nose applied to mark successful live weapons training sor­ties.

Su-24M «42 Red» is prepared for the day’s flying at Lipetsk AB. Like the other resident Fencers, the aircraft has been recoded. The GPU in this case is an APA-5DM based on a diesel-powered Ural-4320.

Sukhoi Su-24«41 Red», another 968th IISAP Su-24M (seen here sharing the ramp at Lipetsk with a Mikoyan MiG-29), wears 14 mission markers. It is equipped with a UPAZ-1A refuelling pod.

Sukhoi Su-24

Sukhoi Su-24

Sukhoi Su-24

Sukhoi Su-24

А

Su-24M «41 Red» features APP-50 chaff/flare dispensers on the upper side of the rear fuselage to enhance the aircraft’s protection against heat-seeking missiles (see also page 44).

Подпись: ◄ ◄
Another view of the flight line at Lipetsk.

Подпись: Su-24Ms lined up under threatening skies at Lipetsk. Note the open brake parachute container clamshell doors on «47 Red».
Sukhoi Su-24

Подпись:Sukhoi Su-24Sukhoi Su-24Sukhoi Su-24

Interestingly, none of the 4th Combat and Conversion Training Centre’s Su-24Ms has the tactical code repeated on the fin, as is customary in the Russian Air Force. On the other hand, the tactical code is repeated on the nose gear door, which is certainly unusual.

◄ ◄

The flight line in Lipetsk is equipped with removable jet blast deflectors made of steel. This type of structure is more com­mon at Soviet/CIS airbases than the «built – in» version of the kind seen at OstrovAB.

Although the Su-24M’s entire nose ahead of the windshield is painted white, not all of it is dielectric. Here the extent of the actual radome is clearly visible, as the special radio-transparent white paint used on dielectric fairings has become so weath­ered as to turn a dirty grey colour.

Sukhoi Su-24

Sukhoi Su-24

Sukhoi Su-24

A

This view of a Su-24M shows the wings at minimum sweep, the high-lift devices (slot­ted flaps and leading-edge slats) and the four underfuselage hardpoints (two in tan­dem and two side by side). The foremost pylon and the two side-by-side pylons are fitted in this case. The airbrakes/main gear doors are just about to close as the aircraft «cleans up» after take-off.

 

Su-24M «44 Red» «burns rubber» at the moment of touchdown in Lipetsk. This is one of several Fencer-Ds upgraded by the Russian avionics/weapons integrator Gefest & T. The mid-life update can be identified by the faired chaff-flare dis­pensers on top of the aft fuselage; the fair­ings have small air intakes at the front. The aircraft carries RBK-500 cluster bombs on the centreline pylons.

 

Sukhoi Su-24

Sukhoi Su-24Close-up of the Gefest & T logo on the air intake ofSu-24M «40 Red», another exam­ple upgraded by the company. Note the «cross-hairs» in the middle of the Cyrillic letter F.

The Su-24Ms of the 4th TsBP і PLS are by far the most actively flying Fencers in Russia, surpassing even those the naval examples based at OstrovAB.

Sukhoi Su-24
T

Подпись:Sukhoi Su-24

Sukhoi Su-24
The Su-24Ms of the 968th IISAP wear a badge depicting a rampant bull with the word «Vsegda» («always» in Russian). The badge signifies readiness to take on any adversary, anytime, anywhere (equvalent to the «Semper paratus» motto of some Western squadrons). A more unofficial interpretation is «we’ll have everybody, everywhere, every time and in every possi­ble way».

Sukhoi Su-24

Sukhoi Su-24Su-24Ms «45 Red», «46 Red» and «40 Red» make a smoky flypast in echelon starboard formation. All three aircraft carry small bombs on the centreline; a minimum ord­nance load is enough for weapons training.

Sukhoi Su-24Sukhoi Su-24
A

The Su-24M served as a basis for the Su-24MR Fencer-E reconnaissance air­craft. This head-on view shows the recon­naissance version’s characteristic asym­metric external stores arrangement with a Efir – 1M electronic intelligence (ELINT) pod on the starboard wing pylon and a dual missile rack with two R-60 AAMs for self – defence under the port wing.

The Su-24MR has a much smaller nose radome, as revealed by the discolouration of the dielectric parts on the T6MR-1 pro­totype («26 White») converted from a Fencer-A (c/n 0115305). The space aft of it is occupied by a Shtyk MR-1 side-looking aircraft radar (SLAR) with elongated flush dielectric panels. The prototype lacked the IFR probe of production examples.

Sukhoi Su-24The nose of the Su-24MR is painted white right up to the windshield, just as on the regular Fencer-D, in order to conceal its special nature from the adversary’s aerial reconnaissance and space surveillance assets. This example coded «15 White» carries an Shpil’-2M laser line-scan pod on the centreline pylon. The white «hump» on the dorsal heat exchanger fairing is not a cap of snow but a dielectric panel. Note that the drop tanks apparently come from another aircraft; even writing the tactical code in really huge digits does not help!

Su-24MR «12 White», seen here at the moment of rotation, carries a large photo reconnaissance/ELINT pod on the centre­line pylon.

Sukhoi Su-24

Sukhoi Su-24
к

This Su-24MR coded «40 Yellow» (c/n 0941648) is used as a demonstrator by the Sukhoi Design Bureau and based in Zhukovskiy, hence the flashy colour scheme in the Russian flag colours of fhite, blue and red. Here the aircraft is fitted with a PHOTINT/ELINT pod; the open camera port is visible here.

Su-24MR c/n 0941648 in the static park of MosAeroShow-92. In this instance it car­ries an Shpil’-2M pod; this near head-on persoective illustrates the pod’s elliptical cross-section. Note that the AAM adapter under the starboard wing is the wrong one, i. e., it is intended for the starboard side (the upper missile should be on the outer side!).

Подпись: r ' і » .y -- •  "ГЖ**** r jfc-r AK Ш ЯЛ& *1 i,; Hi щ

Sukhoi Su-24

This view of the Su-24MR demonstrator at MosAeroShow-92 shows to advantage the special colour scheme.

 

Sukhoi Su-24Sukhoi Su-24

Sukhoi Su-24

Sukhoi Su-24

Sukhoi Su-24

Su-24MR «40 Yellow» (c/n 0941648) – this time with no external stores – takes off from Zhukovskiy’s runway 12 fora demon­stration flight during one of the MAKS air – shows.

«40 Yellow» completes its landing roll on runway 30 at Zhukovskiy. The aircraft is a regular participant of the flying programme during Moscow airshows.

Su-24MR «40 Yellow» passes in front of the crowd. Note the Vee shape of the colour division lines on the underside and the dirty marks sloping downwards from the stabila – tor pivots (a result of the stabilators’ habit of«bleeding» down to maximum deflection when the engines are inoperative).

Sukhoi Su-24

Sukhoi Su-24

The other special mission derivative of the Su-24M was the Su-24MP Fencer-F elec­tronic countermeasures aircraft. This view shows the square-shaped dielectric panels on the sides of the nose (hiding jammer antennas), the characteristic ECM aerials under the nose and on the air intakes, and the centreline Fasol’ jammer pod.

Sukhoi Su-24The few Su-24MPs were stationed in the Far East and the Ukraine (the latter aircraft were retained by the newly-independent Ukraine after the break-up of the Soviet Union). Here, a Russian Air Force Su-24MP in wraps sits on a snowbound ramp at Lipetsk. Note that the outer wings are wrapped up, too.

Sukhoi Su-24This 4th TsBP і PLS Su-24MP coded «15 White» is apparently due to awaken from winter sleep and make a training flight; mechanics are about to remove the canvas covers from the airframe.

«15 White», a Ukrainian Air Force Su-24MP, sits in front of a hardened aircraft shelter (HAS) at Chortkov AB. The immaculate fin­ish on this aircraft is noteworthy.

Sukhoi Su-24

T

Sukhoi Su-24
к

Подпись: As is the case with the Su-24MR, the nose of the Su-24MP is painted entirely white to disguise its role and hopefully prevent its from being specially chosen as a target. ◄
Sukhoi Su-24

Another view of Ukrainian AF Su-24MP «15 White». The nose gear doors are open for maintenance. The 118th OAPREB (Independent ECM Regiment) at Chortkov operating the type transitioned to the Su-24MP from the Yakovlev Yak-28PP.

Sukhoi Su-24This Ukrainian Air Force Su-24M coded «19 White» carries UAF roundels on the forward fuselage (which makes an interesting com­parison with the aircraft on the opposite page) and dragon artwork. Note the L-080 Fanmtasmagoriya-A ELINTpod on the cen­treline station.

Ukrainian Air Force Su-24 Fencer-B «49 White» (c/n 1615324) undergoing mainte­nance at its home base, Chortkov AB. The radome swings open to port, revealing the two antenna dishes; the larger one is for the Puma fire control radar while the small one underneath is for the terrain following radar.

Sukhoi Su-24

A

Two more views of Ukrainian Air Force Su – 24 «49 White» (c/n 1615324) unbuttoned for maintenance, showing the positioning of the UAF roundels on the wings and the removable panels on the upper fuselage for access to the control runs and other systems.

Sukhoi Su-24

Sukhoi Su-24

The nighbouring aircraft coded «50 White» is also being worked upon. The drop tank is inscribed «50 starboard» but the «5» has almost vanished – though it is hard to say why.

The Ukrainian Air Force also managed to keep some Fencer-As flying, as illustrated by «65 White» here. Note the variance in the shield-and-trident tail insignia on individual aircraft; the crudely overpainted red star is showing from under the UAF insignia on this one. The panels carrying the middle por­tions of the ventral fins are removed, show­ing that «65 White» is a bit unairworthy for the time being.

Sukhoi Su-24

Sukhoi Su-24

Sukhoi Su-24

Sukhoi Su-24 Sukhoi Su-24

Soviet/CIS Air Force tactical bomber units sometimes operated a mix of different Su-24 versions, as illustrated by Fencer-A «65 White» sharing the flight line with a Fencer-C. The removed access panels with the middle portions of the ventral fins are lying behind the aircraft.

A ►

The Islamic Republic of Iran Air Force (IRIAF) was one of the few export cus­tomers for the Su-24. Apart from the Su – 24MKs delivered directly from Russia, the IRIAF retained several ex-Iraqi examples which sought shelter in neutral Iran at the closing stage of the 1991 Gulf War. Here, IRIAF Su-24MKs serialled 3-6853 (above) and 3-3810 (right) are seen at military hard­ware exhibitions at Teheran International airport.

Two IRIAF SU-24MK (3-6807 and 3-6811) cruise over the snow-covered mountains of northern Iran. These photos illustrate the two-tone camouflage worn by export Fencers.

Sukhoi Su-24Sukhoi Su-24

Sukhoi Su-24

A

The rear fuselage and tail unit of the Fencer-A, the first production version of the Su-24, showing the low-set brake para­chute container. This particular aircraft serving as a ground instructional airframe at the Ukrainian Air Force Technical School near Kiev is the T6-19 development aircraft («619 White»; c/n 0215307?). Note the photo calibration marking on the tail.

This view clearly illustrates the difference in rear end treatment between the Fencer-A (background) and the Fencer-C. Note the antenna and cooling air intake built into the latter aircraft’s fin leading edge.

Sukhoi Su-24Sukhoi Su-24

Sukhoi Su-24

A

The rear fuselage and tail unit of the Su-24M (illustrated here by 239th TsPAT «92 Blue»), except for the shorter, upward – curved fuel jettison pipes.

 

Close-up of the Su-24M’s brake parachute container, with the radar homing and warn­ing system (RHAWS) antenna array above

 

Sukhoi Su-24Sukhoi Su-24

Подпись: ◄ The Su-24 has four underwing hardpoints. This particular example features non-stan-dard wing glove pylons allowing two stores to be carried on each inboard station. Sukhoi Su-24Подпись: I
The outer wing pylons rotate as wing sweep changes, remaining parallel to the fuselage axis. This aircraft carries 32-round UB-32 rocket pods for firing 57-mm S-5 folding – fin aircraft rockets (FFARs).

Sukhoi Su-24

Sukhoi Su-24Sukhoi Su-24
◄ A

MBD3-U6-68 multiple ejector racks can be carried on any of the Su-24’s hard points. Up to six of these MERs can be fitted at a time for carrying FAB-250 HE bombs. The starboard one of the two elongated ventral fairings visible in the left photo houses a 30- mm Gryazev/Shipoonov GSh-6-30 six-bar­rel Gatling cannon; the muzzle opening is closed by «eyelid» shutters.

Sukhoi Su-24

Double launcher adapters for R-73 air-to – air missiles can be carried on the outer wing pylons. These are usually fitted to the Su-24MR (here, «40 Yellow», c/n 0941648) and Su-24MP.

Sukhoi Su-24Sukhoi Su-24
The Su-24’s hefty wing pivot box is manu­factured as a singe whole with the fuse­lage. This is the port wing pivot and the riv­eted structure around it. Note the shallos strake which organses the airflow around the wing/fuselage joint.

Sukhoi Su-24
Up to three 3,000-litre (660 Imp. gal.) PTB-3000 drop tanks can be carried on the fuselage and inner wing hardpoints. Small canards with negative incidence are fitted at the front to facilitate separation when the tank is jettisoned.

Sukhoi Su-24
T

Подпись: ◄ The «goose» of the Fencer-A/B/C - the characteristic L-shaped strut carrying the pitot, ILS aerial and ESM antennas. Sukhoi Su-24

Подпись: ИНИМЛНИЕ I :lfIEHO lit ТРОГАТЬ
Sukhoi Su-24

Sukhoi Su-24Close-up of the antenna dishes of the Orion-A fire control radar and the Rei’yef terrain following radar below it forming the PNS-24 Tigr navigation/attack avionics suite. The antenns are mounted on a solid frame which swings out to starboard for access to the radar sets. The stencils on the antenna dishes read «Attention! Tuned, do not touch». Note also the V-shaped win­dow of the TP-23E infra-red seeker.

Sukhoi Su-24Sukhoi Su-24
The Su-24 features a sharply swept two – piece windshield made of strong polycar­bonate. It is designed to minimise drag at high speed and withstand birdstrikes which are quite likely during low-level dashes. Note the PVD-7 pitot head in line with the windshield.

The two halves on the canopy can be opened individually, leaving a splitter run­ning down the middle. The construction number is normally stencilled on this (though not on this particular aircraft).

Sukhoi Su-24

Sukhoi Su-24

Sukhoi Su-24

Подпись: ► The Su-24 has a levered-suspension twin- wheel nose gear unit equipped with a mud/snow/slush guard to prevent engine damage on semi-prepared runways. Подпись:Sukhoi Su-24Close-up of the faired centreline pylons carrying MBD3-U6-68 MERs.

Close-up of the Chaika (Seagull) under­nose forward-looking infra-red seeker (FLIR)/laser ranger window and Filin (Horned owl) ESM antennas.

Sukhoi Su-24

Sukhoi Su-24

The instrument panel of the Su-24 featured illuminated push-button switches; some of the engine instruments are of the vertical strip type. The diagram in the centre with the aircraft silhouette and radial beams is the RHAWS indicator.

Overall view of the cockpit. The naviga – tor/weapons systems officer (WSO) sits on the right, detecting targets on the orange – coloured radar screen and the display above it. This aircraft is c/n 1215301 (note «12-01» stencilled in the WSO’s footwell).

Sukhoi Su-24
Sukhoi Su-24

Sukhoi Su-24
A

Another view of the cockpit with its conven­tional electromechanical flight instruments. The throttles are on the captain’s side con­sole.

As the Su-24 can only land safely with the wings at minimum sweep, a read emer­gency wing actuating handle is located on the l/l/SO’s instrument panel to the left of the airspeed indicator.

Подпись: ■fN i I A.I m ^ ■ і Pi 1, V7

Sukhoi Su-24

Sukhoi Su-24

Aptly coded «62 Yellow», the T6-2I was the first variable-geometry prototype.

 

The T6-27 during weapons trials. The aircraft is a Fencer-B.

 

«40 White», a 149th Guards Fighter Regiment Su-24 Fencer-B which saw action in Afghanistan, operating out of Kokaidy, Uzbekistan. Note the 13 mission markers.

 

Sukhoi Su-24Sukhoi Su-24Sukhoi Su-24Sukhoi Su-24Sukhoi Su-24

Sukhoi Su-24

Sukhoi Su-24

Another Su-24M in a highly unusual colour scheme applied in the early 1990s. Note the «eyes» painted on the forward fuselage for bird-scaring. The Russian flag addition to the red star was short-lived.

 

A Ukrainian Air Force Su-24MR. Note the old-style round tail

insignia and the Guards badge.

 

An Iraqi Air Force (a! Quwwat al-Jawwiya al-lraqiya) Su-24MK serialled 24246.

 

Sukhoi Su-24Sukhoi Su-24Sukhoi Su-24Sukhoi Su-24

A production Su-24M with the wings at 69" sweep.

Type 150

Type 150

Purpose: Experimental jet bomber.

Design Bureau: OKB-1, Podberez’ye and later at Kimry, General Director from October 1948 S M Alekseyev.

The first official history of OKB-1 to be pub­lished (in Kryl’ya Rodiny for December 1987, written by I Sultanov) stated that it was led by Alekseyev, whose own OKB had been closed, and that this aircraft was ‘designed in close collaboration with CAHI (TsAGI), the leading experts on aerodynamics and struc­tures being V N Belyayev, AI Makarevskii, G P Svishchev and S A Khristianovich’. At the end it briefly noted that ‘a group from Ger­many, led by B Baade, participated…’ It would have been more accurate to explain that OKB-1 was specifically formed on 22nd October 1946 in order to put to use several hundred German design engineers, led by Prof Brunolf Baade and Hans Wocke, who had been forcibly taken with their families to a location 120km east of Moscow where they were put to work in a single large office block. For the first three years they were fully occu­pied on the Types 131 and 140 described pre­viously. However, mainly because of doubts that the forward-swept wing would ever be
made to work, even before they left Germany they had completed preliminary drawings for a bomber of similar size but with a conven­tional backswept wing. By 1948 this had be­come an official OKB-1 project, called 150. The original Chief Designer was P N Obrubov, but Alekseyev took his place when he arrived. Workers were increasingly transferred to the 150, which grew in size and weight from the original 25 tonnes to produce a bomber inter­mediate between the IL-28 and Tu-16. The brief specification issued by the WS called for a take-off weight between 38 and 47 tonnes, a maximum speed rising from 790 km/h at sea level to 970km/h at 5km, a service ceiling of 12.5km and a range varying with bomb load from 1,500 to 4,500km (932 to 2,796 miles). Only a single flight article was funded, and this had to wait a year for its en­gines. At last it was flown by Ya I Vernikov on 14th May 1951. On Flight 16 on 9th May 1952 the aircraft stalled on the landing approach, and though the aircraft was marginally re­pairable nobody bothered, because of the clearly greater potential of the Tu-88 (proto­type Tu-16). The dice were in any case loaded against a German-designed aircraft. In late 1953 Baade and most of the Germans re­
turned to their own country, where in Dres­den they formed a company called VEB which used the Type 150 as the [highly unsuitable] basis for the BB-152 passenger airliner.

A modern all-metal aircraft, the 150 had a shoulder-high wing with a fixed leading edge swept at 35°. As this wing had hardly any taper the tips were extraordinarily broad, leaving plenty of room for slim fairings housing the re­tracted tip landing gears. The concept of tan­dem centreline landing gears with small wheels at the wingtips had been evaluated with Alekseyev’s own I-215D. At rest the wing had anhedral of-4°, reduced to about -1° 20′ in flight. Each wing had two shallow fences from the leading edge to the slotted flap. Out­board were three-part ailerons. The fuselage was of circular section, tapering slightly aft of the wing to oval. Fixed seats were provided in the pressurized forward section for two pilots, a navigator/bombardier and a radio operator who also had periscopic control of a dorsal turret with two NR-23 cannon. Underthe floor was the RPB-4 navigation/bombing radar, with twin landing lamps recessed in the front. Behind this was the steerable twin-wheel nose gear. Next came the large bomb bay, 2.65m (8ft Sin) wide and high and 7m (23ft)

long, with a load limit of 6 tonnes (13,228 Ib). Next came the rear twin-wheel truck, which on take-off could be suddenly shortened to tilt the aircraft 3° 30′ nose-up for a clean liftoff. The large fin was swept at 45°, with a two-part rudder and carrying on top the 45°-swept tailplane and three-part elevators with dihe­dral of 8°. In the tail was a rear gunner with a turret mounting two NR-23 cannon. Under each wing was a forward-swept pylon carry­ing a Lyul’ka AL-5 turbojet rated at 4,600kg (lO. HOlb). A total of 35,875 litres (7,892 Im­perial gallons) of fuel was housed in eight cells along the upper part of the fuselage, and additional tanks could be carried in the bomb bay. On each side of the rear fuselage was a door-type airbrake. Like almost everything else these surfaces were operated electrical­ly, the high-power duplicated DC system in­cluding an emergency drop-out windmill generator. Each flight-control surface was op­erated by a high-speed rotary screwjack.

Подпись: Three views of 150. Type 150Though flight testing revealed some buffet­ing and vibration, especially at full power at high altitude, the numerous innovations in­troduced on this aircraft worked well. Never­theless, it would have been politically undesirable for what was essentially a Ger­man aircraft to be accepted for production. Thus, hitting the ground short of the runway was convenient.

Dimensions

Span

24.1m

79 ft 1 in

Length (excluding guns)

26. 74 m

87 ft 8% in

Wing area

125m2

1,346ft2

Weights

Empty

23,064kg

50,84715

Loaded

54 tonnes

119,00015

Performance

Maximum speed

at sea level,

850 km/h

528 mph

at 10 km (32,808 ft)

930 km/h

578 mph

Service ceiling about

13km

42,650ft

No other data, except that design range (see a5ove) was exceeded.

 

Type 150

 

Soviet X-Planes. in colour

Soviet X-Planes. in colourSoviet X-Planes. in colour

Soviet X-Planes. in colour

Top: Mikoyan Ye-4 with RD-9I engine Centre: Mikoyan Ye-2A Bottom: Mikoyan Ye-5

 

Photographs on the opposite page: Top: Mikoyan I-3U in late 1956. Bottom: Mikoyan I-7U.

 

Soviet X-Planes. in colourSoviet X-Planes. in colour

♦Ир fifty іНМІ -*

 

;ч2йСЬЄЄі

 

Soviet X-Planes. in colour

Soviet X-Planes. in colour

Soviet X-Planes. in colour

Top: Mikoyan Ye-152/Awith K-9 missiles.

Right and bottom: Two views of the Mikoyan Ye-152P.

Photographs on the opposite page:

Top and centre: Two views of the Mikoyan Ye-8/2.

Soviet X-Planes. in colourBottom: Mikoyan Ye-50/3.

Soviet X-Planes. in colour

Soviet X-Planes. in colour

Soviet X-Planes. in colour

Подпись:Soviet X-Planes. in colourPhotographs on the opposite page:

Top: Mikoyan Ye-152M (Ye-166) record version at Monino.

Centre. MiG-211/1 ‘Analog’.

Bottom: MiG-21PD (’23-31′).

Soviet X-Planes. in colour

Soviet X-Planes. in colour

Soviet X-Planes. in colour

Top: One ofthe Myasischev M-17 prototypes at Monino

Подпись: Opposite page: Three views of the Mikoyan 'I-44'.

Soviet X-Planes. in colourAbove, right and below: Three views of the Myasischev M-55.

Soviet X-Planes. in colour

 

Soviet X-Planes. in colour

Soviet X-Planes. in colour

Soviet X-Planes. in colour

Подпись:Soviet X-Planes. in colourPhotographs on the opposite page:

Top and centre left: Two views of the Myasischev VM-T.

Centre left and bottom: Two views of the Sukhoi T-4 (‘101’).

Soviet X-Planes. in colour

Soviet X-Planes. in colourSoviet X-Planes. in colour

Подпись: Top: Sukhoi S-22I test-bed. Centre left: Sukhoi T10-3. Centre right: Sukhoi T10-24. Bottom: Sukhoi T10-20 record version at Khodynka. Photographs on the opposite page:

Top and centre: Two views of the Sukhoi P-42 record aircraft.

Bottom left and right: Two views of the Sukhoi Su-27UB-PS test-bed.

Soviet X-Planes. in colour

 

Soviet X-Planes. in colour

 

 

Soviet X-Planes. in colour

Soviet X-Planes. in colour

Soviet X-Planes. in colour

Soviet X-Planes. in colour

Three views of the Sukhoi S-37, the lower two taken at the MAKS-99 air show. ,

Soviet X-Planes. in colourPhotographs on the opposite page: Top: Sukhoi Su-37 (T10M-11). Bottom: Sukhoi Su-37 ‘Berkut’.

Soviet X-Planes. in colour

Soviet X-Planes. in colour

Top: Tupolev Tu-155 test-bed at Zhukovskii.

 

Cen/re: YakovlevYak-141 at Khodynka.

Bottom: YakovlevYak-141 second prototype.

 

Soviet X-Planes. in colourSoviet X-Planes. in colour

Midland Publishing book titles are carefully edited and designed by an experienced and enthusiastic team of specialists. A catalogue detailing our aviation publishing programme is available upon request from the address on page two.

We hope that you have enjoyed this book. .

Our associate company, Midland Counties Publications, offers an exceptionally wide range of aviation, railway, spaceflight, naval, military, astronomy and transport books and videos, for purchase by mail-order and deliv­ery around the world.

T o order further copies of this book, or to re­quest a copy of the appropriate mail-order catalogue, write, telephone or fax to: Midland Counties Publications Unit 3 Maizefield, Hinckley, Leics, LE10 1YF Tel: 01455 233 747 Fax: 01455 233 737

Bartini Stal’-6, El, and StaP 8

Purpose: High-speed research aircraft with fighter-likepossibilities.

Design Bureau: SNII, at Factory No 240.

One of the few aircraft designers to emigrate to (not from) the infant Soviet Union was Roberto Lodovico Bartini. A fervent Commu­nist, he chose to leave his native Italy in 1923 when the party was proscribed by Mussolini. By 1930 he was an experienced aircraft de­signer, and qualified pilot, working at the Central Construction Bureau. In April of that year he proposed the creation of the fastest aircraft possible. In the USSR he had always suffered from being ‘foreign’, even though he had taken Soviet citizenship, and nothing was done for 18 months until he managed to en­list the help of P I Baranov, head of the RKKA (Red Army) and M N Tukhachevskii (head of RKKA armament). They went to Y Y Anvel’t, a deputy head at the GUGVF (main directorate of civil aviation), who got Bartini established at the SNII (GVF scientific test institute). Work began here in 1932, the aircraft being desig­nated Stal’ (steel) 6, as one of a series of ex­
perimental aircraft with extensive use ofhigh – tensile steels in their airframes. After suc­cessful design and construction the Stal’-6 was scheduled for pre-flight testing (taxi runs at increasing speed) in the hands of test pilot Andrei Borisovich Yumashev. On the very first run he ‘sensed the lightness of the con­trols., .which virtually begged to be airborne’. He pulled slightly back on the stick and the aircraft took off, long before its scheduled date. The awesomely advanced aircraft proved to be straightforward to fly, but the en­gine cooling system suffered a mechanical fault and the first landing was in a cloud of steam. Yumashev was reprimanded by Barti­ni for not adhering to the programme, but testing continued. Yumashev soon became the first pilot in the USSR to exceed 400km/h, and a few days later a maximum-speed run confirmed 420km/h (261 mph), a national speed record. One of Bartini’s few friends in high places was Georgei K Ordzhonikidze, People’s Commissar for Heavy Industries. In November 1933, soon after the Stal’-6 (by this time called the El, experimental fighter) had
shown what it could do, he personally or­dered Bartini to proceed with a fighter de­rived from it. This, the Stal’-8, was quickly created in a separate workshop at Factory 240, and was thus allocated the Service des­ignation of I-240. Hearing about the Stal’-6’s speed, Tukhachevskii called a meeting at the Main Naval Directorate which was attended by many high-ranking officers, including heads from GUAP (Main Directorate of Avia­tion Production), the WS (air force), RKKA and SNII GVF. The meeting was presided over by Klementi Voroshilov (People’s Commissar for Army and Navy) and Ordzhonikidze. At this time the fastest WS fighter, the I-5, reached 280km/h. The consensus of the meeting was that 400km/h was impossible. Many engineers, including AAMikulin, de­signer of the most powerful Soviet engines, demonstrated or proved that such a speed was not possible. When confronted by the Stal’-6 test results, and Comrade Bartini him­self, the experts were amazed. They called for State Acceptance tests (not previously re­quired on experimental aircraft). These began

Bartini Stal’-6, El, and StaP 8

Top: Stal’-6.

Centre: Three views of the StaP-6. Bottom: Inboard profile of Stal’-6.

 

Bartini Stal’-6, El, and StaP 8Bartini Stal’-6, El, and StaP 8Bartini Stal’-6, El, and StaP 8

Подпись: Stal'-8 model in tunnel.

in the hands of Pyotr M Stefanovskii on 8th June 1934 (by which time the fast I-16 mono­plane fighter was flying, reaching 359km/h). On 17th June the Stal’-6 was handed to the Nil WS (air force scientific research institute), where it was thoroughly tested by Ste – vanovskiy and N V Ablyazovskiy. They did not exceed 365km/h, because they found that at higher speeds they needed to exert consider­able strength to prevent the aircraft from rolling to port (an easily cured fault). On 13th July the landing-gear indicator lights became faulty and, misled, Stefanovskii landed with the main wheel retracted. The aircraft was re­paired, and the rolling tendency cured. Vari­ous modifications were made to make the speedy machine more practical as a fighter. For example the windscreen was fastened in the up position and the pilot’s seat in the raised position. Aftervarious refinements Ste­fanovskii not only achieved 420km/h but ex­pressed his belief that with a properly tuned engine a speed 25-30km/h higher than this might be reached. The result was that fighter designers – Grigorovich, Polikarpov, Sukhoi and even Bartini himself – were instructed to build fighters much faster than any seen hith­erto. Bartini continued working on the StaP-8, a larger and more practical machine than the Stal’-6, with an enclosed cockpit with a for­ward-sliding hood, two ShKAS machine guns and an advanced stressed-skin airframe. The engine was to be the 860hp Hispano-Suiza HS12Ybrs, with which a speed of 630km/h (391 mph) was calculated. Funds were allo­cated, the Service designation of the Stal’-8 being I-240. This futuristic fighter might have been a valuable addition to the WS, but Bar­tini’s origins were still remembered even in the mid-1930s, and someone managed to get funding for the Stal’-8 withdrawn. One reason put forward was vulnerability of the steam cooling system. In May 1934 the I-240 was abandoned, with the prototype about 60 per cent complete.

Everything possible was done to reduce drag. The cantilever wing had straight taper and slight dihedral (existing drawings incor­rectly show a horizontal upper surface). The two spars were made from KhMA (chrome – molybdenum steel) tubes, each spar com­prising seven tubes of 16.5mm diameter at the root, tapering to three at mid-semi-span and ending as a single tube of 18mm diame­ter towards the tip. The ribs were assembled from Enerzh-6 (stainless) rolled strip. Ailerons, flaps and tail surfaces were assembled from steel pressings, with Percale fabric skin. The flaps were driven manually, and when they were lowered the ailerons drooped 5°. Barti­ni invented an aileron linkage which adjusted stick force according to indicated airspeed (this was resurrected ten years later by the Central Aero-Hydrodynamic Institute as their
own idea). The fuselage was likewise based on a framework of welded KhMA steel tubes. Ahead of the cockpit the covering comprised unstressed panels of magnesium alloy, the aft section being moulded plywood. In flight the cockpit was part-covered by a glazed hood flush with the top of the fuselage, giving the pilot a view to each side only. For take-off and landing the hood could be hinged upwards, while the seat was raised by a winch and cable mechanism. Likewise the landing gear was based on a single wheel on the centre­line, with an 800 x 200mm tyre, mounted on two struts with rubber springing. The pilot could unlock this and raise it into an AMTs (light alloy) box between the rudder pedals. For some reason the fuselage skin on each side of this bay was corrugated. The wheel bay was normally enclosed by a door which during the retraction cycle was first opened to admit the wheel and then closed. Extension was by free-fall, finally assisted by the cable until the unit locked. Under the outer wings were hinged support struts, likewise retract­ed to the rear by cable. When extended, each strut could rotate back on its pivot against a spring. Under the tail was a skid with a rubber shock absorber. The engine was an imported Curtiss Conqueror V-1570 rated at 630hp, dri­ving a two-blade metal propeller with a large spinner (photographs show that at least two different propellers were fitted). This massive vee-12 engine was normally water-cooled, but Bartini boldly adopted a surface-evapora­tion steam cooling system. The water in the engine was allowed to boil, and the steam flowed into the leading edges of the wings which were covered by a double skin from the root to the aileron. Each leading edge was electrically spot – and seam-welded, with a soldering agent, to form a sealed box with a combined internal area of 12.37m2 (133ft2).

Each leading edge was attached to the upper and lower front tubes of the front spar. Inside, the steam, under slight pressure, condensed back into water which was then pumped back to the engine. The system was not de­signed for prolonged running, and certainly not with the aircraft parked.

Bartini succeded brilliantly in constructing the fastest aircraft built at that time in the So­viet Union. At the same time he knew per­fectly well that the Stal’-6 was in no way a practical machine for the WS. The uncon­ventional landing gear appeared to work well, and even the evaporative cooling sys­tem was to be perpetuated in the I-240 fight­er (but that was before the Stal’-6 had flown). Whether the I-240 would have succeded in front-line service is doubtful, but it was the height of folly to cancel it. The following data refers to the Stal’-6.

Dimensions Span Length Wing area

9.46m

6.88m

14.3m2

31 ft 14 in 22 ft 6% in 154ft2

Weights

Empty

850kg

1,874 Ib

Maximum loaded weight

1,080kg

2,381 Ib

Performance

v Maximum speed

420km/h

261 mph

Maximum rate of climb

21m/s

4,135ft/min

Service ceiling

8,000 m

26,250ft

Endurance

1 hour 30 min

Minimum landing speed

llOkm/h

68.4 mph

Stal’-8,I-240

Bartini Stal’-6, El, and StaP 8

 

BOK-5

Purpose: To experiment with a tailless (so – called ‘flying wing’) design.

Design Bureau: Bureau of Special Design, Smolensk. Design team led by V A Chizhevskii.

The idea for this small research aircraft came from the BOK-2, though the two aircraft were completely unrelated. In 1935 Chizhevskii began studying tailless aircraft, and obtained funding to build a simple research aircraft. This was completed in early 1937, but was then modified and did not fly until Septem­ber, the pilot being I F Petrov. It ‘flew satisfac- torily…but crashed during a landing’. After being repaired and modified its handling qualities were greatly improved. In 1938 the
modified aircraft was tested by the Nil WS (air force flight-test institute), where it was flown by such pilots at P M Stefanovskii and M A Nyukhtikov. Stefanovskii is reported to have said that the BOK-5 could be ‘flown by pilots of average or even below average abil­ity’ and to have been ‘impressed by its acro­batic capability’.

The BOK-5 was a basically simple aircraft, apart from the flight-control system. The air­frame was made of duralumin. The wing was ofCAHI (TsAGI) 890/15 profile (15 per cent t/c ratio), with two spars with tubular booms and sheet webs, and ribs assembled from chan­nel and angle sections, with fabric covering. The short fuselage was a semi-monocoque, with some box-section longerons and
pressed-sheet frames, the vertical tail being integral. The main landing gears were de­scribed as ‘U-2 type’. On the nose was a 1 00hp M-l 1 engine in a Townend-ring cowl, driving a two-blade metal propeller.

Modifications concentrated on the trailing – edge controls. According to Shavrov there were three movable surfaces on each wing, extending over 21 per cent of the chord. The outermost was a rectangular aileron, and the two inboard surfaces acted in unison as ele­vators. Most photographs and drawings show these surfaces as simple one-piece units hinged to brackets below the trailing edge and with a neutral setting of-5°. However, re­cently a drawing (reproduced here) was dis­covered showing the main surfaces operated

BOK-5

 

BOK-5

BOK-5

by servo action. The pilot’s control cables can be seen to drive a narrow-chord servo control which in turn moves the main surface. The neutral setting of the main surfaces can be seen to be adjusted by a longitudinal-trim wheel with cables to screw-jacks.

The BOK-5 was clearly a safe aircraft which impressed two of the Soviet Union’s best test pilots, but it remained a one-off which was soon forgotten.

Dimensions Span Length Wing area

9.86m

4.365m

23.15m2

32 ft 4Л in 14 ft 4 in

249ft2

Weights

Empty

596kg

1,314 Ib

Fuel

90kg

198 Ib

Loaded

764kg

l,684lb

Performance

Maximum speed

174km/h

108 mph

Take-off run

120m

394ft

Service ceiling

4,850 m

15,900ft

Range

600km

373miles

Endurance

4 hours

Landing speed/

85km/h

53 mph

run

200m

656ft

Top and centre: Two views of BOK-5.

BOK-5BOK-5Bottom: BOK-5 servo control.

Kamov Ka-22

Подпись: Ka-22 (bottom view, record configuration).Kamov Ka-22Kamov Ka-22

Purpose: To create a Vintokryl (screw wing) compound helicopter.

Design Bureau: OKB ofNikolai Kamov, Moscow.

In 1951 various attempts were being made to increase the effective range of helicopters, notably by towing them in the outward direc­tion behind an Li-2, with the lifting rotor au- torotating. The idea occurred to Kamov designer Vladimir Barshevsky that it would be possible to dispense with the tug aircraft if a helicopter could be provided with wings and an aeroplane propulsive system. After obtain­ing permission from Kamov, his deputy V V Nikitin took a proposal to the Kremlin and in a matter of days the OKB had a Stalin di­rective to get started. The engines were to be TV-2 (later TV-2VK) turboshafts supplied by N D Kuznetsov, and many organizations were involved in research for this challenging pro­
ject, starting with model tests in the T-l 01 tun­nel at CAHI. The final go-ahead was issued on 11 th June 1954. An order for three Ka-22s was placed on the factory at Ukhtomskaya, which had been derelict since Kamov was evacuat­ed from there in October 1941. Concentration on the small Ka-15 (the OKB’ sfirstproduction helicopter) and other problems so delayed the programme that on 28th March 1956 pro­totypes 2 and 3 were cancelled. In June 1958 the LD-24 rotor blades began testing on an Mi-4. The Ka-22 itself first lifted from the ground on 17th June 1959, and made its first untethered flight on 15th August 1959, the test crew being led by pilot D K Yefremov. Serious control difficulties were encoun­tered, and the Kamov team were joined by LII pilots VVVinitskii and YuAGarnayev. Though still full of problems the Vintokryl was demonstrated on llth October 1959 to MAP Minister PVDement’yev and WS C-in-C

KAVershinin. Gradually difficulties were solved and in July 1960 an order was received to manufacture three Ka-22s at GAZ No 84 at Tashkent, with D-25VK engines. On 23rd May 1961 a speed of230km/h was held for 37 min­utes. On 9th July 1961 the Ka-22 caused a sen­sation at the Aviation Day at Tushino. On 7 th October 1961, with spats over the wheels and a fairing behind the cockpit, a class speed record was set at 356.3km/h (221.4mph), followed on 12th October by 336.76km/h (209.3mph) round a 100km circuit. The spats and fairing were then removed and on 24th November 1961 a payload of 16,485kg (36,343 Ib) was lifted to 2,557m (8,389ft). Preparations were then made to ferry AM 0I – 01 and the third machine AM 0I-03 from Tashkent to Moscow for Nil acceptance test­ing. Both departed on 28th August 1962. While making an intermediate stop at Dzhusaly 0I-01 rolled to the left and crashed inverted, killing Y efremov and his crew of six. The cause was diagnosed as ‘disconnection of No 24 cable joint of the linkage with the starboard lift rotor collective-pitch control unit’. At Tashkent and in Turkestan the cable joints and cyclic-pitch booster brackets were inspected on 0I-02 and 0I-03 and found to be incorrectly assembled. Changing the direc­tion of rotation of one lifting rotor did little at lower speeds and caused problems at higher speeds – ‘When’, said lead engineer V S Dor – dan, ‘Shockwaves off the blades sounded like a large machine gun’. To improve stability and controllability the complex AP-116 differ­ential autopilot was installed, continuously sensing attitude and angular accelerations, feeding the KAU-60A combined flight-control unit. On 12th August 1964 the heavily instru­mented 0I-03 took off on one of a series of tests conducted with WS (air force) and GVF (civil) crews. Take-off was in aeroplane mode, and 15 minutes later at 310km/h (193mph) the aircraft suddenly turned to the right, ‘not arrested by full rudder and aileron.. .the aircraft turned almost 180° when Garnayev intervened, considering the prob­lem was differential pitch of the pro – pellers…turn rate slowed, but the aircraft pitched into a steep dive…the engineer jetti­soned the flight-deck hatches, and one struck the starboard lift rotor causing asymmetric forces which resulted in separation of the en­tire starboard nacelle. Garnayev ordered the crew to abandon the aircraft’. Three survived, but Col S G Brovtsev, who was flying, and technician A F Rogov, were killed. By this time the Mi-6 heavy helicopter was in wide service, and the Ka-22 was ultimately aban­doned. Several years later the two surviving machines, 0I-02 and 0I-04, were scrapped.

An article about the Ka-22 in Kryl’ya Rodiny (Wings of the Motherland) for November 1992 does not mention the fact that two crashed, which is not widely known even in the former Soviet Union.

The Ka-22 was basically an aeroplane with its engines on the wingtips, with geared dri­ves to both propellers and lifting rotors. The airframe was all light alloy stressed-skin, the high wing having powered ailerons and plain flaps. The fuselage had a glazed nose, three – seat cockpit above the nose and a main cargo area17.9 x 3.1 x 2.8m (58′ 9" x10′ 2" x 9′ 2") for 80 seats or 16.5 tonnes of cargo. The entire nose could swing open to starboard for load­ing bulky items or a vehicle. The original pro­totype was powered by 5,900-shp TV-2VK engines, but these were later replaced by the 5,500-shp D-25VK. These had free turbines geared via a clutch to the main-rotor and via a front drive to the four-blade propeller and a fan blowing air through the oil cooler from a circular inlet above the nacelle. The two free – turbine outputs were interconnected by a 12- part high-speed shaft ‘about 20m long’. The main rotors were larger derivatives of those of the Mi-4. In helicopter mode the propeller drive was declutched and the flaps were fully lowered. Flight control was by differential cyclic and collective pitch. In aeroplane mode the lifting rotors were free to windmill and the aircraft was controlled by the ailerons and tail surfaces. The twin-wheel landing gears were fixed.

Подпись: Above: Ka-22 in speed-record configuration. Below: Two views of Ka-22. Kamov Ka-22Apart from prolonged dissatisfaction with the engines, the problems with the Ka-22 were mechanical complexity, severe losses in the gearboxes and drives and the fact that each lifting rotor blew straight down on top of the wing. Similar charges could be levelled against today’s V-22 Osprey.

Dimensions

Distance between lifting-rotor centres

23.53m

77 11 2% in

Wing area

105m2

1,130ft2

Diameter oflifting rotors,

originally 22.8 m, later

22.5m

73 ft 9% in

Lifting-rotor area (total)

795.2 m2

8,560ft2

Length

27.0 m

88 ft 7 in

Weights

Empty (initially)

25 tonnes

later

28,200 kg

62,169 Ib

Loaded (VTO)

35,500 kg

78,263 Ib

(STO)

42,500kg

93,695 Ib

Performance

Maximum speed

375 km/h

233 mph

Dynamic ceiling (VTO)

5,500 m

18,050ft

(STO)

4,250 m

13,944ft

Potential maximum range

(calculated by Barshevsky) 5,500 km

3,418 miles

STO run

300 m

984ft

Landing over 25m

130m

426.5ft

 

Kamov Ka-22

MiG I-270, Zh

Purpose: To investigate the potential of a rocket-propelled interceptor.

Design Bureau: OJB-155 ofA I Mikoyan.

As a major (in most respects the greatest) pi­oneer of rocket-propelled aircraft, the Soviet Union was intrigued to capture examples of the Messerschmitt Me 163 and Me 263 (Ju248). In 1944the MiG OKB produced ‘doo­dles’ of Me 163 type aircraft, but in 1945 the bureau received a contract to build two pro­totypes of a rocket interceptor (a similar con­tract was awarded to A S Moskalyov). The MiG aircraft was designated >K, the Cyrillic character sounding like the s in ‘measure’, represented in English as Zh, and given the of­ficial designation I-270. To prepare for the air­craft’s handling qualities several OKB and NIl-WS pilots practised with a Yak-3 over­loaded by lead bars. The first I-270 was ready for flight well before its propulsion system. The rocket engine was simulated by an inert mass in the tail, but the Zh-01 was still well below normal weight because it lacked pro­pellants, armament, radio and the windmill generator, in early December 1946 VN Yuganov began testing it as a glider at speeds up to 300km/h (186mph), casting off from a Tu-2 tug. At the start of 1947 Zh-02 was ready, with propulsion, and it began testing (precise date not recorded), the assigned pilot being A K Pakhomov of the WS. On an early flight
he made a badly judged landing which dam­aged 02 beyond economic repair. A few weeks later Yuganov belly-landed 01, and again nobody bothered to repair it.

Generally similar in layout to the Ju 248, ex­cept for the prudent addition of a high-mount­ed horizontal tail, the I-270 was of course all-metal. The small wing had a laminar pro­file, fixed leading edge, slotted flaps and con­ventional outboard ailerons. Structurally it was unusual in having five spars. The tail comprised a large fin and mass-balanced rudder and a small tailplane with elevators which, like the ailerons, had bellcrank fair­ings on the underside. The circular-section fuselage had the wing amidships at mid­depth, attached from below as a single unit. The cockpit in the nose was pressurized by air bottles, and the seat could be ejected by a cordite gun. The tricycle landing gear had a track of only 1.6m (5ft Sin) despite the main wheels being inclined slightly outwards. Wheelbase was 2.415m (7ft llin), the nose unit being steerable. Each unit retracted for­wards, power for the landing gear and flaps being provided by air bottles. The rocket en­gine was an RD-2M-3V, developed by L S Dushkin and V P Glushko. The fuselage behind the cockpit was almost entirely occu­pied by four tanks housing 1,620kg (3,571 Ib) of RFNA (red fuming nitric acid) and 440kg (970 Ib) of kerosene. These were initially fed
by an electrically driven pump, of Me 163 type. As the liquids reached the chamber they were automatically ignited by injection of high-test hydrogen peroxide, of which 60kg (132 Ib) was provided in seven stainless-steel bottles. Once operating, the engine was fed by turbopumps driven by the propellants themselves. The engine had one main thrust chamber, rated at sea level at 1,450kg (3,1971b), and an auxiliary chamber rated at 400kg (882 Ib). Take-off and initial climb was normally made with both in operation, when endurance was about 41/2min. In cruising flight, with the small chamber alone in use (high-altitude thrust being about 480kg, l,0581b), endurance was 9min. An electrical system was served by a battery charged by an Me 163 type windmill generator on the nose. RSI-4 radio was fitted, with an external wire antenna, and armament comprised two NS – 23 with 40 rounds each. A plan to fit four RS- 82 rockets under the wings was not actioned.

By the time they were built these aircraft were judged to be of no military importance.

Photographs on the opposite page: Top right: Zh-01, without engine. Three views of I-270, Zh-02.

MiG I-270, Zh

Span

7.75m

25 ft 5 in

Length

8.915m

29 ft 3 in

Wingarea

12.0m2

129ft2

Weights

Empty (Zh-02)

1,893kg

4,1731b

Acid/fuel/peroxide

1,620/440/60 kg

total 4,674 Ib

Loaded

4,120kg

9,083 Ib

Performance

Maximum speed

at sea level about

936km/h

582 mph

at high altitude

l,000km/h

621 mph

Time to climb to 10,000m

2.37 min

(32,800ft)

Service ceiling

17,000m

55,775ft

Range

not measured

Take-off run

895m

2,936 ft

Landing speed (tanks dry)

137km/h

85 mph

Landingrun

493m

1,617ft

Dimensions

MiG I-270, Zh

MiG I-270, ZhMiG I-270, Zh

Moskalyov SAM-4 Sigma

Moskalyov SAM-4 Sigma

Purpose: To create a fighter with unprecedented speed.

Design Bureau: Aleksandr Sergeyevich Moskalyov, initially in Leningrad and later at the VGU and Aircraft Factory No 18, Voronezh.

Moskalyov was a talented young designer/ pilot who achieved success with convention­al aircraft, notably the SAM-5 light transport (SAM stood for Samolyot [aeroplane] Alek­sandr Moskalyov). He also persistently strove to create highly unconventional aeroplanes of tailless configurations. The first of the latter series was the Sigma, named for the letter of the Greek alphabet. He sketched this in 1933 whilst working at the Krasnyi Letchik (Red flyer) factory in Leningrad, and worked on rocket propulsion with V P Glushko in a seri­ous endeavour to design an aeroplane to reach l,000km/h (621 mph), and if possible to exceed Mach 1 (the first project in the world with this objective). When it was clear that a rocket engine with adequate thrust was many years distant, he recast the design with piston engines. He was working on this when he left Leningrad to be a lecturer at the VGU, the State University at Voronezh. Under the guid­ance of A V Stolyarov he tested models in the VGU’s newly built high-speed tunnel. In September 1934 he submitted his preliminary report on SAM-4 to the GlavAviaProm (direc­torate of aircraft industries), whose Director, 11 Mashkevich, berated Moskalyov for sub­
mitting such ‘unimaginable exotics’.

By 1933 Moskalyov had decided a suitable configuration for a fast aircraft was an all­wing layout with a ‘Gothic delta’ plan shape, with trailing-edge elevens and Scheibe sur­faces (fins and rudders on the wingtips). The drawing shows two main wheels in the front view, but this may be an error as Moskalyov favoured a single centreline gear and, as shown, skids on the wingtip fins. The drawing shows a single propeller, but in fact Moskaly-
ov intended to use two Hispano-Suiza 12 Ybrs engines, each of 860hp (these were later made in the USSR under licence as the M-100), driving separate contra-rotating pro­pellers. The stillborn rocket version would have had a prone pilot, but the piston-en­gined SAM-4 featured a conventional en­closed cockpit; the designer did not explain why this was offset to port.

This proposal was altogether too ‘far out’ for Mashkevich. No data survives.

Purpose: To test an aeroplane with landing gears on the centreline.

Design Bureau: S A Moskalyov at VGU and GAZNolS.

Unaware of the fact that Bartini had already flown the Stal’-6 (see page 16), Moskalyov de­cided in 1933 that it would be prudent to build a simple low-powered aeroplane to investi­gate the landing gear he proposed to use for his fighter, with a single mainwheel and skids under the wingtips and tail. It was flown in early 1934, but later in that year it was modi­fied into the SAM-65/s.

The SAM-6 had a conventional tail, though its moment arm was very short and the air­craft was dominated by its relatively huge wing. The structure was wood, with fabric – covered control surfaces. The engine was a three-cylinder M-23 rated at 65hp. Behind the small fuel tank was the open cockpit. The Scheibe fins were not fitted with rudders, and were described by the designer as ‘plates’. Initial testing was done in early 1934 on centreline tandem skis. Later the front ski was replaced by a wheel on a sprung leg in­side a trouser fairing. After rebuilding as the SAM-66/s testing continued in 1935. This had tandem cockpits with hinged hoods, and in its final form a conventional landing gear was fitted with two trousered mainwheels.

According to Shavrov ‘experiments showed that the centreline gear was quite practical’. Moskalyov intended to use such landing gear on the SAM-7, but ultimately decided not to (see original drawing of that aircraft). The fol­lowing specification refers to the SAM-6t»/s.

Moskalyov SAM-4 SigmaПодпись: SAM-66/s Top right: SAM-6.

Dimensions Span Length Wing area

8.0m

4.5m

12.0m2

26 ft 3 in 14 ft 9 in 129ft2

Weights

Empty

380kg

838 Ib

Fuel

50kg

HOlb

Loaded

500kg

l,102lb

Performance

Speed at sea level

130km/h

81 mph

Service ceiling

3,000 m

9,842ft

Range

200km

124 miles

Landing speed

55km/h

34 mph

Подпись:Purpose: To build a superior two-seat fighter.

Design Bureau: A S Moskalyov, at GAZ No 18, Voronezh.

In 1934 Moskalyov was engaged in engineer­ing later versions of TB-3 heavy bomber for production. This enabled him to use one of this bomber’s engines and propellers to power a fighter (though it was hardly ideal for the purpose). Despite the fact that it was far more complex than any of his previous air­craft, and also had advanced all-metal con­struction, the SAM-7 was completed in October 1935. Pilots considered it potentially dangerous, and factory testing was confined to taxying at progressively higher speeds, ulti­mately making short hops in a straight line.

The SAM-7’s configuration was described by Shavrov as ‘one of the world’s most un­
orthodox’, but in fact the wing was of fairly normal design, with straight equal taper and an aspect ratio of 4.6. Aerofoil profile was R – II, and the thickness/chord ratio 12 per cent, without twist. Apart from this the Sigma (the designer’s second use of this name) was in­deed unconventional. There was no tail. On the wingtips were Moskalyov’s favoured Scheibe fins, fitted with fabric-covered horn – balanced rudders. On the wing trailing edge were outboard ailerons and inboard eleva­tors which, when depressed to a slight angle, were intended also to serve as slotted flaps (though it is difficult to see how they could do so without putting the aircraft into a dive). The main landing gears had single struts, raked forward, with a track of 2.8m (9ft 2in), and were pivoted to the front spar to retract inwards. The surviving drawing shows a tail – wheel, but Shavrov says there was a non-cas-
toring tailskid. The structure was almost wholly Dl duralumin, the maximum wing skin thickness being 2.5mm. The nose inlet served the carburettors. The 830hp M-34 en­gine drove a four-blade wooden propeller, and was cooled by a surface evaporative (steam) system similar to that of the Stal’-6. For use at low speeds a normal honeycomb radiator could be cranked down behind the cockpit. The intended armament was two ShKAS fixed above the engine, fired by the pilot, and a second pair mounted on a pivot and aimed by the rear gunner.

One cannot help being astonished that Moskalyov was able to obtain funds to build this aircraft, because there is no mention of any official approval of the design (which would almost certainly have been refused). One feels sympathy with the test pilots, who were probably right to be hesitant.

Подпись: Dimensions Span (Shavrov) 9.46 m 31 ft 14 in (OKB drawing) 9.6 m to centrelines of fins Length 7.0 m 22 ft 11!* in Wing area 20.0 m2 215ft2 Weights Empty 940 kg 2,072 Ib Loaded 1,480kg 3,263 Ib Performance Max speed (estimated) at sea level 435 knVh 270 mph at altitude 500km/h 311 mph Service ceiling (estimated) 9,200 m 30,184ft Range (estimated) 800 km 497 miles The only measured figure was the landing speed of 1 38 km/h 86 mph
Moskalyov SAM-4 Sigma

Original OKB drawing of SAM-7.

Moskalyov SAM-4 SigmaPurpose: To test at modest speeds an aircraft with a ‘Gothic delta’ wing of very low aspect ratio.

Design Bureau: A S Moskalyov, from 1936 head of his own OKB-31 at Voronezh.

Always eager to build his incredible SAM-4 dart-like fighter, Moskalyov was rebuffed in these efforts until in 1936 US magazines fea­tured futuristic fighters with low-aspect-ratio wings, shaft drives and prone pilots. This spurred GUAP to invite Moskalyov at least to try out his radical ideas with a simple aircraft with an engine of modest power. Following tunnel tests by V P Gorskiy at CAHI (TsAGI), the SAM-9 was built in 70 days, and flown on skis in early 1937 by N S Rybko at Voronezh. Following six flights by Rybko and A N Gusarov, it was taken to Moscow and tested in short hops by Rybko and A P Chernavskii, finally making eight full flights in the hands of Rybko. The aircraft was tricky, demanding an angle of attack of 22° at take-off and landing, and being unable to climb higher than 1,500m (4,921ft). Despite this the NKAP (state com­missariat for aviation industry) suggested that Moskalyov should produce a fighter with a 0.975 aspect ratio wing, and this led to the RM – l. SAM-29.

The SAM-9 Strela (Arrow) was made of wood, with a brilliant surface finish, the cable-operated rudder and elevons having fabric covering. The thick aerofoil was of RAF.38 profile, with local modifications. The cockpit was placed between the two main spars, with a hinged canopy. The engine was a Renault MV-4 aircooled inverted 4-cylinder rated at 140hp. The neat main landing gears had pivoted rubber-sprung cantilever legs for skis or wheels, and the tailskid did not castor. The rudder and broad-chord elevons had trim tabs.

Dimensions Span Length Wing area

3.55m

6.15m

13.0m2

Ilft53/4in 20 ft 2 in 140 ft2

Weights

Empty

470kg

l,0361b

Fuel and oil

60+10 kg

132+22 Ib

Loaded

630kg

l,3891b

Performance

Maximum speed actually

reached, at sea level

310km/h

195 mph

Altitude reached

1,500m

4,921 ft

Take-off run about

200m

656ft

Landing speed/

102km/h

63 mph

run

100m

328ft

Without the support of CAHI (TsAGI) and the (mistaken) belief that such aircraft were planned in the USA, this project would prob­ably have got nowhere. As it was, the SAM-9 merely showed that such aircraft could fly,

Moskalyov SAM-4 Sigma

but with difficulty. In a recent display ofmod – els of Moskalyov aircraft the SAM-9 was de­picted entirely doped red except for the propeller blades, and with a placard giving speed and altitude as 340km/h and 3,400m.

Moskalyov SAM-4 Sigma
Moskalyov SAM-4 Sigma

Purpose: To design a small fighter with ‘push/pull’ propulsion.

Design Bureau: A S Moskalyov, OKB -31 at Voronezh.

This small fighter was unconventional in lay­out, but used an ordinary wing, and had noth­ing to do with the designer’s previous fighter concepts. According to Shavrov ‘Fokker de­signed an almost exact copy of the SAM-13, known as the D.23…’ In fact it was the other way about, because Moskalyov began this de­sign in 1938, immediately after the D.23 had been exhibited at the Paris Salon. The single prototype was first flown by N D Fikson in late 1940, 18 months after the Dutch fighter, and proved difficult to handle, to need inordinate­ly long runs to take off and land, and to have a sluggish climb and poor ceiling. Its designer worked round the clock to improve it, and by
spring 1941 it was undergoing LII testing in the hands of Mark L Gallai. Apart from the fact the nose gear never did retract fully, it was by this time promising, and it was entered for the summer high-speed race, but the German in­vasion on 22nd June stopped everything. The No 31 OKB was evacuated, but this aircraft had to be left behind so it was destroyed. The OKB documents have not been found.

The SAM-13 was powered by two 220hp Renault MV-6 inverted six-cylinder aircooled engines driving 2.2m (7ft 21/2in) two-blade variable-pitch propellers. Between them was the pilot, and Moskalyov fitted the rear pro­peller with a rapid-acting brake to make it safer for the pilot to bail out. The small two – spar wing was sharply tapered, and was fitted with split flaps inboard of the booms carrying the single-fin tail. Apart from welded steel – tube engine mounts, the structure was wood­
en, with polished doped ply skin. The main landing gears retracted inwards and the nose unit aft. One drawing shows the nose unit (which had a rubber shimmy damper) to have had a levered-suspension arm for the axle. The intended armament, never fitted, comprised four 7.62mm ShKAS, two above the front engine and two at the extremities of the wing centre section.

Moskalyov SAM-4 Sigma

Moskalyov knew that the MV-6 was avail­able for licence-production in the USSR, and thought this aircraft might make good use of some. Even had the programme continued without interruption it is hard to envisage the SAM-13 being adopted by the WS.

Dimensions (note: Shavrov’s dimensions

are incorrect)

Span

7.3m

23ftllAin

Length

7.85m

25 ft 9 in

Wing area

9.0m’

96.9ft2

Weights

Empty

754kg

l,6621b

Loaded

1,183kg

2,608 Ib

Performance

Max speed (design figures)

at sea level

463km/h

288 mph

at 4,000m (13,123 ft)

680km/h

423 mph

Service ceiling (estimate)

10,000m

32,808 ft

Range (estimate)

850 miles

528 miles

Landing speed

125km/h

78 mph

Purpose: To renew attempt to build a rocket-engined interceptor.

Design bureau: A S Moskalyov, No 31.

During the Great Patriotic War practical rock­et engines for manned aircraft became avail­able. Moskalyov never forgot that he had been invited by the NKAP to build a fighter with the so-called Gothic delta wing of 0.95 aspect ratio. In 1944, despite much other work, he collaborated with L S Dushkin in planning what was to be the ultimate Strela
fighter. This time most of the technology ex­isted, and S P Korolyov lent his support, but once the War was over such a project was judged to be futuristic and unnecessary. Moskalyov’s OKB was closed in January 1946, and he returned to lecturing, but he contin­ued to study this project for two further years.

The final SAM, also called Raketnyi Moska – lyov, would have followed the usual Strela form in having a Gothic delta wing and no horizontal tail. The wing was fitted with elevens and blended into a needle-nosed
fuselage carrying a large fin and rudder. The Dushkin RD-2M-3V engine, rated at 2,000kg (4,409 Ib) thrust at sea level and much more at high altitude, was installed at the rear and fed with propellants from tanks filling most of the airframe. Two cannon would have been installed beside the retracted nose landing gear.

This was yet another of this designer’s near misses, all of which stemmed from his abun­dance of enthusiasm.

No data survives.

Moskalyov SAM-4 Sigma

Two sketches, one called SAM-29, the other RM-1.

Moskalyov SAM-4 Sigma

 

Moskalyov SAM-4 Sigma

Sukhoi Su-7R

Подпись: Dimensions (final standard) sPan 13.5m 44 ft 3Л in Len§'h 10.03m 32 ft 103/i in Wing area 26.0m2 280 ft2 Подпись:Sukhoi Su-7RПодпись: Aircraft A (Su-6). In 1942 he was authorized to develop the A into a single-seat fighter This flew in late 1943 and underwent various modifications, in its final form being tested by G Komarov between 31st January and 20th December 1945. By this time it was no longer of interest. The Su-7R was based upon the airframe of the Su-6(A), but with a new all-metal semi- monocoque fuselage. The two-seat cockpit

Purpose: To create a mixed-power (piston engine plus rocket) fighter.

Design Bureau: OKB of Pavel Osipovich Sukhoi, Moscow. Note: this aircraft was not related to the later Su-7 jet fighter.

Having in 1941 seen the Su-2 attack bomber accepted into production, Sukhoi subse­quently never dislodged the IL-2/IL-10, de­spite the excellence of different versions of
was replaced by a single-seat cockpit with a unged canopy with a fairing behind it. An ad­ditional fuel tank replaced the internal weapons bay, and the large-calibre wing guns were removed, the armament being three synchronized ShVAK 20mm cannon each with 370 rounds. At first the ASh-71 type engine was retained, but this was soon re­placed by a smaller and less-powerful ASh – 82FN, rated at l,850hp on 10o-octane fuel driving an AV-9L four-blade propeller. In 1944 aTK-3 turb o sup ercharger was added on each side, and an RD-lKhZ rocket engine was in­stalled in a new extended tailcone. As de­scribed previously, this Dushkin/Glushko engine had a single thrust chamber burning the same petrol (gasoline) as the piston en­gine, which ignited hypergolically (instant re­action) when mixed with RFNA (red fuming nitric acid). The acid was housed in an addi­tional tank behind the cockpit, with access through a dorsal hatch. This tank gave a con­tinuous burn time of about four minutes. When rocket power was selected, the pro­pellants were fed at a rate of 1.6kg (3.5 Ib) per second, giving a thrust of300kg (661 Ib) at sea level and about 345kg (761 Ib) at high altitude.

By 1945 this aircraft was no longer compet­itive, and the rocket engine never went into production. In any case, during a practice for the first post-war air display in late 1945 the rocket engine exploded, casing a fatal crash.

3,250kg 7,1651b

480/50/1 80 1,058/110/397Ib

4j36°kg 9,612 Ib

Sukhoi Su-7R

Performance Maximum speed

at sea level (no rocket) 480 km/h

at 7.5 km (24,600 ft) with rocket 680 km/h at 12 km (39,370 ft) with rocket 705 km/h Service ceiling 12,750m

Range (with full rocket bum) 800 km Take-off 300 m

Landing speed/ 125 km/h

350m

 

298 mph 423 mph 438 mph 41,831 ft 497 miles 984ft 78 mph 1,148ft

 

Sukhoi Su-7R

Sukhoi Su-7R

Tsybin RSR, R-020

Tsybin RSR, R-020

Purpose: To improve the RSR further.

Design Bureau: OKB-256, Podberez’ye, later repeatedly transferred (see below).

Upon receipt of data from the NM-1, the RSR had to be largely redesigned. Construction was only marginally held up, and in early 1959 drawings for the first five pre-series R-020 air­craft were issued to Factory No 99 at Ulan-Ude. However, Tsybin’s impressive aircraft had their commercial rivals and political enemies, some ofwhom just thought them too ‘far out’, and in any case vast sums were being transferred to missiles and space. On 1st October 1959 President Khrushchyev closed OKB-256, and the Ministry transferred the RSR programme to OKB-23 (General Constructor VM Mya – sishchev) at the vast Khrunichev works. The Poberez’ye facilities were taken over by A Ya Bereznyak (see BI story). The Khrunichev management carried out a feasibility study for construction of the R-020, but in October 1960 Myasishchev was appointed Director of CAHI (TsAGI). OKB-23 was closed, and the entire Khrunichev facility was assigned to giant space launchers. The RSR programme was there­upon again moved, this time to OKB-52. At first this organization’s General Constructor V N Chelomey supported Tsybin’s work, but in­creasingly it interfered with OKB-52’s main programmes. In April 1961, despite the difficul­ties, the five R-020 pre-series aircraft were es­sentially complete, waiting only for engines. In that month came an order to terminate the pro­gramme and scrap the five aircraft. The work­force bravely refused, pointing out how much had been accomplished and how near the air­craft were to being flown. The management quietly put them into storage (according to

V Pazhitnyi, the Tsybin team were told this was ‘for eventual further use’). Four years later, when the team had dispersed, the aircraft were removed to a scrapyard, though some parts were taken to the exhibition hall at the MoscowAviation Institute.

The airframe of the 1960 RSR differed in sev­eral ways from the 1957 version. To avoid sur­face-to-air missiles it was restressed to enable the aircraft to make a barrel roll to 42km (137,800ft). The wings were redesigned with eight instead of five major forged and ma­chined ribs between the root and the engine. The leading edge was fitted with flaps, with maximum droop of 10°. The trailing edge was tapered more sharply, and area was main­tained by adding a short section (virtually a strake) outboard of the engine. These exten­sions had a sharp-edged trapezoidal profile. According to Tsybin These extensions, added on the recommendation of CAHI, did not pro­duce the desired effect and were omitted’, but they are shown in drawings. In fact, CAHI real­ly wanted a total rethink of the wing, as related in the final Tsybin entry. The tailplane was re­designed with only 65 per cent as much area, with sharp taper and a span of only 3.8m (12ft 5%in). Its power unit was relocated ahead of the pivot, requiring No 6 (trim) tank to be moved forward and shortened. The fin was likewise greatly reduced in height and given sharper taper, and pivoted two frames further aft. The ventral strake underfin was replaced by an external ventral trimming fuel pipe. The main landing gear was redesigned as a four – wheel bogie with 750 x 250mm tyres, and the outrigger gears were replaced by hydraulically extended skids in case a nacelle should touch the ground. The pilot was given a better view,
with a deeper canopy and a sharp V (instead of flat) windscreen. The camera bay was re­designed with a flat bottom with sliding doors. The nose was given an angle-of-attack sensor, and a pitot probe was added ahead of the fin. The drop tanks were increased in diameter to 700mm (2ft 31/2in) but reduced in length to 5.8m (19ft) instead of 11.4m (37ft 4Min). Not least, the D-21 engines never became available, and had to be replaced by plain afterburning turbojets. The choice fell on the mass-produced Tuman – skii R-l IF, each rated at 3,940kg (8,686Ib) dry and 5,750kg (12,676 Ib) with afterburner. These were installed in longer and slimmer nacelles, with inlet sliding centrebodies pointing straight ahead instead of angled downwards.

There is no reason to doubt that the pre-se­ries RSR, designated R-020, would have per­formed as advertised. It suffered from a Kremlin captivated by ICBMs and space, which took so much money that important aircraft programmes were abandoned. The United Kingdom similarly abandoned the Avro 730, a reconnaissance bomber using identical tech­nology, but in this case it was for the insane rea­son that missiles would somehow actually replace aircraft. Only the USA had the vision and resources to create an aircraft in this class, and by setting their sights even higher the Lockheed SR-71 proved valuable for 45 years.

Dimensions

Span (with small tip extensions) 10.66 m

34 к 1 13/ in

Length (excl nose probe)

28.0 m

91 ft 10% in

Wing area

64 m2

689 ft2

Weights

Empty

9,100kg

20,062 Ib

Fuel

10,700kg

23,589 Ib

Loaded

19,870kg

43,805 Ib

Performance

Cruising speed at reduced

altitude of 12 km (39,370 ft) 2,600 km/h

1,616 mph (Mach 2.44)

Service ceiling

22,500 m

73,819ft

Range

4,000 km

2,486 miles take-off

Take-off run

1,200m

3,937ft

Landing speed/run

2 1 0 km/h

130.5 mph

(with braking parachute)

800 m

2,625 ft

R-020 centre fuselage at MAI.

Tsybin RSR, R-020