Category Taking Science to the Moon

The Legacy of Apollo

One of the questions most frequently asked at the end of Project Apollo, and even today, is What did we learn? It’s a good question. It would often be followed by other, unanswerable questions. Was the project worth the cost? Wouldn’t we have been better off spending the billions of dollars on X, Y, or Z?

Addressing the unanswerable questions first from the perspective of science, it is difficult to calculate the part of Apollo’s cost that funded scientific experi­ments for the Apollo flights, because the many components that made up Apollo science were carried in different parts of the NASA budget. Should it include the salaries and overhead for all the civil servants involved? Should it include the support contractors’ costs for those who worked at NASA centers and headquarters and were involved in the planning and development of the science? How about facilities such as the Lunar Receiving Laboratory? The LRL cost over $16 million to build and equip, plus additional operating expenses during the missions. Add to that sum the $19 million given to the sample analysis principal investigators, and the expenses for quarantine and sample analysis alone total over $35 million.

Considering how the post-Apollo studies contributed to Apollo science, should any of those costs be added to the total? Should all the advisory commit­tees and summer conferences that were funded by NASA? They contributed important advice and helped us select the experiments included on the mis­sions. And of course there were the costs associated with integrating experi­ments on the lunar module and the command and service module and training the astronauts in their use and deployment. Finally, there is the cost associated with experiment data reduction. Calculating an accurate sum for all these activities is probably impossible at this late date, and the items mentioned probably overlook other costs that would contribute to a grand total.

NASA bookkeeping, like that of many government agencies and cabinet departments, used a document called a program operating plan. The POPs categorized expenditures by program, and within each program the expendi­tures were further delineated by a work breakdown structure or, in simpler language, an item-by-item accounting. These terms are important only to show that there was great rigor in keeping track of taxpayers’ dollars. Each office and center within NASA kept these records, and they were compiled and reviewed by the NASA headquarters Office of Programing. This office not only kept track of expenditures but was also the focal point for preparing each year’s budget requests to the Bureau of the Budget and its successor, the Office of Manage­ment and Budget, and then with other senior management presenting and defending the budget before Congress. The name of this office changed through time, but the men who ran it, such as DeMarquis ‘‘Dee’’ Wyatt and William Lilly, were both feared and admired because of their power to approve or disapprove program requests.

In the Apollo era, budget control was a hallmark of NASA, and discussion of the flow of funds for all programs took up a major part of Jim Webb’s and Bob Seamans’s monthly program reviews with the associate administrators and lesser managers. Program managers were expected to keep their books up to date and in good order. Any deviations from approved schedules and budgets during an individual program’s lifetime had to be fully explained and justified, on pain of strong reprimand or even demotion or removal. Considering the uniqueness of this new frontier and the challenges it represented, only a few large overruns occurred. The Surveyor program was an example. The problems that have plagued the International Space Station in recent years, including schedule delays and large cost overruns, would not have been tolerated in the early days of NASA by either NASA management or Congress. But that is a story for another day.

My ‘‘hard’’ number for Apollo science includes estimates of the components listed above and is based on reviews of microfiche records, internal memos, and POPs, of which the last one I had access to was POP 72-1C.1 There may have been later POPs covering Apollo science, but this one showed closeout costs for the last four years of the surface and orbital science programs and contractor manpower ramping down toward zero. The total reported in POP 72-1C was $150,000,000—a nice round number, but I believe it was understated. In a memo to NASA Public Affairs, responding to a request for the costs of the Apollo 15 experiments, we made an estimate of $36 million.2 In another memo, this time to the NASA budget office in March 1972, we estimated a total expenditure of $85 million for the Apollo 16 and Apollo 17 missions, a total of $121 million for just the J missions.3 This indicates to me that the 1972 POP did not include important pieces; however, you can’t tell the basis for the number— what was included or what may have been left out. In William David Comp­ton’s history of Apollo, Where No Man Has Gone Before, he indicates that slightly more than $218 million was spent on science payloads.4 But once again it is not completely clear what this number represents.

An estimate I made at the end of the program was $265 million, based on calculating the cost of each experiment and adding other related contractor costs available at the time. But that estimate did not include some of the items described earlier. I now believe the total would come close to $350 million in 1972 dollars, not including civil service salaries and benefits. If you accept this number, the science piece of Apollo was about 1.5 percent of the total $25 billion spent.

If we factor into the $25 billion the national prestige value of being the premier spacefaring nation, the excitement of visiting a new world, the knowl­edge gained about the Moon and Earth, and the advanced technologies that resulted from Apollo (some call it spin-off), we can try to answer the unanswer­able. Was it a bargain, money well spent, or money wasted? My judgment: unequivocally a bargain!

What did we learn? remains an important question because as students of the Moon continue to examine material brought back during the Apollo mis­sions, fresh results are still coming in. New information from the recently completed Clementine and Lunar Prospector missions adds to our knowledge and clarifies or extends the Apollo results. More than 1,100 abstracts were received for the Thirtieth Lunar and Planetary Science Conference held in Houston in 1999, approximately one-quarter dealing with lunar subjects, at­testing to the continued interest in Moon-related studies. Programs to return to the Moon, based on a desire to learn more about our nearest celestial neighbor and perhaps begin to exploit its resources, are constantly proposed.

If, as many of us who worked on Apollo fervently hope, the United States (perhaps in concert with other nations) mounts another Apollo-type project to send astronauts back to the Moon or on to Mars, then we must be prepared to justify and explain to the American public the benefits of spending a nontrivial amount of the national budget on such undertakings. At the moment NASA management does not support going back to the Moon, on manned or un­manned missions. In spite of the interest in recent Mars missions, sustaining public support for extended Mars exploration will be difficult. To the casual observer, or the average taxpayer, one picture of a Mars landscape will look much like the last one, even if it includes an astronaut holding a rock, pointing at a mountain, or riding around on some strange-looking vehicle.

If a political objective is not the driving force at the time the debate begins, as it was at the start of the Project Apollo, then we must be able to predict scientific and economic benefits of value to those on Earth. Such predictions will be difficult to make unless we can provide a connection to what we gained from the Apollo Moon landings and extrapolate this knowledge in a rational way to these new projects. Intellectual adventures will not suffice, even if one believes that the thrill of exploring new lands still survives in our species.

Briefly, here is a summary of the findings and lessons learned from Apollo and the Lunar Orbiter missions that immediately preceded Apollo. A few of Lunar Orbiter’s contributions are discussed briefly, and the notes list references that provide details on this program. From all the missions and other pro­grams, such as the radar studies conducted from Arecibo in Puerto Rico, by the end of Apollo we came to a new understanding of the Moon.

Lunar Orbiter’s comprehensive, high resolution coverage of the Moon’s sur­face allowed lunar students to expand their understanding of the Moon in significant ways.5 For example, the higher resolution pictures permitted the United States Geological Survey lunar mappers to refine the geological studies they had been making for the previous four or five years based on telescopic observations. Before Lunar Orbiter returned its magnificent photographs, geological formations mapped by USGS workers were distinguished by such characteristics as subtle differences in albedo (reflective power), surface rough­ness, and crater counts. With higher resolution Lunar Orbiter photographs in hand, the quality and speed of their work increased. The validity of their interpretations would have to await the additional information to be returned by Apollo missions.

In retrospect, one would have to give USGS a good grade (perhaps a B+) for its early efforts. Physical differences were no doubt present; what they repre­sented was difficult to predict. Forced to make interpretations based on these subtle distinctions, and working under the great disadvantage of not having material in hand that represented their mapped formations, some overesti­mated the complexity of the Moon’s surface. Perhaps the best illustration was the view that many places on the Moon exhibited volcanic features such as cinder cones. The Apollo 16 landing site, selected in part to permit the astro­nauts to sample this type of feature, returned mostly breccias and no volcanic ejecta. However, the famous ‘‘orange soil’’ found at the Apollo 17 site is inter­preted to mean that it was formed during lava fountaining from a volcanic vent, but almost 4 billion years ago. No traces of ‘‘recent’’ volcanism were found. Nothing significant seems to have occurred on the Moon for at least the past 50 to 100 million years except for random impacts.

Lunar Orbiter’s farside coverage allowed the USGS mappers to extrapolate their extensive nearside studies to this perpetually hidden face. Its appearance, highly cratered and without the vast, smooth maria common on the nearside, differed from the face of the Moon that had been studied for centuries. It looked much more like the nearside lunar highlands. With a few exceptions, such as the large crater named Tsiolkovsky and the Mare Moscoviense basin, the large farside impacts had not filled with marelike flows as had many of the large nearside impacts. This difference was attributed to the pull of Earth’s gravity, with the nearside being much more strongly influenced during the early history of the Moon than the farside, thus allowing lunar basalts to fill the low – lying nearside basins. This conclusion supported the belief that early in its formation the Moon had become locked into its present orbit, with its orbital rotation around its axis of twenty-eight days equaling its orbital period around the Earth.

Lunar Orbiter also permitted a more detailed analysis of the Moon’s gravita­tional field and the irregularities in the field. Its ability to provide this informa­tion had been proposed by Gordon McDonald. By closely tracking each space­craft’s orbital path and calculating how it differed from the path that would be expected if the Moon’s gravity field were uniform, lunar geodesists were able to accurately plot, for the first time, the figure of the Moon. This close tracking led to the discovery of the ‘‘mascons’’ (mass concentrations) mentioned earlier. Deviations from Lunar Orbiter’s calculated flight path suggested that material denser than the surrounding terrain formed the widely scattered mascons. These data were upgraded by tracking the CSM on each Apollo mission, and more recently they have been refined by tracking the orbits of Clementine and Lunar Prospector.

Finding the mascons has important geological and geophysical implications that should contribute to deciphering the Moon’s early history. In addition, knowing the mascons’ positions will be especially useful when we return to the Moon with either manned or unmanned missions, because it will allow us to program the landers to arrive precisely at their designated landing sites. But Lunar Orbiter, Apollo, and recent missions could not tell us what the mascons are or how they were formed. Resolving these questions will have to await additional measurements made by the next generation of spacecraft.

Ranger, Surveyor, Lunar Orbiter, and Apollo put to rest for most lunar students the question of the origin of almost all lunar craters: they were formed by impacts. This knowledge has led us to look at the Earth’s history in a new light.6 Before the Apollo landings, most Earth scientists believed that in its earliest history the Earth had witnessed a period of intense infall of large and small planetesimals, meteorites, and other debris from a newly forming solar system. Little direct evidence of this epoch could be found in the geological record, and until recently only a few impacts had been positively identified and studied. The rate at which these large and small impacts bombarded the Earth was pure speculation, but those who studied these features believed large im­pacts were probably common.

Today some terrestrial features and events that had previously been difficult to explain are being attributed to large impacts. The most fully reported event of this type provides an explanation for the disappearance of the dinosaurs and many other species of animals and plants at the end of the Cretaceous period, some 65 million years ago. Proposed in 1980 by Luis Alvarez, his son, and several other researchers,7 the theory was based on the discovery in Italy of a thin rock formation, enriched with the element iridium, at the Cretaceous/ Tertiary geological boundary.

They concluded that the best explanation for this anomaly was that a large object composed of material containing a high percentage of iridium, a com­mon constituent of certain types of meteorites but not common in Earth rocks, had struck the Earth at this precise time. Debris from this impact spread over a large portion of the Earth’s surface and was deposited as a thin layer that included the formation discovered in Italy. This proposal was met with great skepticism by many in the scientific community, but some, including Gene

Shoemaker and others who had been involved in Apollo science, supported the idea, knowing that large impacts had affected the Moon’s history. This Creta­ceous impact has been confirmed, and through the work of many scientists, the probable impact site has now been located on the edge of the Yucatan peninsula in the Gulf of Mexico. Whether it led to the species extinctions observed at the end of the Cretaceous period is still being debated.

The Apollo program’s emphasis on understanding impact craters spurred the search for and discovery of other large Earth impacts. For example, an ancient impact crater has been found in Texas, at Sierra Madera; another underlies Chesapeake Bay; and a buried crater in southeastern Nevada is be­lieved to have created the Alamo breccias. The identification of impact events in the geologic past has accelerated as our diagnostic techniques have improved. Australia has been especially productive for the study of impact craters be­cause much of its surface has remained relatively undisturbed for millions of years. It was while undertaking such a study that Gene Shoemaker met his untimely death.

These discoveries have led to a related field of study, tracking objects orbiting near the Earth and crossing the Earth’s orbit (hundreds are now known) that might strike the Earth in the future. Today, if such an object took aim at Earth, it could not be avoided. If another object the size of the one that hit the Earth at the end of the Cretaceous period were to strike the planet, it would trigger a series of events with unimaginable consequences. But not much is being done to prepare for such an admittedly low-probability event. Some believe we could avoid such an impact, if it was predicted, by developing an early warning system that would track large meteors or asteroids and then deflect them with missiles. The study of impacts on the Earth and Moon has resulted in a model that predicts the frequency of impacts on the Earth. This model suggests that a large impact occurs approximately once every 50,000 to 100,000 years. Perhaps this knowledge will motivate world governments to work together for a solution that will prevent such a catastrophe.

Although a relatively small event when it occurred, the Meteor Crater im­pact has been dated at approximately 50,000 years ago. It undoubtedly was a devastating blow for a large region surrounding the impact point, creating ground tremors and clouds of dust and debris that would have extended over hundreds of square miles. At that time the only casualties may have been a few mastodons and other wildlife. If such an event occurred today, Flagstaff and other nearby towns would probably be destroyed, and cities as far away as Tucson and Phoenix would feel its effects. Are we due for another big impact- soon? The model suggests we may be.

By the end of the Apollo missions, the six successful landings and their predecessors had returned a wealth of new information about the Moon. Before the landing missions, Apollo 8 and Apollo 10 traveled to the Moon but did not land. Apollo 8 was the historic mission that orbited the Moon at Christmas 1968, with men being captured for the first time by the gravity field of a ‘‘planet’’ other than the Earth. Although we had in hand excellent close-up photographs from Lunar Orbiter, this was the first time men were able to view the Moon at close range.

The lunar farside especially impressed the crew of Apollo 8; Frank Borman, Jim Lovell, and William Anders reported seeing a jumble of craters on top of craters. Orbiting sixty-nine miles above the surface, they described the Moon during their Christmas Eve greeting to those back on Earth as ‘‘a vast, lonely, forbidding. . . expanse, . . . it certainly would not appear to be a very inviting place to live or work.’’8 Fortunately we were not going to try to make an Apollo landing on that ‘‘forbidding’’ farside terrain. Apollo 8 also gave us the first views of our home planet from a great distance away; the Earth was described as an oasis, isolated in the emptiness of space. Some have credited this dramatic view of Earth with imparting a new awareness of how unique our planet is and how important it is to protect its fragile environment-an unexpected bonus from the Apollo program.

Apollo 9, launched in March 1969, was the first test of all the Apollo hardware working together as it would for a Moon mission except that the crew and the equipment never left Earth orbit. It was followed two months later by Apollo 10, a dress rehearsal for the first attempt to land on the Moon. The crew of Tom Stafford, Gene Cernan, and John Young would perform all the complicated maneuvers required of a landing mission except for the most crucial-the actual landing. Stafford and Cernan would separate from the CSM in lunar orbit, descend to less than ten miles above the lunar surface, jettison the landing stage, activate the LM ascent engine, and rendezvous with the CSM. Close, but oh so far from making history. In addition to testing all the elements leading up to a landing, they proved the accuracy of Apollo targeting and the astronauts’ ability to see their landing point and observe potential hazards at a site similar to that expected for the first landing in the Sea of Tranquility. Apollo 8 and

Apollo 10’s reconnaissance also confirmed what had been seen in the Lunar Orbiter photographs: smooth landing areas were available in the ‘‘Apollo zone.’’

Cernan and Young would get another chance to perform a Moon landing; Stafford is the only man to get within ten miles of the Moon and never land. I’m sure he would gladly forgo that honor for the thrill of having kicked a little Moon dust. Two months later the first landing would take place. Many other Apollo prime and backup crew members—Walter Schirra, Donn Eisele, Walt Cunningham, Jim McDivitt, Gordon Cooper, Joe Engel, and Rusty Schweick- art—would suffer the disappointment of being selected to test the Apollo hard­ware but never getting to the Moon. But without their key roles and dedication the Moon landings could not have been undertaken.

By the time Apollo 11 splashed down we had developed the routine by which the science results would be processed and disseminated. The astronauts would be picked up by a navy helicopter operating from an aircraft carrier, transferred to a specially designed trailer on the carrier, and flown back to Houston to be placed in quarantine in the LRL. The samples, film, and other data would be removed from the command module and flown to the LRL in their own air­craft. Once in the LRL, the astronauts would be debriefed by a team of scientists and engineers while the samples were unpacked, examined, and cataloged and the photographs were developed. In the meantime, we would be receiving data from the instruments left on the Moon.

This routine was followed for all the missions, with the major difference that after Apollo 14 the astronauts and the samples no longer had to spend time in quarantine and the debriefings became much more relaxed and easier to carry out. Without an intervening barrier, we could question the crews much more directly as we tried to piece together all they had done. This was an important change, because the last three missions were more complex and the astronauts’ recollections more valuable in reconstructing their long traverses on the lunar roving vehicles. I will describe only how we debriefed the Apollo 11 crew and studied the first samples, but I will include results from all the missions to explain what Apollo taught us.

The Apollo 11 astronauts had their first science debriefing on August 6, 1969. Before that debriefing the Manned Spacecraft Center engineers had reviewed the nuts and bolts of the mission—the ‘‘technical debriefings’’—going over those aspects of their flight that might affect the success of the next mission. Although all spacecraft systems were carefully monitored by telemetry, with records kept of all discrepancies, the astronauts’ answers to questions would often clear up troubling inconsistencies or uncertainties in the records. Neil Armstrong’s and Buzz Aldrin’s descriptions of their landing maneuvers and their difficulties in finding a good landing site were examples of how their experience contributed to improving the landing sequence for Apollo 12 and later missions. All members of the crew of Apollo 12—Pete Conrad, Dick Gor­don, and Al Bean—as well as the backup crew led by Dave Scott, were the most interested participants in these debriefings. Pete must have gained valuable knowledge, because he landed right on the money, within easy walking distance of his target, Surveyor 3.

Although I was invited to the science debriefing, I sat in one of the back rows while a few designated individuals, including Don Wise and O. B. O’Bryant from our headquarters office, were allowed to ask questions. It was a strange scene for such a momentous occasion, with the questioners and hangers-on peering at the three astronauts, who sat behind a brightly lit picture window like animals in a zoo. Unfortunately the transcript of the debriefing does not always identify the questioner, but Gordon Swann and Henry Holt of USGS and MSC’s Gene Simmons, among others, covered all the important questions relating to the astronauts’ surface observations, especially those that might affect what was planned for the next mission.9

Everyone involved in this debriefing, and in debriefings for later missions, came away with a great admiration for the astronauts’ powers of observation and recall. When these traits were added to their innate resourcefulness and doggedness in following and going beyond their ambitious timelines, every possible ounce of science was gleaned from the missions in spite of the con­straints they were working under. Some might take issue with that statement, but I believe it is true; the training and simulation had paid off beyond our expectations. Explorers of all generations have been eulogized for daring to take chances beyond the imagination of the ordinary person—for the astronauts it was called ‘‘the right stuff.’’ However you wish to identify this urge to explore, it was undeniably present in these first voyagers beyond the friendly Earth who risked never returning to their home planet, a danger never before faced by explorers.

The Apollo 11 science debriefing was our first chance to talk directly to the crew after their return from the Moon. After two weeks of isolation, interro­gated every day by engineers and technicians, the astronauts were in a surpris­ingly good mood. From time to time one could sense a little irritation at questions that were repetitive or trivial, but all in all there was great coopera­tion, and we gained much from listening to their firsthand observations while they were still fresh in their minds. Their photographs had been developed and were available to supplement the discussion, as was the preliminary traverse map of the landing site. When necessary, the astronauts used large pads and marker pens to illustrate their answers, and Armstrong, especially, took advan­tage of these aids. (Were these unique drawings preserved for future genera­tions of historians?)

One of many exchanges was particularly interesting. While in lunar orbit, before beginning their return to Earth, the astronauts were asked to look to­ward the crater Aristarchus and describe it. Although Aristarchus was just on the horizon and at the limit of their view, Armstrong reported that he thought he saw fluorescence in that region. This announcement caused some stir: Was he observing some lunar transient phenomenon like that described in chapter 2? Now, during the debriefing, he went into more detail and modified his ob­servation. Although he described the general area as the brightest spot he could see, he could not confirm that it was Aristarchus itself that was causing the bright reflection, and he did not ‘‘mean to imply that it was self-illuminated.’’ The unusually bright appearance of the Aristarchus region to the crew in orbit reinforced the belief that it might be the site of recent activity on the lunar surface. With their many other observations and much hard work, the crew of Apollo 11 had opened the door to a new era in planetary science.

The possibility of bringing some deadly unknown disease to Earth in the samples or by an infected crewman led to building the Lunar Receiving Labora­tory. Strict protocols had been developed to guard against these risks. Some in the media latched on to this potential hazard, attempting to fan the public’s fears of some catastrophic invasion. One month before the Apollo 11 liftoff, a media briefing was held in Washington to describe the details of the mission and, we hoped, allay any fears that the first landing and return from the Moon’s surface posed any danger to life on Earth.10 The final portion of the briefing was conducted by Air Force colonel John Pickering, who had served on the Inter­agency Committee on Back Contamination and now held the title director of lunar receiving operations at the Office of Manned Space Flight. He went to great lengths to describe the procedures that would be followed, from collecting and packaging the samples on the Moon through recovery and transport of the

samples and astronauts to the LRL and eventual release of both at the end of the quarantine period. He even went so far as to include in the press handout a copy of the LRL biological certification signed by Dr. David J. Sencer of the United States Public Health Service, chairman of the Interagency Committee, to prove that all precautions had been taken. This openness and attention to detail defused this issue for most of the media, and it never surfaced again as a major public concern. However, managers of Mars missions that will return samples to Earth should head off the potential negative exploitation of this issue by being open and detailing the steps that will be taken to guard against alien organisms.

Let me illustrate how seriously the quarantine protocols were followed. During the preliminary study of the Apollo 11 samples, a technician was cata­loging a sample in an isolation chamber glove box that operated under negative atmospheric pressure to avoid any leakage into the LRL when one of his gloves ruptured, exposing him to the sample. This man and another working near him were immediately placed in quarantine in the LRL with the three astro­nauts. One lemon-sized rock was carefully sterilized and taken out of the isola­tion chamber and given to the Lunar Sample Preliminary Examination Team (LSPET) so they could hold it. Cliff Frondel, a member of the team, was quoted as saying, ‘‘It was a great thing to look at this stuff that people had been

speculating about for millennia, and here it was in our hands______ It was a hell of

a thrill.’’11

To determine if there were possible life-threatening forms (“replicating spe­cies’’) in the samples, ten species of animals were exposed to lunar material for twenty-eight days, either through inoculation or in their food. Four control groups were exposed in a similar fashion to nonlunar material for the same period. These animals included paramecia, planarians, shrimps, oysters, cock­roaches, and houseflies. One might wonder if the testers, fourteen scientists called the Lower Animal Test Team, had any second thoughts about including cockroaches, insects that seem to be indestructible and have survived 200 mil­lion years of evolution essentially unchanged. Why would a little Moon dust hurt them, regardless of what it contained? The cockroaches and the astronauts cooped up together in the LRL became the basis of many jokes.

During the quarantine period, these ten species, living in small aquariums or jars and bowls inside the LRL, were carefully monitored for any suspicious behavior or a sudden desire to go to the special heaven reserved for them.

Nothing much unusual was observed; only the oysters, both those exposed to lunar material and the control groups, seemed to have a higher than expected death rate. This was attributed to conducting the tests during their normal spawning season, which apparently is stressful to romantic oysters. But as in all true scientific inquiry, one strange behavior was noted: planarians exposed to heat-sterilized lunar material swam at the surface of their bowl more frequently than the control groups.12 The reason was unknown.

In addition to the study of ‘‘lower animals,’’ similar tests were conducted on mice and quail. After four weeks of exposure to lunar material, 230 mice and 120 quail were autopsied by another team. Like the ‘‘lower animals,’’ the inocu­lated mice were found to be normal, and the quail that had lunar soil mixed in their feed showed no adverse reactions. The reports from these teams were greeted with a sigh of relief from all 142 sample PIs and the scores of coin­vestigators waiting anxiously to receive their allocated portion of the returned samples and get on with their analyses. If some pathogen had been found, we might still be waiting to study Apollo 11 ’s lunar treasure. The samples were declared safe for distribution around the world and were released on Septem­ber 12, 1969.

The time between the conclusion of the contamination tests on August 22, 1969, and the release of the samples twenty-one days later was spent in prelimi­nary analyses and preparing the specific types of samples required by each of the sample PIs. On August 27 the Lunar Sample Analysis Planning Team (LSAPT), chaired by Gene Simmons, issued a final internal ‘‘summary report’’ on its findings from the study of a small selection of the samples.13 This team, consisting of scientists with differing backgrounds from MSC, USGS, and other government and university laboratories, was the first group to examine lunar samples before they were released to the sample PIs.

This final summary report and the four preceding reports were read with great interest by all of us at NASA headquarters. Each report contained some new and exciting revelation. LSAPT identified two types of rocks, crystalline and aggregates (later classified as breccias), as well as a variety of fine material from the lunar soil. Although the minerals in the rocks were similar to minerals found in the Earth’s crust, there was a major difference. They contained a larger percentage of refractory elements such as titanium and zirconium. To a miner­alogist this finding was important, leading LSAPT to proclaim that this mineral assemblage provided “difficulties for the fission hypothesis,” that is, that the

Moon had been torn away from an early Earth by some cataclysmic event. If this had occurred, the minerals found in the samples should have been similar to those found on Earth.

Another, less hypothetical, conclusion was that the crystalline rocks were basalts, yet their density was greater than the average density of the Moon as a whole. This finding made it difficult to conclude that the Moon was a differenti­ated planetary body like the Earth, as it was thought to be, where the heavier material would be expected in the interior and the overall density of the planet should be higher than the density of rocks found at the surface. But this finding was consistent with the discovery of the “mascons,” since this dense material was found in mare basins. If one pursued this logic, then some large portion of the Moon must be made up of less dense material to account for the difference, or else the Moon’s core, if it had one, would have to be very small. It seemed clear that at some point part of the lunar surface had been molten.

After LSAPT performed its functions, it combined forces with the Lunar Sample Preliminary Examination Team to do more complete analyses and publish the results. To some degree this report skimmed the cream from the discoveries that would be announced later, but it served the important function of preparing us for the next missions. If we had had to wait for the sample PIs to report their findings we would have had little chance to modify or change the experiments and sampling procedures for Apollo 12 and the later missions. The LSPET report, published in Science two months after Apollo 11 returned, listed eighteen conclusions.14 The most important from my perspective, paraphrasing the report’s language, were that the crystalline rocks were different from any terrestrial rock and from meteorites; that the absence of hydrated minerals indicated there had been no surface water at Tranquility Base at any time since the rocks were exposed; that radioactive age dating showed they were crystal­lized 3 to 4 billion years ago; and that there was no evidence of biological material in the samples. Additional details and new findings would be released by the sample PIs four months later.

The Apollo 11 Lunar Science Conference was held in early January 1970 at the Rice Hotel in downtown Houston. The conference was an exciting time for all of us who had helped develop the Apollo science program. Apollo 12 had returned to Earth just a little more than a month earlier, but all of its samples were still in quarantine and unstudied. Only the Apollo 11 samples had under­

gone detailed examination by January 1970. Gary Latham, the principal inves­tigator for the passive seismic experiment, had published a short report on his findings by this date along with the LSPET report mentioned above, but the sample PIs had agreed to withhold their findings until this meeting. Those performing the detailed sample analyses were all gathering at the same place for the first time. Approximately 1,100 PIs and their collaborators, including teams from sixteen foreign countries, had spent the past three months working fever­ishly to have their analyses ready for this day.

The expectation was palpable the first morning as we milled around in the hotel lobby. Whose theories would be confirmed, whose relegated to the dustbin of lunar science? Would any of the LSPET findings be challenged or changed?

Gene Shoemaker, representing his team from USGS and several universities, made the first presentation. He described the geologic setting of the lunar samples collected by the Apollo 11 astronauts, coining the term ‘‘lunar regolith’’ for the surface characteristics at the landing site. The upper, regolith layer had been constantly churned and pulverized by impacts of all sizes. All the material returned had been collected from this fragmental debris layer, and the astro­nauts’ observations had been made within 125 feet of the landing site. No ‘‘bedrock,’’ or material in place, had been sampled. By geological standards it was not a very good collection of samples for such a large body as the Moon, but the consensus was that the samples were representative of a much larger area because of the mixing and transport of material brought in from afar as impact ejecta. Finally, he described the efforts to fix the location of each sample station. This had not been completely successful because the time limits for the EVA had restricted the number of photographs taken, but most had been located. Of the forty-seven pounds of material returned, approximately fifteen pounds had been distributed for analysis. (For the formal proceedings of the conference Shoemaker’s presentation was modified and published as ‘‘The Apollo 11 Sam­ples: Introduction.’’)15

Four days and 180 papers later the conference ended. We now had the first comprehensive view of one spot on the Moon based on data collected on the Moon itself. Several new minerals had been found, lunar lavas and breccias were common, and many samples bore evidence of shock metamorphism caused by impacts. Science devoted its entire January 30, 1970, issue to the conference. Though it is four times the size of a normal issue, it is a much more compact reference than the three-volume Proceedings for those who want to review the results of the first analyses of the Apollo 11 samples in some detail.

The oldest samples dated gave radiogenic ages of approximately 4.7 to 4.9 billion years B. p. (before the present). Others gave dates of 4.13 to 4.22 and 3.78 billion years (some of the older dates were later disputed), in general much older than the first dates offered by LSPET. Only traces of carbon were found (one anomalous sample contained almost five hundred parts per million), and there was no evidence of any bio-organic compounds. One group of investiga­tors (R. D. Johnson and C. C. Davis) stated that some of the high carbon readings might be attributable to contamination introduced during sample preparation or to errors in analytical techniques.16 They suggested that an upper limit of ten parts per million would be correct for indigenous lunar organic material. They thought the small amounts of carbon detected in some of the samples might have come from the solar wind or from carbonaceous chondrites that had struck the Moon in ages past.

Water was not identified in any of the minerals analyzed, nor did Luis Alvarez find any magnetic monopoles. Some samples studied for remnant mag­netism seemed to indicate that the Moon once had a small magnetic field, perhaps 1,000 to 1,500 gammas, or about one-thirtieth of the current field of the Earth. The present magnetic field was much smaller, however, on the order of 10 to 30 gammas, the latter figure coming from the magnetometer at the Apollo 12 site that returned data by the time of the conference.

Preliminary results from measurements of the Laser Ranging Retro- Reflector were also reported. Accuracy in measuring the Earth-Moon distance had improved over that included in Mueller’s report to the president four months earlier. This distance was now known to a precision of approximately one foot and was predicted to improve shortly to about six inches.

The Solar Wind Composition experiment carried on Apollo 11 was not discussed at the conference. This experiment, mentioned in chapter 7, consisted of a sheet of aluminum foil hanging from a pole. After being exposed for seventy-seven minutes on the lunar surface, it was retrieved and brought back to Earth and placed in quarantine in case some lunar soil had adhered to the foil. When released from quarantine, it was carefully packed and sent to Swit­zerland for analysis by its PI, Johannes Geiss. He had made a quick analysis of the gases captured on the foil, finding noble gas ions as expected, and had reported his results in December in Science.17 Eventually he extended his Apollo 11 findings based on data returned from the next four missions, examination of pieces of Surveyor 3 returned by Apollo 12, and data from the Vela satellites. Compiling all this information after his last experiment returned from the Moon, he stated in 1972 that he was now able to make good approximations of the average solar wind-noble gas abundances and ratios.18 He forecast that a better understanding would evolve of the abundances of noble gases in the Sun and the atmospheres of Venus, Mars, and the major planets.

Latham’s passive seismic experiment included in the Early Apollo Scientific Experiments Package continued to operate intermittently for twenty-one days. It survived the first lunar night before succumbing to the heat of the second day. Initial data telemetered to Earth had caused some consternation in Latham and the other members of his team. The Moon, based on these early data, seemed to be highly active seismically (apparently recording many small moonquakes), contrary to what had been predicted. After the first data had been analyzed, Ed Davin remembers walking between the Mission Control Center and the press conference room at MSC with Frank Press and Maurice Ewing, two of Latham’s coinvestigators. They were trying to figure out what to tell the assembled re­porters about this unexpectedly active Moon, apparently more active than the Earth. They asked Ed for his opinion, and he recalls being shocked that two of the world’s leading seismic authorities would ask a lowly civil servant such a profound question. Ed could not suggest a solution, so Press and Ewing ended up announcing that the Moon appeared to be more active than the Earth, a new and disturbing “scientific discovery.’’

Eventually the explanation for this totally unexpected finding became clear. The lunar module landing stage, left behind when the astronauts departed, was creaking and groaning under the thermal stress of the wide temperature swings between lunar day and lunar night. In addition, the LM and backpacks dis­carded on the surface continued to emit gas long after the astronauts departed. Each quiver and burp of gas was being detected by the extremely sensitive seismometer just sixty feet away. These disturbances appeared in the data stream as small moonquakes. No one had anticipated that such tiny movements would be measured. Thus does science advance as we try to fit new data into old theories: some mysteries are quickly resolved.

The Moon, in fact, is seismically quiet (as opposed to Earth, where large or small earthquakes are being recorded almost constantly), and this was shown again and again as we deployed four more seismometers. Once the residual effects of the SIVB and LM impacts that occurred on later missions and the astronauts’ presence had faded, the Moon stopped shaking. It was disturbed frequently by small movements believed to be caused by lunar tides (move­ments in the Moon’s crust as a result of Earth-Moon interactions), thermal changes at sunrise and sunset, small impacts, or what were interpreted as rockfalls on nearby crater rims or mountainsides. A few larger true moon – quakes were also recorded, with widely scattered epicenters concentrated at a depth of five hundred to six hundred miles, believed to be the base of the lunar mantle. The man-made shocks from the SIVB impacts also contributed to determining the thickness of the lunar crust.

Based on several years of data analysis, Latham and his team drew a number of conclusions. Below the thick lunar crust and mantle, constituting a “dynam­ically inactive outer shell,’’ was a ‘‘core’’ with ‘‘markedly different elastic proper­ties,” and the core was very small. They believed that the core was at or near the melting point, but this did not ‘‘imply a major structural or compositional discontinuity as it does for Earth. However, the presence of a true core. . . is not precluded by present data.’’ They also believed that ‘‘the presence of a thick lunar crust suggests early, intense heating of the outer shell of the Moon.’’19 This last conclusion seemed to be validated by the visual evidence of widespread maria that filled all the low elevations on the Moon’s nearside. Recent results from the Lunar Prospector mission appear to confirm Latham’s findings and indicate that the Moon’s core probably contains less than 4 percent of its mass, whereas the Earth’s core makes up 30 percent of its total mass.

Continuing now from the findings above, where do we stand in answering the questions that had perplexed many noted scientists for centuries? Most students of the Moon would agree, I believe, that satisfactory answers are now in hand for most of those questions, although there is still no unanimous interpretation. Why should study of the Moon be different from other scientific controversies?

The burning question before the unmanned and manned missions—whether the craters observed were mostly of impact or volcanic origin—had been re­solved to the satisfaction of most lunar students long before the first Apollo landing. Impacts were the answer, and Apollo data confirmed this conclusion. But the returned samples clearly showed that lava sheets or flows covered large areas of the Moon. What mechanism caused these flows is a little more debata­ble. Heating and melting of the lunar crust and mantle as a result of huge impacts is the favored explanation, not volcanic eruptions.

Next, where did the Moon come from? There is still some debate on this, but the possibilities have been narrowed and a preponderance of opinion favors one origin. Lunar samples show that the Moon’s composition is similar to that of Earth, yet different. The Moon is not compositionally exotic, as proposed by Harold Urey and others, thus it probably was not captured early in Earth’s history after having been formed somewhere else in the solar system. That leaves two theories: that it formed separately at about the same time as the Earth or that the Moon was split off from Earth by some event early in the Earth’s formation.

Because the mineral assemblages found in lunar samples differ somewhat from rocks that have formed on Earth, either origin is possible. However, the Moon most likely was torn from the Earth by the impact of another large body that contributed some of its material to the Moon, thus accounting for the mineralogical differences. This latter theory is gaining more and more favor in recent years as other conditions, such as the Moon’s angular momentum, be­come better understood and are factored into the models being used.

The next question, How old is the Moon? can now be answered with some certainty. Age dating of lunar samples has shown extremely old ages, some as high as 4.4 to 4.5 billion years B. p. This rivals the oldest ages found in mete­orites, which until this point were the most ancient objects dated. This date agrees with the thinking of most solar system students about when the solar nebula began to clump and form the planets, indicating that the Moon formed almost simultaneously with the Earth at a very early point in the birth of our solar system. The ‘‘genesis rock,’’ collected on Apollo 15, is almost pure anortho­site, a type of rock formed on Earth at great depths. It is believed to represent a piece of the Moon’s early crust. Argon-argon dating found an age of crystalliza­tion of approximately 4.0 billion years b. p.20 However, this type of dating can produce lower than actual ages; thus the ‘‘genesis rock’’ may be older-closer to 4.4 to 4.5 billion years.

Whether there has ever been water on the Moon, or whether water still exists there, has been a continuing and intriguing question. None of the samples analyzed showed that water was present during the formation of the lunar crust. But in March 1971 John Freeman of Rice University, the PI for the Suprathermal Ion Detector Experiment (SIDE), reported that he had recorded

the occurrence of water vapor for three ‘‘events’’ at his instruments left at the Apollo 12 and Apollo 14 sites. These measurements had been made at the same time Gary Latham recorded a swarm of moonquakes, suggesting that the two events were connected. Earlier Freeman had recorded the LM and SIVB impacts as disturbances in the Moon’s ionosphere, but these events had a different character than those he believed indicated water vapor. This created a stir in the media that prompted us to try to put Freeman’s claim in a larger context.21

Acknowledging the importance of discovering water on the Moon, we dis­cussed potential sources of the inferred water vapor, possibly related to material left behind by the astronauts in the LM descent stage tanks, portable life – support system tanks, and other items discarded on the lunar surface. We also pointed out that the SIDE experiment identified the mass of ions (in a gas cloud) only in a range of energy that would also include methane or neon, which could also have a lunar origin. Ultimately Freeman’s recordings were not considered conclusive in detecting water.

The recent lunar probe, Lunar Prospector, appears to support the possibility that water, in the form of ice, exists on the Moon in the permanently shadowed craters near the poles. If ice is present, it is most probably a by-product of comet impacts. Sensors on Lunar Prospector detected hydrogen, and the most likely source of the hydrogen is considered to be ice. Perhaps Freeman had detected an early whiff of water vapor from his two experiments.

To sum up the operational accomplishments of the six Apollo landing mis­sions: almost 5,000 pounds of experimental equipment were landed on the Moon, and 840 pounds of lunar material (rocks, dirt, drill cores, etc.) were returned under carefully controlled conditions. Five ALSEPs, which included most of the total of fifty-three individual experiments deployed by the astro­nauts while on the lunar surface, were placed at different locations. And ap­proximately sixty miles of traverses were recorded, both on foot and using the LRV, in support of the field geology studies and geophysical surveys. In addi­tion, detailed data were collected on missions 15, 16, and 17 from instruments carried in the command and service module, including photographs, composi­tional analysis of broad areas of the Moon’s surface, mapping its magnetic and gravity fields, and analyzing its tenuous atmosphere. All of these data contrib­uted toward deciphering the Moon’s many mysteries as well as resolving less controversial issues.

For young engineers dreaming of one day building lunar bases, the Moon will be a friendly place. Lunar bulldozers and backhoes will be able to excavate and move lunar soil just as we move soil on Earth. There will be obvious differences, but we gained sufficient data through the soil mechanics experi­ment and other experiments to design such machines. Structures could be covered with lunar soil to shield them from solar flares and high energy parti­cles, thus obviating the need to bring shielding from Earth. If needed, ‘‘regolith blocks’’ could be made from the soil that would be as useful as terrestrial cinder blocks. Unlike bases built in Antarctica, the closest terrestrial analogue to lunar bases, which must be constantly refurbished or rebuilt because of damage from snow and ice, lunar bases once constructed should last for the ages. Only a direct hit or near miss from a meteorite could damage the base. And perhaps if bases are built near the Moon’s poles the Moon can be mined for water, the most valuable of all lunar resources. The Apollo program provided the shoul­ders to stand on—now it is up to future explorers to go beyond our ‘‘giant leap for mankind.’’

A few more words concerning the results of the Clementine and Lunar Prospector programs. Both of these programs continue to add to our knowl­edge of the Moon. In some instances they are expanding on what we learned from Apollo, and in other exciting ways they are providing new information. Rather than my attempting to summarize their results to date, references in the notes discuss some of the findings.22 Many other papers and reports discuss the results of these two missions.

The final maneuver for Lunar Prospector, a last-minute addition to its scien­tific objectives, was a controlled crash similar to those carried out by the Apollo LM ascent stages and SIVBs. This time the impact point selected was a per­petually shadowed crater near the Moon’s south pole, in the hopes that tele­scopes in orbit or on Earth would record the plume from the crash and confirm the presence of water. Such a cloud was not seen, repeating our experience during the Apollo missions when I asked observatories in France with large telescopes to try to observe and measure the impact of the Apollo 16 SIVB stage. This would have been a much larger event than was expected for the Lunar Prospector impact. The time of the Apollo 16 SIVB impact prevented any United States observatories from participating, since the Moon would be below the horizon. The weather was not completely cooperative when observatories at Meudon, Pic-du-Midi, and Nice attempted to observe the impact on the night of April 19, 1972, and this might have accounted for the negative report we received.23 However, the failure to see a cloud at the impact point selected for Lunar Prospector’s final act will not detract from its successes; further analysis of data recorded by the spacecraft’s sensors will without doubt continue to add to our understanding of the Moon in the years ahead.

In successfully undertaking the challenge set by President Kennedy (with emphasis on “successfully”), Apollo taught us one final lesson. Apollo’s heritage went far beyond knowledge about the Moon and Earth. Now that many of the records of the former Soviet Union have been opened to public scrutiny, it has been confirmed that we really were in a race to the Moon. It certainly seemed that way to us at the time, but you could not be sure because Soviet launches were always veiled in secrecy; the world became aware of them only after they were on their way to whatever destination, and failures were never reported. The Soviets’ long-range plans were seldom discussed, although Boris Voishol, from the Soviet Tectonic Academy, writing in the September 1968 Geotimes, stated: ‘‘The first landing of Soviet cosmonauts on our moon is scheduled in the near future.’’24

Based on information available at that time, the missing ingredient in their ability to send men to the Moon was a booster as large as the Saturn V, which would be needed for the round trip. Without such a rocket we assumed that if they were really intent on a manned lunar landing they would use their smaller, proven rockets to assemble the needed launch capability in Earth orbit before going on to the Moon-one of NASA’s original proposals. We now know that they were building a Saturn V-class rocket but that on its first test flight it crashed shortly after lift-off. On a second launch attempt a few months later, it exploded on the pad, apparently killing some of their rocket experts, and was never rebuilt.25 The Soviet failures-and there were many-were only a matter of speculation for most of us, though undoubtedly there were some who were privy to intelligence sources and knew about their difficulties. Our launches, successful or unsuccessful, were always made in full view of the world.

What if the Soviet Union had landed men on the Moon first? Several writers have discussed the effect of Project Apollo on the Soviet Union; here is another view with which you may or may not agree. My father, a civilian stationed in West Germany for the Army Signal Corps at the time of the launch of Sputnik I, remembered an unnerving encounter with one of his German contractors. When it was confirmed that the Soviets had successfully orbited the first satel­lite, this man came running up with fear on his face. His conclusion was that this demonstration of Soviet technological superiority spelled doom for the world. The United States failures at launching the Vanguard rocket were well known. Suddenly the Soviet Union had leapfrogged our efforts. Along with its newly demonstrated nuclear weapons, this made the man believe the bad guys had won the Cold War. We would soon have to knuckle under to this new dominant world force. He was seeking reassurance that his analysis was wrong, but with limited knowledge of how our space programs were proceeding, my father could not give it.

The point of this anecdote is to show how fragile a nation’s leadership is in a rapidly evolving world. In view of their recent history, West Germans in Octo­ber 1957 might be forgiven for being pessimistic. But as I remember, this pessimism was widespread even in the United States, with finger pointing and blame all around for our inability to beat the Soviets during the early days of space flight.

What would the world look like today if the Soviets’ program had not experienced its hidden failures and they had been first to land men on the Moon? I suspect it would be different, but of course there is no way to prove it. Everyone likes a winner and gravitates toward one regardless of worthiness; second place seldom attracts much enthusiasm. Accommodation to Soviet leadership would have been rationalized, and the Soviet bloc might have be­come the dominant force in world politics, perhaps postponing or averting its ultimate economic collapse. Meanwhile, we would be scrambling to catch up and demonstrate that a democratic government could do as well as or better than a state-directed totalitarian government. Remember, in the 1960s many countries were experimenting with or embracing communist forms of govern­ment, and Soviet-led expansion of communist ideology was making great strides even without demonstrating the overall technological leadership that a ‘‘first’’ on the Moon would have given.

What is the lesson of Apollo that goes beyond being the first to land on the Moon and the expansion of our scientific knowledge? It seems pretty basic. Free societies can successfully undertake enormously complex actions—if they dare. Although the United States was the leader in Apollo, many other nations con­tributed people, technology, or facilities. Apollo was a dream that everyone could embrace, if permitted, and all could share in the sweet reward of success. The few words on the plaque carried by Apollo 11 said it all: it was an accom­plishment ‘‘for all mankind.’’

Conceived primarily as a political statement, Apollo achieved much more than its original goal. Now, when faced with seemingly intractable problems, someone will be heard to say, ‘‘If we can land a man on the Moon, why can’t we [fill in the appropriate objective]?’’ And of course that is the right question to ask, because people of goodwill, working together, are capable of solving very difficult problems. Apollo proved it. Let’s not forget that dreaming big has its own rewards, even if occasionally we stub a toe. That is the essential lesson I carry away from my Apollo days, and I hope it will be remembered by those who study and follow our example in the future.

Taking Science to the Moon

The technical achievements that permitted the National Aeronautics and Space Administration (NASA), other government agencies, and their contractors to fulfill President John F. Kennedy’s promise of ‘‘landing a man on the moon and returning him safely’’ have often been described. Most previous authors have included anecdotes that enhance our appreciation of how Project Apollo was successfully accomplished, although many are retold at second or third hand. Several movies such as The Right Stuff and Apollo 13 showed both true and fictional accounts of the spirit and engineering skills that characterized the entire project, focusing primarily on the major or well-known participants.

A story that has not been completely told, however, is how a small band of somewhat anonymous NASA staffers, allied with scientists inside and outside government, struggled to persuade the management of NASA to look beyond the initial Apollo landing and reap a scientific harvest from this historic under­taking. Here is that story as seen through the eyes of a participant based at NASA headquarters—a pack rat who kept many of the internal memos, reports, photos, and notes that document that ten-year struggle. It highlights the contri­butions of many of those who worked with me during the Apollo program. Some of them have received little public recognition for their efforts. I hope that this insider background will give readers a better understanding of the behind-the-scenes maneuvering that led to many of Project Apollo’s scientific achievements, which have enriched our understanding not only of the Moon but, more important, of the small planet we call Earth.

Acknowledgments

Many people and organizations helped and encouraged me while I was writing this book, and they deserve credit. Although I had saved many boxes of material I collected during my Apollo days at NASA in anticipation of one day writing this story, I soon found this source material was insufficient. Calling old col­leagues to ask if they had kept records was not very fruitful at first, but even­tually I was successful.

The first person who agreed to share his records covering part of this period was Robert Fudali, who was on the Bellcomm staff during Apollo’s early days. His material not only contributed to the accuracy of this story but served as a valuable reminder of some of the events that occurred during the formative years of Apollo science. I have quoted liberally from a few of Bob’s colorful internal memos.

Gordon Swann, a friend, former colleague, and principal investigator who took part in the struggle to develop science payloads for Apollo, especially those aspects related to the astronauts’ geological investigations, reviewed early drafts and provided many important comments and suggestions as well as a few of his famous anecdotes—some printable, some not. Gordon should be encouraged to one day write his account of Apollo.

Paul Lowman, who figures prominently in this story, was an invaluable source of material and a resource for clarifying many events. Paul is renowned among his NASA colleagues as a pack rat of the first degree: his office is so filled with reports and trivia that when you first enter it is hard to find his desk. However, his propensity for maintaining his archives has benefited many who have written about NASA’s early days. He also reviewed the manuscript and offered many useful comments.

James Downey, Herman Gierow, Farouk El Baz, and Charles Weatherred reviewed drafts at various stages, and Jim spent many hours going through the files at the Marshall Space Flight Center library to select material relating to the early years of our post-Apollo work. Chuck Weatherred and Eugene Zaitzeff (both Bendix employees during Apollo) and Charles Spoelhop at Eastman Kodak also provided important background material from their files. My for­mer colleagues Philip Culbertson, Richard Allenby, Edward Davin, Richard Green, George Esenwein, Alex Schwarzkopf, Saverio ‘‘Sonny’’ Morea, George Ulrich, Raymond Batson, William Muehlberger, Floyd Roberson, and John Bensko took the time to provide information and pictures and to confirm recollections now more than thirty years old. Hugh Neeson, a former Textron – Bell engineer, searched the archives of the Niagara Aerospace Museum to find rare artists’ drawings of the lunar flying vehicle. Bruce Beattie, my son, became a fact finder after I moved from Maryland, following up on questions that could be answered by Washington sources.

The NASA headquarters history office, in particular Lee Saegesser (before he retired) and Roger Launius and his staff, helped me access the records still maintained in Washington. Glen Swanson, NASA Johnson Space Center (JSC) historian, provided key contacts at JSC, including Joseph Kosmo at the Flight Crew Support Division and Judith Allton in the lunar sample curator’s office that allowed me to fill in a few blanks in my story. And most important Michael Gentry and David Sharron at the JSC Media Resource Center, who spent con­siderable time helping me select and acquire the photos and drawings in the book.

Roger Van Ghent, a colleague and fellow Floridian, advised me on the intri­cacies of using my computer to ease my writing load and also helped compile the index.

To all these people and the many colleagues and friends whose names do not appear, my sincere thanks for your help and encouragement from my first days at NASA until the present.

Finally, I thank Alice Bennett at the University of Chicago for editing and improving the manuscript and Bob Brugger, my editor at the Johns Hopkins University Press, for running interference and patiently guiding me through the publishing process. There is no substitute for an unflappable editor.

Introduction

Anchored to its launch pad on the morning of July 16, 1969, and scheduled to launch Apollo 11 on our first attempt to land men on the Moon, the fully fueled Saturn V launch vehicle weighed over six million pounds. From the nozzles at the base of the giant S-1C first stage to the top of the solid rocket-propelled escape tower, it measured 363 feet. In 1962, one year after President Kennedy had given the go-ahead for Project Apollo, the critical decisions had been made on how to execute his difficult challenge. Saturn V, with its multiple stages, was the key to reaching the goal, the product of seven years of effort by hundreds of thousands of government and contract workers.

The original planning in 1960 and 1961 centered on building a huge rocket to launch a spacecraft directly from Earth to the lunar surface, followed by a direct return home. The mission design finally selected was very different. It required a smaller, but still very large, multistage rocket to launch three astro­nauts into a low Earth orbit and then send them on to the Moon in a spacecraft that combined command and logistics modules with a lunar lander. On arriv­ing at the Moon, these combined spacecraft would be parked in a low lunar orbit. The lunar lander, a two-stage (descent and ascent stages) two-man space­craft, would then separate and go to the lunar surface. The command and service module, with the third astronaut on board, would remain in lunar orbit to rendezvous and link up with the astronauts when they returned from the Moon’s surface. After the astronauts who had landed on the Moon transferred back to the command module, they would jettison the lunar lander ascent stage, and all three would leave lunar orbit and return to Earth in the command module for an ocean recovery.

Lunar orbit rendezvous (LOR) was the unique feature of the mission design

that allowed NASA to reduce the size of the initial launch vehicle. An LOR flight profile required the development of a new, powerful rocket (Saturn У) and the design and fabrication of two complex spacecraft that would perform a series of difficult and potentially dangerous space maneuvers never before attempted. But a manned lunar landing designed around LOR was sold to NASA manage­ment as the quickest, least risky, and lowest-cost way to carry out the president’s mandate. The LOR decision fixed the broad architecture of the mission and defined the parameters within which the scientific community would have to work when NASA finally determined what scientific activities were appropriate for future Apollo astronauts to carry out. (How NASA decided to adopt LOR, in a behind-the-scenes debate, has been covered in some detail in several of the references cited.)

Because the president’s mandate did not require that any specific tasks be accomplished once the astronauts arrived on the Moon, the initial spacecraft design did not include weight or storage allowances for scientific payloads. Somewhere, somehow, amid the six million pounds and 363 feet, we would have to squeeze in a science payload. The earliest thinking was, ‘‘We’ll land, take a few photographs, pick up a few rocks, and take off as soon as possible.’’ The need to do much more was not considered in the planning. For many NASA engineers and managers the lunar landing was a one-shot affair. After the first successful landing, NASA would pack up its rockets and do something else. Why take any more chances with the astronauts’ lives on this risky adventure? This thinking was soon to change, at least in some circles.

The first officially sanctioned attempt to change this thinking took place in March 1962 when Charles P. Sonett, of the NASA Ames Research Center in California, was asked to convene a small group of scientists to recommend a list of experiments to be undertaken once the astronauts landed on the Moon. This meeting, requested by NASA’s Office of Manned Space Flight, was held in conjunction with a National Academy of Sciences Space Science Board Summer Study taking place at Iowa State University in Ames so that the Academy’s participants could review and comment on the recommendations Sonett’s team would make. The Sonett Report, submitted to NASA management in July 1962, became the foundation for all subsequent lunar science studies and recommen­dations. Circulated in draft form at NASA and other organizations throughout the rest of 1962 and most of 1963, the report elicited both support and crit­icism. It is at this point in the evolution of Apollo science, with a short digres­sion to set the stage, that I became involved, and here I take up the story.

Each chapter is written as a somewhat complete account of its subject. The chronology for a given chapter is correct as events unfolded, but there is some overlap in time as we move from one chapter to the next. I hope this will not be confusing but will provide a better perspective on how the individual pieces of the lunar science puzzle came together. I have also attempted to explain the roles of the key contractors and give credit to some who worked with us from the very beginning as we struggled to define and build the many experiments and supporting equipment that eventually made up the Apollo science pay­loads. I believe that most accounts of the Apollo program fail to give enough recognition to the many contractors who were essential contributors to the project’s success.

One of the major players in this story was the late Eugene M. Shoemaker. Gene was involved in almost every aspect of Apollo science and had graciously agreed to review this manuscript when it was ready. I was greatly anticipating the comments and critique of this friend and colleague, hoping he could refresh my memory and suggest additions or changes for accuracy. But before I could send him an early manuscript, Gene died tragically in an auto accident on July 18, 1997, while studying impact craters in Australia. He will be fondly remembered and greatly missed. Not only was he an outstanding scientist who shaped our thinking on many subjects, including how we should explore the Moon, he was also a brilliant teacher whose greatest legacy, perhaps, will be the many young (and old) scientists and engineers who will follow in his footsteps and lead us back to the Moon and beyond—to Mars and the far reaches of our solar system.

Taking Science to the Moon

From the Jungle to Washington

In February 1962 John Glenn was at Cape Canaveral preparing for his attempt to become the first American to orbit the Earth during the Mercury program. I was working for the Mobil Oil Corporation as an exploration geologist super­vising a small field party in the rain forest of northern Colombia. Even in this remote area I could pick up Armed Forces Radio and the Voice of America on my battery-operated Zenith Transoceanic radio and stay up to date on the major events of the day. We had been closely following the launches of the newly formed National Aeronautics and Space Administration, and along with everyone back in the United States, we were disappointed at the failures and delays as we tried to catch up with the Soviet Union’s aggressive space program.

After each of the several launch delays for Glenn’s flight, NASA would project a new liftoff time, and based on these projections we would try to complete our daily fieldwork and get back to camp to hear the launch broad­cast. Far from home, with our immediate world bounded by a small rain forest camp and how far we could ride each day on the back of a mule, it was easy to become absorbed in the drama at Cape Canaveral. One day, during one of the several holds before Glenn’s launch, the announcer filled some airtime by interviewing someone from NASA’s Public Affairs Office. During the interview Project Apollo was discussed (what little was known of it at the time), and it was mentioned that for the Moon landings NASA would need to hire geologists to help plan the missions. He gave an address where those interested could apply. My curiosity was piqued. I copied down the address, pulled out the rusty typewriter we used to write our monthly reports, and composed a letter to

NASA. I explained that I was not only a geologist but a former navy jet pilot and said I thought I would fit right in with NASA and all the astronauts.

Eventually John Glenn was launched successfully. When I next went to Bogota I mailed my letter, convinced that NASA could not turn down such outstanding qualifications. In my naivete I thought I might even have a chance to become an astronaut. Who had a better combination of experience to go to the Moon, I reasoned, than a geologist-jet pilot, especially one accustomed to working in strange places under difficult conditions (coexisting with army ants, vampire bats, and jaguars)? With some modesty, my letter implied this interest. It was several months before I had a reply from NASA—a polite letter thanking me for my interest. To be considered, I must fill out the enclosed forms and submit my application to the Goddard Space Flight Center in Greenbelt, Mary­land. I did so, and the wait began—with some anticipation, given NASA’s encouraging reply.

With the start of the rainy season I was back in Bogota when another envelope arrived telling me I had qualified as a GS-13, aerospace technologist- lunar and planetary studies, and that my application was being circulated within NASA to determine if a position was available. I wasn’t sure what an aerospace technologist was, but it sounded impressive. I had visions of being asked to do exciting things at this new agency with the improbable task of sending men to the Moon. Then began a longer wait. In December I received another letter saying that no positions were open but that they would keep my application on record in case one turned up. Rejection! That didn’t fit in with my plans, and I resolved to pursue my quest the next time I was in the United States.

My next leave came in June 1963, and I decided to go to Washington to talk directly to someone at NASA. I bought an aerospace trade journal listing the latest NASA organization, complete with names. In it I found an office at NASA headquarters that sounded as if my background and interests would fit—Lunar and Planetary Programs in the Office of Space Science, headed by Urner Lid­dell. From my family’s home in New Jersey I drove to Washington and, without an appointment, went to Liddell’s office. He was traveling that day, but his deputy, Richard Allenby, was in. This was great good fortune, since Liddell turned out to be a rather formal bureaucrat who probably would not have seen me without an appointment. Dick Allenby was just the opposite and agreed to interview me. After briefly introducing myself, I learned he was an old oil field hand (geophysicist) who had worked in Colombia just a few years earlier, and we had several friends in common. We hit it off at once, marking the beginning of a long professional and personal relationship. Dick liked my background but had no openings. He then set up a meeting with navy captain Lee Scherer (another former pilot), who had just been hired to manage the Lunar Orbiter program (satellites that would orbit the Moon to photograph potential Apollo landing sites). He also was not hiring at the time, but he thought someone in the Office of Manned Space Flight needed a person with my experience. I was beginning to question my timing: lots was going on at NASA, with new offices being set up all over town, but just as the last NASA letter stated, no one had an opening. Lee, who would become my boss six years later, set up a meeting with another military man newly detailed to NASA, Maj. Thomas C. Evans, U. S. Army Corps of Engineers.

Tom Evans was an impressive officer, later to become a congressman from Iowa. Tom had been the officer in charge of establishing Camp Century in Greenland, the first successful adaptation of nuclear power for a military ground base. His background was ideal for his job at NASA-designing a future lunar base. After Lee Scherer’s introduction got me in the door, he spent the next hour or so telling me about his new office’s responsibility—planning a lunar program to follow a successful Apollo program. He was enthusiastic and brimming with ideas, the kind of leader everyone looks forward to working for. Best of all, he thought I could help the team he was putting together. Since it was getting late in the day, Tom asked me to return the next morning to talk to his deputy, Capt. Edward P. Andrews, U. S. Army, and determine how we could proceed.

My discussion with Ed Andrews went well, and since I had already received a civil service job rating, he proposed starting the paperwork to hire me. Two days in Washington and I was being offered a job as a lunar aerospace technolo­gist at what I considered the most exciting place in town! It would mean a pay cut from my Mobil salary (I would receive the princely sum of $11,150 a year), but I couldn’t pass up the opportunity. Ed took my paperwork and told me he would call me in Colombia when everything was final; he didn’t see any reason the position would not be approved and said I should plan on moving my family to Washington.

Returning to Colombia in July, I took Ed at his word and began to close out my work. My supervisor knew about my plans, of course, since I had listed him as a reference. My coworkers all thought I was crazy to take on such a job; most thought trying to get a man to the Moon was quixotic at best and probably impossible. Planning what to do after we landed on the Moon was real science fiction. I thought they were all being short-sighted and that they would be missing out on the beginning of a real adventure. In August I got the phone call I was waiting for. Ed Andrews said all was in order and they were waiting for me to arrive. With a smug smile I filed away my NASA correspondence, including the rejection letter, and at the end of August my family and I left Colombia to begin a new calling-one that never lost its thrill and satisfaction over the next ten eventful years.

And so I began my career at NASA; a GS-13 aerospace technologist in the Office of Manned Space Flight, Manned Lunar Missions Studies. When I ar­rived in Washington, NASA offices were spread all over town awaiting the construction of a new government building dedicated to NASA, in southwest Washington. In September 1963 our offices were at 1815 H Street NW, just a few blocks from the White House. We shared the building with other orga­nizations and other NASA offices, including program offices for manned plane­tary missions, systems engineering, launch vehicle studies, and other advanced studies.

I was assigned an office with another recent hire, Thomas Albert, a mechan­ical and nuclear engineer who was determining how to modify the planned Apollo systems to enable longer staytimes and lunar base missions. Since I came from a work environment where we primarily wrote reports based on work we had accomplished in the field or laboratory, Tom really impressed me. He would spend hours on the phone talking to NASA and private company engi­neers, taking a few notes and going on to his next call, all the while speaking a language I didn’t understand, in which every third word seemed to be an acronym. I thought I’d never understand NASA-speak, in which acronyms were the order of the day. It was annoying at first, but soon I started to catch on and quickly moved to the next level where I invented my own program acronyms. This new skill brought a real sense of control. I am convinced that NASA could not have functioned without these shortcuts, and it became an unspecified requirement that new programs come up with catchy acronyms, most pro­nounced like real words, that would appeal to the ears and eyes of management, Congress, and the media. (You’ll soon become accustomed to them as well and will have less need to consult the list of abbreviations in the front of the book.)

Our office at this time consisted of eight engineers with diverse backgrounds plus two secretaries. Except for Tom and Ed, we all shared the services of one secretary. Two or three engineers occupied each office space: new arrivals were assigned interior offices; offices with windows were for senior staff. Accom­modations were spartan, but there were few complaints since we would soon be moving to a new building. There was one empty desk in the office I shared with Tom; it had been occupied part time by Eugene Shoemaker, detailed from the United States Geological Survey (USGS), who was on his way to Flagstaff, Arizona, to start a new USGS office. I missed meeting him by a few days, but our paths would soon cross, and we would work closely together until the end of Apollo.

My first days at NASA involved the usual getting acquainted. Although during my navy service I had been a part of another government bureaucracy, NASA functioned quite differently. Owing in part to Tom Evans’s style and NASA’s being a new agency with an unprecedented mission, multitudinous rules and procedures had not yet been instituted, and the staff was given great freedom of action. Since for the past six years I had usually made my own daily schedule, this was an ideal situation for me. With Ed Andrews’s guidance I immediately began to define my role and make the contacts at NASA and in the scientific community that would make my job easier.

I soon learned that Gene Shoemaker had come to NASA to help bridge the wide gap between the science side of NASA, represented by the Office of Space Science (OSS), where I had made my first NASA contact, and the Office of Manned Space Flight (OMSF). Major differences had surfaced between OSS and OMSF over how to apportion NASA’s overall budget. The debate on how to accomplish science on Apollo still lay ahead. OMSF was already receiving the major portion of NASA’s budget, and OSS staff, as well as scientists outside NASA who looked to OSS to fund their pet projects, were constantly fighting to persuade top management to change NASA’s funding priorities. These efforts were led by such luminaries as James Van Allen, who had made one of the first space-based science discoveries—the radiation belts surrounding Earth that were later named after him. The complaints were reinforced by the National Academy of Sciences and its Space Science Board, which provided advice to Homer Newell, the OSS administrator. I was told that Shoemaker, during his brief stay at NASA, had begun to reduce some of the distrust that had devel­oped but had only scratched the surface. Apparently it would take more than his talents to resolve these differences. Despite many compromises and much cooperation, forty years later this power struggle still rages inside and out­side NASA.

Into this controversial arena I ventured and, with Tom Evans’s blessing, was given an unofficial second hat to work with both OSS and OMSF on matters dealing with lunar exploration. When Shoemaker left, Verne C. Fryklund, who had been working on Newell’s staff, took his place. Fryklund was definitely from the old school. Gruff, with a bushy mustache and a half-smoked but unlit cigar perpetually in his mouth, he usually looked professorial in a tweed jacket with leather elbow patches. Being detailed from USGS, he was given the title of acting director, Manned Space Sciences Division, Office of Space Science. His primary duty was the same as Shoemaker’s—to be the go-between for the Office of Space Science and the Office of Manned Space Flight. During his shuttle diplomacy, he was to present the interests of the science community to NASA’s manned space side, which was not viewed as friendly to science. Fryklund became my unofficial second boss. By Washington standards his title was not imposing, especially with the ‘‘acting’’ designation. His staff was appropriately small, consisting of several headquarters staffers and a number of detailees, in­cluding geologist Paul Lowman from the Goddard Space Flight Center (GSFC) and several others from the Jet Propulsion Laboratory (JPL). Thus he was receptive to having me join his office.

Fryklund, an experienced bureaucrat, approached his new job cautiously. The complicated politics were self-evident to someone with his background, and he was fully aware of the gulf between the two organizations. Until this time nothing had been officially decided about what science projects would be car­ried out on the Apollo missions. This became his first priority. Shuttling back and forth between high-level meetings at OSS and OMSF, Fryklund relied on a draft report on the scientific aspects of the Apollo program (commonly re­ferred to as the Sonett Report after its chairman, Charles P. Sonett of the NASA Ames Research Center).1 It served as his guide and point of departure to lend weight to his arguments on what needed to be done for Apollo science.

Sonett’s ad hoc working group had convened at Iowa State University in the spring of 1962 at the request of the Office of Manned Space Flight to recom­mend what scientific activities should be included on the Apollo missions. The group had twenty members and consultants with diverse scientific back­grounds, including strong representation from USGS led by Gene Shoemaker.

Paul Lowman served on the geophysics (solid body) subgroup and also helped compile the final report, while Fryklund worked with the geology and geo­chemistry subgroup during their meetings.

William Lee, assistant director for human factors in the Office of Manned Space Flight, provided guidelines at the start of the working group’s delibera­tions. These guidelines defined the parameters within which the working group would operate. They were relatively short and simple (two and a half pages), since at that time little was known about the constraints the astronauts would be operating under and since all the Apollo hardware was in an early design phase.

The working group was asked to consider experiments and tasks that could be accomplished on the Moon in periods of one hour, eight hours, twenty-four hours, and seven days. Because NASA still was not sure what the flight profiles would be, no guidance was given for any operations on the way to the Moon or in lunar orbit. Choosing landing site(s) was also not part of the working group’s charter, although its recommendations could influence site selection. Advice on power and communication capabilities for transmitting scientific data was very general, and the committee members were told that this should not restrict them. They were to plan for more than one but fewer than ten missions with the possibility of carrying one hundred to two hundred pounds of scientific pay­load. Life-support supplies would limit the crew’s operations to a radius of approximately half a mile. They were cautioned that the astronauts’ space suits might hinder their ability to perform ‘‘precise manipulations.” And finally, they were told that it might be possible to include a ‘‘professional scientist’’ in the crew, but that this would ‘‘significantly complicate our selection and training program, and [such a recommendation] should not be made unnecessarily.”

Today, reading between the lines and looking at the numbers the committee was given to work with, it seems clear that these guidelines sent a message to the members that scientific ventures during the Apollo missions might be tolerated but that they should not have high expectations. This message was repeated in the years ahead, much to the dismay of the scientific community.

Despite the restrictions, the draft report contained wide-ranging recom­mendations that included geological and geophysical experiments to be done on the Moon as well as experiments in surface physics, atmospheric measure­ments, and particles and fields. Bill Lee’s guidelines were to some degree ig­nored; the assembled scientists could not resist telling NASA what needed to be done. What they recommended could not be carried out with only one to two hundred pounds of payload, and they described geology traverses up to fifty miles from the landing site. They also detailed sample collection, including drill or punch core samples, and potential landing sites were suggested by Shoe­maker and by Richard E. Eggleton of USGS and Duane W. Dugan of the Ames Research Center. The report went so far as to describe what type of astronaut should be on the flights and the criteria for finding such recruits.

Since the report had been requested by OMSF and not by the science side of NASA, its recommendations carried some weight in OMSF offices. The draft had been circulated to participants at the National Academy of Sciences 1962 Iowa Summer Study, who had met at the same time as Sonett’s working group.2 Thus the Sonett Report would include the endorsement of the other side of NASA’s house (the scientists) when it was officially released. Although the Iowa Summer Study group agreed with the general conclusions of the Sonett Report, it recommended that the scope of the proposed investigations be more re­stricted than those spelled out in the report, a rather surprising recommenda­tion in light of later criticisms from the scientific community.

Based on these recommendations, and with his bosses in both OSS (Homer Newell) and OMSF (Joseph Shea) concurring, in early October 1963, one month after my arrival, Fryklund sent a memo to Robert R. Gilruth, director of the Manned Spacecraft Center (MSC) in Houston, containing the first official scientific guidelines for Project Apollo. As is the nature of guidelines, they established a broad framework for planning, but they provided no specifics on how long the astronauts would be on the Moon or how much payload weight should be allocated for science. These numbers were to come later. The eight guidelines included a listing of three functional scientific activities in decreasing order of importance: ‘‘a. Comprehensive observation of lunar phenomena; b. Collection of representative samples; and c. Emplacement of monitoring equip – ment.’’3 Assigning sample collection a number two priority is interesting since, as we will see, in later planning it became the astronauts’ first task once they were on the lunar surface. Back in Washington we began trying to flesh out the guidelines by reading between the lines of the Sonett Report and translating the recommendations to some hard numbers.

From the information we could collect, it was evident that the range of measurements and activities the Sonett committee had listed, even if reduced to follow the National Academy of Science’s recommendations, would require a science payload far exceeding the target of one to two hundred pounds. One month before Fryklund issued the guidelines, and unknown to headquarters, MSC jumped the gun and hired a contractor, Texas Instruments, to spell out Apollo experiments and measurements to be made on the lunar surface based on MSC guidelines. The report, when it was eventually issued in 1964, was dismissed as amateurish by headquarters and by members of the scientific community who had begun to focus on Apollo science. This difference of perspective signaled a clash between headquarters and the small MSC science staff over who would define Apollo science.

Adding to this mix of ideas on what science to carry out on the Moon, in early 1963 Bellcomm engineers had provided some analyses of potential Apollo and post-Apollo scientific operations. Bellcomm had been created in March 1962 by AT&T at the request of NASA administrator James Webb to provide technical support to NASA headquarters. By the time I arrived Bellcomm had grown to over 150 engineers and support staff and had already run afoul of MSC engineers, who accused the company of being a meddling tool of head­quarters-some at MSC went so far as to call the staff headquarters spies. MSC tried to exclude them from some meetings by keeping the schedules quiet so that when the meetings were announced it would be too late for the Bellcom – mers to make the trip from Washington to Houston. Another aspect of the visits that MSC found annoying was that Bellcomm required trip reports, so everyone who read them knew about what went on and about any disagree­ments with MSC’s proposals. Disagreements were frequent, and the second – guessing by Bellcomm continued throughout the program, often leading to positive changes, especially concerning the science payload. Eventually a small group of Bellcomm scientists and engineers were assigned to support Evans’s office, and they became important adjuncts to our small staff. Their support and numbers grew as Apollo science evolved.

At the end of January 1963 two Bellcomm staffers, Cabel A. Pearse and Harley W. Radin, presented a study examining the scientific advantages of having an unmanned logistic system deliver a fifteen-hundred-pound payload to the lunar surface. They concluded that the best use of such a system would be to provide ‘‘a fixed scientific laboratory equipped with a wide variety of sci­entific instrumentation.’’4 Two months later, under the leadership of Brian Howard, one of England’s ‘‘brain drain’’ expatriates, with Robert F. Fudali, Cabel A. Pearse, and Thomas Powers, Bellcomm issued a second report, The

Scientific Exploitation of the Moon.5 It provided a preliminary analysis of the type of science that might be conducted utilizing Apollo hardware to deliver a logistics payload of seven to ten thousand pounds to the lunar surface, the payload sizes being studied by Evans’s office. Although the second report does not cite the draft Sonett Report by name, the authors were surely aware of its existence because they include most of the experiments it described and it is cited in the January report. In addition, they recommended carrying out a variety of other operations and experiments including the use of roving vehi­cles and deep drilling. To my knowledge the Bellcomm reports and Lunar Logis­tic System, a ten-volume report issued by the Marshall Space Flight Center (MSFC) at the same time as the Bellcomm report, represent the first attempts to document the feasibility of using Apollo hardware for extended exploration on the lunar surface.6 These reports were my first exposure to such thinking and were among the early references on my NASA office bookshelves.

In late October 1963, returning from one of these frequent meetings, Fryk – lund rushed into the office we shared and announced, “They’ve just agreed; we have 250 pounds for science!’’ ‘‘They’’ being NASA Manned Space Flight senior management. Having been on the job only a few weeks and a latecomer to what had been a major struggle, I showed only muted enthusiasm. Based on my limited experience and initial looks at what a good science payload like that recommended in the Sonett Report would weigh, 250 pounds seemed a minor victory. A thousand pounds or more would have been better. But a victory it really was, certainly better than the one to two hundred pounds given to the Sonett working group. Once our foot was in the door, we quickly capitalized on the opportunity to define a complete payload based on this ‘‘official’’ number.

Other major changes had also been taking place in NASA. Headquarters was swiftly evolving. New organizations were being created almost weekly, and the staff was expanding rapidly. During 1963, the year I came, NASA headquarters almost doubled in size. With all these changes the headquarters phone directory was always out of date, and addenda were published every month. Brainerd Holmes, who until September had been in charge of manned space flight operations as director of the Office of Manned Space Flight, resigned and was replaced by George Mueller from Space Technology Laboratories. Mueller was given the new title of associate administrator, Office of Manned Space Flight, a third tier of top management just below administrator James Webb and his deputy, Hugh Dryden and associate administrator Robert Seamans. Homer

Newell was elevated at the same time to a similar position with the title associate administrator, Office of Space Science and Applications (OSSA). With his ap­pointment Mueller introduced a different management style to Manned Space Flight, one that would have a profound effect on Project Apollo’s future.

Toward the end of the year our office was merged with several others, and the new organization was called Advanced Manned Missions Programs. Ed­ward Z. ‘‘E. Z.’’ Gray was hired from the Boeing Company to be our leader, and we soon moved to our new offices at 600 Independence Avenue SW. In January 1964 Maj. Gen. Samuel C. Phillips was detailed from the Air Force Ballistic Systems Division to become Mueller’s deputy director for the Apollo program. Later in the year his title was upgraded to director.

In the wave of reorganization, Fryklund’s tenure as acting director was short lived. Homer Newell, in agreement with Mueller, formally established the Of­fice of Manned Space Science, reporting to both his office and Mueller’s. Willis Foster was brought in from the Department of Defense as the new full-time director, and Fryklund became Foster’s chief of lunar and planetary sciences. After some eight months working for Foster, he transferred back to Newell’s staff, and a short time later he returned to USGS to work in its military geology branch. Foster’s office, starting with an original staff of eight, grew rapidly (and now included Peter Badgley, my former thesis adviser at the Colorado School of Mines). Dick Allenby was transferred from the OSSA Lunar and Planetary Programs Office to become Foster’s deputy. Anthony Calio was brought in from the newly formed Electronics Research Center in Cambridge, Massachusetts, to provide some engineering muscle, and along with Jacob ‘‘Jack’’ Trombka he began to coordinate the planning for scientific instrumentation. Edward Chao, another USGS detailee, became the office expert on how to handle the antici­pated scientific treasure—the samples collected. Edward M. Davin, an acquain­tance of Allenby’s, was hired from Esso Research (now Exxon) in Houston in the summer of 1964 to join Allenby as the resident geophysicists, representing a scientific discipline that would increase in importance as the Apollo experi­ments were selected.

Will Foster now became my unofficial second boss, and I continued to work on developing the science payloads for Apollo flights as well as later undertak­ings. How we accomplished this for Apollo, and eventually went far beyond the initial 250-pound allocation, follows in the next chapters. But first, from a scien­tific perspective, why fight to get a science payload on Apollo in the first place?

Early Theories and Questions. about the Moon

If you have binoculars of ten power or even less, you can go out in your backyard on any clear night when the Moon is up—best perhaps at a quarter – moon phase, not a full moon—and become a lunar scientist. Brace yourself against a solid support so your hands are steady and focus on the line that separates the illuminated part of the Moon from the dark portion. Near this line the Sun casts the longest shadows, and you can see the greatest topographic detail. The technical term for this line is the lunar terminator, but you needn’t know this to start your studies. Your ten-power binoculars are about half as powerful as the telescope constructed by Galileo Galilei, who early in the seven­teenth century first began to study the Moon with more than the naked eye.

What will you see? Depending on where the line between the bright and dark portions falls on the particular night, you will probably see, just as Galileo did in 1609—to his amazement—some large and small circular craters, perhaps some mountains, and some apparently smooth areas that are known as maria, or seas. In 1963, some 350 years after Galileo made his first observations, the craters were the most controversial of all lunar features, sparking the most heated debates. What was their origin? Were they the remains of volcanoes? Were they caused by impacts like those that left similar craters on Earth? Were they the result of some combination of processes or the product of unknown forces? The lunar maria were also controversial; they were generally interpreted as lava flows. But how were they formed, and how did they spread over such a vast area? How were the mountains formed? Their very existence provoked debates about the internal structure of the Moon and its evolution.

The major, fundamental lunar questions being debated by planetary scien­tists when the Apollo program began can be quickly summarized: How old is the Moon, how was it formed, and what is its composition? Finding the answers was the driving force behind the desire to carry out a host of experiments on the Apollo missions. And a large science payload would be needed to resolve these difficult questions. The answers to some of them would come in part from samples collected on the Apollo landings, and in turn the samples would tell us a lot about the origin of the craters. If the Apollo missions landed at interesting points on the Moon and included various geophysical experiments along with geologic traverses, these mysteries might be resolved. From the answers we anticipated understanding Earth better, especially its early history. When I joined NASA in 1963 my knowledge of the Moon and of the ongoing debates was close to zero. I quickly resolved to fill this void and began to study the literature.

As soon as I returned to the United States from Colombia, I went to the local library and bookstores to find books to increase my meager knowledge. To my surprise, there were very few. And in recalling my undergraduate and graduate studies in the earth sciences, I could not remember that any attention had been paid to the Moon or the Earth-Moon system. The first book I bought was The Measure of the Moon, by Ralph B. Baldwin.1 It turned out to be a fortuitous choice. Not only had Baldwin done a comprehensive survey of the literature (the specialized literature was much more extensive than that found in general bookstores), he had organized the existing knowledge and theories and pre­sented them in a readable fashion. His opening sentence was prophetic: ‘‘Every investigation of the Moon raises more problems than it solves.’’ During the next five or six years I would find myself immersed in these problems and dealing daily with the various protagonists cited in the research. I later learned that I was in good company by being impressed by Baldwin’s work; Harold Urey, a Nobel laureate in chemistry, had become fascinated by the Moon’s many myste­ries after reading Baldwin’s earlier book, The Face of the Moon, and had put forth his own theories on how the Moon formed.

My first impression that there was little source material quickly changed. Baldwin’s references were extensive, too many—in light of my new duties—for more than a cursory review. I settled on purchasing a few texts to read in their entirety and keep available as a small reference library. In addition to Baldwin I read The Moon, by Zdenak Kopal and Zdenka Mikhalov; Structure of the Moon’s Surface by Gilbert Fielder; Harold Urey’s The Planets and several of his articles

and reports; Gerard P. Kuiper’s ‘‘On the Origin of Lunar Surface Features’’; and an article by my old mines professor L. W. LeRoy, ‘‘Lunar Features and Lunar Problems.’’2

Perhaps most interesting of all, I discovered that most of the leading figures in lunar and planetary science, including Urey, Kuiper, Fielder, Kopal, and Baldwin, were active and accessible. In addition, some of the younger lions, such as Shoemaker, Frank Press at Lamont-Doherty, Jack Green at North American Aviation, John O’Keefe at the Goddard Space Flight Center, and Carl Sagan of Cornell University, were already involved in NASA programs.

The origin and age of the Moon had intrigued astronomers and Earth scientists for many centuries, with theories proposed based on a minimum of hard data. By the early 1960s existing theories had become more sophisticated, supported by ever increasing observational data and, soon, by returns from several of NASA’s unmanned programs. Three theories on the Moon’s origin held sway: (1) the Moon and the Earth had formed more or less simultaneously from the same primordial cloud of debris surrounding the Sun; (2) the Moon had been separated from the Earth either through tidal movements or by the impact of another body (some would split this into two theories); and (3) the Moon had formed elsewhere in the solar system, and in its orbit around the Sun it had been captured by the Earth’s gravitational field in an early close encoun­ter. Based on the information then available, each of these theories could be supported or argued against depending on one’s point of view and which data one considered most critical. The date when any of these events took place was also conjectural, but it was generally believed that the Moon had become Earth’s companion early in the formation of the solar system, some 4.5 to 5 billion years ago.

Certain information was well documented. The Moon’s physical dimensions and mass, its distance from Earth, and several other properties were known rather precisely. Unlike Earth’s, the Moon’s magnetic field, if any, was thought to be weak; its mass and volume translated to a body less dense than Earth, probably without an iron core or at best with a very small core. It had no discernible atmosphere. We knew that the Moon was locked into a slowly expanding orbit that allowed only one side to face Earth. The Moon’s farside or back side (not ‘‘dark side’’ as so many ill-informed writers call it, since it is lit by the Sun in the same manner as the side facing Earth) was a total mystery; was it the same as what we could see or very different? This lack of information had made the Moon’s farside the playground of science fiction writers for many years. One could imagine all sorts of strange things back there, including alien colonies.3

Probably the most contentious issue was the origin of lunar craters. Were they formed by some internal process like volcanism or by the impacts of small to large bodies like meteorites? The literature was full of this particular contro­versy, and the debate—at times vitriolic—went on at all lunar symposia. Each side had its champions, although it appeared that the “impactors” were begin­ning to win the day. Any of the three lunar origin theories could accommodate either an impact or a volcanic explanation, but the subsequent history or postorigin modification of the Moon’s surface would be entirely different de­pending on which crater theory proved correct. If the craters were volcanic, then the Moon’s interior had been molten after its formation and we could expect to find many Earthlike conditions. If the craters were caused by impacts, then the Moon’s evolution might have been very different from Earth’s, even though most students believed that impacts were common in Earth’s early history. Complicating this debate, we could observe other features on the Moon such as sinuous, riverlike rills and odd-shaped depressions that did not con­form to the contours expected of impact craters. What was the Moon trying to tell us? Had there once been water on the Moon? Had a combination of pro­cesses taken place? Were they still taking place?

A primary scientific justification for studying the Moon, with either manned or unmanned spacecraft, was to help us unravel Earth’s early history. A new term had been coined for such study, ‘‘comparative planetology,’’ and we used it frequently in our briefings both inside and outside NASA. Comparative plan­etology means studying the planets by comparing what can be observed or measured on one with similar characteristics on another; through this back – and-forth association we would increase our overall understanding of all the planets. We believed that applying this technique to the Earth-Moon system would be especially fruitful. In all the solar system, our Moon is the largest relative to the size of the planet it orbits—in essence we are a two-planet sys­tem. By studying the Moon we believed we would learn much about Earth. When the Apollo project began many basic questions concerning our home planet were unanswered, and many were similar to those we were asking about the Moon. How was it formed, and how had it changed during its early evolu­tion? What is the thick zone just beneath Earth’s crust—the mantle—made of?

How does the mantle influence or produce the energy that moves large sections of Earth’s surface?4

Earth’s surface is a dynamic place. Mountains rise and are eroded away, sea basins and lakes fill and dry up, and continents move vast distances, a process called “continental drift.’’ The record can be deciphered by earth scientists in the rocks of Earth’s crust. But our understanding becomes sketchier and more uncertain as we go back in time toward Earth’s earliest history. That part is obscured, hidden, or even destroyed by the very processes mentioned above. The oldest Earth rocks that have been positively dated, from northern Canada, are approximately 4 billion years old. The oldest piece of the solar system dated thus far is the Allende meteorite, calculated to be almost 4.6 billion years old, supporting the earlier theories that the solar system might be 5 billion years old. These dates, however, leave a gap of almost a billion years from the oldest dated Earth rocks to the solar system’s birth. This billion-year gap continues to be an enticing field for speculation and investigation.

Returning now to the three theories of lunar origin: What were their im­plications for Apollo? Could we expect to shed light on these riddles or perhaps even solve them? If either of the first two was correct—if the Earth and the Moon formed simultaneously and close together or if the Moon broke off from Earth, then one would expect the rock types or minerals we would find on the Moon to be similar to those on Earth. If the third theory was correct, that the Moon formed somewhere else in the solar system and was later captured by Earth, then we might find different rock types and minerals on the Moon, perhaps similar to some of the more exotic meteorites that have been recovered at various places on Earth. Regardless of the ultimate answer, we were confident we would be able to date the rocks and get a handle on a pressing question: When was the Moon formed? Some believed the Moon’s surface was ancient, that all the features we observed had formed early in its history and had changed little since then. Confirming this would be exciting; the Moon, as many were fond of saying, could act as a Rosetta Stone in deciphering the birth of the Earth and the solar system!

Harold Urey at the University of California, San Diego, was a strong propo­nent of the third theory. He believed the Moon had been formed through the accretion of planetesimals (large pieces of the primordial cloud from which the Sun and eventually the whole solar system evolved) and that this happened some 4.5 billion years ago. If true, it was an ancient and unchanged body and worthy of careful study. The Moon has an irregular shape (it is not a perfect spheroid but has slight polar flattening and an Earth-facing equatorial bulge), and it wobbles on its axis. Urey argued that the Moon had never been com­pletely molten or these irregularities would not have survived. According to his calculations, the Moon had formed as a somewhat cold body—those who said the maria were lava flows erupting from a molten interior were wrong. The maria, he believed, were the result of large-scale melting caused by the impact of large bodies, such as the one that had formed Mare Imbrium, and the maria material might have been the melted remains of carbonaceous chondrites, an unusual type of meteorite occasionally found on Earth. Urey was looking for­ward with great anticipation to obtaining lunar samples, especially from the maria (they should not be Earthlike lava), to prove his theory.

Urey’s reputation as a Nobel laureate was important in legitimizing our lunar studies. When he spoke, everyone listened. Although he had many differ­ences with other lunar scholars, sometimes he agreed with them. He agreed, for instance, that most craters were certainly of impact origin and that much of the lunar topography was shaped by ejecta from the impacts. He did not think there had been much volcanism on the Moon, but he accepted the observations of some volcanolike features. In a letter to Jay Holmes at NASA headquarters in January 1964 Urey said: ‘‘I am sure that only the most experienced hard rock geologist could possibly do anything about the subject satisfactorily. I urge strongly that all astronauts be well trained hard rock geologists. The Apollo project is being severely criticized by outstanding people, and I believe that if we do not at least [do] the very best that we can to solve important scientific problems that this criticism may well swell to a very great chorus.’’5 Urey’s suggestion on astronaut training was one of the first shots in a long campaign that led to the scientist-astronaut selections discussed in later chapters. Regard­less of his opinions, his presence at any lunar symposium guaranteed vigorous debate and lots of publicity, a commodity we eagerly sought as we struggled to make NASA management recognize how important the Moon would be in resolving issues of such magnitude.

Another vigorous debater was Thomas Gold, a professor at Cornell Univer­sity who had made his early reputation in astronomy. In recent years he had focused on problems related to the Moon. Tommy Gold was to prove a thorn in our sides with his strange theories, seldom supported by anyone else in the scientific community. His most controversial one, first proposed in 1955, was that the lunar surface was covered by a layer of fine particles eroded from the lunar highlands, perhaps several kilometers thick, that could move across the lunar surface and fill in depressions.6

He sought to prove this contention with photographs showing that most lunar features had a smooth appearance and many craters seemed to be filled rather uniformly with some material. He generally discounted the idea that this fill might have been molten material like lava or ejecta from impacts. Radar studies of the Moon tended to support his thesis that the uppermost soil layer was fine grained and of low density, but how thick this layer might be and what area it covered could not be resolved from the radar data.7 Other interpreta­tions were also possible.

The character of the lunar soil, especially its topmost layer, was of course a great concern, since it would directly affect the design of the lunar module (LM) and the astronauts’ ability to land and move around on the surface. Not much was known about how soils and fine-grained material would behave in the high vacuum found on the Moon. Several government and private labora­tories had done experiments to examine this question. Bruce Hapke at Cornell University, for example, had shown that fine particles deposited in a vacuum tended to stick together loosely, forming what he called ‘‘fairy castle’’ structures, or soils with low bearing strength.8 This could be seen as substantiating Gold’s contention of a low density lunar surface.

Before the return of pictures from Ranger, and later the Surveyor and Lunar Orbiter missions, photographs of the Moon had come from telescopic images, with a resolution of at best a thousand feet. Under such low resolution, every feature on the Moon appeared somewhat smooth. This problem did not deter Gold. Even after we received the higher resolution Ranger, Surveyor, and Lunar Orbiter photos, he continued to predict that when the lunar module attempted to land it would sink out of sight in his electrostatically levitated dust. At this early stage such predictions alarmed NASA’s engineers, for it was difficult to prove him wrong.

Fortunately questions of this type—though not so outrageous—had been anticipated, and the Surveyor spacecraft were designed to answer them. Sur­veyor did prove Gold wrong, which he accepted grudgingly, continuing to maintain that some areas of the Moon were covered with fluffy dust. He clearly enjoyed being the center of controversy, and after Surveyor’s deflator he came up with another whopper: the lunar dust would be pyrophoric. When the astronauts landed and opened their LM hatch, the oxygen released from the cabin would combine with the soil and cause an explosion. His reasoning was that the lunar surface, exposed for eons to the bombardment of the solar wind, had become oxygen deficient and would undergo an explosive oxidation when exposed to the LM atmosphere. This prediction also worried the engineers, and it would not be possible to prove or disprove it with any projects in the pipeline before the actual landing.

The school of volcanic crater supporters started strongly and slowly declined in influence as more and more observational and experimental data became available. But in 1963 and 1964 they still made a good case for their views. The leaders of this school were Gerard Kuiper, at that time director of the Lunar and Planetary Laboratory in Tucson, John O’Keefe at Goddard Space Flight Center (GSFC), and North American Aviation’s Jack Green. Each of these advocates had a somewhat different interpretation of what was observed on the Moon. Both Kuiper and O’Keefe admitted that impacts had played a role in the Moon’s evolution, but they still thought volcanism was the major explanation of its present surface formations. Kuiper had been an early student of the Moon. Ignoring Urey’s counterarguments, he believed the original substance that came together to form the Moon contained enough radioactive material to eventually raise the interior temperature and melt the entire Moon. In his model this had occurred some 4.5 billion years ago, forming the maria and filling the larger craters, all subsequently modified by meteoroids.

Green, however, took a hard-line approach. Essentially all features on the Moon could be, and should be, explained by volcanic processes. Jack was a colorful figure, never taken aback by criticism, and a good debater. You could count on him to enliven any lunar symposium. His forte was showing side-by­side photographs of terrestrial and lunar features that looked almost identical. The terrestrial features, of course, were always volcanic in origin.

The impact school was led by Gene Shoemaker and his United States Geo­logical Survey (USGS) followers. Gene had been influenced by an earlier and revered USGS chief geologist, Grove K. Gilbert, who in 1893 published a paper concluding that the Moon’s craters were probably of impact origin.9 Gene had carefully studied Meteor Crater in Arizona, just east of his new Flagstaff offices, as well as several other craters of known impact origin in other parts of the world. Robert Bryson, from NASA headquarters, had funded Gene to develop a detailed report of his findings that would combine his earlier studies and field observations at Meteor Crater. By 1964 Gene’s studies had been completed for some time, but he had not finished the written report. This was a sore point with Bob because so little had been published on the geology and mechanics of impact craters, and Gene’s work was intended to fill this void. He had published a short report on his work in 1963, but the full report was still in draft form.10

Bob, a former USGS geologist, had great insight into what it would take to convince the scientific community that important information could come from lunar studies. In addition to Gene’s work, Bob funded some of the studies of Ed Chao at USGS, who in 1960 discovered coesite in the shocked debris from Meteor Crater, a type of silica that forms only under extremely high pressure. Before Chao’s discovery, coesite had been made in the laboratory but had never been found in nature. This mineral is now a key fingerprint for identifying impact craters. Soon after this discovery Chao found stishovite, another form of high pressure silica, in rocks ejected from Meteor Crater-further confirma­tion that an impact of enormous energy had created the crater. Chao was later detailed to NASA as Apollo science work expanded, and we worked together under Will Foster. Bryson also funded the telescopic mapping of the Moon, initially through Robert Hackman at USGS. These maps laid the groundwork for all the subsequent lunar geological interpretations used during the Apollo landings and the planning that preceded them.

Despite the annoyance at NASA headquarters about the Meteor Crater re­port, Gene was a walking encyclopedia concerning what happens when a rela­tively small meteorite hits a solid object like Earth. (The iron meteorite named the Canyon Diablo that blasted the four-thousand-foot-diameter Meteor Cra­ter probably weighed about seven thousand tons.) He extrapolated these results to the larger lunar craters that must have been formed by even larger bodies. He was joined in this knowledge by experimenters such as Donald Gault at the NASA Ames Research Center and others who had conducted small hyper­velocity, laboratory-scale impact studies. In addition to making direct field observations on Earth, Gene and his staff, following Bob Hackman’s lead, had spent considerable time mapping the Moon using several large telescopes. Ap­plying standard terrestrial geological interpretations to these eyeball studies, they had become convinced that the Moon was pockmarked with impact cra­ters. Shoemaker was sure that almost all lunar craters had been formed by this mechanism, not through volcanism.

In a trip report of a visit to Menlo Park in May 1963, Bob Fudali described his conversations with Henry Moore, Dick Eggelton, Donald Wilhelms, Harold Masursky, and Michael Carr of USGS.11 After spending many hours drawing geological maps of the Moon based on telescopic observations, the USGS geolo­gists believed that, despite the high density of impact craters, there was substan­tial evidence of volcanic activity on the Moon, somewhat at variance with Shoemaker’s views. They also believed there was evidence that the maria were covered with extrusive igneous material, and they were convinced that tektites (rounded glassy bodies probably of meteoritic origin found at several places on Earth) originated on the Moon, thus supporting O’Keefe’s theories. Because of the chemical composition of the tektites, this meant that at least some parts of the Moon were ‘‘granitic,’’ which in turn meant that at some point in its evolu­tion the Moon had undergone differentiation in the presence of water. One could then conclude that the Moon was at least somewhat like Earth.

In addition to these major theories and vigorous debates, several related questions had puzzled lunar scientists for many years. Answers were especially important to the new breed of comparative planetologists, for they hoped the answers would shed new light on similar questions about Earth’s evolution.

During its early formation, Earth went through partial melting and differen­tiation. As the material that was to make up the bulk of Earth’s mass accumu­lated, the heavier material sank to the center, forming a core. Each layer above the core was of decreasing density, and the lightest materials formed the crust. Although we do not completely understand these various deep materials that form the bulk of Earth’s interior, we can infer and calculate what they are. Based on this knowledge, we have reconstructed the processes that formed them. As an example, we know that Earth’s continents are relatively light material ‘‘float­ing’’ on denser underlying rock. We also know that through geologic time there has been a constant churning of the upper layers and that Earth’s surface today looks very different than it did, say, 3 billion years ago. Although we say we know these things, they are really just theories based on observable field data and hypothetical calculations. It would be reassuring if we could find other examples of these processes or similar ones elsewhere in the solar system. What better place to look than the Moon, our closest neighbor?

Had the Moon undergone differentiation in its early history? Telescopes showed mountains on the Moon. They were generally lighter in color than the lowland maria and thus probably different in composition. Were the moun­tains less dense, as terrestrial mountains are less dense, on average, than Earth’s crust and upper mantle? If you believed that tektites came from the Moon, differentiation was a given, with less dense material occurring at the surface. Did the Moon have a core? The tiny but measurable magnetic field (averaging five gammas and believed to be due primarily to the interaction of the Moon with the solar wind) and overall lower density seemed to negate a lunarwide field, but we had not been able to make close-up measurements. Perhaps there were weak, relict local magnetic fields that would be evidence of early core formation. Why did the nearside and farside of the Moon look different? This question became more important when we received Lunar Orbiter pictures of the Moon’s farside with much higher resolution than those returned by Lunik 3 and the full extent of these differences became known. Did Earth-Moon tidal effects account for these differences, or was it some other factor?

Whether water ever existed on the Moon was another important question. Because the Moon has no discernible atmosphere (it was estimated to be equiv­alent to Earth’s atmosphere at altitudes above six hundred miles, appropriately an exosphere),12 water probably would not be found on the lunar surface under any conditions, but it might still exist belowground. Some proposed that it might be found in permanently shadowed craters near the lunar poles. Urey in 1952 and Kenneth Watson, Bruce Murray, and Harrison Brown in 1961 pro­vided an analytical basis for such predictions. The latter authors concluded, ‘‘In any event, local concentrations of ice on the moon would appear to be well within the realm of possibility. Unfortunately, if it exists, it will be found in shaded areas, and attempts to determine whether it is present must await the time when suitable instruments can be placed in those areas.’’13 Some thirty-five years later the Clementine and Lunar Prospector missions seem to support their analysis, though it is probably safe to say the authors had not imagined that ice would be detected by instruments in lunar orbit; such a possibility was beyond their dreams in the early 1950s.

On Earth, water is needed to form granites, so if granites existed on the Moon, then water must have been present in its early history. If water could be found on the Moon it would greatly simplify our plans for post-Apollo manned exploration. Its presence in an easily recoverable form would reduce the potable water we would have to transport to the Moon, and water could be used as a source of oxygen for manned habitats. Far-out planners even envisioned mak­ing rocket fuel by separating the hydrogen and oxygen. The questions posed by present-day space planners or raised by the information gained from the Clem­entine and Lunar Prospector missions thus are not new but were on our minds thirty years earlier.

Would we find any evidence of life forms, however primitive, in the samples brought back to Earth? This outcome was considered unlikely but not impossi­ble. For this reason the samples and the astronauts would be quarantined on their return lest they carry some deadly virus or pathogen to which we poor earthlings would have no immunity. Any evidence of life would be astounding and would require rethinking how life formed on Earth.

All the questions above, and their answers, were important both to NASA (especially my office) and to the scientific community in general. Our post – Apollo mission strategies were based on attempting to find answers, which in turn would help us plan our programs for Venus, Mars, and beyond, using the Moon as a staging point for these more difficult missions. And there was still the link to understanding Earth.14

All these theories, questions, and debates could be resolved by a relatively small suite of activities and experiments. The trick would be to design them so they could be carried on the missions and deployed by the astronauts. The astronauts would have to sample the rocks and soil at their landing sites over as large an area as possible and bring the samples back to Earth for analysis and reconstruction of their geological context. Also, to complete the picture they would need to carry certain geophysical instruments to collect data pertaining to the Moon’s subsurface or other environmental conditions. In the introduc­tion to his book, Baldwin had stated: ‘‘It is beyond hope that we shall ever have a complete and definitive answer to all lunar problems.’’ Finally he had predicted: ‘‘Landing on the moon and analyzing its materials will help greatly but will raise more problems than are solved.’’15 These predictions echoed concerns raised in his first chapter. We hoped that our plans for extensive manned lunar explora­tion would go a long way toward changing his mind on both of them.

After becoming reasonably familiar with the current state of knowledge about the Moon, I started making some personal observations. I got permission from Tom Evans to contract with the Astronomy Department at the University of Virginia for time on their large (twenty-six-inch refractor) telescope so some of us on the NASA headquarters staff could travel to Charlottesville and make our own close-up studies. Laurence Fredrick, director of the Leander McCor­mick Observatory, was a gracious host for those of us that took advantage of the opportunity. This telescope, almost a twin to the famous Naval Observatory telescope in Washington, D. C., where some of the first lunar studies had taken place in the nineteenth century, including those by Gilbert, was the one USGS used in 1961 to begin the detailed mapping of the Moon funded by Bob Bryson. Because this work had recently been transferred to the Lick Observatory in California and a new observatory near Flagstaff, observing time was available. The Virginia telescope was an ideal instrument for casual Moon viewing be­cause with easily mastered techniques it provided a resolution of a few thou­sand feet for lunar surface features. Charlottesville was only a two-hour drive from Washington, so we could leave the office immediately after work, stop for a quick dinner, set up the telescope in plenty of time for a few hours of viewing, and still get home shortly after midnight.

A twenty-six-inch-refractor telescope is a very large piece of equipment. The telescope with its mount weighed some eight tons. A rotating dome with sliding doors covered the telescope, and housed within the dome were the electronics and motors that allowed one to point and track the telescope. Under Larry Fredrick’s tutelage, I became adept at operating the instrument, and after a few nights’ practice I was able to observe by myself. As one might expect, viewing was ideal on clear nights, and the winter months were best of all because cold, stable air reduces atmospheric disturbances. But even on exceptionally clear nights there was always a shimmering distortion caused by Earth’s atmosphere, making it appear that heat waves were rising from the Moon and tending to obscure features under high magnification. I spent many a cold night studying the Moon’s surface, following the terminator as it slowly moved across the face of the Moon revealing the surface detail. When the Sun’s angle was correct I could compare my observations with the first USGS lunar maps of the Coper­nicus and Kepler regions to understand how this latest attempt to map the Moon geologically was carried out and why the USGS mappers were identifying certain types of surface features as discrete geological formations. The subtlety of most of these features was evident, and I came to appreciate how an earth – bound geologist’s imagination might become a dominant factor in drawing a geological map of the Moon with the enormous disadvantage of never having set foot on the surface.

Another compelling reason for spending time observing the Moon was the recent spate of reports by reputable astronomers about transient phenomena on the lunar surface. In 1958 a sensational announcement had been made by Soviet astronomer Nikolai Kozyrev, who claimed he had recorded spectra of a transient event on the Moon near the central peak of the crater Alphonsus. Other observers soon reported color changes and similar events at other lunar features, the most exciting being at the crater Aristarchus.

Excerpts from the report written by James Greenacre, employed at that time by the U. S. Air Force Lunar Mapping Program at Lowell Observatory near Flagstaff, Arizona, tell his exciting story of what he observed one night at Aristarchus.

Early in the evening of October 29, 1963, Mr. Edward Barr and I had started our regular lunar observations. . . . When I started to observe at 1830 MST. . .

I concentrated on the Cobra Head of Schroeter’s Valley. . . . at 1850 MST I noticed a reddish-orange color over the dome-like structure on the southwest side of the Cobra Head. Almost simultaneously I observed a small spot of the same color on a hilltop across the valley. Within two minutes these colors had become quite brilliant and had considerable sparkle. I immediately called Mr. Barr to share this observation with me. His first impression of the color was a dark orange. No other color spots were noted until 1855 MST when I ob­served an elongated streaked pink color along the southwest rim of Aristar­chus. . . . at approximately 1900 MST I noticed the spots of color at the Cobra Head and on the hill across the valley had changed to a light ruby red. . . . I had the impression that I was looking into a large polished gem ruby but could not see through it. Mr. Barr’s impression of the color at this time was that it was a little more dense than I had described it. . . . By 1905 MST it was apparent that the color was fading.16

Greenacre and Barr did not advance any theories on what may have caused the colors they observed, but in a contemporaneous report John Hall, director of the Lowell Observatory, vouched for the authenticity of the sighting. He called Greenacre ‘‘a very cautious observer’’ and noted that Greenacre’s boss, William Cannell, ‘‘stated that he could not recall that Greenacre had ever plotted a lunar feature which was not later confirmed by another observer.’’17

Thus was reported the first sighting of a lunar transient event, confirmed by two observers and, most important, made by highly qualified personnel. A second sighting by Barr and Greenacre, at the same location, was recorded one lunar month later on November 27, 1963.18 This observation also was con­firmed by Hall and by Fred Dungan, a scientific illustrator on the staff and a qualified telescopic observer. This color feature was reported to be somewhat larger than the one observed in October. It seemed beyond a doubt that some­thing was going on near Aristarchus, since other observers before and after Greenacre and Barr recorded similar activity in the vicinity.

Aristarchus is the brightest feature on the Moon’s nearside. This fact, along with the odd shapes of nearby features, suggested that it was of ‘‘recent’’ vol­canic origin. (Recent is a subjective term, since no one could then be sure of the relative ages of any lunar features, and the absolute times when they were formed were even larger unknowns.) By USGS’s reckoning brightness equated to ‘‘young,’’ and these color changes could mean that volcanic processes were still taking place on the Moon. This was an exciting prospect for those of us deciding what experiments to perform on the Moon. Thus, every night that I spent at the telescope I devoted some time to looking at Aristarchus, hoping I would see one of these ‘‘eruptions.’’ I never did.

After setting up the contract at the University of Virginia, I contacted an astronomer friend at the NASA Goddard Space Flight Center, Winifred C. ‘‘Wini’’ Cameron, suggesting we start a nationwide network of amateur and professional astronomers to maintain a continuous Moon watch for transient phenomena. Wini was already studying the origin of lunar features and was working with John O’Keefe at GSFC, so this activity fit neatly with her ongoing work. The idea was to publicize a telephone number where people could call in their observations. The person manning the hot line would then contact other observers to try to confirm the sighting. In spite of the acknowledged profes­sionalism of some who had made sightings, many in the small lunar commu­nity were skeptical about such events, so we needed to get independent confir­mation. We activated the network under Wini’s direction in 1965. She went on to study, extensively, lunar transient phenomena and began a program called Moon Blink that developed instrumentation specifically designed to measure and record such transient events.

Lunar transient events had been reported long before the start of the Apollo program, but as might be expected, Apollo aroused great interest in the Moon in amateur and professional astronomers alike. Many more reports of various types of sightings such as color changes, obscurations, and sudden bright spots were made after Apollo Moon landings became the centerpiece of NASA’s space program.19 Up until this time, however, except for Greenacre’s sighting, confir­mation had never been possible; subsequently there was independent confirma­tion of several events.

In 1967, after careful analysis of Lunar Orbiter У high resolution photo­graphs of the region of Aristarchus, scientists at the Lunar and Planetary Labo­ratory at the University of Arizona discovered some interesting features at the location of Greenacre’s color sightings. They reported that in Schroeters Valley, near the crater named the Cobra Head, they observed a volcanic-looking cone with flow features on its flanks, and that the crater Aristarchus showed evidence of volcanic activity.20 These discoveries suggested that Greenacre was observing the effects of ongoing lunar eruptions.

The information gained later during Project Apollo and from follow-on studies makes it seem likely that some type of gaseous emission or other surface changes did take place during this time. Some of the color changes reported may have been imagined or caused by terrestrial atmospheric distortion that fooled the observers, but some were almost certainly real events. Astronauts’ observations pertaining to lunar transient phenomena are discussed further in chapter 13. For more on the subject, see selected works by Cameron.21

What Do We Do after Apollo?

Even before we made detailed plans for including science on the Apollo mis­sions, we undertook planning and analysis for missions that would come later. When I joined NASA in 1963, this planning was being done in Tom Evans’s office under the name Apollo Logistics Support System (ALSS), implying a program that would come after the Apollo missions but would capitalize on the Apollo hardware then being designed. Post-Apollo programs were given other names in later years as management attempted to get a commitment to con­tinue lunar missions after the initial Apollo landings.

By late 1963, except for the effort that went into the Sonett Report, little had been done to fill the void in Apollo science planning. And many in NASA claimed that no void existed. The Apollo program had only one objective: to land men on the Moon and return them safely. The astronauts would probably take a few pictures, though no camera had yet been selected. They might pick up a few rocks, but tools for doing this were not under development, nor were we designing the special boxes essential for storing such samples on the return trip. A few forward-looking scientists were beginning to think about these con­cerns, but no one was receiving NASA funds to develop the equipment needed. Post-Apollo planning was an entirely different matter. Tom Evans’s office was already spending NASA funds to address what we should do on the Moon after the initial landings. His group and others in Advanced Manned Missions who were looking ahead had initiated studies at the Marshall Space Flight Center (MSFC) that led to the ten-volume MSFC report Lunar Logistic System. This effort was directed at MSFC by Joseph de Fries of the Aero Astrodynamics Laboratory, but it included contributions from other MSFC organizations.

In the fall of 1963, less than six years before the first Apollo Moon landing would take place, no timelines had yet been developed to tell us how long the astronauts would, or could, stay on the lunar surface. Payload numbers for the science equipment were not firmed up and varied from the 100 to 200 pounds estimated for the Sonett Report to the ‘‘back of the envelope’’ 250 pounds allotted later. We all assumed it would be difficult to get a larger allocation until all the Apollo systems had been tested and flown and had their performance evaluated. In spite of the many uncertainties and the lack of firm numbers, we took it as given that the landings (number undefined) would be successful and that the myriad Apollo systems would function as advertised.

Our job was not to question any of the Apollo assumptions. Another office in Advanced Manned Missions, under the rubric of supporting research and technology, was responsible for developing alternative ways to ensure mission success. Not only did we assume success, we were charged with expanding the capabilities of the basic Apollo hardware far beyond the original intent. For example, how could we upgrade the lunar excursion module (LEM) to carry a much larger payload than currently planned? How could we extend the time that the command and service module (CSM) could stay in lunar orbit? How could we increase the potential landing area accessible to the LEM (restricted for the first landings to the Moon’s nearside, central longitude, equatorial re­gion) so that we could explore what appeared to be critical geological sites far from the planned Apollo landing zone? And would it be possible to land a modified, automated LEM, turning it into a cargo carrier (LEM truck) in order to bring large scientific and logistics payloads to the Moon? All these questions and many more were already under study when I joined the office. (Later in the program the term lunar excursion module was shortened to lunar module, LM, but at this time LEM was still the preferred name.)

The missing ingredient in all this planning was an explanation for why we wanted to stay longer on the lunar surface and why we needed to modify the Apollo hardware to carry bigger payloads. How long should we stay? How big a payload? It became my job to get answers from the ongoing studies. At the end of July 1963, as one of his last actions at headquarters, Gene Shoemaker had sent a letter to Wernher von Braun, the Marshall Space Flight Center director, asking MSFC to suggest what types of scientific activities should be undertaken on the ALSS missions. Verne Fryklund, as Shoemaker’s successor at NASA, continued this effort, and I in turn inherited this inquiry when I informally joined his staff.

After meeting Paul Lowman in Fryklund’s office, I quickly learned that he shared my enthusiasm about studying and exploring the Moon. Not having been exposed to normal Washington turf battles and jealousies, it seemed quite natural that I ask Paul to work with me informally on some of the projects I had begun. Paul had already made a name for himself by convincing the Mercury astronauts to use Hasselblad cameras on their flights to photograph the Earth’s surface. This was no mean accomplishment, since these former test pilots were much more interested in flying and monitoring spacecraft systems than in being photographers. Most of the astronauts eventually enjoyed taking photos, especially when they were published extensively in newspapers and magazines. At that time Life had an exclusive agreement with the astronauts to publish first-person accounts of the missions, and a few beautiful full-color photos of the Earth appeared in the articles that followed each Mercury flight. As a result of this success, Paul continued to coach the upcoming Gemini astronauts in photography.

One of the attractive aspects of working at NASA in those early days was that staff members were given great freedom to attack whatever problem they un­covered, without bureaucratic red tape and worry about turf. Paul had orig­inally accepted his temporary headquarters assignment in order to work with Gene Shoemaker, so with Gene’s departure, the reorganization of Fryklund’s office, and the arrival of Will Foster, the timing was right. Thus we began a long professional friendship that endures today.

By the time I joined Evans’s small team in 1963, we already had the results of some preliminary studies on expanding the versatility of the Apollo hardware. The MSFC Lunar Logistic System study had examined the hardware then under development for Apollo and documented its inherent flexibility. With what we claimed would be minor modifications, it would be possible to land the LEM at selected sites with no crew on board. Such a LEM could then be a cargo ship carrying as much as seven thousand pounds to the lunar surface, replacing ascent fuel and other equipment not needed for a one-way, unmanned trip. A LEM with this capacity could carry living quarters, large science payloads, or other types of equipment depending on the mission. It seemed that a crew of two astronauts, arriving in another modified LEM and landing close to one or more unmanned logistics LEMs, could spend as much as two weeks on the Moon by either transferring to the earlier-landed LEM or using other payloads that had preceded them.

Similar studies of the CSM showed that it could be kept in lunar orbit long enough to support a two-week lunar stay. In addition, remote-sensing payloads could be carried in one of the CSM’s bays to map the lunar surface in various parts of the electromagnetic spectrum, an undertaking that was receiving more and more backing and attention.

Most of my office colleagues were engineers with degrees in electrical, aero­nautical, or mechanical engineering and little training in earth sciences. This background was mirrored by NASA’s senior management. We decided the best way to convince our bosses that there would be exciting and important inves­tigations for the astronauts to undertake on the Moon (requiring many days and a wide variety of equipment) would be to illustrate these tasks with ter­restrial analogies and describe the type of fieldwork and experiments required on Earth to unravel its own history.

Drawing on the Sonett Report and our own knowledge and experience, Paul and I first visited the rock collection at the Smithsonian Museum of Natural History. We borrowed rock samples of various types that illustrated the Earth’s geological diversity and the complex geological and geophysical situations we believed would be encountered on the Moon. With visible evidence of how a planetary body (the Earth) had evolved, we developed a rudimentary ‘‘show and tell’’—a short course in terrestrial geology and geophysics for NASA deci­sion makers—and extrapolated this lesson to the Moon. We hoped our rock collection, along with maps, photos, cross sections, and such, would stimulate their interest and demonstrate that what we were proposing was real and im­portant. We selected igneous, metamorphic, and sedimentary rock samples, later augmented by a few specimens collected at Meteor Crater, Arizona, that showed how a meteorite impact could make rocks look much different than before they were struck. In 1963 so little was known of the physical characteris­tics of the lunar surface that we felt free to use almost any type of rock to tell our story. Armed with our teaching materials, we put together a half-hour lecture designed around passing out our rock collection to the audience to make particular points and—we hoped—elicit questions. We started with my office colleagues, honed the presentation, and later lectured to senior staff. Tom Evans and E. Z. Gray were impressed with the story we put together. We were ready to take our show on the road and present it along with recent study results con­firming that the astronauts might be able to stay on the Moon for two weeks deploying sophisticated science payloads.

On December 23, 1963, after just four months of getting our story together, Evans was asked to brief a prestigious audience: Nicholas E. Golovin, a member of the President’s Science Advisory Committee (PSAC), and staff from the Office of Science and Technology (OST). Golovin had been a senior manager at NASA before going to PSAC. He had earned a reputation as a stern, no­nonsense leader in NASA’s early days when he chaired a committee to review the Apollo launch vehicle options and became involved in the internal debate on selecting lunar orbit rendezvous (LOR) as the preferred mission mode. Tom was apprehensive about the briefing, which was designed to inform PSAC about our thinking on post-Apollo missions. Ed Andrews and I went with Tom, but because of Golovin’s reputation we were told just to listen unless Tom asked us to answer a question.

I thought the briefing went well, and I only responded to a few “geological” questions directed my way. Golovin asked several questions, some in a peremp­tory tone that I assumed was his normal manner. Donald Steininger, from OST, asked a few questions on classifying rocks, obviously trying to understand how much sampling would be necessary to understand the Moon’s history. Tom saw the meeting more negatively. He didn’t think we had convinced our audience of the need for extended lunar exploration. As it turned out, Tom’s instincts were right: after President Kennedy’s death, the Johnson administration never fully embraced post-Apollo lunar exploration.

Of course, not knowing in 1963 and 1964 what events would take place that might dash our plans, we charged ahead and prepared for the big show, a briefing on our vision of post-Apollo lunar exploration for George Mueller, Tom and E. Z. Gray’s boss. Mueller, a former professor of electrical engineering, was a slender man with dark hair combed straight back, whose thick, black- rimmed glasses gave him an owlish look. In the meetings I had attended he was soft-spoken and deliberative. I was looking forward to this chance to brief him. Mueller’s management style was somewhat unusual compared with that of other managers I had known, and in the years ahead it set the tone for the Apollo program.

After we moved to 600 Independence Avenue (across the street from a parking lot that later was the site of the Smithsonian Air and Space Museum), briefings and status reviews for Mueller were held in Office of Manned Space Flight (OMSF) conference room 425. The room was set up to hold forty to fifty, with Mueller and senior OMSF management seated in the front row before three back-projected screens. A lectern for the presenter was usually placed to the audience’s left of the screens. Several overhead microphones let the pre­senter prompt the projectionist for the next vugraph or slide. Al Zito, a civil servant transferred from the navy, ruled the seas behind the screens. You soon learned that if you wanted a smooth presentation, Al had to understand your needs. With an assistant, he would work the three screens like an orchestra conductor, never missing a beat even if the presenter lost his place or questions disrupted the flow. Al became an OMSF institution. He could have written a funny book about NASA in the years leading up to the first Apollo flights, for he was privy to more senior-level decision making than almost anyone else. Such a book could have included the faults, foibles, and stumbles of many senior managers unprepared for the grilling they got on the stage in room 425.

We had a small art department to develop presentation material for OMSF offices. Housed in the basement of 600 Independence Avenue, it was run by Peter Robinson, who had a full-time staff of six or seven artists and technicians. Pete was a true NASA treasure-unflappable in the face of impossible deadlines yet smiling and friendly and somehow always delivering the goods. I came to know Pete and his team well over the years. I often spent hours in Pete’s office along with Jay Holmes, who worked on Mueller’s staff to develop presentations, sketching and revising new material for briefing senior management. Mueller had a special ability to make a flawless presentation with minimum preparation before audiences of all descriptions, keeping them spellbound with the colorful and exciting pictures we and others provided. Every program manager soon learned to keep a file drawer full of up-to-date vugraphs of his project, ready at a moment’s notice to either give a presentation or provide material for someone else to present.

Although the conference room had microphones to cue the projectionist, there was no way to amplify what was being said for those in back. During and after presentations, Mueller and his staff would ask questions and discuss the matter at hand, with Mueller taking the lead. His voice was soft and low, and since he seldom raised it, even during contentious debates, everyone would be absolutely silent so as not to miss what was being said in the front of the room. In spite of straining to hear, those of us in the cheap seats often could not get the gist of the discussion.

After the meeting we would discreetly mill around in the corridor outside asking ‘‘What did he say?’’ about a particular subject of interest. We usually had to ask two or three people before we got the whole answer, since even those seated closer might not have heard everything. I have often wondered if Mueller knew about these sessions and purposely pitched his voice low to keep everyone focused and eliminate unwanted questions on his time. Whether or not it was a ploy, his meetings usually zipped along, unlike those run by many other man­agers I have worked with.

The staff had two strategies for briefing Mueller. During the regular work­week we tried to schedule our briefings early in the morning, because as the day wore on, even if you were on his schedule, he would often be called away for urgent telephone calls or for short or long discussions back in his office. His calendar was always filled, so if you didn’t finish your briefing in the time allotted it was difficult to get back on his agenda. We quickly learned to schedule important decision-making meetings on Saturday or Sunday, when interrup­tions were at a minimum and we could talk in a more relaxed environment. NASA Manned Space Flight under Mueller became a seven-day-a-week job, and the lights burned late in most offices at headquarters as we tried to keep up with the rapidly evolving program. The same was true, I know, at the NASA centers.

Our briefing for Mueller was carried out in an atmosphere less formal than usual and with fewer attendees. We made our case for longer staytimes and larger payloads, and since I was at the front for my presentation, this time I had no trouble hearing his questions. Our briefing and props succeeded beyond our expectations; eventually E. Z. Gray felt comfortable enough with our story that he borrowed our presentation for his own briefings, and Mueller soon began to lobby for post-Apollo missions. Over the next two years, as more and more in­formation on the Moon’s characteristics became available through new studies and the unmanned missions, we improved our story and eventually made our presentation, without the rocks, at national scientific meetings and symposia.

In the spring of 1964, as we continued to spread the gospel of lunar explora­tion, Tom Evans scheduled a trip to Houston to discuss our ideas and plans for post-Apollo exploration with some of the staff at the newly formed Manned Spacecraft Center (MSC; later named the Lyndon B. Johnson Space Center). Many of the new arrivals at MSC had been transferred from the NASA Langley Research Center, and one of the more senior was Maxime ‘‘Max’’ A. Faget. Max was a feisty aeronautical engineer who had been a member of the NASA Space Task Group, the source of many of the initial Project Mercury program man­agers and other senior managers for the fledgling NASA. In 1959 he served on the Goett Committee that recommended increasingly difficult missions, from Project Mercury to Mars-Venus landings, including manned lunar landings. With this background we thought he would be interested in and supportive of our plans. Max’s title was director of engineering and development, and as one of the designers of the Mercury capsule he now led the MSC engineering teams responsible for the design of everything from the LEM to space suits.

Tom took three of us with him to Houston to be available for questions from Max and whoever else he might invite to the briefing. At this time the MSC staff was still small. Some members, including Max, were housed in a building near downtown Houston while their permanent offices were being built in a cow pasture at Clear Lake, about twenty miles southeast of Houston. Max brought about six staff members to our briefing, which Tom Evans gave in its entirety. He described in detail the type of tasks we thought would be needed after the initial Apollo landings to answer fundamental questions about the Moon’s origin and explained the value of using the Moon as a lunar science base. To carry them out, Tom explained, would require making changes to the projected Apollo hardware so that astronauts could remain on the Moon for weeks at a time and so that large logistical payloads could be carried. As the briefing progressed, there were no questions from Max or any of his staff. Finally, after about an hour of talking, Tom completed the briefing and asked for comments or questions. After a short pause, Max, a short, stocky man with a receding hairline and a bulldog demeanor, turned in his swivel chair and asked in a raspy voice, of no one in particular, ‘‘Who thought up these ideas, some high-school student?’’

Despite his look of great consternation, Tom calmly tried to explain how we had arrived at our position, but it was clear that Max wasn’t interested. Perhaps he had more pressing matters on his mind, such as the first Gemini program launch, which would soon be announced. Perhaps he knew that these ideas were based in part on work done at MSFC, a rival for management of pieces of the Apollo program. The briefing ended in some disarray because of Max’s attitude. We quickly left and flew back to Washington, dismayed at our inability to get a more positive response. This was my first encounter with Max Faget and some of the MSC science staff, and it signaled the beginning of a long and often contentious relationship with some MSC offices that lasted until the final Apollo flight splashed down.

No story about NASA would be complete without some discussion of bud­gets. There have been several accounts, perhaps apocryphal, of how NASA administrator James Webb and his staff arrived at a dollar figure for how much the Apollo program would cost American taxpayers. The most common story had it that his managers told him it would take $12 billion or $13 billion to achieve a manned lunar landing and return, so he made an appointment to discuss the program and budget that he was recommending with President Kennedy. On the way to the White House in his Checkers limousine, a modified version of the popular taxicab (he was the only agency head to use such inele­gant transportation, which he found spacious and easy to get in and out of), based on his experience as director of the Bureau of the Budget and his exper­tise in dealing with big government programs, he doubled the estimate to $25 billion. Whether or not the genesis of this number is true, his projection was on the mark, and the Apollo program eventually was completed for almost pre­cisely that amount.

Webb and his deputy, Hugh Dryden, were the only political appointees at NASA. Webb had been appointed by President Kennedy at the beginning of his term to succeed NASA’s first administrator, T. Keith Glennan. Webb was a lawyer who came to NASA from the private sector, but he had been a senior government official in previous administrations and still maintained close ties to important political figures. During his tenure at NASA he was admired for his political astuteness and his ability to move Congress and administrations in the directions he chose. As the Mr. Outside of NASA, he smoothed the way for the agency to grow and prosper during the hectic first years of the Apollo era.

I don’t recall any meetings with Webb or Dryden—I was much too junior for such exalted company—but I did attend many meetings over the years with Bob Seamans, the associate administrator and number three man in the manage­ment pecking order. His background was very different from Webb’s. He had spent most of his career at MIT, first as a professor and later working on a variety of military projects at what was then called the Instrumentation Labora­tory. In his autobiography, Aiming at Targets,1 Seamans recounts being re­cruited by Glennan in 1960 to be NASA’s ‘‘general manager,’’ running the day – to-day operations. After Webb succeeded Glennan, Seamans continued to fill the general manager’s position and became NASA’s Mr. Inside. It was in that role that I first met him soon after I joined NASA. I’m sure he wouldn’t remem­ber that meeting, and I don’t recall the subject (although it probably had something to do with lunar exploration), but I remember one exchange vividly. During the presentations, I asked a few questions. Seamans turned abruptly in my direction and said in a pained voice, ‘‘This is my meeting.’’ I may not remember what was covered at the meeting, but those words are etched in my memory. His outburst quickly put a lowly GS-13 in his place, and from that point on I only listened.

Under Seamans’s direction NASA quickly became a polished management team. He instituted comprehensive monthly status reviews (general manage­ment status reviews) where he presided. Every aspect of all the programs was reviewed, problems were thrashed out, and actions were assigned. It was almost impossible to hide a problem in such a forum, and the business of the agency moved ahead briskly. Eventually Seamans was appointed deputy administrator, and he stayed at NASA until January 1968, the eve of Apollo’s biggest successes, for which he could take major credit. In 1974 President Gerald Ford appointed Seamans to lead a new government entity, the Energy Research and Develop­ment Agency, and I had the pleasure of working for him again, only this time in a much more senior role.

Only a small fraction of the $25 billion Webb asked for found its way into the Advanced Manned Missions budget or its predecessor offices. It has been diffi­cult, thirty-five years after the fact, to reconstruct these budgets from existing NASA documentation and from my own files. But it appears that from fiscal year 1961 to FY 1968 our offices received about $100 million out of the overall Manned Space Flight budget. These dollars funded a variety of studies: manned lunar and planetary missions, vehicle studies, Earth orbital missions, systems engineering, and other special studies, all related to programs that might follow a successful Apollo landing. In turn, Evans was allocated his small portion of these overall budgets for his office’s studies. By FY 1964 he had received a little over $7 million, which he had divided among five competing study areas, and increased funding came our way over the next few years. In the first two and a half years that I worked for Tom and his successors (calendar year 1963 to CY 1965), we had access to about $8 million to start obtaining some hard numbers that would back up the ‘‘how long, how big’’ assumptions for the ALSS missions that we grandly threw around in our briefings and rock lectures. In addition to contractor studies, this funding included a few hundred thousand dollars that was transferred to the United States Geographical Survey (USGS) in FY 1964 and FY 1965, to begin geological and geophysical field studies of how to carry out specific operations during lunar missions with long staytimes. In the early 1960s, you could get a lot of bang for your NASA buck.

My first contractor study was undertaken toward the end of 1963 by Martin Marietta. The company had been in competition with Grumman to build the lunar excursion module, and in the final selection Grumman won. During the competition, Martin had built a full-scale mock-up of its concept of what a LEM would look like. Not surprisingly, since they were both bidding to the same specifications, the Martin concept looked very similar to the winning Grumman model. This mock-up now sat in a high-bay building at the Martin plant in Middle River, Maryland, near Baltimore. Disappointed by the loss, and learning of our activities, a Martin manager came to my office one day to see if there was any interest in using this equipment. Having just completed a param­etric analysis of contingency experiments for Apollo, I saw the opportunity to determine, in a preliminary fashion, what difficulties the astronauts might have in making observations from the LEM once they landed on the lunar surface and before they set foot outside. In the back of our minds was the fear that after a successful touchdown something might keep them from getting out on the lunar surface.

Because Martin had the only look-alike version of a LEM, I was able to justify a sole-source contract, and one was soon in place. As part of the contract, Martin did its best, within our funding limitations, to simulate a lunar surface surrounding the LEM mock-up on the floor of the high-bay building. Tons of ashes, sand, and other material were poured on the floor, and we also scattered various types of rocks in the loose, finer-grained material, including some of those we had borrowed from the Smithsonian. To simulate lighting conditions the astronauts might encounter on the Moon, we illuminated the simulated surface with light ranging from low to intense and varied the angle to duplicate the changing sun angles they might confront depending on when during a lunar day they landed.

Since this was to be a simulation of human factors as much as geological conditions, the contract was managed by the Martin human factors department under the direction of Milton Grodsky. The “astronauts” were Martin em­ployees selected by the company. Paul Lowman and I gave them some rudimen­tary geological training, concentrating on how to make visual observations, provide verbal descriptions using geological terms, and take photographs from the LEM windows to show the nature of the simulated lunar surface. The

Martin test subjects volunteered to spend three or four days isolated in the LEM mock-up, eating and sleeping in the confined space and able to communicate with the test engineers only by radio. The living conditions inside the Martin mock-up, though somewhat uncomfortable, were considerably better than those faced by Neil A. Armstrong and Edwin E. ‘‘Buzz’’ Aldrin Jr. five years later during the first lunar landing and by astronauts in later missions. Armstrong and Aldrin, for example, didn’t get much rest during their twenty-hour stay. When they tried to sleep after returning to the LEM from extravehicular ac­tivity (EVA) on the surface, Armstrong had to rest on top of the motor casing of the ascent stage rocket, while Aldrin curled up in a confined space on the LEM’s floor. Neither slept soundly, and Armstrong perhaps not at all. We were easier on our test subjects; we gutted the interior of the mock-up, and each test ‘‘astronaut’’ had enough space to sleep on a thin mattress on the floor.

The first problem was how to photograph and describe the scene outside the LEM, which had only two small windows, both facing in about the same direction. With this limited view, less than half the lunar surface would be visible if the astronauts could not get out. The LEM also had an overhead hatch to allow them to enter it from the CSM while in lunar orbit, and in that hatch was a small window designed to permit star field sightings, if needed, to up­date the LEM’s guidance and navigation system. But on the lunar surface this window would face only the dark sky above the Moon. The LEM would be equipped with a small telescope that could be operated from inside to assist in the star sightings. We simulated opening the hatch on the lunar surface, with one of the test subjects standing in the opening to make observations. That worked quite well, and we were confident that if this was allowed we could get a good description of the landing site supplemented by panoramic photographs. But what if the astronauts couldn’t open the hatch or weren’t permitted to do so?

Perhaps we could adapt the telescope—design it to operate more like a periscope so they could scan the surface in all directions. Paul and I traveled to Boston to ask these questions at MIT’s Instrumentation Laboratory. The lab had the NASA contract to design the guidance and navigation control system for the CSM and LEM. The telescope was an integral part of the system, along with a sextant in the CSM. We spent the afternoon describing our Martin study and explaining the added value of designing the telescope so it could not only take star sightings but scan the surface and accept a handheld camera to let the astronauts photograph the full surface area of the landing site from within the LEM. The engineers thought this would be possible, but it would entail a major design change to the telescope. Since they were already having some trouble meeting contract objectives, we knew that asking for such a change, based on a perhaps unlikely contingency, went beyond our pay grade. I wrote a short report of our visit and then drafted a memo to George Mueller, for Homer Newell’s signature, requesting that modifications to the LEM periscope be con­sidered to permit terrain photography and visual observations of the lunar surface.2 I have no record of how this request was processed in OMSF, but the modifications were considered too extensive and costly, and the matter was dropped. We resurrected this idea some time later, but again it was not imple­mented, and fortunately such an instrument was never needed on any of the Apollo landing missions.

With the Martin Marietta contract under way, I started to lay plans for several other studies. The Sonett Report made it clear that we would need a geophysical station of undetermined design that could support five or six ex­periments. A drill that could extract core samples from deep below the lunar surface was another piece of equipment we believed the scientific community would eventually call for. After studying the first USGS geologic maps of the Kepler and Copernicus regions, traverses of tens of miles seemed necessary if we were to fully understand such large craters, some twenty and fifty miles in diameter. To work far beyond their immediate landing site, the astronauts would have to be mobile, and the more capable we could make a vehicle the more useful it would be. According to our limited understanding of the ongo­ing designs for the astronauts’ space suits and life-support backpacks, they would never be permitted to make such long traverses on foot; they would need a vehicle with a pressurized cab and full life support.

Our growing knowledge of the Moon suggested that the lunar surface might be stable, not subject to shaking and movement. If that was true, it would be easy to design astronomical devices to take advantage of this characteristic, perhaps by using small, symmetrical craters to support radio antennas or large mirrors. With no intervening atmosphere, telescopes operating on the lunar surface during the fourteen-day lunar nights might provide the best ‘‘seeing,’’ or ‘‘listening,’’ that astronomers could hope to find nearby in our solar system. We proposed to study such instruments for inclusion in the science payloads of these longer missions following the Apollo landings.

Compared with Apollo, where we were told there would be constraints on all the important exploration parameters such as payload weight, surface staytime, and site accessibility, we could think big. The biggest constraint to be removed was the limit on the payload we could send to the Moon’s surface. Instead of numbers like 250 pounds, we could plan around payloads of 7,000 pounds or more, which in turn could be used for any need we had. Experiments, life support, and transportation headed the list of items we would try to define so as to take advantage of the larger payloads.

As it was with Apollo, the astronauts’ safety was always uppermost in our thoughts as we laid these plans. Other self-imposed criteria required automat­ing as many jobs as possible to conserve the astronauts’ time. Lunar surface tasks would be designed to optimize their inherent ability to accomplish those aspects of exploration that humans do best: observing, describing, manipulat­ing complex equipment, and responding to the unexpected. We did not want them performing a lot of manual labor if it could be avoided. But we had to strike a delicate balance between automated functions and manual tasks, or supporters of unmanned exploration, both inside and outside NASA, would raise many questions and objections. Why go to the expense, not to mention risk, of sending astronauts if all they did was turn a switch and let a machine do the work? Switches could be turned on and off from Earth. Our office never thought this was a real challenge, since the astronauts’ unique abilities would always be their most important contribution toward exploring the Moon. A combination of automated equipment and hands-on tasks would be needed, and we took it for granted that exploration would proceed in this fashion.

Designing a drill for studying subsurface conditions (called logging) on the Moon and for taking subsurface core samples was a good example of how we eventually applied these criteria. On Earth these operations are labor intensive, requiring many types of laborers and technicians to carry out the wide variety of jobs each entails. Being familiar with all these tasks after spending many months at well sites in Colombia, I could see that new thinking would be required. Terrestrial drilling, logging, and coring equipment must be bulky and heavy to accommodate difficult drilling conditions and the constant rough handling encountered in the field.

Drilling on Earth has one other important characteristic that would be different on the Moon. Water or water-mud mixtures are normally pumped into a drill hole to cool the bit, bring the rock cuttings to the surface, and keep the hole from caving in. Where a water mixture cannot be used, air is circulated under high pressure to accomplish the same purposes. Either of these methods would be impractical on the Moon; we would have to find other ways. Since the primary purpose of drilling on the Moon would be to extract a core, we didn’t want astronauts to have to constantly oversee the drilling and coring. This added another dimension to whatever designs would be proposed: a highly reliable, semiautomated lunar core drill. We envisioned much more elegant equipment than that employed on Earth—probably to be used only once at each landing site and thus far different from traditional terrestrial designs.

With all these considerations to be dealt with, the next priority after we started the Martin study was to find a contractor who would do an overall analysis of science needs for the ALSS missions. This new study would generate first-order estimates of weights, volumes, and data transmission and power requirements for a suite of instruments selected by the government. This was my first attempt at writing a government request for quotation (RFQ), and I got help from my office and the NASA headquarters Procurement Office. The RFQ, called “Scientific Mission Support Study for ALSS,’’ focused on the scientific operations that could be done from a mobile laboratory carrying two astro­nauts. It was released in early 1964 from our headquarters office.

While I was writing this RFQ it became clear that managing contracts from headquarters would be difficult since we had so many studies to get under way. We needed to find a NASA center that would agree to manage them. Also, we reasoned that having a center take ownership of the studies had another advan­tage. The center would be a strong voice supporting our ideas at other NASA offices that might be skeptical of their importance when budget time rolled around and we were competing for scarce funds.

My few brief encounters with the MSC staff had not been encouraging. They were focused on Gemini and just beginning to think about Apollo science. As shown by our briefing to Faget, planning what should be done after Apollo was not on their agenda. In addition, in early 1964 I could not identify anyone I thought had the right background to manage the studies. Goddard Space Flight Center had built a strong earth sciences staff that could have taken on these studies, but they reported to the Office of Space Science and Applications, the wrong part of NASA. The Kennedy Space Center, although an OMSF center, did not seem to be an option, since its primary responsibility was to service a variety of launch vehicles and there were few earth scientists on the staff. That left the Marshall Space Flight Center, the remaining OMSF center, as my only choice. It turned out to be a most fortuitous final candidate. The studies initi­ated by our office and others in Advanced Manned Missions to improve the Apollo hardware had been undertaken by several MSFC organizations. Many MSFC staffers had worked on studies reported in the multivolume Lunar Logis­tic System.

Wernher von Braun, a German expatriate rocket genius, was the newly appointed MSFC director. He had just been reassigned from his position as director of the Development Operations Division of the Army Ballistic Missile Agency at the army’s Redstone Arsenal, located with MSFC in Huntsville, Ala­bama. At the end of World War II the army had brought more than 120 Ger­man engineers and scientists, led by von Braun, to the United States to improve the country’s rocket know-how. Some of this original group had been assigned to Cape Canaveral as well as Huntsville. With a perfect launch record for their rocket designs, they successfully launched the first United States satellite, and our rocket technology was progressing rapidly. Sending men to the Moon was to be their next challenge, which would include building the huge new Saturn V! MSFC was NASA’s largest center in terms of manpower, so the question became where to go in this organization, with which I had had no previous contact. The decision turned out to be easy, since the Research Projects Laboratory (RPL), under Ernst Stuhlinger, one of von Braun’s original team members, had been responsible for writing volume 10, Payloads, of the Lunar Logistic System re­port.3 This volume described science payloads that could be carried on modi­fied Apollo spacecraft, including many geophysical experiments.

After several phone calls I scheduled a meeting with James Downey, manager of the Special Projects Office in RPL; he and some of his staff had also contrib­uted to volume 10. Our first meeting took place in late 1963 and was marked by some careful bureaucratic dancing. Reflecting his center’s and his immediate boss’s cautious, Germanic approach to having someone from headquarters ask for a commitment of manpower and center resources, Jim wanted to know if my request represented a formal headquarters assignment of new duties for MSFC. I wasn’t prepared for such a pointed inquiry and knew I didn’t have the authority to say yes, so I hedged but assured him that our office had funds to support the studies I was asking him to manage.

Jim, a University of Alabama graduate, was an easygoing manager who commanded the respect of his unusual, multitalented conglomeration of scien­tists and engineers. He was eager to take on this new job, for so far his office had not received much funding for its studies. An important measure of a successful manager at NASA was how much funding he obtained and how many contracts he managed, so the promise of new funding was well received. But before he could agree it would have to be formally requested through the proper chan­nels. From my brief exposure to his staff, it appeared that they had the mix of skills needed to monitor the wide range of contractor studies we wanted to perform. I told Jim I would go back to Washington and start the paperwork. This meeting was the beginning of a long and productive relationship with Ernst Stuhlinger, Jim Downey, and their staffs as we undertook several studies that broke new ground for lunar exploration.

What did it mean when a NASA center managed programs or studies? There were many responsibilities. We met frequently to plan future procurements to be sure we all agreed on what the final products would be, and we would estimate the funds required and the schedules to be met by the contractors. Then MSFC would write the request for proposal (RFP), designate a contract monitor on Downey’s staff, establish a rather informal source selection com­mittee to evaluate the proposals, advertise the procurement in the Commerce Business Daily, release the RFP, evaluate the proposals received (with the evalua­tion documented in case of a protest from a rejected contractor), choose a win­ner or winners, award the contract, and then—the important part—monitor the contractor’s performance until the job was completed. The procedures we followed for these smaller contracts, although spelled out in NASA regulations, were nowhere near as precise as today’s requirements, which call for formally appointed source evaluation boards and source selection officials. Without this time-consuming bureaucratic red tape, we were able to move ahead quickly on our contracts.

In my mind the steps named above more than justified asking a center to help get the contracts under way; the centers had much more manpower avail­able for this cradle-to-grave job, as well as experience in directing the efforts of NASA’s growing number of contractors. The main responsibility of NASA headquarters staff was to develop the big-picture programs and run inter­ference with the administration and Congress on issues pertaining to budgets and policy, leaving the details of running the programs to the centers. In real­ity these distinctions weren’t so clear-cut, and the centers and headquarters worked together on all aspects of the programs. Contract management of advanced (paper) studies migrated more and more from headquarters to the centers. As NASA matured as an agency, the centers became powerful indepen­dent entities, supported by their homegrown political allies in Congress and the executive branch. This growing independence was one of the reasons friction developed between headquarters and MSC. Under von Braun, MSFC accepted headquarters direction more graciously; perhaps this smoother relationship was a reflection of MSFC’s confident corporate personality, embodied in the person of its director and enhanced by its established reputation in rocketry. MSC was the new kid on the block, attempting to prove that it knew how to get the job done but with a short track record. And it had no one with a reputation like von Braun’s to intervene if problems arose. Little by little, of course, MSC established this track record with the successful completion of the Mercury and Gemini programs, but this newfound confidence never translated to a smooth management relationship with our headquarters office in matters dealing with science.

Once MSFC agreed to manage our post-Apollo science studies, events moved rapidly. Contracts were signed in 1964 for the studies mentioned above, and soon afterward management of the ALSS Scientific Mission Support Study, won by the Bendix Aerospace Systems Division, was transferred to MSFC. Not all headquarters managers followed this practice; some liked to maintain con­trol of their programs by doing the day-to-day management. But the advan­tages of leaving contract management to MSFC were evident from the start. Small study contracts could be managed by headquarters staff, since they re­sulted only in paper, but once prototype hardware became deliverable, only a center could supply the management expertise and resources needed. Several of our contracts required delivery of engineering models or “breadboards” of proposed equipment as well as detailed analyses.

In June 1964, along with some reorganization at headquarters, the ALSS program was modified and given a new name, Apollo Extension System (AES). The new name was meant to convey a different message than Apollo Logistics Support System; AES was to be a new program based more closely on Apollo but not requiring the extensive hardware modifications envisioned for ALSS. There would still be a greater potential to study the Moon, both on the surface and from lunar orbit. We could still plan on dual launches of an automated LEM shelter-laboratory and a LEM taxi to carry the astronauts to the surface and return them to rendezvous with a CSM built for extended staytime. Our

strategy, as we had planned for ALSS, centered on the astronauts’ transferring to a shelter-laboratory after landing and conducting their extravehicular activities from there. AES studies also included using a wide variety of instruments aboard the Apollo CSM in Earth and lunar orbit to survey and map the surfaces of these two bodies. The orbital studies would now be managed in the Ad­vanced Manned Missions office as a continuation of the work initiated earlier by Pete Badgley.

In early 1964, President Johnson asked NASA to develop long-range goals for the agency and, by implication, the nation. Homer Newell, as was the custom, quickly asked the National Academy of Sciences to help provide a response focusing on space science. In 1961 the Academy’s Space Science Board (SSB) had recommended that “scientific exploration of the Moon and planets should be clearly stated as the ultimate objective of the U. S. space program for the foreseeable future.’’ Now, three years later, Harry Hess, chairman of the Space Science Board, wrote to Newell indicating that a change in objectives was appropriate. Planetary exploration, starting with unmanned exploration of Mars and eventually leading to manned exploration, should be the new goal.4 The SSB stated that Mars “offers the best possibility in our solar system for shedding light on extraterrestrial life.’’ It was ready to concede that the Apollo program would be successful, thus the new emphasis on planetary exploration. But the SSB also suggested some alternatives that included extensive manned lunar exploration leading to lunar bases. These recommendations, which we took as an endorsement of the studies we were pursuing, were eventually incor­porated into the report that was sent to the president. In the fall of 1964 we believed our programs would soon be officially embraced by the administra­tion, and this belief was reinforced a few months later when the president publicly declared that ‘‘we intend to not only land on the moon but to also explore the moon.’’5 We waited in vain for a formal start. Instead Johnson focused on his Great Society programs and, increasingly, on the war in Viet­nam. There were three more years of growing budgets for Manned Space Flight to fulfill the lunar landing mandate, but NASA’s overall funding peaked in FY 1965 and thereafter began to decline.

At the end of 1964 Ed Andrews and I were transferred from Tom Evans’s office to a new office called Special Studies under the direction of William Taylor. I was not pleased with this move; the mission of this new office was poorly defined, and it removed me from the day-to-day oversight of the pro­grams I had initiated. I maintained contact using my other hat, however, work­ing for Will Foster. Evans was promoted to lieutenant colonel that summer, and soon he left NASA and the army to return to Iowa and manage his family’s large farm. With his departure, the Advanced Manned Missions Lunar and Planetary Offices were combined under Frank Dixon, who until then had been director of the Manned Planetary Missions Office.

In June 1965 I was transferred back to Manned Lunar Missions Studies, once again a separate office, under a new director, Philip Culbertson, brought in from General Dynamics to replace Evans. I mention these office moves only to illustrate the uncertainty that was present at NASA as top management tried to position the agency for life after Apollo. Although Manned Space Flight’s bud­gets were still growing, management could foresee that if new missions were not assigned soon, the agency would be largely marking time until the end of Apollo. The mantra in OMSF was that only large, manned-mission programs could sustain NASA. Other programs, such as unmanned space science and aeronautics research, though important, would never maintain a prominent agency in the federal government’s hierarchy, which consists of large cabinet – level departments and also smaller independent agencies like NASA. In Wash­ington, big, growing government programs were good for those managing them, and declining budgets were bad for ambitious managers.

At the same time as we were attempting to define the science content of the ALSS-AES missions, the Boeing Company’s lunar base study, with the title Lunar Exploration Systems for Apollo (LESA), was under way. When William Henderson joined our office at the end of 1963 he became the headquarters lunar base expert and assumed oversight of all the lunar base studies. Boeing’s final LESA report described a modular lunar base that would be assembled from Apollo hardware, incorporating greater modifications than required for ALSS-AES missions. By grouping modules, a base could support colonies of two to eighteen men. (We had no women astronauts at that time, so the studies were always described in masculine terms.) Individual modules might take as much as 25,000 pounds of useful payload to the lunar surface. Depending on the mix of equipment and the number of modules, these colonies could operate for ninety days to two years. We envisioned sending to the Moon large pieces of scientific equipment that would permit a wide range of activities. Long – duration geological and geophysical traverses in large wheeled vehicles could be conducted, as well as studies confined to the base, such as deep drilling and astronomical observations. These endeavors, we believed, would lay the groundwork to justify permanent bases.

During this period we persuaded our management to let us take several trips overseas to gain greater insight into some of the situations we expected to encounter during lunar exploration. In January 1964 Bill Henderson took the first of such trips, receiving permission to visit our scientific bases in Antarctica. He made the case that these stations were the closest examples we could find to what a base on the Moon would be like: isolated, difficult to supply, and therefore self-sufficient. Their primary reason for existence was to conduct scientific investigations; the secondary objective was to show the flag—or per­haps vice versa. Both these reasons closely followed what we believed would be the ultimate rationale for establishing lunar bases, and one couldn’t deny that Antarctic conditions were moonlike. Bill thought his time in Antarctica was well spent and, since he was the only person at headquarters with this ex­perience, his recommendations carried more weight when he advanced his thoughts on how to design a lunar base.

At the end of the rather massive Boeing study, Bill initiated a new round of more detailed lunar base analyses. The resulting contract, signed by the Lock­heed Missile and Space Company in February 1966 for $897,000, was the largest award ever made by our office. The study, called Mission Modes and Systems Analysis, would be supported by three other contractor studies valued at an additional $900,000. One of these studies, Scientific Mission Support Study for Extended Lunar Exploration, was won by North American Aviation, with Jack Green, of the ‘‘volcanic Moon,’’ playing a prominent role in the study. The contract would be monitored by Paul Lowman and Herman Gierow, Jim Downey’s deputy and a versatile manager who had participated in the earlier LESA studies.

For decades space dreamers and enthusiasts, including MSFC’s director, von Braun, had written and lectured on the possibility of establishing a lunar base. Now major government funds were to be spent on a serious look at what it would take to carry it off. The inherent ability of the Apollo hardware to place large payloads into Earth orbit and send them on to the Moon was the initial requirement for lunar base planners. After modifications, with each flight the Apollo upper stages would be capable of placing large payloads on the lunar surface. Big payloads meant you could envision supporting and supplying a large lunar colony over long periods at a reasonable cost. This was the challenge, first to Boeing, then to Lockheed and its support contractors: Tell us how it could be done, what such a base would look like, and how a base could support scientific and engineering operations that would justify its existence. The results of all these studies were encouraging, especially assuming that the nation would continue to commit large amounts of money to the investment it was making in Apollo—not an unreasonable expectation in the mid-1960s. Extended lunar exploration, followed by the establishment of one or more lunar bases, would not be cheap. But the initial analyses seemed to show that, for an additional investment approaching what would be spent on Apollo, all this could be done.

Bob Seamans, George Mueller, and E. Z. Gray began to lobby Congress for a NASA mandate that would implement these grand designs. When they testi­fied before NASA congressional oversight committees, they would impress the members with realistic artists’ renditions of what these stations and bases could look like. They also had funding estimates (supplied from our contractor stud­ies) to support their contention that continued lunar operations were feasible at a reasonable price and would produce important results. At a lower level in the management chain, staff like me, Paul Lowman, Bill Henderson, and others involved in the studies at MSFC took every opportunity to advertise our plans at professional conferences and public forums. We could usually count on good coverage from the media, and it seemed at the time that we were winning public support. Public polls always gave NASA high marks, and the major news and trade magazines were eager to write stories and show drawings of future lunar colonies.

Contractors who won our awards usually included well-known scientists on their teams as consultants (a few with Nobel credentials); they were to review study results during the contract and make recommendations to the contrac­tors to ensure that the results were grounded in scientific reality. During pro­posal evaluations, the quality of these consultants could determine which con­tractor would receive the award. While the contract was under way, or at its conclusion, we were not bashful about dropping their names if our assump­tions were challenged.

Returning to the ALSS-AES studies, in May 1964 MSFC put together the RFP for what we called the Emplaced Scientific Station (ESS). This study would provide a preliminary design of a self-sufficient geophysical station to be de­ployed by the astronauts on the lunar surface, incorporating several experi­ments listed in the Sonett Report and some from other sources. We received eight responses to the RFP and selected two contractors, Bendix Corporation, led by Lyle Tiffany, and Westinghouse, led by Jack Wild. These two contracts, along with the Scientific Mission Support Study, would provide us with enough detail that one year later we could extrapolate the results to design the Apollo geophysical station, which would have to meet more stringent requirements.

As we did for the ESS, we awarded two contracts in 1965 to study competing designs for a hundred-foot drill. One went to Westinghouse Electric Corpora­tion and a second to Northrup Space Laboratories. Each contract had a value of more than $500,000. The MSFC contract manager was John Bensko, a geologist who had worked in the oil and coal mining industries before joining NASA. After coming to MSFC, he helped develop engineering models of the lunar surface, useful background for his drill contracts. John put together an advisory team from the Corps of Engineers and the Bureau of Mines to provide addi­tional engineering expertise as the contractors began to cope with their difficult assignments. In those days NASA always attempted to at least match the con­tractors’ expertise in house so that our oversight and evaluation of their perfor­mance were well grounded. I believe this respect for each other’s abilities let NASA and its contractors work together better as a team, although some con­tractors grumbled at the tight monitoring. Today NASA’s approach to contract monitoring seems to have changed almost 180 degrees; in-house expertise in the aspects of a contract is often minimal. For the drill studies, NASA’s compe­tence was especially important, since we planned a series of difficult tests in­cluding drilling in a vacuum chamber at MSFC, never before attempted with a drill of this size.

Considering the unusual location for a drill rig and other constraints, the Westinghouse approach to drilling on the Moon was relatively straightforward, modeled after terrestrial wire-line drilling. Short sections of drill pipe were added from a rotating dispenser as drilling progressed; the core would be extracted from a short core stem after each section was taken from the drill hole. Since this would be close to a conventional design, it would entail almost constant monitoring by the astronauts. The Northrup design was radically different. It proposed using a flexible drill string, wound on a drum, that would be slowly fed into the hole to the final target depth of one hundred feet. A core stem would be attached to the end of a flexible pipe, and the core would be recovered much as in the Westinghouse design but without adding drill pipe sections every five to ten feet. Several innovative concepts were aimed at reduc­ing the astronauts’ involvement, and though we recognized that they posed some design risks, we accepted them as the price for a possible breakthrough in technology.

One of the major challenges for both concepts was cooling the bit during drilling to reduce wear. Bensko hired Arthur D. Little to do a separate analysis of how to accomplish the cooling. The company’s study showed that the cool­ing problem could be greatly mitigated in the vacuum environment of the Moon if the rock cuttings could be rapidly moved away from the bit face so that the they would carry off some of the heat. Spiral flutes were thus incorporated on the outside of the drill string, like an auger, to lift the cuttings up through the hole to the surface.

Although the spiral flutes partially solved how to cool the bit, as our studies progressed we found that after a short time the bit would still get too hot, become dull, and stop cutting. Both contractors settled on using diamond-core bits to ensure that they could drill through any rock type encountered. Westing – house had included Longyear on its team, and Northrup had teamed with Christianson Diamond Bits, the leading industrial suppliers of diamond-core bits. Both bit contractors concluded that, with the technology then available, even a diamond-core bit would need to be replaced many times in drilling a hundred-foot hole. This was unacceptable.

Initially, the best the Westinghouse team could do under test conditions was to drill fourteen inches through basalt, a possible lunar rock type, before an uncooled bit failed. But they reexamined the problem and finally hit on a solution. The diamond-core bits then offered to industry used a matrix that ‘‘glued’’ tiny diamonds to the bit in a random alignment. The random align­ment did not allow each diamond to present its best cutting edge to the rock being cored, however. They demonstrated that carefully setting the diamonds in the matrix significantly prolonged the life of the bit. Hand setting each diamond would add greatly to the bit’s cost, but it would be well worth it for a lunar mission where the astronauts’ time was more precious than a diamond bit. These newly designed bits lasted more than ten feet before they dulled. After other design changes, eventually we expected to drill the entire one hundred feet with just one bit, eliminating a time-consuming chore. As I recall, Chris­tianson developed a relatively inexpensive technique to manufacture bits of this design for their terrestrial customers. Although they cost more than normal diamond-core bits, they were worth the investment because fewer were needed.

The cost of drilling on Earth is strongly influenced not only by the price of bits but by the time needed to extract a dulled bit from the drill hole, change bits, and resume drilling.

As the studies continued, progress on the Northrup design slowed, and the contract was terminated before they delivered a complete working model. Our gamble had failed. A Westinghouse model was tested at MSFC, including vac­uum chamber tests. Finally tests were held in the desert in Arizona and New Mexico to simulate drilling under lunar conditions (but not in a vacuum), with no lubrication for the bit. Bensko recalls that we chose a bad time for our tests: there had been more rainfall than normal, and the wet soil gummed up the flutes. In other tests the fluted drill pipe performed about as expected, and we were encouraged to believe that a full-scale drill could extract cores on the Moon to depths of one hundred feet.

In anticipation of drilling a deep hole on the Moon, in 1965 we started two studies with Texaco and Schlumberger to design logging devices that would determine conditions beneath the lunar surface. (Taking measurements in ter­restrial drill holes is standard practice for obtaining information on subsurface conditions.) These contracts, also worth more than $500,000 each, were man­aged by MSFC’s Orlo Hudson.

In both terrestrial drilling and drill-hole logging, the drill hole is almost always filled with a fluid, of varying chemistry, the remnants of the drilling mud. Lacking this liquid to couple the logging tools to the subsurface rock formations, the contractors were forced to modify standard oil field technology. The Texaco team, which had extensive experience in developing logging devices for oil field exploration, had won an award from the Jet Propulsion Laboratory (JPL) to provide logging devices for the Ranger and Surveyor projects. In their planning stages both projects included small drills as potential science pay­loads. Schlumberger, the acknowledged leader in developing logging devices for the oil and mineral exploration industry, showed an interest in such unworldly studies (to our surprise), entered a bid, and won the other contract. Both contractors overcame the lunar logging constraints and designed a suite of devices that could make measurements in a hole drilled on the Moon. Perhaps one day, when the opportunity arises to drill deep holes on the Moon or some other extraterrestrial body, these studies will be found and reread.

The most interesting set of studies we conducted were those related to providing mobility once the astronauts reached the lunar surface. Many con­cepts were being proposed, some more fanciful than others. MSFC had re­ported the results of the first in-house mobility studies in volume 9 of the Lunar Logistic System series.6 Two of the main contributors to these studies were Jean Olivier and David Cramblit, who wrote several reports on lunar surface mobility. To learn what types of mobility systems would work best on the Moon, based on the limited knowledge available, MSFC and the Kennedy Space Center developed a lunar surface model to study how wheeled vehicles might perform on soils in a lunar vacuum and what type of obstacles they would have to traverse.7

JPL had also developed a lunar surface model in order to design a small unmanned vehicle for the Surveyor project.8 It had tested several designs on simulated lunar terrain in the early 1960s. My first trip to JPL was to witness a test of a small vehicle operated by an engineer with a handheld remote-control box, hardwired to the rover. It was much like a modern toy car except for the connecting wire. Today’s electronics permit cheap radio-controlled toys; in the early 1960s radio control was a luxury we usually did without when testing our concepts. This was an interesting demonstration of a small articulated vehicle with springy wheels driving over loose sandy material and small rocks. From time to time there were short interruptions caused by failures in the then state – of-the-art electrical circuits, powered by vacuum tubes. One could say that the granddaughter of this vehicle was the small rover named Sojourner that tra­versed the Martian surface in July 1997. A United States automated rover never made it to the Moon, but a Soviet rover named Lunokhod operated on the Moon in 1970.

Although in 1964 and 1965 we still did not have any data from direct contact with the lunar surface, information from radar and laboratory studies pre­dicted how the Moon’s surface layer would respond to a wheeled vehicle. In spite of Tommy Gold’s theories, we were certain that a vehicle could move around without serious difficulties. But we were not sure how the Moon’s almost total vacuum would affect the lunar soil; the high vacuum that would be encountered on the Moon was impossible to achieve on Earth. Studies had been conducted in high vacuum using several types of simulated lunar soil, but their fidelity was open to question because our ideas about the composition of lunar soil (grain size, mineralogy, and other characteristics) were mostly guesses.

Our first contractor studies of a lunar surface vehicle were undertaken by the Bendix Corporation and the Boeing Aerospace Division. They were selected in

May 1964 to study ALSS exploration payloads, including a vehicle we had dubbed MOLAB (for mobile laboratory). The Boeing study was managed by Grady Mitchum, and the Bendix manager was Charles Weatherred. Because of their involvement in the post-Apollo studies, both these men and their com­panies would be important contributors to later Apollo contracts. Bendix had earlier won one of the JPL design contracts for a small Surveyor rover, so it was well prepared to undertake the study. From taking part in our lunar base studies, Boeing had a good background that included designing mobility concepts.

The concept for using a MOLAB was to have it delivered to the Moon by an ALSS automated LEM. It would then be deployed and operated remotely so that it could travel to another LEM carrying two astronauts that would land a short distance away. It was to be a vehicle of about seven thousand pounds, including the scientific equipment it would carry. It would support two astro­nauts for up to two weeks in a pressurized cab, permitting shirt-sleeve working conditions while under way. Based on our study of early geologic maps of the Moon, we felt that such a vehicle should have a traverse range of several hun­dred miles so the astronauts could make several trips far enough from their landing site to sample geologically interesting areas. These requirements were a tall order for any vehicle, not to mention one that must function on the lunar surface.

The two contractors were also asked to design a shelter that could be deliv­ered by the same type of automated LEM and a smaller, unpressurized vehicle we named the local scientific survey module (LSSM). (Moon vehicles had to have strange names; they couldn’t just be called cars or trucks, since they would be so different from any of their terrestrial cousins.) All these studies were to be accomplished by both contractors for a total of slightly more than $1.5 million.

As the studies progressed, under the direction of Joe de Fries and Lynn Bradford at MSFC, the MSFC Manufacturing Engineering Lab built a full-scale mock-up to evaluate such things as cabin size and crew station layout. Many photographs of this rather unusual looking vehicle were circulated to the media and other interested groups, showing our progress toward the next step in lunar exploration. A December 1964 issue of Aviation Week and Space Technology featured a front cover picture showing the mock-up sitting on top of a LEM truck and included a special report on the Bendix version.9 The MOLAB, more than any other project we worked on for post-Apollo missions, seemed to catch the imagination of futurists, perhaps reflecting the national love affair with the automobile. Perhaps people could visualize themselves speeding across the lunar surface, dodging boulders and craters.

At the conclusion of the initial contracts in July 1965, both contractors were given extensions totaling more than $1 million to refine their LSSM designs. Bendix and General Motors received two other contracts to produce four-wheel and six-wheel LSSM test designs, each worth almost $400,000. By the end of 1965 we had awarded lunar vehicle contracts for more than $3.5 million and had probably spent almost as much for in-house civil service workers and contractor support.

While all this wheeled-vehicle planning was under way, Textron Bell Aero­space Company was quietly developing a small manned lunar flying vehicle (LFV). A one-man version was demonstrated in a live test early in 1964. (A later generation of this device was demonstrated at large gatherings including the 1984 Olympics in Los Angeles, and a version was flown in the James Bond movie Thunderball.) Bell had conducted a preliminary study of how to com­bine the MOLAB and the LFV, sponsored by NASA’s Office of Advanced Re­search and Technology. In these early days we had a good working relationship with OART; under the direction of James Gangler, it was attempting to look far ahead at technology needs for lunar exploration and lunar bases. After the impressive one-man flight demonstration, MSFC awarded Textron Bell a follow-on contract in August 1964 to further define the concept. In these stud­ies the LFV was given two functions—to return the astronauts to a base camp in case of a MOLAB breakdown and to help them reach difficult sites.

The MSFC contract with Textron Bell called for an LFV design that would carry two astronauts a minimum of fifty miles for the safety fly-back mission. This would also be a useful range to take the astronauts to sites they could not reach overland. MSFC later awarded Bell a second contract with a more modest goal—to support AES missions requiring an operations radius of only fifteen miles. This vehicle, which needed far less fuel because of its shorter range, could carry one astronaut and three hundred pounds of equipment or transport two astronauts the same distance. Both design studies and a working prototype indicated that an LFV with these characteristics was feasible.

A study was also done to assess the advantages of using the lunar surface for astronomical observations, an application supported by some, but not all, in the astronomical fraternity. In 1965 MSFC awarded Kollsman Instrument Cor­poration a one-year contract for $144,000 to assess the feasibility of carrying a large optical telescope observatory to the Moon mounted on a modified auto­mated LEM lander. MSFC’s contract monitor was Ernest Wells, an amateur astronomer whose avocation served him well in this job. Kollsman was already developing the Goddard Experimental Package (GEP), an automated observa­tory scheduled to be launched in 1966 on the Orbiting Astronomical Observa­tory (OAO), so working with the company would save effort and money.

The GEP consisted of a thirty-six-inch reflector telescope, its mounting, a camera, and associated electronics. Improvements to the GEP design to take advantage of its lunar location could be recommended during this study, as well as design changes to accommodate the astronauts’ involvement in its operation, since the OAO design was a fully automated observatory. The results were encouraging, indicating that the astronomical payload could operate on the Moon for long periods in both an unmanned and a manned mode.10 Kollsman also reported that new technology, by greatly reducing the overall weight, might permit a much larger instrument, perhaps up to 120 inches in diameter, to be carried on the same LEM truck.

A fallout of these studies at MSFC was the establishment of a Scientific Payloads Division in Stuhlinger’s Space Sciences Laboratory. Jim Downey be­came the director of this new division, and Herman Gierow was named deputy. Later, as the MSFC work on post-Apollo science wound down, both Jim and Herman went on to manage important new programs that included work on the Apollo telescope mount flown on Skylab. Their work on space-based astronomy culminated in the launch of three high energy astronomical obser­vatories in the 1970s and studies of a large space telescope that evolved a few years later into the successful Hubbell space telescope program.

The transition from planning ALSS missions to planning AES missions was relatively painless. AES payloads would be smaller than those we anticipated for ALSS missions but much larger than Apollo’s allocation. By this time we had a much better understanding of the Apollo hardware than when we started our ALSS studies, and we were also becoming aware of the potential Apollo opera­tional margins that could permit larger payloads or increase flexibility. We hoped these margins would soon be available as confidence in Apollo’s perfor­mance grew.

Removing the ascent propulsion and other unnecessary systems required during a normal LEM ascent and rendezvous would free up space for approxi­mately 6,000 pounds of payload, 1,000 pounds less than the total used for the

ALSS studies. Of the 6,000 pounds, 3,500 would be required for consumables and other additions so two men could stay in the LEM for two weeks. The remaining 2,500 pounds could then be used for scientific equipment. This represented a rather firm increase of an order of magnitude over the expected allocation for Apollo science payloads. Although 2,500 pounds was less than half the weight we had been using in planning, it was enough to be exciting.

Based on 2,500 pounds and results coming in from our ALSS-AES studies and USGS work at Flagstaff, we divided a typical payload as follows: 1,000 pounds for a fully charged LSSM with a range of 125 miles, 200 pounds for a hundred-foot core drill, 90 pounds for logging devices, 350-400 pounds for an ESS, 80 pounds for a small preliminary sample analysis lab, 100 pounds for geological field mapping equipment, 150 pounds for geophysical field survey equipment, 30 pounds for sample return containers, and up to 500 pounds for a power supply for the drill or other exploration equipment. We felt this equip­ment would let the astronauts take full advantage of a two-week stay and study their landing site in some detail. For safety reasons, during manned operations the LSSM would be restricted to a radius of five miles, but it could operate in both manned and automated modes. After the astronauts left it could carry out investigations farther from the landing site, to the limit of its battery charge, under command from Earth.

Our planning for lunar exploration after the initial Apollo landings was now in high gear. The next step was to test our ideas as realistically as possible so we could not be accused of offering proposals thought up by ‘‘some high – school student.’’

The United States Geological Survey. Joins Our Team

At the same time we were conducting our studies at Marshall Space Flight Center, we began to build a strong partnership with the United States Geologi­cal Survey under the direction of Eugene M. Shoemaker at Flagstaff, Arizona. Gene, an outstanding scientist, colleague, and friend, had a major impact on the program. I will be discussing his contributions in future chapters. To a Rocky Moon, by Don E. Wilhelms, provides many details of Shoemaker’s re­markable career; I also recommend this book if you want to read more on Apollo lunar science.1

After leaving Washington in the fall of 1963, Shoemaker returned to Flag­staff, where he had recently moved with his wife, Carolyn, and three small children. He had chosen Flagstaff for his new office location for several reasons. It had a small-town atmosphere, and there were many Moon-like geological features only about an hour’s drive or less to the east. Another plus, although Gene might have denied it, was that Flagstaff was far enough away that he would be left pretty much on his own, undistracted by his superiors in Wash­ington. But the local geology was the real magnet. Meteor Crater, whose origin Gene had helped unravel, was about to become a star in the geological firma­ment, a place all the astronauts would visit and study. He may have thought the Branch of Astrogeology would go quietly about its business, but its notoriety was to grow as its close relationship to the astronauts became known.

Although Gene was in Washington for about two months after my arrival, our paths had not crossed. It soon became clear that he was someone I had to meet. As our contract studies progressed and I learned about his work, it seemed there might be a good match between his interests and my office’s future needs. His staff was already heavily involved in NASA work, including some projects that could contribute directly to our studies. We talked several times on the phone about the direction post-Apollo planning was heading and agreed to meet and see if we could find areas of shared interest.

My first trip to Flagstaff was in March 1964. In those days the best way to get there from Washington was to catch a late afternoon United Airlines flight to Denver and connect with Frontier Airlines for a milk run to Flagstaff. Frontier had recently started operations as a feeder airline connecting many small west­ern towns with larger cities such as Phoenix, Salt Lake City, and Denver. At this time it mostly used the Convair 240, a two-engine propeller plane. As a pas­senger carrier, it offered basic transportation, noisy and drafty. The crew con­sisted of pilot, copilot, and one overworked stewardess attending to the needs of thirty or forty passengers, a few usually sick from the bumpy ride. Since there were frequent stops at cities such as Colorado Springs and Farmington, New Mexico, the plane never reached high altitudes; it flew just high enough to clear any mountain peaks. So you bounced along, buffeted by the thermals that swirled over the mountains below or the clouds above.

On summer trips you dodged thunderheads and lightning all along the flight path and imagined how rough the landscape below would be in a forced landing. By the time you left Denver in the winter it was dark, so all you could see out the small windows were a few lights from the scattered towns below. At some of the small airfields the nearby peaks, unseen in the darkness, towered above the landing approach path. Flagstaff’s airport, cut out of a stand of ponderosa pines, was just a few miles south of town and near one of those towering peaks, Mount Humphrey (12,670 feet). As I walked down the stairs at Flagstaff on that first trip, I inhaled the aroma of the ponderosas, unlike any forest smell I had ever experienced. It was a crystal-clear, cold night with no sky glow from the nearby city. At seven thousand feet, the stars were the brightest I could remember since my days at sea. It was easy to understand why Percival Lowell had established his famous observatory near Flagstaff.

Flagstaff had grown up as a two-industry railroad town, serving lumber and cattle. The main street stretched for several miles along old Route 66 (also U. S. 40), paralleling the railroad tracks. Now it was mostly a tourist town, a stop along the road to the Grand Canyon, about eighty miles to the northwest. The Grand Canyon, like Meteor Crater, would become an astronaut training site. Flagstaff boasted a small college, with a few thousand students at that time, and several motels, small restaurants, and tourist shops, most with a western or Native American motif. East of town were Sunset Crater and other volcanic features, and continuing east you could drive through portions of the Hopi and Navajo Indian reservations and the Painted Desert.

The next morning Donald Elston (Gene’s deputy—his real title was assistant branch chief) picked me up at my motel and drove me to their temporary offices on the grounds of the Museum of Northern Arizona. Gene met me there, dressed in blue jeans, a western shirt, field boots, and bolo tie—the standard uniform for his staff, although a few were not so nattily turned out. My typical Washington uniform of suit, white shirt, tie, and dress shoes drew some wise­cracks, dictating a change of wardrobe for my next visits. Gene’s offices, in several one-story cinder-block buildings, were not imposing. Furniture was rudimentary and looked like army surplus. Some of the more innovative staffers had built bookcases out of packing boxes, and recently Gordon Swann reminded me that when he first arrived in Flagstaff the only extra chair in his small, shared office was a short plank he laid across his wastebasket. In spite of appearances, you could feel the energy and dedication of the staff Gene was putting together; they hadn’t come to Flagstaff for fancy accommodations.

Gene introduced me to those present—mostly young, some of them recent college graduates—and gave me a short tour. Gene had been selected as a coinvestigator for Ranger and the upcoming Surveyor program. Some staffers were busy analyzing the first Ranger close-up pictures, returned only four months earlier, and preparing for the first Surveyor landing. In addition to the Ranger and Surveyor work, his office had the lead in making the lunar pho­togeologic maps that would be influential within a few years in the selection of potential Apollo and post-Apollo landing sites. Most of this latter work, sup­ported by Bob Bryson at NASA headquarters, was being done at the branch’s offices in Menlo Park, California, using the nearby Lick Observatory telescope. Several Flagstaffers commuted to California to work on their assigned quad­rangles; Gene had tried to get as many of his staff as possible involved in the mapping, for training and simply because mapping all the nearside of the Moon was such a big job. Bryson was already upset that the maps were behind schedule. In mid-1964 their commute was shortened to a few miles when NASA, under a program funded by William Brunk of the Office of Space Science and Applications (OSSA), built a thirty-two-inch reflector telescope on Anderson Mesa, just south of Flagstaff, dedicated to providing geologic maps of the Moon and staffed by personnel from USGS. David Dodgen and Elliot Morris were the guiding hands while the observatory was under construction, and it later became Elliot’s small kingdom, supporting many staffers who spent cold nights at the eyepiece to complete their assigned maps.

Although Bryson had warned me he thought Gene was overloaded with ongoing projects, I intended to offer to support some work at Flagstaff if they could take on additional projects. Our meetings went well, and we agreed to work together on post-Apollo mission planning. The topography and geology of the surrounding area would be ideal for testing some of our ideas on con­ducting lunar missions with long staytimes, and it was obvious that Gene and his staff passionately wanted to be involved in exploring the Moon. To alleviate Bryson’s worries, Gene assured me he could hire extra staff for this new work. We shook hands on developing an interagency funding transfer, and I went back to Washington to start the paperwork. Our handshake would lead to almost $1 million a year in cooperative work, with my office covering all aspects of post-Apollo lunar exploration. By the time the Apollo missions were under way, Shoemaker’s team would receive almost $2.5 million a year from NASA to cover its many assignments.

With the paperwork in motion to transfer funding to Flagstaff, Gene began to assemble more staff. He did this with new hires as well as a little Shoemaker ‘‘suasion’’ of USGS personnel at other offices around the country. He had a good nucleus already on site, and to the adventurous recruits this was a mission unparalleled in USGS. A few old hands and a number of younger USGS staff as well as some new hires soon signed up; some reported to the office in Menlo Park, California, to augment the ongoing work there, but most came to Flag­staff. By 1965 Gene had major pieces of many NASA pies: Ranger, Surveyor, Lunar Orbiter, lunar geologic mapping, astronaut training, the job of principal investigator for the first Apollo landing missions, and post-Apollo science plan­ning. At the height of our efforts, in 1968, over 190 USGS staff members and university part-timers were working at several locations in Flagstaff, including offices in a new government complex north of town.

The primary ventures my office funded entailed laying the groundwork to justify the longer-duration post-Apollo missions. This effort soon merged with a need to influence how the Apollo missions themselves would be conducted. With funds beginning to come in from other NASA offices, Gene organized his staff into three offices: Unmanned Lunar Exploration under the direction of John ‘‘Jack’’ McCauley, to cover the ongoing work for Ranger, Surveyor, and Lunar Orbiter; Astrogeologic Studies at Menlo Park under Harold ‘‘Hal’’ Masursky; and Manned Lunar Exploration Studies directed by Don Elston, the last funded primarily by my office.

Our first order of business was to determine what equipment and expe­riments could or should be included on the post-Apollo missions. We incor­porated some of the early results from the MSFC contractor studies as well as the ideas Gene and his staff had begun developing for the Apollo flights. Hand in hand with these studies went the need to define how the astronauts could best accomplish the tasks within the constraints of their space suits and the limitations of their life-support systems. What combination of equipment and procedures would make the most sense from the standpoint of scientific exploration?

In mid-1964 a letter was sent to MSC, over Verne Fryklund’s signature, outlining our need for space suits and support technicians to carry out our planned simulations. It requested an inventory of vacuum chambers where we might test the equipment with suited test subjects. We expected that by 1967 we would want to use vacuum chamber tests to demonstrate that, wherever we were in our studies, equipment design, and procedures, the astronauts could carry out the required tasks. Max Faget’s response about vacuum chambers was encouraging.2 Two large, man-rated chambers, A and B (the larger one ninety feet high and fifty-five feet in diameter) were planned for such simulations. He noted that chamber A could sustain tests lasting several weeks, fitting in nicely with our proposed post-Apollo timeline. We thought Max might be having a change of heart about supporting our needs, since the specifications for the chambers came from his office and the only proposal for such long-duration simulations we were aware of came from us. Until this point there had been no exchange of information between the two organizations, so perhaps Max had paid more attention than we thought to Evans’s earlier briefing.

The situation on space suits was not so encouraging. Borrowing space suits and technicians for simulations away from MSC would be difficult because both were in short supply. Through the intervention of USGS’s Gordon Swann, then stationed at MSC, and others working with the astronauts there, we were able to obtain a surplus Gemini space suit that we trained two staffers at Flagstaff to wear for field simulations. It was not a very satisfactory suit to use in the field, because it was not designed for walking when pressurized, and it was difficult for the wearer to bend at the waist to conduct typical fieldwork. Gemini astronauts either sat in the capsule or, for EVAs, stood almost upright at the end of a tether. But it was useful, especially in the sense that it drove home how difficult it would be for the astronauts, even in a better space suit, to do the equivalent of routine geological fieldwork.

In October 1964 Gordon Swann joined Elston’s group, transferring from his work at Houston teaching geology to the astronauts. Gordon brought his in­sight on how to meet the astronauts’ requirements into everything we were doing, based on his day-to-day interactions with them on their training trips. Gordon soon became our primary suited test subject, pouring gallons of sweat into the boots of our borrowed space suits during his many simulations.

As our studies at Flagstaff accelerated, Elston and his staff began to develop several simulation sites nearby. One of these, just east of town, became a conve­nient place to test our ideas. In July 1964 Bill Henderson and I went to Grum­man to have the model shop build a high-fidelity, full-scale replica of the LEM ascent stage as the starting point for our field simulations. The replica was delivered a few months later. We mounted it on a truck bed, and it was carried back and forth to the field when needed.

With additional help from MSC, we soon graduated to a prototype Apollo suit, which made it much easier to conduct realistic fieldwork, since it incorpo­rated a portable life-support system (PLSS) that let us do away with hoses and hand-carried cooling systems. In June 1965 Gordon Swann and Joseph O’Con­nor were given their first indoctrination into the use of Apollo-type space suits at MSC.3 From that point on, whenever we could obtain the loan of such a suit, we would rehearse and simulate at Flagstaff all the tasks we were planning for the astronauts.

Our simulations and field tests led to the design of various tools and equip­ment to ease sample collection and permit the observation and mapping of geological features. Ideas were tried and rejected and equipment was built and discarded as we learned what would work best. For example, during our field simulations, the USGS “astronauts” practiced viewing the surface from the overhead hatch of the LEM mock-up carried on the back of a truck to obtain, more or less, the correct elevation above ground level. Their experience at taking advantage of this high observation point was passed on to the crews and led to David R. Scott’s decision on Apollo 15 to stand in the overhead hatch to plan his surface activities and traverses at the landing site. Dave Dodgen and

Walter Fahey designed and built a LEM periscope like that recommended earlier for the Martin study (with a few more frills), and it was used successfully during some of the simulations to determine how to study a landing site before the astronauts began their EVAs.

At this point in our work Gene had the good fortune and foresight to bring on board a young geologist who had just finished his graduate work at Har – vard—Harrison H. ‘‘Jack’’ Schmitt. Jack, full of enthusiasm and energy, soon became a leader in our simulation efforts, and with his firsthand involvement in planning post-Apollo missions at Flagstaff, he began his journey toward be­coming (so far) the only professional geologist to walk on the Moon.

We were beginning to make real progress. Not only were we closing in on future tool designs that would work well with a space-suited astronaut, but we were also developing ways for teams back on Earth to process the information that would come back from the Moon in the form of verbal descriptions, experimental data, and perhaps television pictures. At this time a television camera for use on the Moon was not a potential payload item for the Apollo missions. But we believed it would be an invaluable tool for the AES missions, so we usually carried one during our field simulations. We would review the tapes when we returned to the office to complete the analysis of the simulation. We took the next step and set up relay towers on Mount Elden, north of Flagstaff, that let us send the pictures back from the field to an office in the Arizona Bank Building in downtown Flagstaff. After we ironed out the kinks of getting voice and pictures back from the field, we started to design a facility we named Command Data Reception and Analysis (CDRA), where a team of geologists could convert field data in real time into a geologic map. Not only would our planned Moon traverses include geological observations and mea­surements, but we envisioned collecting geophysical information along the route such as gravity and magnetic field measurements. We knew that AES missions would return so much information, collected during miles of traverses by astronauts riding on some type of vehicle, that it would be essential to process the information in near real time. If we could do this, we believed we could redirect the crews or suggest additional surveys to flesh out the picture we were developing of their landing site.

As our CDRA work progressed we brought our ideas to the attention of MSC. This revelation of how we thought the post-Apollo missions should be conducted stirred up a hornets’ nest. We were told in no uncertain terms that the idea would never be approved. Scientists on Earth talking directly to astro­nauts on the Moon? Scientists second-guessing the astronauts on what to do or how to do it? No way! We were told to cease work along these lines. We chose to ignore this ‘‘guidance’’ and continued to improve our vision of how this could be done.

The ALSS-AES missions permitted longer surface staytimes, but to complete the mission and return home the CSM would have to stay in orbit as long as the astronauts were on the Moon’s surface. We began serious study of how we could take advantage of having the CSM in orbit for such a long time. With modifica­tions, in some respects easier to project than extending the LEM staytime, the CSM could remain in orbit for two weeks or longer. What should we do with a CSM that might make three hundred or more orbits of the Moon while the astronauts were on the surface? It seemed obvious: map the Moon from orbit with whatever instruments the CSM could accommodate. In the early stages of these studies we looked at fully automating the CSM sensor package and per­haps converting the LEM to carry three people so that one astronaut would not have to remain alone in orbit on board the CSM but could be on the surface to share the workload. All this appeared possible. We then enlisted the aid of USGS to come up with a conceptual, remote-sensing payload for the CSM. This in turn led to investigating how to tailor the astronauts’ surface activities to provide the ‘‘ground truth’’ that would improve the value of the data returned by orbital sensors. The suite of sensors proposed for the CSM included multi­spectral photography as well as spectrochemical, microwave, and radar instru­ments that would let us extrapolate the data collected at the landing sites to broad regions of the Moon.4

By 1965, three years had passed since the last National Academy of Sciences summer study that led to the Sonett Report. In the intervening time we had learned a lot. Careful study of the close-up views of the lunar surface taken by Ranger increased our confidence that ‘‘normal’’ geological and geophysical studies could be planned for the astronauts. The summer of 1965 was selected as the next date for the Academy to review the status of space science, this time at Woods Hole, near Falmouth, Massachusetts. Dick Allenby and I thought this would be a good opportunity to take advantage of the assembled ‘‘Academy experts’’ such as Harry Hess, Aaron Waters, and Hoover Mackin. I hoped to convene a working group similar to Sonett’s to review our progress and make some specific recommendations for Apollo and post-Apollo science operations.

We made a few calls to see if some of the invited Academy members would agree to extend their time at Woods Hole. Most agreed to stay—it didn’t take much persuasion, since it was such a beautiful spot to be working in the middle of summer. I went to Woods Hole to see if a follow-on meeting could be arranged. In contrast to the twenty participants in the Sonett Ad Hoc Working Group, we envisioned a much larger attendance, probably more than fifty scientists and engineers, including at least one astronaut.

The National Academy of Sciences owned a large mansion directly on the bay at Woods Hole that had been converted to host its many summer con­ferences. With porches on all four sides of the house and broad, well-kept lawns, it was a beautiful, almost idyllic, site. The views of the bay from the conference room windows made you wonder how participants could concen­trate on the business that brought them there. This was my first visit to Woods Hole, and after seeing the mansion I realized that although it could accommo­date the small number of scientists usually invited, it would not serve for the much larger meeting we planned.

A few inquiries turned up no suitable building nearby; we needed a small auditorium for general meetings and several rooms where the various scientific disciplines could meet. Driving around Woods Hole and Falmouth, I noticed the Falmouth High School, a perfect location, and on the spur of the moment went in to talk to the principal (I’ve now forgotten his name). After a brief introduction he gave me a quick tour and said he was willing to ask his school board for permission to host the conference. A few weeks later he called to say it had been approved, and we began the detailed planning for an event that would ultimately involve more than 120 participants.

Developing specific Apollo science guidelines was the first priority of the conference. However, our primary objective for this summer study was to expose the assembled experts to the results of the MSFC contractor studies that we had undertaken for post-Apollo missions. Also, we wanted to show those from the geological community, outside USGS, what we had achieved in more than a year of mission planning and simulation at Flagstaff. During 1964 and 1965 MSC had been steadily adding to its science staff, mostly in the earth sciences, and the frictions I mentioned earlier had been growing. Here was our chance to show them we had received the support of mainstream scientists interested in solving the major lunar problems. Eight of Faget’s staffers were invited, led by William Stoney, John Dornbach, and Elbert King. They partici­pated in two of the working groups and also provided technical advice about telemetry and other capabilities that would be needed to support any proposed lunar science ventures.

Two important attendees were Walter Cunningham and Jack Schmitt: Walt was an astronaut, and Jack was an astronaut-to-be. Jack’s selection in the first scientist astronaut group had just been announced, and his personal involve­ment in our Flagstaff work would be an important step in getting the astronauts to accept our ideas on what to do on the Moon and how to do it. Jack would soon be leaving to start one year of flight training; this conference would be his last official duty as a member of USGS. Walt’s astronaut group, the third se­lected, included many who would become well known, such as Buzz Aldrin and Michael Collins. They had all been given specific Apollo system or technology sectors to monitor and become expert in, besides performing their more ‘‘mun­dane duties’’ of making the transition from military pilot to astronaut. Some had received Gemini mission assignments. Walt’s responsibilities included non­flight experiments, so he was our primary contact in the astronaut corps for any questions about the astronauts’ performing experiments on the Moon. Other astronauts were given this duty as we approached the Apollo launch dates and the more senior astronauts, such as Cunningham, turned their full attention to preparing for specific Apollo missions.

Having Walt at Woods Hole lent immediacy to our planning. Here was someone who might actually carry out our recommendations. Astronauts’ at­tendance at meetings like ours was always appreciated. Requests for them to appear all over the country flooded into NASA. The demand had become so onerous that Alan Shepard and Donald ‘‘Deke’’ Slayton finally set up a ‘‘duty cycle,’’ with each astronaut spending a week or so making public appearances so the others could get their work done. They called this duty being ‘‘in the barrel.’’ Some enjoyed the exposure, some hated it, but all tolerated these distractions, knowing that public relations was part of the job. A separate office was estab­lished at NASA headquarters to ensure that the proper priorities were recog­nized when parceling out this valuable resource. Many requests came from members of Congress, and these were usually put at the top of the list. Although most members supported NASA programs, it was to our advantage to keep them all happy, especially at NASA appropriation times. In any case, Walt was an important addition to our conference, and I assume he was happier meeting with us than on some other public relations assignment.

Walt’s message to us on the first day of the conference, however, was not encouraging. Influenced in part by his training and by his own study and analysis of the preliminary mission timelines, he warned us not to overburden the astronauts with scientific tasks. Housekeeping chores would demand a large percentage of their time on the lunar surface. Such things as recharging the PLSS, the astronauts’ life-support backpack, maintaining work-rest or work – sleep cycles, and monitoring LEM systems—all essential to their safety and health and undertaken in the cramped living space of the LEM—must take priority over science. This was a sobering introduction to lunar science and colored our working groups’ deliberations and corridor talk in the days ahead.

Working groups were established in eight scientific disciplines: geology, geophysics, geodesy-cartography, bioscience, geochemistry, particles and fields, lunar atmosphere measurements, and astronomy. Astronomy was added at the eleventh hour in order to review the preliminary findings of our post-Apollo telescope study and to look beyond Apollo to lunar bases when the Moon could become the site of large astronomical observatories. Such installations might include radio telescopes on the farside where they would be shielded from Earth-made noise. At that time there was no intention to include an astronomy experiment on any of the Apollo missions. One of the members of the astron­omy panel was Karl Henize, then at Northwestern University but destined to be in the scientist-astronaut class of 1967. The other seven working groups, how­ever, were all tasked to review and recommend experiments and operations for the astronauts to carry out on both Apollo and post-Apollo missions, both for two-week staytimes and for lunar bases. The number of attendees (123) ex­ceeded our initial plans, and to ensure that the post-Apollo discussions would be favorably covered, we loaded the attendance with MSFC and USGS staff who had been participating in our studies.

Each working group submitted a report summarizing the results of its delib­erations, and the conference report, compiled by Jay Holmes with the help of many in attendance, was released just before Christmas 1965.5 It immediately supplanted the Sonett Report as the authoritative reference for Apollo and post – Apollo science planning and, as we had hoped, fully endorsed our approach to the post-Apollo missions. In some cases the working groups went far beyond the concepts we had been studying at MSFC and recommended much more complex experiments than we had considered. For example, we reported on the early results of our studies on a hundred-foot drill, and the geology working group recommended developing a drill capable of taking cores at least three hundred meters below the surface in order to penetrate any ejecta layer and reach solid rock. Those of us who had been working on the drill studies realized that achieving such a depth would be a real challenge, and after the con­ference we quickly placed a contract with Bendix to take a first look at how it could be done.

The recommendations of the seven working groups for Apollo experiments are too numerous to list here, and many also pertained to post-Apollo explora­tion, but a few are important in the context of the science payload that was ultimately carried on Apollo. The geology working group listed two primary questions to be answered by the first Apollo landings: What are the composi­tion, structure, and thickness of the Moon’s surficial layer? And what are the composition and the origin of the material underlying this layer? Recognizing that time was the most valuable resource in each mission (reinforced by Walt Cunningham’s presentation), the group gave a lot of effort to recommending tools and procedures that would permit the astronauts to quickly gather the information needed. Even assuming that all the post-Apollo missions we were planning took place, only a tiny fraction of the Moon would ever be visited and studied. Thus it recommended that manned lunar orbiters be scheduled as early as possible, carrying a suite of instruments to acquire lunarwide mapping and remote sensing information on the Moon’s surface composition.

In addition to the geology working group, the geodesy-cartography and geophysics working groups made recommendations dealing with surveying the Moon from lunar orbit. In 1964, under the direction of Peter Badgley, we had begun initial studies of the types of surveys that could be done from an orbiting CSM. We received over one hundred proposals or letters of interest from the scientific community about conducting these investigations, covering all types of surveys from photography to chemical analyses. The Falmouth conference strongly endorsed the need for such investigations.

The deliberations of the geophysics, lunar atmospheres, and particles and fields working groups produced a list of experiments to study the Moon’s subsurface as well as phenomena occurring at or near the surface as a result of interactions with the solar wind or cosmic rays. These interactions were of great interest, since it was difficult or impossible to measure them on Earth because

of the interference of the Earth’s atmosphere and strong magnetic field. For these experiments the Moon could be used as a huge spacecraft floating in free space, on which to mount unique detectors.

The geochemistry-petrology working group also made an important contri­bution to Apollo science. Only two members of the working group were NASA employees at the time (Paul Lowman was one), but all who participated would later become heavily involved in the program either as NASA managers or as sample-return investigators. The working group concentrated on outlining the procedures NASA should follow in selecting the scientists and organizations that would analyze the samples returned by the astronauts; many of their proposals had just been received. It also recommended sampling procedures and container designs for returning the samples in as near pristine condition as possible. Finally the members turned their attention to the design of the Lunar Sample Receiving Laboratory (later shortened to the Lunar Receiving Labora­tory, LRL) where the samples would be quarantined, opened, examined, and sorted for delivery to the laboratories of designated investigators who would then conduct the special analyses they had been selected to do.

Having received the endorsements we were looking for at Falmouth, we charged full speed ahead at Flagstaff to further define potential post-Apollo missions. Based on the emphasis at Falmouth, conserving the astronauts’ time became a major objective of our simulations. We also addressed sample return from these longer missions. The weight allowance for return-to-Earth payloads would be restricted, yet the astronauts would undoubtedly collect many sam­ples during their two-week stay. How could they be sure to bring back the most important ones? We proposed a small sample preparation laboratory that they could use while still on the lunar surface, and one was designed by Joe O’Con­nor, David Dahlem, Gerald Schaber, and Gordon Swann with the help of other USGS staffers. In an undated ‘‘Technical Letter’’ Jerry Schaber reported on the results of one of the field tests, probably conducted sometime in 1966.6

The test confirmed that thin sections of the samples for microscopic study could be prepared in this small laboratory, giving the astronauts, who were receiving some rudimentary training in petrography, a first-order idea of what they had collected. (A thin section is made by sawing rock so thinly that light can be transmitted through the slice, telling a trained geologist its mineralogical composition and something of its history.) On the particular test Schaber reported on, they had included a microscope-television system that permitted simultaneous viewing of the thin sections by both the “astronaut” test subjects and geologists back in the CDRA. As Schaber reported, ‘‘It became apparent during the test that such remote petrographic techniques could furnish a great quantity of information. . . far more than could possibly be returned to Earth in the present LEM vehicle concept. . . . The test results indicated that the thin section image alone could be interpreted with surprising accuracy by the CDRA personnel.’’ (Perhaps a lesson for future Mars explorers, who will certainly face the same problems we were trying to address-how to get the most information back to Earth with a limited return payload.) Instrumentation that we studied as part of such a small portable laboratory included rock-cutting and thin – sectioning equipment, a petrographic microscope, several types of spectrome­ters, a gas chromatograph, and an X-ray diffractometer. This concept was presented a year later at the Santa Cruz summer conference, with the recom­mendation that the images seen in the microscope be beamed back to Earth so that they could be analyzed by experts, thus reducing the time the astronauts spent studying the thin sections.

Our mobility studies at MSFC were providing us with concepts for several types of vehicles that could be carried on the AES missions. In Flagstaff, Rut­ledge ‘‘Putty’’ Mills, with the help of others, translated these ideas into a work­ing model by modifying a truck chassis to carry two test subjects. Once we had this vehicle, which we named Explorer, we planned all our simulations around its use. In 1966 we took delivery of our Cadillac lunar rover, a MOLAB (mobile laboratory) working model that MSFC had built by General Motors, Santa Barbara. It was a Cadillac because this MOLAB model cost $600,000 and had a cab so large that two test subjects could live inside and deploy various geophysi­cal equipment as they drove along, without leaving the cab.

When the MOLAB was delivered to Flagstaff, it created quite a stir. It was an ungainly-looking vehicle with four large, tractor-type wheels supporting a fat, cigar-shaped cab with a rather high center of gravity. Shoemaker, watching it being unloaded from the delivery van and thinking ahead to its use in rugged terrain in the field, declared that the NASA-USGS logos painted on the sides would have to be changed. USGS should appear in large letters on the roof, and NASA should be on the bottom. He was sure that during some future field simulation the MOLAB would roll over, and he wanted any assembled reporters to photograph its ignominious fate with the NASA letters showing as the sponsor and USGS safely out of sight. Gene’s recommendation was not fol­lowed, but his low opinion of the MOLAB test vehicle design was duly reported to MSFC and caused a few red faces. Unfortunately, funding for the AES-lunar base programs was reduced two years after we took delivery of this vehicle, and we had few chances to use it in the field. After a short time it was sent to MSFC, where it was later put on display.

While Gene and his staff were on the front line trying to shape lunar explora­tion, we were dealing with the USGS management back in Washington in the persons of the USGS chief geologists, first with William Pecora then with his successor Harold “Hal” James. Our relationships were always friendly, but although it was clear that they liked this infusion of new money, they never seemed totally comfortable with the assignment. Exploring the Moon didn’t quite fit into the mission of an old-line government agency that had helped open the West a hundred years earlier. This attitude was evident even though at the turn of the century the United States Geological Survey’s first chief geolo­gist, Grove K. Gilbert, had been a pioneer in lunar studies.

Pecora and James, at least publicly, were always strong advocates of working with NASA, and on occasion they would be called on to support lunar explora­tion at congressional hearings or other forums. And certainly the Survey was receiving a lot of favorable publicity from their association with our programs. When the astronauts were covered by the media during geology training trips in some remote corner of the country, there almost always was a USGS staffer identified as lecturing to them. Once the landing missions commenced, USGS contributions became well known, and participants in the field geology experi­ment were in constant demand to discuss the missions. Even the most hard­hearted manager in Washington must have felt some pride at seeing his agency so prominently featured with the country’s new heroes.

Shoemaker was considered a bit of a free spirit within USGS, and all the money he was receiving from NASA, not through his own congressional appro­priation channels, was making him rather independent of his Washington superiors. With his successful creation of the Branch of Astrogeology, Gene decided to relinquish his day-to-day management role and once again reorga­nized by setting up two branches, Astrogeologic Studies under Hal Masursky and Surface Planetary Exploration (SPE) reporting to Alfred H. Chidester. By this time, starting with the first funding transfers in 1961, NASA had trans­ferred almost $14 million to USGS for its various activities, and the action was just beginning to heat up for it to support the Apollo landings. (In all, NASA transferred over $30 million to USGS.)7

With the reorganization, in mid-1967 James sent Arnold Brokaw, a manager with no previous experience in lunar studies, to take charge at Flagstaff and make some further management changes. Brokaw’s appearance altered the dy­namics of our work with SPE, and though we maintained cordial relations with him, we found that the best way to get things done was to work around him and go directly to the staff we had come to know so well over the past three years. The personnel changes made at SPE soon after Brokaw’s arrival put our studies in some disarray. Al Chidester, with whom we had cooperated closely, was transferred and no longer had any role in our work. But with the perseverance and cooperation of Gordon Swann and others, we managed to keep things on track, with our eyes focused on the first landing mission and the hoped-for expansion of our ability to conduct exploration in the post-Apollo era.

By the summer of 1967, with the studies at MSFC and USGS described above under way or completed, we had what I considered to be all the key scientific and operational answers needed to justify more extensive exploration and, eventually, lunar bases. We now felt comfortable providing numbers that would help the scientific community accomplish more productive exploration. Science payloads could be at least 2,500 pounds, including a small vehicle, and the radius of operation at the landing site could be up to five miles. Larger payloads might become available as we continued to learn the full potential of the Apollo hardware; we hoped this would lead to MOLAB missions covering much larger areas on the Moon and establishing lunar bases.

We had a lot of new data to share with the scientific community. NASA headquarters had just announced that it would accept proposals for experi­ments for the Apollo Applications Program (AAP),8 the new name for the post – Apollo program supplanting Apollo Extension System. AAP missions were advertised to begin in 1971 and would include both manned lunar orbit and landing missions, the latter with surface staytimes up to fourteen days. In Will Foster’s office we decided it was time for another summer study to gain more support from scientists for post-Apollo exploration and to encourage them to propose new experiments for the AAP missions. Although the AAP was not yet approved, we thought the announcement was the first step toward its formal recognition, and we wanted to be sure there would be an overwhelming re­sponse of new experiments.

Newell and Foster persuaded Wilmot ‘‘Bill’’ Hess, the newly installed head of the Science and Applications Directorate at MSC, to act as the official host of this conference. The idea was to show the scientific community that under his direction MSC had turned over a new leaf and science would now get the attention it deserved in the Apollo program and any programs that might follow. Until Bill’s arrival, complaints from lunar scientists had been steadily building, and some MSC offices gave the impression that they knew best what science needed to be done and would do it their way. Don’t call us, we’ll call you—maybe. MSC was already managing several Apollo science hardware con­tracts, which added to the concern.

Bill Hess, a physicist, was chief of the Goddard Space Flight Center (GSFC) Theoretical Division when he was asked to transfer to MSC at the end of 1966 to lead a new science directorate. His primary mission at Houston was to reorganize the ongoing science efforts and then evaluate why MSC was held in low esteem by many of the scientists involved in Apollo. A tall, heavy man with a commanding presence, Bill was easygoing but with a touch of steel. He had outstanding scientific credentials and knew NASA politics inside out. We all thought he was the perfect choice for the job. I had come to know him well while he was at GSFC and during the Falmouth summer study, and I knew he would be easy to work with. Perhaps a new day would dawn on our relations with MSC.

Hess had an immediate impact on relations with NASA headquarters. Now, for the first time, we had a senior manager on site who was sympathetic to our concerns and who would return our phone calls, a courtesy seldom extended before his arrival. But he never really became one of the inner circle of MSC managers, and the hoped-for improvements were temporary. One problem was that although he was starting a new directorate, he inherited some of the people from Faget’s office who had been giving us all such a hard time—it isn’t easy to fire or transfer civil servants. In his two short years the climate for science improved, but this was soon reversed by his successor.

The site selected for the 1967 conference was the new University of Califor­nia campus at Santa Cruz. Aaron Waters, a noted geologist and coinvestigator on Shoemaker’s Apollo Field Geology Team, had just joined the staff at Santa Cruz and served as the unofficial host. Over 150 people joined us at Santa Cruz, representing all the geoscience disciplines and including a few astronomers.9 MSFC sent only two observers to the conference, because by this time the decision had been made to manage all Apollo science at MSC, and MSFC quickly phased out of most lunar science studies. Goddard Space Flight Center was well represented, led by Isadore ‘‘Izzy’’ Adler and by Jack Trombka, who had returned to GSFC after his stint at headquarters. They wanted to map the lunar surface extensively from orbit using newly developed sensors. Thirty MSC staffers from various organizations attended, including Faget himself, as well as three astronauts: Deke Slayton, Jack Schmitt, and Curtis Michel (a member of Jack’s 1965 scientist-astronaut class).

The large number of MSC attendees attested to Hess’s new influence and perhaps to the recognition that these summer studies were important in shap­ing lunar science. They came prepared to push their point of view on what science the astronauts should conduct and how it should be done. (I should clarify my criticism of MSC, since it does not apply to the organization as a whole. At this time we were able to work with the MSC science staff, although with difficulty, and Hess’s interest in changing the working relationships with headquarters and the science community was smoothing some of the rough edges. Our relations with other organizations at MSC were usually good, and when I was in Houston I could confide in many friends at MSC or sit down at dinner and discuss the state of NASA.)

As we did at Falmouth, we asked the attendees to think in terms of grand exploration missions, and we had the numbers to allow this. With the newly named Apollo Applications Program would come one of the last attempts at persuading Congress and the administration to continue exploring the Moon after the initial Apollo landings. We hoped that the Santa Cruz conference would stimulate the scientific community to continue supporting lunar explo­ration in spite of growing frustrations with attempting to influence the scien­tific content of Apollo.

Our daily sessions were divided into eight working groups, which reported on their findings at the end of the conference. I attended as secretary of the geology working group, which was led by Gene Shoemaker and Al Chidester (one of Al’s last duties before his transfer) and was dominated by USGS staff and university professors who supported the work we had been conducting at Flagstaff. Major recommendations coming out of this working group included (1) increasing the astronauts’ radius of operation beyond walking range, esti­mated to be five hundred feet, by providing wheeled and flying units; (2) developing a dual-launch capability as soon as possible; (3) creating a sample return payload of four hundred pounds; (4) making the geophysical station flexible so we could react to new opportunities; (5) providing an early manned lunar orbital flight to further map the lunar surface in the visible part of the electromagnetic spectrum and other parts as well; and (6) sequencing orbiter and landing site missions that would include landings at the craters Copernicus and Aristarchus. In general, all the recommendations supported the post – Apollo planning we had undertaken in the past four years.

One of the conference’s recommendations was of special interest to me and others. A second scientist-astronaut selection was under way at the time of the conference, and I was in the final group under consideration. Knowing of the sensitive nature of crew selection and the competition for slots on the landing missions, the working groups tried to be diplomatic when making their recom­mendations for crew training and selection. Also, we hoped that Jack Schmitt would be selected for an early lunar mission, and we did not want to jeopardize his chances by being too aggressive in our advice. The recommendation on astronaut selection and crew training included these words: ‘‘For some of the complicated scientific missions in the later part of the AAP, the Santa Cruz Conference considers that the knowledge and experience of an astronaut who is also a professional field geologist is essential.’’ At the time I hoped they would be to my own benefit during the selection of the next class of scientist-astronauts.

Although the Santa Cruz conference endorsed the need for missions after the scheduled Apollo flights, time was running out for AAP.10 The Santa Cruz attendees, representing many renowned scientists, had proposed important studies on the Moon that were not planned for Apollo. These experiments would require payloads and resources beyond what was anticipated for the Apollo flights. By the time the conference came to a close we knew that NASA budget submittals for fiscal year 1969 would not include funds for missions beyond the already funded Apollo flights. What exquisite timing.

At this point in my government career I had seldom come into contact with the Bureau of the Budget (later named Office of Management and Budget), but in the ensuing years, as a senior official at several agencies, I would frequently meet and argue with its staff members. The original ‘‘faceless bureaucrats,” they had enormous authority and no responsibility. If a program failed or struggled because of arbitrary funding cuts, the agency and program managers would bear the brunt of the failure, not the BOB/OMB staff members who had wielded their red pencils. I don’t recall ever encountering an OMB staffer who had managed a real program; they were blissfully unaware of program com­plexities other than dollars. In spite of this rejection by BOB, we continued to plan for dual-launch missions and extended lunar surface staytimes. We could always hope that the upcoming election might produce an administration more friendly to lunar exploration.

In the fall following the Santa Cruz conference, some major organizational changes took place at NASA headquarters that altered the nature of planning for both the Apollo missions and the missions that might follow the first Apollo landings. With these changes several of us, from various offices, moved to the Apollo Program Office. But before continuing the story of Apollo and post – Apollo science, let’s turn back the calendar to where we left Apollo science at the end of chapter 1.

Science Payloads for Apollo:. The Struggle Begins

In July 1960, before President Kennedy’s dramatic declaration that we would send men to the Moon and return them safely and before Alan Shepard’s successful Mercury launch, NASA announced that it was considering manned circumlunar flights. This unnamed program proceeded slowly, responding in some degree to what the Soviet Union was accomplishing. Then, pushed by growing concerns about Soviet success in space and relying on NASA managers’ assurances that a manned lunar landing was achievable, the president made his historic national commitment, soon endorsed by Congress.

Little by little, with many twists and turns along the way, the program matured. It was given the name Apollo, and its ‘‘mission architecture” was agreed to. Mission architecture comprises those aspects of a typical mission (size of the rocket stages, spacecraft design, flight trajectories, timelines, etc.) required to accomplish its objectives. This “architecture” would eventually control or shape the scientific experiments the Apollo astronauts would con­duct. Here I discuss these aspects of Apollo and briefly describe the supporting programs, both manned and unmanned, that Apollo science depended on. Then later in this chapter and in the following ones I tell about the struggle to add science payloads to the missions. To maintain the continuity of particular topics, I sometimes depart from a strict chronological sequence.

After the lunar orbit rendezvous (LOR) approach described in the introduc­tion was adopted, work began to build the Saturn V launch vehicle and two spacecraft: the three-man command and service module (CSM) and the lunar module (LM; earlier called the LEM, lunar excursion module). Lunar missions utilizing LOR required the Saturn V to first place the spacecraft in Earth orbit and then send them on to lunar orbit. After doing their jobs, the initial two stages of the Saturn V, the S-IC and S-II stages, would be jettisoned, reenter the Earth’s atmosphere, and burn up. The upper stage, the SIVB, with the CSM and LM spacecraft attached, would then be sent to the Moon or, in NASAese, put into a translunar injection. Once safely on the way and coasting toward the Moon, the CSM would separate from the SIVB, turn, and pluck the LM from the SIVB, where it had been stored just behind the CSM inside a protective fairing. The SIVB stage, with no further function and essentially depleted of fuel, would go its separate way, deliberately steered away from the Moon in the first flights to avoid any interference with the mission. Together the CSM and LM would continue on to the Moon. Upon arrival the spacecraft would use the CSM engines to brake into a low lunar orbit.

Once in lunar orbit and after all systems had been checked, two astronauts would enter the LM, separate from the CSM, and descend to the lunar surface, leaving the third astronaut in lunar orbit in the CSM to await their return. The LM would be a sophisticated two-stage spacecraft comprising the descent stage that fueled the landing maneuvers and the ascent stage in which the astronauts would travel to the Moon’s surface and return to rendezvous with the CSM in lunar orbit. If the landing had to be aborted, the LM descent and ascent stages could separate while in flight and allow the astronauts to rendezvous with the CSM. The LM also included the small cabin in which they would live during their stay on the lunar surface. The two stages would carry the equipment for use on the lunar surface. After leaving the Moon and meeting the CSM in lunar orbit, the ascent stage would be jettisoned, and when its orbit decayed it would crash on the Moon.

Similarly, the CSM was a multifunction spacecraft. As the name indicated, it had a dual purpose, serving as a command ship and a service module. The command module portion was the control center of the spacecraft and the as­tronauts’ home on both the voyage to the Moon and the return to Earth. The command module pilot would monitor the other astronauts’ progress on the lunar surface and, on later missions, conduct sophisticated experiments. After the astronauts left the Moon’s surface in the LM ascent stage and achieved a lunar orbit, it was the CSM pilot’s job to rendezvous and dock with the LM ascent stage so the astronauts could transfer to the CSM along with any material they brought back from the lunar surface. The rear end of the CSM, the service module, was primarily a rocket and logistics carrier. It supplied power and life – support expendables for the command module and propulsion to permit a wide range of maneuvers. Most important, it provided the propulsion to take the CSM out of lunar orbit and bring the astronauts home. Once Earth reentry was ensured, the service module would be jettisoned. The command module would reenter and parachute to an ocean landing.

With this abbreviated description of the Apollo hardware as background, I can begin to tell how we struggled to place science payloads on board Apollo. Because the Saturn У had to lift some six million pounds of equipment and fuel from the Earth’s surface to Earth orbit and the succeeding stages had to per­form efficiently in order to send as large a payload as possible to the Moon (much of it in the form of rocket fuel), the weight of the total Saturn У and all the many components rapidly became an overriding design concern. On my first visit to Grumman in 1965, at Bethpage on Long Island, to see an early version of the LEM, weight concerns were high on the agenda. After a brief walk around this peculiar contraption with long spindly legs and tiny triangular windows, we attended a status review. The LEM was in trouble; among the issues covered was how to reduce its weight. If this could not be done, the problem would affect all the Apollo systems and subsystems. The Grumman engineers took this so seriously that they were counting rivets as they modified the design to achieve their weight targets. And here we were, trying to convince management to add hundreds of pounds of science payload to the LEM; with­out question it would be difficult.

Based on the scientific guidelines mentioned in chapter 1 and on the Sonett Report, in November 1963 I made a quick parametric study to determine what science might be done at any point in a typical Apollo mission, from translunar injection to the final return to Earth.1 This brief analysis focused primarily on the ‘‘what-ifs’’: for example, what if the first astronauts achieved lunar orbit but could not descend to the surface; what if they descended to the surface but couldn’t land; and what if they landed but couldn’t exit the LEM? My purpose was to identify instruments and equipment that would be needed to make the most of each opportunity and set priorities for what should be included in the (probably small) science payload. As one might guess from the list of what-ifs, a camera, or several cameras, would have high priority. The Martin Marietta contract discussed in chapter 3 was a direct outgrowth of this analysis, con­centrating on what to do if the astronauts made a successful landing but were not permitted to leave the LEM.

Two months later, in February 1964, after our office further reviewed the Sonett Report and the Apollo science program guidelines, Will Foster sent the Space Science Steering Committee of the Office of Space Science and Applica­tions a memorandum providing a preliminary listing of the scientific investiga­tions that should be considered for Apollo.2 This memo, which I discuss in detail in the next chapters, defined the areas of interest for each scientific discipline and listed the scientists who would be asked to help plan individual experiments. With this additional guidance, Ed Davin, Paul Lowman, and I did a more careful analysis of the what-ifs and wrote a short report in early June outlining a program of Apollo scientific investigations covering the first seven Apollo landings, the approved program at that date.3 We went into some detail for the first landing mission, assuming it would allow only four hours of extravehicular activity (EVA) on the lunar surface. We also described a ‘‘limited mission profile’’ that permitted only one hour of EVA. Both the one-hour and four-hour EVA plans took into account our limited knowledge of the con­straints that might be in effect based on prototype Apollo space suits. A primary reason for our report was to have a handout reflecting Manned Space Science’s position available for distribution at the Manned Spacecraft Center Lunar Ex­ploration Symposium that was scheduled for June 15 and 16, 1964.

At the symposium we and many of the scientists named in Foster’s memo were exposed to MSC’s view of what could be done on the lunar surface, allowing for probable operational constraints. Lively debates took place, with the science side attempting to understand and relax these constraints so that more scientific work could be accomplished. The science planning team mem­bers described the experiments they hoped to have the astronauts deploy and the types of studies and observations that would be needed. Everyone left with a much better understanding of what lay ahead before we could all agree on the best methods of exploration during the missions.

The symposium led us to rethink several of the what-ifs. In particular, what if the astronauts could not leave the LEM to deploy the experiments they were carrying? Members of the seismology panel thought the seismometer could be designed to be turned on from Earth while still in the descent stage equipment bay, thus allowing some readings of the Moon’s seismicity, especially if any large natural events occurred near the landing site. MSC had pointed out that the landings would take place at low sun angles and there was a fifty-fifty chance that after touchdown the LEM windows would be facing the Sun, making photography from inside the LEM difficult. If the astronauts could not leave the LEM, the landing site would be poorly documented. We again suggested adapt­ing the LEM telescope or adding a periscope to permit photographs, but we received no encouragement.

Another interesting discussion dealt with speeding up one of the housekeep­ing tasks—recharging the space suits’ life-support batteries. In the preliminary timeline that was presented, six hours were allocated for the recharge while the astronauts were back in the LEM, thus restricting the total EVA time. The Crew Systems Division pointed out that simply swapping out new batteries could reduce this time to fifteen minutes, and the spent batteries could be recharged during any subsequent downtime. Our office proposed reserving some of the science payload for additional batteries (about five pounds each). We updated our June report to reflect our new knowledge.4 Fortunately, payload weight allowances grew and we were spared a painful trade-off, giving up science payload for additional batteries to get more EVA time.

During the symposium two trends were becoming evident. We were more and more at odds with the MSC Engineering and Development Directorate on how to incorporate science on the missions and even on what experiments should be carried. Yet we were developing a close relationship with members of the Crew Systems Division, which had day-to-day contact with the astronauts in developing operational protocols covering not only future scientific work but all the astronauts’ other activities. Like our good working relationships with other MSC offices, this one would prove invaluable in the years ahead, since they would act as intermediaries with MSC management.

Three other programs—Ranger, Surveyor, and Lunar Orbiter—were also under way at this time, designed to support the manned lunar landings. These were unmanned programs managed by OSSA at NASA headquarters and im­plemented by NASA field centers: the Jet Propulsion Laboratory (JPL) for Ranger and Surveyor and Langley Research Center for Lunar Orbiter. Both the Ranger and Surveyor projects were initiated in the late 1950s, not to support Apollo but as purely unmanned scientific programs. However, these two proj­ects soon succumbed to the needs of the larger Apollo program. Eventually both were reduced from their original scope, reflecting both funding and pri­ority concerns, but their primary functions endured. Ranger would provide early detailed pictures of the lunar surface, so necessary in planning for the manned landings, and Surveyor would demonstrate the ability to soft land a spacecraft and would also send back some close-up pictures of the lunar surface and engineering data on its characteristics. Lunar Orbiter had the specific objective of taking detailed photos of potential Apollo landing sites.

The programs would be increasingly complex, testing our ability to operate spacecraft at lunar distances, which could not be done in the late 1950s when Ranger and Surveyor were conceived. Among other considerations, a network of communication stations would have to be built around the world to permit round-the-clock tracking and control of the spacecraft. The three projects rep­resented important technological advances, but they would be far less difficult to develop and operate than the Apollo missions. By 1963 the Soviets had already sent six partially successful Lunik spacecraft to the Moon; with these and their manned Earth orbital flights, they were considered far ahead of us in developing and operating such complicated missions.

Leading up to the Apollo flights, the Mercury and Gemini projects made NASA confident that it had conquered the hazards of manned space flight. Faith 7, piloted by Gordon Cooper, the last spacecraft in the Mercury program, had already splashed down in the Pacific by the time I joined NASA. The six manned Mercury flights accomplished all the goals assigned to the project and more. NASA had graduated to the next big step—Gemini—with new confi­dence in its ability to safely launch men and equipment into space and recover them at sea even if the splashdown occurred far from the planned recovery point, as on Scott Carpenter’s Aurora 7 flight. Apollo would also be designed around an ocean recovery, the final act in each mission. The Soviets’ manned program made all its recoveries on land, usually somewhere in one of the eastern republics. Ocean recovery was viewed as less risky in case of reentry problems, and with our large naval forces deployed around the world, ocean recovery of any Apollo crew was judged easier.

When I joined NASA in late 1963, all the Gemini flights still lay ahead. They were designed to provide the training for the more complex space operations needed for the Apollo missions. The Gemini spacecraft carried two astronauts in cramped quarters. They would perform maneuvers never before attempted in space, such as a rendezvous with another spacecraft and the movements outside the Gemini capsule that NASA called extravehicular activity and the press dubbed space walks. Considering that men had been operating in space only four short years before the first manned Gemini flight, these missions would be truly groundbreaking. The Soviets were still ahead in number of missions and man-hours in orbit, but their spacecraft were not capable of maneuvering like the Gemini spacecraft, and their EVAs had been short, teth­ered stunts. On the Gemini EVAs the astronauts would perform specific tasks like those that might be needed on an Apollo mission.

Like the Mercury program, Gemini accomplished all its planned objectives. Gemini 8 was especially memorable for me. It was launched on March 16, 1966, its crew consisting of Neil Armstrong and David Scott. The launch coincided with one of the aerospace industry’s most important social events, the Goddard Memorial Dinner in Washington, D. C. In 1966 this dinner attracted aerospace luminaries from both industry and government. The Goddard trophy, named after Robert Goddard, the father of United States rocketry, was awarded to an individual or group in industry or government chosen for special contributions in advancing the space program during the past year. The award on this night went to President Lyndon Johnson, with Vice President Hubert Humphrey accepting for the president.

In 1966 the Goddard dinner was a rather intimate gathering of some three to four hundred guests. I say intimate because today the dinner attracts more than two thousand, with the men in black tie or dress uniforms and the ladies in formal gowns. The 1966 dinner, as I recall, had few women, and all the civilians wore business suits. Government attendees were usually the guests of some company, and the invitations were—and still are—carefully orchestrated to avoid any perception of conflict of interest, although it was clear who your host was. Tickets cost about $35 in those days; today they are $175, not an insignifi­cant sum then or now. I was the guest of Bendix, one of the contractors working on the studies I was sponsoring at Marshall Space Flight Center.

As the guests at the head table were being acknowledged, including the vice president, there was an interruption in the speeches. Someone walked up and whispered in George Mueller’s ear. He nodded and said a few words to several other NASA managers seated near him, then they all got up and filed out. The room buzzed, but the program continued with the vice president’s speech accepting the prestigious award on behalf of the president. It was several hours before any of us knew why Mueller and the others left. Gemini 8 had experi­enced a serious problem.

In the first scheduled space docking between a Gemini capsule and an earlier-launched Agena target vehicle, the two spacecraft, after being joined for about thirty minutes, began to spin rapidly, forcing Armstrong to back away.

One of the capsule’s thrusters had stuck open, causing the rapid rotation; only through Armstrong’s extraordinary skill were they able to bring the spacecraft under control. This complication forced an early termination of the mission, and not all its objectives were achieved. But Armstrong’s and Scott’s cool be­havior in this dangerous incident (some estimated they only had a few more seconds to correct the problem before centrifugal force would have caused them to black out) undoubtedly elevated their position in the astronaut corps and put them on Deke Slayton’s short list of prime candidates for the later Moon landings.

In early 1964, with the ink barely dry on his agreement to coordinate science activities between OSSA and the Office of Manned Space Flight through Will Foster’s office, Mueller took the next step toward controlling what science would be carried out on the Apollo flights. Many types of experiments besides those falling under OSSA’s purview were being suggested by other offices. Some dealt with the life sciences, primarily advocated by MSC’s Medical Directorate, and a series of engineering experiments were being proposed by several NASA offices as well as the Department of Defense. To establish uniform requirements for the experiments and set priorities for inclusion on the flights, Mueller established the Manned Space Flight Experiments Board, with membership from all the competing offices but chaired by OMSF.

Attention to science concerns was advancing on another front at MSC. In 1963 Max Faget had established a new division in his Engineering and Develop­ment Directorate, called Space Environment, that would interact with the sci­entific community. At the beginning of 1964 this new office, led at first by Faget, began to address two important questions: How would the returned samples be handled, and who would be responsible for receiving, cataloging, archiving, and distributing samples to those approved to do the analyses? MSC, led by Elbert A. King, a recently hired geologist, began lobbying to build a small laboratory to carry out these tasks. At the end of 1964 Homer Newell asked the National Academy of Sciences’ Space Science Board to determine if there was a requirement for a special facility to handle the samples. The board, chaired by Harry Hess, forwarded its report in February 1965.5 It endorsed the need for a rather modest laboratory that, among its other functions, would quarantine the lunar samples for some unspecified time to ensure that they did not contain dangerous pathogens. With the release of the report, a major difference of opinion surfaced between headquarters and MSC on where the lab should be.

The report pointed out some of the pros and cons of establishing such a facility at MSC but noted that the committee did not believe it should be there. Those of us in Foster’s office who had an interest in the outcome of this debate were dead set against the lab’s being built at MSC. Based on our earlier attempts to work with some of the MSC science staff and with particular individuals in the Space Environment Division, we were suspicious that their wanting to build a special sample facility at MSC was a devious attempt to control all the re­turned samples and thus justify having MSC staff carry out most of the analy­ses. We advocated considering an existing laboratory such as Fort Dietrick in nearby Maryland, which already had experience in handling dangerous biolog­ical material, as the repository for the samples.

Congress also became involved, since a new facility would be costly. In spite of all these objections, the Lunar Receiving Laboratory was built at MSC, and King was later named the first curator. Although some of our fears were realized in the ensuing years, the LRL was very successful. A major reason our office accepted MSC as the LRL location was the appointment of Bill Hess, whom we all trusted to make the right decisions on how it would operate. Hess oversaw staffing and the development of procedures that would ensure the integrity of sample analysis and control sample distribution.

The many functions the LRL would perform required a unique design. Because of its extraordinary mission and the controversy over its siting, during the next several years I watched the construction with interest on my many visits to MSC. One of the concerns the National Academy of Sciences commit­tee had about locating the lab at MSC was the construction of a radiation­counting facility. It had to be built far below the surface (fifty feet) to shield selected samples from background radiation. Gamma radioactivity had to be measured as soon as possible after the samples arrived, before the shorter-lived nuclides decayed. These sensitive measurements (never before attempted on such fresh extraterrestrial material as the Apollo samples would represent) would furnish information on the origin and history of the samples and of the Moon itself. During counting and storage, the samples would have to be held in a room that was not only below ground but heavily encased in steel plating and other types of shielding. It was feared that underground construction at MSC, where the water table was high, would greatly increase the cost of the lab. I attended the unveiling of the low-level counting facility and heard about how difficult it had been to find steel for the outer shell that would meet the strin­gent low-radiation standards. Steel cast after the United States and Soviet nu­clear tests would be contaminated by the fallout from these tests so that back­ground radiation would be too high even with a thick layer of dunite between the outer shell and the counting laboratory itself. The contractor finally found some scrap steel from the hull of a ship built before World War II.

In addition to the low-level counting facility, the LRL had several other unique features, including crew quarantine living quarters. After splashdown and before leaving the CSM, the astronauts would don special isolation gar­ments so as not to come into direct contact with the helicopter recovery team that picked them up and flew them to the carrier. Once on board the carrier the astronauts would be rushed to the mobile quarantine facility, which looked suspiciously like an Airstream trailer without wheels (it was built by Airstream to NASA specifications). You may have seen pictures of the Apollo 11 astronauts at a window in the MQF, waving to President Nixon on board the carrier USS Hornet. The MQF was designed to be airlifted back to Ellington Air Force Base, then it would be trucked to MSC and the LRL. Once at the LRL, the astronauts and the physicians who had volunteered to accompany them would leave the MQF and pass through an airlock into their quarantine quarters, called the crew reception area, where they would stay for the rest of their twenty-one-day quarantine period. The CM would also be flown back to the LRL, since its interior would be considered contaminated from lunar dust adhering to the astronauts’ space suits.

The LRL interior was maintained at negative atmospheric pressure to pre­vent the escape of any dangerous organisms. When you visited, either to attend astronaut debriefings or to observe sample preparation, you passed through an airlock, popped your ears, and went on about your business. Inside the LRL were a number of gas-tight glove cabinets and vacuum chambers where techni­cians would open the sample bags, record their contents, and prepare the samples for shipment to the sample analysis principal investigators (PIs) at the end of the quarantine period. The LRL functioned with few problems over the next five years, and it exists today as a curatorial facility, although most of the samples from all the missions have been transferred to another location. Only small amounts of sample material were distributed and analyzed in great detail. NASA still entertains proposals to examine samples from those qualified to conduct some unique study.

Backtracking slightly, in January 1965, over the signatures of George Mueller and Apollo program director Sam Phillips, OMSF issued the Apollo Program Development Plan.6 Originally a classified document (I assume to keep the Soviets from knowing our schedules and other details), the plan was designed to ‘‘clearly identify the program requirements, responsibilities, tasks, resources, and time phasing of the major actions required to accomplish the Apollo Program.’’ Consisting of 220 pages of detailed guidance on all aspects of the program, it stated in the introduction that the manned lunar flights would conduct scientific experiments in cislunar space and that the manned lunar landings would be made ‘‘to explore the moon’s surface and to conduct scien­tific experiments.” All the various parts of the program were identified from the development of the Saturn У and its several components to the launch facilities and ground tracking stations. The plan also identified which NASA center or other government agency would develop each of the pieces. Despite Mueller’s and Newell’s recent coordination in establishing the Manned Space Science office, the plan is remarkably silent on how scientific undertakings would be managed or who would ensure that experiments would be ready when needed. Reading between the lines, you could assume that MSC had this assignment under the heading of Flight Mission Operations, but scientific operations were not specifically called out. The Manned Space Science office receives one men­tion, as a title only, in a facilities analysis matrix. Why it was placed in that sec­tion of the plan is a mystery—probably an afterthought by the authors. In early 1965 Apollo’s objective clearly was to land men on the Moon and return them safely, the few words in this new plan dealing with science notwithstanding.

In 1965 Mueller also established the Apollo Site Selection Board (ASSB). In the beginning the board was chaired by Sam Phillips and included members from headquarters and center offices. Its initial function was to set priorities for Lunar Orbiter photographic coverage to ensure that the pictures needed for selecting Apollo landing sites were adequately identified and scheduled. After Lunar Orbiter successfully completed its objectives, the ASSB turned its atten­tion to the more difficult task of choosing the first and subsequent Apollo landing sites.

In most respects the first landing sites were easier to select than the later sites. The ‘‘Apollo zone of interest’’ was quickly established based on the predicted performance of the Saturn У and the Apollo spacecraft. The ‘‘zone,’’ bounded by the lunar coordinates five degrees north and south latitude and forty-five degrees east and west longitude, covered—as far as we could tell from telescopic photography—mostly smooth lunar mare areas, another requirement for the first landing. Conditions for touchdown required that the LM come to rest at an angle no greater than twelve degrees from the horizontal, to avoid problems when the ascent stage lifted off. Since one of the LM’s landing struts might end up in a depression or the lunar surface might have a low bearing strength, the ASSB was hoping to find areas rivaling a billiard table.

After the initial landing conditions were met, it was anyone’s guess where the next landings would take place. Again, overall system performance dictated mission safety rules, which in turn would restrict site accessibility. MSC wanted to stay close to the lunar equator for flexibility. Those of us pushing lunar science wanted to stretch system performance to its limits and land near a variety of important features that promised to answer important scientific questions. Such features usually augured rough landing sites.

While all these assignments were under way, Homer Newell was putting procedures in place that would give OSSA greater influence concerning the experiments carried on Apollo. In addition to the National Academy of Sci­ences’ Space Science Board—a powerful voice for science from outside the halls of NASA that gave him overall recommendations and direction—Newell looked to the Space Science Steering Committee (SSSC) to help oversee the selection of experiments for both the manned and unmanned programs. This committee, composed of government employees, was assisted by several subcommittees that included members from both inside and outside NASA. The subcommit­tee that dealt most directly with lunar science was the Planetology Subcommit­tee, chaired by Urner Liddell. It met frequently to review and approve scientific proposals for the unmanned programs, and in 1964 it began to provide OSSA with Apollo science oversight.

Liddell was a strong proponent of unmanned space science and a confirmed skeptic about the value of having man (astronauts) in the loop. His leadership of this subcommittee would create some friction between OMSF and OSSA in the next few years. Liddell had a voice in choosing members, and he selected prominent scientists who supported his low opinion of manned science. Fortu­nately there was one strong defender of manned science on the subcommittee— Harry Hess, who also chaired the Space Science Board. Hess, a renowned geologist and a professor at Princeton, would soon become one of our leading champions, countering the scientific elite who shared Liddell’s opinion that no good science would be accomplished on the Apollo missions. Dick Allenby also served on the subcommittee. He represented our positions on manned science but usually found himself overruled by his former boss, Liddell.

Bob Fudali, never one to mince words, wrote: ‘‘The character of Urner Liddell continues to fascinate me. It was most instructive to watch him squelch the junior subcommittee members with his overbearing mannerisms.’’7 The Planetology Subcommittee meeting of January 1965 that Fudali was reporting on introduced two new members: Donald Wise, from Franklin and Marshall University, and George Field, from Princeton. Wise later had a prominent role in Apollo science. Since they were the two most junior members, they were undoubtedly the unnamed squelchees.

The agenda for that meeting was long and included discussions of the design and location of the LRL and developments in the ‘‘Moon Blink’’ project. Those attending were asked to rank four experiments proposed for the first Apollo landing: passive seismometer, gravimeter, magnetometer, and micrometeorite detector. The first three experiments did not yet have identified PIs, and the last one was proposed by MSC. The seismometer and gravimeter were given top priority, and a decision on the magnetometer was deferred. The micrometeorite experiment was given the lowest priority as ‘‘not germane’’ to lunar science. MSC sent John ‘‘Jack’’ Eggleston to the meeting to participate in the experiment and LRL discussions. While defending MSC as the future LRL location, he made an interesting disclaimer. In reaction to negative comments from the subcommittee members, Fudali reports, Eggleston said he realized MSC lacked qualified scientific personnel and that it would hire only enough technicians and junior scientists to assist the sample investigators chosen by the scientific community. But MSC soon went back on this pledge and hired a large scientific staff, assigned to Faget’s organization. Most would be transferred to the Science Directorate when it was formed, reporting to Bill Hess.

With minimum fanfare, we brought into the program prominent scientists who would develop specific experiments. By this time a good consensus existed on the important experiments to conduct during the Apollo missions. This made it a relatively straightforward task for the Planetology Subcommittee and its parent body, the SSSC, to select PIs. The only potential difficulty would be choosing between well-known PIs wanting to do the same experiment. This competition never arose because the major experiments were proposed by teams of scientists that included some of the most recognized names in their disciplines. The first PI selected under this procedure to lead the Field Geology

Team was Gene Shoemaker. PIs were soon named for all the high-priority experiments.

In June 1965, under the auspices of OSSA, we circulated within NASA the first comprehensive report on the exploration and utilization of the Moon. The report included important contributions from many OSSA offices, since it covered plans for both manned and unmanned lunar exploration extending to 1979.8 Will Foster’s office took the lead in summarizing our current thinking on manned missions, beginning with the first Apollo landing, shown as occurring at the end of 1969 and progressing through dual-launch Apollo Extension System manned orbital and surface missions to the first lunar bases.

We explained the rationale for this mission progression by tying it to the important scientific questions and operations that would justify a continuing program. Many of the studies we had initiated at MSFC were cited to provide the detail the plan required to justify the types of missions referred to in the plan’s ninety-six pages. The report concluded by stating, ‘‘The lunar explora­tion program is an important part of the nation’s space program. Scientific investigations in this field are a significant aspect of the overall endeavor to advance our capability and to continue U. S. leadership in the adventure into space.’’ Those of us who had been working on manned lunar exploration saw this statement as OSSA’s first acknowledgment of the importance of manned exploration. Up to this point we had always felt that the science side of NASA was merely tolerating manned missions while its eyes were on bigger targets— unmanned explorations of the planets.

Just before the Falmouth conference, OMSF published the first Apollo Exper­iments Guide, intended to supplement the announcements of flight opportuni­ties (AFOs) then in circulation or any that might be released by NASA offices about opportunities to carry out experiments on the Apollo missions.9 A short preliminary guide had been issued in June 1964, peppered with such warnings as ‘‘best estimate,’’ ‘‘experiments shall be conducted on a non-interference basis,’’ and ‘‘specific weight assignments. . . cannot be stated for each flight at this time,’’ to indicate the uncertainty associated with putting experiments on the Apollo missions.10 The 1965 edition contained more information but con­tinued to demonstrate OMSF’s ambivalence about encouraging scientific exper­iments on the Apollo flights. Eighteen months earlier we had issued preliminary guidelines for Apollo science including a designation of 250 pounds for science payloads. The new guide seemed to be a step backward. It estimated seventeen cubic feet of stowage on the LM and the capacity to return eighty pounds of samples from the lunar surface, but it listed no overall allocation of payload weight on what were termed the early developmental missions. One could interpret the guide to mean that the stowage space might be empty on these flights and that the only ‘‘science’’ conducted would be the astronauts’ collecting samples with their gloved hands.

The 1965 guide stated that the Manned Space Flight Experiments Board (MSFEB) would approve the experiments to be carried and outlined the pro­cedures it would follow. The board, nominally chaired by George Mueller but often led by a deputy, consisted of senior managers from headquarters and field centers and one representative of the Air Force Systems Command. Will Foster was our representative for lunar exploration. Experiments would be selected by various NASA offices such as OSSA and then passed to the MSFEB. Those of us who had been trying to increase the science payload allocation looked with deep suspicion on this board because it included members from NASA offices of Space Medicine and Advanced Research and Technology as well as MSC’s director, Bob Gilruth. We knew that these offices and MSC had already pro­posed some Apollo experiments (such as the micrometeorite detector). We could see the limited science payload, however much it ultimately turned out to be, being slowly eaten up and given to what we felt were peripheral experi­ments, not designed to study the Moon as a planetary body. In later years, when the actual experiments were approved by the MSFEB, Ernst Stuhlinger often represented Wernher von Braun and MSFC, giving us another voice on the board who fully understood what the science community was trying to accom­plish for lunar exploration.

As the final filter, the MSFEB would carry out another important function. For all space missions, manned or unmanned, AFOs would usually give experi­menters broad guidelines on integrating experiments with the spacecraft they would fly on. But at this early date, 1965, no Saturn У boosters or Apollo spacecraft had flown, so many of the integration specifications were guessti­mates. Experiment design considerations dealing with such aspects as vibration levels, acceleration forces, shock, and acoustical levels would not be known for some time. In addition, other concerns such as avoiding materials that might cause adverse reactions like electrolytic corrosion or electromagnetic inter­ference (airplane passengers must turn off electronic equipment during the early and final stages of a flight) and a host of other dangerous interactions with the spacecraft or booster could not be completely defined. The MSFEB would be the ultimate judge of whether the experiment, in many cases conceived and designed before final specifications were available, passed the rigid integration criteria and would be approved, rejected, or sent back for modification. Inte­gration of the experiments was a difficult hurdle because experiments also had to pass ‘‘astronaut integration” if they required any input from the astronauts, a developing art in 1965. Principal investigators soon learned that if they wanted to participate they needed patience and perseverance and that they must over­look what seemed like strange, bureaucratic rules.

Time was also becoming a factor in selecting and building the experiments. The guide advertised 1968 to 1969 as the need date for delivering the experi­ments to Kennedy Space Center (KSC). Along with the uncertainties mentioned above, a tight schedule added to the challenge of preparing good experiments. Although the Apollo Experiments Guide did not include science payload weight allocations, we continued to plan based on 250 pounds. We divided this weight into three parts: 100 to 150 pounds reserved for a surface geophysical station, 100 pounds for the geology equipment, including cameras and sample con­tainers, and a small allocation for orbital science, essentially whatever might be left over. When potential experimenters inquired about payload availability, we offered these numbers for planning their submissions.

At the end of September 1965, in response to a request by Bob Seamans and as an elaboration on the plan we circulated in June, Mueller and Newell for­warded the first ‘‘Lunar Exploration Plan.’’11 The forwarding memo stated that the attached plan had been coordinated between OMSF and OSSA. This was indeed true, for along with others I had worked on the attachment wearing both my OMSF and OSSA hats. Events were moving rapidly, however, and during the three days between completing the plan and sending it on to Sea­mans, two major management decisions had been made: Surveyor missions after Surveyor 6 and Lunar Orbiter flights after Orbiter 5 would be canceled. We went back to modify the plan reflecting these changes, and at the end of October we issued a revised plan noting that there might be follow-ons to the Surveyor and Lunar Orbiter programs after 1970, though no funding was identified. Seven Apollo missions, including test flights and the first land­ing attempts, were shown on the schedule through 1969, and by the end of 1971 these would be followed by three Apollo Applications Program (AAP) surface missions and three orbital missions. Additional AAP surface and orbital missions were dashed in on the schedule chart through 1973, and after that date a new category, Extended Manned Missions, would begin, continuing beyond 1975.

From our perspective this plan contained all the right words, words we had labored to have our senior management embrace publicly for the past two years. Now we had it in writing. To give just a brief sample, the plan stated: ‘‘The primary objective. . . is to define the nature, origin, and history of the moon as the initial step in the comparative study of the planets. . . . A secondary objec­tive, following naturally from the first, is to evaluate the potential uses of the moon.’’ Apollo and post-Apollo lunar exploration would accomplish all we wanted if the words were followed up with action. But only NASA management had bought into the plan; allies in the administration and Congress were still lacking. The plan would be updated from time to time, not always by formal documents but by working papers written to reflect the latest guidance and the realities of NASA funding projections.

To improve our relationship with the MSC Flight Operations Directorate (FOD) and benefit from its ‘‘real mission’’ experience, we invited some of the flight controllers to come to Flagstaff and witness a training exercise we would be conducting for a post-Apollo mission simulation. Our demonstration of Command Data Reception and Analysis, a smoothly functioning embryonic science support room, once denigrated by MSC, convinced FOD that an exper­iments room would be a valuable asset.

After much give and take on how experimenters and the science community would interact with mission controllers and the astronauts in real time during an Apollo mission, MSC agreed in 1967 to build an experiments room in the mission control building. Christopher Kraft and his flight controllers in FOD deserve the credit for recognizing the wisdom of having such a facility, but the intervention of Jack Schmitt, Donald Lind, and other astronauts who had worked with the training and simulation teams assembled by USGS was critical to getting this agreement. They had firsthand knowledge of how valuable it would be for the crews on the lunar surface to have experienced scientists backing them up.

The arrangement was formalized in April 1967, when FOD issued its ‘‘Flight Control Handbook for Experimenters.’’12 It called for an experiments room, later named Science Support Room (SSR), to be located in building 30 near the Mission Operations Control Room (MOCR). The MOCR was the large room, filled with banks of monitors manned by engineers in short-sleeved white shirts and ties, seen by everyone who watched the Apollo space missions on television. During initial discussions it was proposed that the experiments room be lo­cated with other support teams in building 226, a few blocks away, and for Apollo 8 that was its location. However, we were able to convince Chris Kraft that for the landing missions it had to be nearer the action, like other critical Staff Support Rooms (SSR again), so that the displays and other information we planned to coordinate would be accessible to those who might have to make quick decisions. This would be especially important for the later missions, when we expected that lunar surface operations would be much more complex and timelines would be jammed with tasks. Being in the same building as the MOCR also let us use the pneumatic tube message system that connected all the SSRs in the Mission Operations building and was used extensively to pass information around. This sounds primitive today, when it is so easy to commu­nicate between computer terminals, but in 1967 it was state of the art and local area networks were still a technology of the future. The staffing and layout for the experiments room were still under study at the time the handbook was issued, but eventually we were assigned room 314, which contained TV moni­tors, tables, phones, other equipment, and eventually closed-circuit television that allowed quick exchange of vital information. Perhaps as a small bone to keep the headquarters types off their backs, a console was designated for a headquarters representative, and that is where we usually were stationed when the missions began rotating shifts with Ed Davin, John “Jack” Hanley, Donald Senich, and me.

In the coming years, as we continued to refine our activities in the SSR, it became clear that we needed more space to accommodate all the people and equipment we required to follow the action. Another small SSR was added in the building; Raymond Batson from USGS recalls that during Apollo 11 this auxiliary SSR got so crowded you could hardly move around. In addition to Ray’s crew, who were monitoring the television pictures coming back from the Moon and the air-to-ground conversations with the astronauts, Bendix engi­neers were at their consoles keeping track of the data transmitted from the deployed experiments. Court reporters were also taking down the voice com­munications so this historic record wouldn’t be lost if the tape recorders mal­functioned, as they frequently did in NASA’s early days.13 After Apollo 11 the auxiliary SSR was moved to a larger room where a plotter allowed Ray’s crew to create a real-time map of each landing site showing where the astronauts were and had been. They would supplement the map with Polaroid panoramas captured from the TV pictures sent back to Earth. Based on all this informa­tion, the staff and PIs in the SSRs would formulate questions and send them to the capsule communicator (CapCom), who would then decide whether to pass them on to the astronauts.14 Later in the program, for the final landings, three SSRs were staffed, two for surface science and one for orbital science.

As soon as a Saturn У cleared the launch tower, control of the mission transferred from KSC to MSC. MSFC also continued to play an important role throughout the mission and kept a crew at MSC, since they were the experts to be consulted if there were problems with any of the Saturn rocket stages. Backing up the SSRs would be support rooms in building 45 for all of Apollo’s major systems. They were manned by contractor and NASA staff who had access to detailed knowledge of what made the systems and experiments tick.

This behind-the-scenes support, which most people who followed the mis­sions were unaware of, figured prominently in saving the Apollo 13 astronauts and was portrayed rather accurately in the movie. Every detail for every system and subsystem could be found and displayed in these rooms, almost instantly, and they were manned around the clock while missions were under way. They were connected by phone to the MOCR and in most cases were directly linked to the contractor’s plant or manufacturing facility so that additional brain­power could be brought to bear in an emergency.

As important as it was for the experiments to have assigned SSRs, the hand­book also formalized the procedures for simulations with the flight controllers. This was another major step forward and for the first time placed experiment simulation in the mainstream with all the other simulations carried out for the missions. Simulations would cover normal and abnormal situations that might require consultation with the SSR, and the flight controllers were given par­ticularly wicked problems as they gained experience. The schedule called for the experiment simulations to start four weeks before launch, so beginning in June 1969 we had to man the SSR with the staff that would be present during the actual missions.

A memo to my staff in September 1970 lists a schedule for Apollo 14 surface experiment simulations, giving an idea of what these simulations entailed.15 By this time simulations were conducted from the Mission Control Center, Hous­ton (same place as MOCR, different name). The memo called for two simula­tions of the planned first EVA and three simulations of the second, spread over two months rather than the one month originally planned. It was getting hard to assemble the large cast of characters that was required and, more important, to fit the simulation into the astronauts’ tight schedules. The simulations would include the prime crew, using either sites at KSC or one designated by Flagstaff. There were also two ‘‘canned’’ simulations at Houston when the astronauts were not part of the exercise and the flight controllers and our SSR staff were tested with contrived problems. Later missions, because of their complexity, added additional simulations. Each simulation would last four hours or more and would be followed by a candid critique, usually leading to new guidelines on how to respond to emergencies during the real mission.

As the PIs and their supporters began to spend more and more time at MSC, the members of the Field Geology Team availed themselves of a rather unusual perk. Jack Schmitt had long since completed his flight training and was now in Houston full time. He had a modest bachelor apartment just a few blocks from the center. His old Flagstaff buddies saw nothing wrong in staying there when they were in town, and if you visited Jack late at night you usually found at least one of them in a sleeping bag on the floor. I don’t know how many keys were in circulation, but Jack’s hospitality helped the visiting team members stretch their meager government per diem to include extra dinners at the San Jacinto Inn, the Rendezvous, or some other favorite restaurant. Jack was also using the LM and CSM simulators at MSC and KSC when they were not scheduled for designated crew simulations, to become familiar with these complicated space­craft. When Jack was selected in the first scientist-astronaut class in 1965, some of us who knew him at Flagstaff recommended that he make it clear to Deke Slayton and Al Shepard how seriously he wanted to be looked on as one of the ‘‘regular guys,’’ removing any stigma from his hyphenated title. Whether or not this urging had any influence, Jack spent long hours in the simulators and added to his flight log by flying the astronauts’ T-38s around the country, frequently coming to Washington to attend meetings and briefings at head­quarters. Did Jack’s diligence have any direct effect on Slayton and Shepard? I have to believe it did, and as we know, he was selected for the crew of the final Apollo landing mission.

Mission Control interactions with the experiments to be conducted on the journey to the Moon or on the way back home, as well as those conducted in lunar orbit, were not completely defined in 1967, but the groundwork had been established. Each experiment was assigned an FOD experiments activity officer who would represent the experiment through all phases from planning to flight operations. This person would work with the PI(s) to ensure that the experi­ment was properly integrated and operated. If a mission contingency should arise requiring some modification to normal operations, the EAO was charged with coordinating with the PI and then representing his interests in maintain­ing the experiment’s integrity during the brainstorming to solve the problem. Although it sounds bureaucratic, acknowledgment that such interaction might be necessary was another encouraging sign that science objectives had moved up in the MSC engineering culture. With so much going on during a mission, great discipline was required for all mission operations, and precise procedures were followed for all the flight systems—not just the experiments—during the actual missions. But by the time the Apollo flights began, PI relations with the flight controllers had improved significantly, and minor adjustments could be made in a much less formal atmosphere. Most of the FOD staff became strong champions for science, and when obstacles arose they did all they could to overcome them.

Another advance for science was the promotion of scientist-astronauts to be mission scientists and CapComs during the lunar landing missions. CapComs were the only ones allowed to speak directly to the astronauts during missions, and they had to be astronauts themselves, a rule still followed for all manned missions. This is not to say that the other astronauts serving as CapComs did not do an acceptable job in directing the crews or relaying information and suggestions to them. But this change went a long way toward reassuring us, especially the field geology PI, that the best advice would be quickly available if the astronauts met with some unexpected discovery or predicament on the lunar surface. We had always hoped that the PIs, and other Earth-bound scien­tists, would be able to communicate directly with the astronauts, but this never happened except for one instance described in chapter 12.

In mid-September 1967 I attended a dry run at MSC of a session on Apollo mission planning that would be presented later to MSC senior management.16 Owen Maynard of the Apollo Spacecraft Project Office (ASPO) chaired the meeting. Maynard had been involved with Apollo from its earliest days, having served in 1960 on the Langley Space Task Group that drew up the first specifica­tions for the launch vehicle and Apollo spacecraft. With Joe Shea, he had enumerated the steps that had to be achieved as the program progressed toward a lunar landing. At this meeting we were briefed for the first time on the development schedule that MSC expected to follow leading up to the first landing, which was now designated the G mission.17 Joseph Loftus discussed the three types of missions that were possible when we reached the final level: (1) touch and go—this mission might stay on the lunar surface for as little as two hours with no EVA permitted, have an umbilical EVA of half an hour, or have an EVA of an hour and a half with the astronauts using the portable life – support system (PLSS) within a limited radius of the LM; (2) limited stay— structured around twenty-two and a half hours on the lunar surface, one EVA, and no deployment of the Apollo Lunar Surface Experiments Package (ALSEP), an automated geophysical laboratory or ground station; and (3) maximum stay—with four EVAs, each lasting up to three hours.

During discussion of these three options, ASPO made it known that it favored the limited stay mission for the first landing. Thomas Stafford, repre­senting the astronaut office, pointed out that on the Mercury and Gemini flights it was only after the fourth flight that the spacecraft became really operational, and he expected the same for the LM. He mentioned that LM propellant leaks might restrict the surface staytime and said he thought this situation would improve as LM production continued. He also was concerned that with all the other high priority training they would need, the crew for the G mission would have a hard time completing the required training to carry out a multi-EVA mission. For these reasons he also supported the limited stay as the best that could be accomplished on the first landing. A few days later, at the MSC directors’ briefing, the limited stay mission was endorsed with one modi­fication; ALSEP deployment would not be deleted. Thus, some two years from the date the first landing would be scheduled, we saw that planning for man’s first lunar landing would continue to follow a conservative mission profile. A small victory at the time, ALSEP would still be a part of the science payload.

Soon after this decision was announced, the MSC Crew Systems Division began regular monthly meetings to review and highlight any new problems that could affect the astronauts’ EVAs. This new group was named the Lunar Surface Operations Planning Committee and was chaired by Raymond Zedekar. The meetings were well attended by the various MSC offices that had a finger in any of the EVAs. We had established a good working relationship with Ray, so our office was invited to attend as well as staff from Bellcomm and USGS.18 These meetings covered a wide range of topics, including the latest results of space suit simulations and their implications for the astronauts’ ability to perform certain types of surface tasks, and we reviewed all other EVA concerns such as PLSS power budgets, tool design, and sampling procedures. These meetings con­tinued through 1968 and were later replaced by another planning process.

As 1967 was winding down and we were assimilating the advice we received at Santa Cruz, the last major organizational change involving Apollo science was made at NASA headquarters. Still wearing my two hats but officially as­signed to the Advanced Manned Missions Program Manned Lunar Missions office, in early December I was moved to a staff position in anticipation of a new assignment.19 By the end of the month, Mueller established the Apollo Lunar Exploration Office, reporting to Sam Phillips, and put Lee Scherer in charge.20 Lee had just finished tying up the loose ends from the Lunar Orbiter program, and this appointment gave him a chance to expand his management role. His new office combined the responsibilities of Foster’s office and some of the post – Apollo lunar exploration duties of Advanced Manned Missions. He inherited most of Foster’s staff as well as other headquarters staff who had become involved in lunar science, including William ‘‘O. B.’’ O’Bryant and Richard Green. They had been managing the development of the Apollo geophysical station (ALSEP) in the Office of Space Science and Applications. As part of the agreement to establish this new office, OSSA continued to fund the lunar programs it had started through the end of FY 1969. O’Bryant was named assistant director for flight systems and continued to be in charge of ALSEP. Noel Hinners and his growing Bellcomm group also switched hats and sup­ported our new office. Will Foster was given a staff position within OSSA to oversee Apollo experiment selection.

Scherer’s appointment was a management masterstroke by Mueller. He was well liked and trusted by John Naugle (who had replaced Homer Newell just three months earlier) and by the science side of NASA, having managed the highly successful Lunar Orbiter program. The close connection of Lunar Orbi- ter to Apollo made him well known to OMSF management. After our initial meeting in 1963, I got to know him well from working with his NASA and contractor team during Lunar Orbiter site selection meetings. Perhaps it was his navy connection and my familiarity with the navy way of doing business, but with his appointment I expected to see more progress in all aspects of Apollo science. Lee would have much greater influence on the decision makers than Will Foster did. Being on Phillips’s staff put him directly in the chain of command—no more half OSSA and half OMSF, with both offices never sure whose side you were on. We were all now, clearly, part of the Apollo team. Most of the senior NASA managers on Apollo were either active-duty or retired military officers, so Lee fit right in. With my new office colleagues I had a change of address and moved into the Apollo offices at the just completed L’Enfant Plaza complex, where we remained until the last mission came home. I was given a new title in Scherer’s office—program manager, plans and objec­tives. My new responsibilities involved me in all aspects of Apollo science; most important was the planning for what would come after the first few flights.

The Apollo program was overseen by several special committees; perhaps the most prestigious was OMSF’s Scientific and Technology Advisory Commit­tee (STAC). Its membership comprised distinguished scientists and engineers. Chaired by Charles H. Townes from the University of California, Berkeley, it was increasingly important as Apollo neared its first launch. It met quarterly with Mueller and other senior NASA management to review all aspects of the program. At the beginning of April 1968, Townes wrote to Jim Webb expressing the committee’s satisfaction with the program’s status and also its concerns.21 He stated that after spending seven days reviewing various steps in the mission, the committee believed that ‘‘NASA personnel involved in this effort are mas­tering well a very demanding and difficult, as well as an exciting, assignment.’’ He wrote, however, that ‘‘it did not appear that efforts toward working out operational procedures for activities on the moon and coordinating the astro­nauts’ abilities and restrictions with optimum scientific experimentation had yet made comparable progress.’’ And in referring to the NASA budget reduc­tions, Townes closed with, ‘‘We believe it would be poor economy indeed for the nation to jeopardize the chances of a ringing success for the entire effort by undue paring down of support during the last stages which are ahead.’’ STAC’s concerns echoed those being expressed by our new office, and I believe they went a long way toward elevating Lee Scherer’s influence with Apollo manage­ment in the months leading up to the first landing.

At the beginning of 1968 our office prepared to update the 1965 ‘‘Lunar Exploration Plan.’’ A Bellcomm technical memorandum written in January also addressed long-range lunar exploration planning.22 It was distributed widely inside and outside NASA with the purpose of justifying a continuing program of exploration after the Apollo landings and rebutting the recently announced reduction in FY 1969 funding that would discontinue missions after Apollo 20.

The memo outlined a program based on the Bellcomm authors’ judgment of the scientific results that would be achieved by exploring specific sites using lunar orbital surveys and on our AAP concept of using a rendezvous between an extended lunar module and an unmanned LM payload module to permit longer staytimes and greater payloads. Except for listing the landing sites they thought were most important and giving their rationale for choosing them, their memo did not propose any major changes in previously circulated inter­nal documents describing AAP plans. The memo placed Bellcomm manage­ment squarely on our side in support of dual-launch missions. Until this time it had only gingerly endorsed the approach we had been advocating for several years in the Advanced Manned Missions office.

At the time the Bellcomm memo was circulating, a senior NASA manage­ment team called the Planning Steering Group was put in place to furnish an overall NASA stamp of approval for the agency’s long-range space exploration plans. In April 1968 Scherer established a Lunar Exploration Working Group to reexamine the situation and recommend a long-range exploration program to the PSG. He hoped to influence the NASA FY 1970 budget proposal and perhaps change the administration’s mind about what needed to be done after the initial landings. The Lunar Exploration Working Group included members from MSC, MSFC, Langley Research Center, JPL, and Goddard Space Flight Center in addition to headquarters. John Hodge of MSC was appointed direc­tor of the effort. We met frequently during the spring and summer of 1968. George Esenwein, Martin Molloy (detailed from JPL), and I took the lead for Scherer’s office. We had many differences of opinion with the MSC representa­tives on the working group concerning what should constitute a long-range lunar exploration plan, especially in regard to using dual launches to extend staytime and permit greater science payloads.23 But eventually, reinforced by the recommendations of the Santa Cruz summer conference and by the Bell – comm report, we prevailed and shaped a program similar to the one we had proposed earlier for AAP.

In October 1968 we distributed a Program Memorandum for Lunar Explo­ration.24 With funding constraints uppermost in our minds, we tried to throw the ball back to the Bureau of the Budget by quoting from and answering an earlier BOB inquiry: ‘‘What program should be undertaken for lunar explora­tion after the first manned lunar landing?’’ Our memorandum outlined such a program, and to give it additional clout, we also quoted from a 1963 President’s Science Advisory Committee (PSAC) report and the 1965 study by the National Academy of Sciences. Both had made strong statements that continued lunar exploration was essential to unraveling important scientific questions. This memorandum, like the 1965 plan, proposed an exploration program that would extend beyond 1975. It included manned and automated missions, dual launches, and even new hardware systems. The guidance we had received from BOB for our FY 1970 submittal was that NASA should pause after the first few landings and wait some unspecified time before continuing lunar exploration. (Typically BOB issued guidance each spring for drawing up each agency’s bud­get for the next year. This guidance included the language and dollar targets it expected the agencies to adhere to when they submitted their budget requests to the administration later in the year.) Between 1963, when we quoted PSAC’s opinions on the importance of exploring the Moon, and 1967 a major shift had occurred. PSAC’s new view was that “repetition of Apollo flights for more than two or three missions will be unjustifiable in terms of scientific return without the modification of the system to provide for additional mobility. . . . and the capacity to remain on the surface for a longer period of time.’’ We could not have agreed more. Unfortunately, without a budget increase, what PSAC was suggesting couldn’t be done.

The final pages of our memorandum addressed these issues. We rejected the option of pausing, for several reasons, and proposed that either we continue without modifying the Apollo hardware, in order to maintain momentum, or start to modify the basic systems to improve the astronauts’ mobility and extend staytime. If either of these last two options was accepted, we would need additional funding in FY 1970. BOB rejected our request for more funds but eventually permitted NASA management to juggle the approved budget and make the changes that resulted in the J missions to be discussed in following chapters.

At the end of the Santa Cruz conference, in the summer of 1967, Bill Hess established an interdisciplinary Group for Lunar Exploration Planning. Its objective was to integrate the science planning for each mission and offer an overall strategy to ensure that the missions complemented each other for the maximum scientific return. With the AAP missions at least on hold, GLEP focused on coordinating the planning for the Apollo missions. Planning cen­tered mainly on selecting landing sites. Each site’s unique characteristics would dictate the experiments to be carried out and how the geological surveys would be conducted.

To do the staff work in support of GLEP, a small group of scientists and engineers that we dubbed the ‘‘rump GLEP’’ met to put all the pieces together for presentation to GLEP. The rump GLEP initially included (besides me) Hal Masursky and Don Wilhelms from USGS; John Dietrich and John ‘‘Jack’’ Sevier from MSC, joined at times by Jack Schmitt; several scientists from outside NASA, including Paul Gast and Eugene Simmons; and two Bellcomm staffers, Farouk El Baz and Noel Hinners, the latter chairing the meetings. For the next two years we met regularly to plan each of the upcoming flights, updating our recommendations as more and more information became available. We were not the only ones trying to identify landing sites; many others at MSC and Bellcomm besides those mentioned above were also putting in suggestions. But because of our diverse backgrounds and intimate knowledge of mission con­straints, we felt we were the only team working on candidate sites that had the big science and operational picture in mind.

The site selection process involved making recommendations to GLEP ac­companied by supporting arguments. Based on this work, lists periodically went to GLEP adding or subtracting sites as advocates made the case for one site or another. GLEP, in turn, would make recommendations to ASSB, the final arbiter in site selection. Work on selecting landing sites became more intensive as the launch dates drew nearer. The few sites finally chosen would represent the coming together of many interests, both scientific and engineering. If someone held a strong position or theory on some aspect of lunar science, you would hear arguments for sites that held the most promise of vindicating that posi­tion. Site politics could rear its head at times; but fortunately consensus pre­vailed, though for several landings we chased the ephemeral ‘‘recent volcanics’’ advocated by a small USGS clique and others. Many people spent long hours reviewing the Lunar Orbiter photographs and other information to arrive at the recommended sites. As Noel Hinners’s staff gained strength with the addi­tion of James Head and others, they worked closely with USGS in Menlo Park and Flagstaff and took the lead in providing site rationale for GLEP. The impor­tance of selecting the right sites could not be overestimated: they would shape and control our understanding of the Moon for many years to come.

For the first landings, Lunar Orbiter photography, supplemented by USGS 1:1,000,000 scale lunar quadrangle geologic maps made from telescopic studies, were the key sources we used to develop a list of recommended landing sites. Lunar Orbiter coverage was designed to supply the following products for the initial landing sites: a series of photographs with three-foot ground resolution; detection of obstructions eighteen inches high; stereo coverage for detection of slopes of seven degrees or greater; approach path coverage of the last twenty miles of the LM approach to the landing site; and oblique views to approximate what the LM pilot would see as he approached the landing site. We selected thirty-two sites in the ‘‘Apollo zone’’ that met these specifications, and they were designated set A. We then turned these sites over to the Mapping Sciences Branch at MSC for final ‘‘landability’’ analysis.25

From set A, eight sites (set B) were selected that incorporated all the landing site considerations, including proper lighting and separation to allow three launch attempts, two days apart, in case of launch-pad holds. This last con­straint was imposed to avoid costly detanking (removing the propellants), and rechecks of all the Apollo systems if the launch to a selected site was missed for any of several possible reasons. If no secondary or tertiary landing sites were available, a launch abort would require a month’s delay to arrange lighting at the initial site for avoiding obstacles. For the first landing attempt, set B was further refined to a five-site set C that included Tranquility Base, Apollo 11’s final destination. Apollo 12’s site, near Surveyor 3, was included in set B.

In March 1968 President Johnson announced the formation of the Lunar Science Institute (LSI). The National Academy of Sciences had pushed such an institute to offset the continuing perception by many in the scientific commu­nity that NASA was not paying enough attention to science on Apollo. The site selected was a renovated mansion belonging to Rice University, just outside the MSC fence. William W. Rubey, one of the renowned scientists who had volun­teered time to work with the astronauts during their early training, was ap­pointed the first director. Still on the faculty at the University of California at the time of his appointment, he was a popular choice and gave the institute instant credibility.

At headquarters we supported the need for the institute but were not keen on the location. We felt that MSC’s proximity and reputation might discourage scientists from taking advantage of the institute’s mission to provide a base from which to work on the material and data the Apollo flights would return. Other purposes, such as attracting graduate students and scientists on sabbati­cals and hosting conferences and seminars, might also suffer because of the climate of distrust that existed. These fears went away in the ensuing years as LSI (later named the Lunar and Planetary Institute) ably performed its func­tions and remained independent of MSC.

Although LSI was chartered by the National Academy of Sciences and its board of governors was appointed by the Academy, most of the funding came from the Apollo program.26 Eventually LSI outgrew its initial home and moved to more spacious quarters at Clear Lake, where it continues to be a focal point for the study of Apollo material as well as information returned from later lunar and planetary programs.

Developing the Geological Equipment,. Related Experiments, and Sampling Protocols

Methods of conducting geological field studies have changed little in the past two hundred years. The geologist visits the locale to be studied, samples rocks, measures structural features like hills, valleys, cliffs, and other surface topogra­phy, traces formation boundaries (if possible), determines the relative ages of these various features, usually by several techniques, then interprets this infor­mation and finally makes a map. Aerial and satellite photos, as well as new surveying instruments and global positioning systems, now simplify and speed up the fieldwork, but all these steps are still necessary to produce a final map. In many cases geophysical data can help in making subsurface interpretations, but the overall job remains the same: sample, measure, interpret. Depending on the geological complexity of the site and the geologist’s skills, this can be a time­consuming endeavor. Some sites have been studied for years by the same or different geologists, slowly yielding an interpretation that most workers will agree with.

Lunar geological fieldwork would present the same challenges that faced a terrestrial geologist plus many more. For example, at the beginning of Project Apollo it was not clear how easily astronauts could sample and measure lunar features; above all, in spite of the many hours spent in geology training, it was questionable how skilled they would be at deciding how and where to sample and take measurements. Each Apollo landing site would represent a one-shot opportunity to collect as much information as possible—there would probably be no return to resample or remeasure—so it had to be done right. This de­mand haunted the new breed of ‘‘lunar geologists”: they had to complete the job the first time. That very little hard data would be in hand until the Apollo landings took place (Ranger, Surveyor, Lunar Orbiter, and ground-based obser­vations notwithstanding) added enormous complications for those of us at­tempting to prepare the equipment that would be taken on each mission and to plan the exploration strategy.

In February 1964 Will Foster sent a set of recommended Apollo investiga­tions and investigators to the Space Science Steering Committee (SSSC),1 the group Homer Newell had charged with advising him about what science to conduct on all space programs. In his memo Foster listed five areas of Apollo investigations—geology, geochemistry, geophysics, biology, and lunar atmo­sphere—and named scientists who should be on the investigating teams. As expected, the recommended geology fieldwork team was headed by Gene Shoe­maker. It included Hoover Mackin from the University of Texas, Aaron Waters from the University of California, Santa Barbara, and Edward Goddard from the University of Michigan. The geochemistry planning panel included James Arnold from the University of California, San Diego, Paul Gast, then at the University of Minnesota, Brian Mason from the American Museum of National History, and several other noted geochemists. Related to the geochemistry panel was the petrography and mineralogy team composed of Harry Hess of Princeton, Clifford Frondel of Harvard, Bill Pecora and Ed Chao of the United States Geological Survey, and Edward Cameron of the University of Wisconsin.

Shoemaker’s Field Geology Team was responsible for planning the lunar fieldwork, determining the requirements for maps and tools, monitoring the astronauts’ training and their activities once they reached the Moon, and pre­paring the necessary reports. Working with the geochemistry planning panel and the petrography and mineralogy team, the Field Geology Team would plan sample collecting procedures and design sampling equipment that would sat­isfy the needs of future sample-analysis PIs. For samples that would be returned to Earth, the geochemistry planning panel and the petrography and mineralogy team would recommend the protocols for sample preparation. Finally, the geochemistry planning panel was asked to recommend to Foster’s office par­ticular investigations and investigators for studying the samples. These teams and panels were subsequently approved by the SSSC and began their work.

Before Shoemaker’s appointment, two conflicting concepts for field geology instrumentation were under development, one designed by the staff at the Manned Spacecraft Center and the other by USGS in Flagstaff. MSC, led by Uel Clanton, had devised an engineering model of an all-in-one geological tool that the astronauts could use for sampling, drilling, and several other functions, in an attempt to simplify the many tasks they would have to accomplish and at the same time save weight and time by reducing the number of tools needed.

USGS had similar concerns but thought the biggest problem would be locating and documenting the sites visited, and in particular sampled, so that accurate traverse maps and profiles could be reconstructed back on Earth. The Flagstaff team had devised a surveying staff that would reflect a laser beam from a ranging device and automatically record the coordinates of a position on the lunar surface. This approach was based on the simulations and exercises we had been conducting for the post-Apollo missions, which suggested that without some type of surveying instrument it would be almost impossible for an astro­naut to accurately locate his position on the Moon and associate a sample or ob­servation with a specific point. Lunar geologic maps made without such posi­tioning would be seriously degraded in value, since to establish map locations we would have to depend on some type of dead reckoning or coarse Earth­tracking and reconstruction of the traverse based on voice communication.2

Our experience during the Martin Marietta contract, and the growing con­cern about measuring distances on the lunar surface, led the Branch of Astro – geology to further explore including a periscope in the lunar module (LM), as we had proposed earlier, rather than the sextant that was being planned for navigation. In February 1965 Gordon Swann and Dave Dodgen visited two navy periscope suppliers, Kollmorgan and Kollsman Instruments, to discuss their ideas. Besides the concerns arising from the Martin contract, they wanted to be able to track an astronaut if only one was allowed to leave the LM. Though both companies thought the Apollo navigation requirements and the surveying ability needed on the Moon’s surface could be incorporated in one instrument,3 no official action was taken. A jury-rigged optical ranging periscope built by David Dodgen and Walt Fahey was used during some field simulations to assess the value of such an instrument.

These three pieces of equipment had their advocates and their detractors. At the end of 1965 the MSC engineering model was tested by a joint review team composed of members of Foster’s office and several MSC offices, including representatives from the astronaut office, and we agreed to stop work on this tool. Because of its several functions, it was large and cumbersome, with so many batteries, handles, switches, and other components that it looked like a Rube Goldberg contraption. The USGS surveying staff survived our initial evaluations. In spite of the advertised versatility of these tools, the astro­nauts would still need additional equipment for tasks that the all-in-one de­signs could not perform. Converting the LM sextant to a periscope was also finally abandoned because of the added cost and schedule delay entailed by modifying the LM navigation system. For the last three missions, a navigation system on the astronauts’ lunar rover met most of the tracking and mapping requirements.

As we began to design and build prototype tools, another complication arose: certain materials and designs might interact dangerously with the space­craft’s atmosphere, communications, or even the astronauts’ space suits. These restrictions, some certainly necessary, would be a bone of contention through­out the equipment development phase, adding trouble and expense to what could have been, in some cases, rather straightforward procurements.

Without question, the most important task the astronauts would perform on the lunar surface would be sample collection. There was much debate on how best to do this. How much sample? What types of samples? How should they be packaged for the trip home? How badly would the lunar surface, and in turn the samples, be contaminated by the effluents from the LM descent engine plume? These questions and many more faced us as we began to realize that a lunar landing was not far off. The danger of contaminating the Earth was being addressed, but designing the sample containers to minimize this concern still lay in the future. Answers to all these questions would affect the design not only of the sample containers but also of the collecting tools.

To start answering the sampling questions, the Office of Space Science and Applications asked USGS to detail to NASA a person with experience in sample collection and analysis. Ed Chao was the first to arrive, soon followed by Verl Richard Wilmarth, a senior USGS manager. Dick arrived at NASA in early 1964, and I first met him soon afterward in his new office in federal office building 6. NASA shared FOB-6 at that time with other government agencies, and though it was older than FOB-10, where my office was, the building was more luxurious; wider corridors, bigger elevators, a fancier cafeteria, and the other trappings of power so important in Washington. The NASA administra­tor and senior staff had offices in this building as well as OSSA, the General Council, Legislative Affairs, Public Affairs, and several other NASA depart­ments. The top floors had been taken over by NASA, and some offices afforded a wonderful view of the city. The administrator’s office faced west toward the

White House, and Legislative Affairs looked east toward Capitol Hill—perhaps by some logic, though probably just by chance.

Although he was an experienced manager, Wilmarth had never had an assignment quite like this: soliciting the scientists of the world to bid for a piece of the returned lunar samples and perhaps a chance to win a Nobel Prize—a once in a lifetime opportunity. I told Dick about my experience in developing this type of solicitation, officially called an announcement of flight oppor­tunities (AFO), as well as my background in writing government requests for proposals (RFPs) that had been released from NASA headquarters. Lacking this experience, especially with the quirks of NASA procurements, he asked me to assist him in his new job.

For the next several months Dick wrestled with his task, and I spent a significant part of my time helping him. Many meetings and consultations with interested parties were needed to be sure we were not overlooking some large or small detail. The AFO had to ask for information covering several areas, in a form that would let a blue-ribbon panel, still to be identified, select the most qualified proposals. What was the objective of the analysis? How much sample was needed? Would the analysis involve destructive or nondestructive testing? What were the packaging requirements? What type of equipment would be used? Would there be collaborators in addition to the principal investigator (PI), and who would they be? How much funding would be needed? How long would it take to do the analysis? Finally, after several months of labor, a draft of the AFO was ready to be circulated to senior management, and after review by both OSSA and the Office of Manned Space Flight, a final version was released at the end of 1964. The AFO asked that proposals be delivered to NASA by June 1965.

Before the sample proposals were received, Shoemaker’s Field Geology Team began developing concepts for tools that could collect a variety of lunar samples as well as take the measurements needed to conduct geological studies. These designs were based on both the Sonett Report and the Falmouth conference report, with the latter providing some specific recommendations: a long- handled trowel (really a small shovel); a rock hammer; sampling tubes to be hammered into the lunar soil to collect small subsurface samples; a hand-held magnifying glass; a combination scriber and brush to mark and clean the samples; and sample bags and special sample containers, one of them airtight. A camera was also recommended. We began to build prototypes of these tools at

MSC and at Flagstaff, believing that eventually, regardless of whatever unique requirements we ultimately received from the still to be selected sample PIs, all these tools would be needed.

With the possible exception of the airtight container, these early tool and sample container lists constituted the standard inventory that any field geologist would recognize, modified for their unique application. Everyone knew, for example, what a geologist’s hammer looked like. But some changes would be needed, since each tool would be used by a space-suited astronaut, perhaps under difficult lighting and temperature conditions, and in one-sixth gravity. We also had to factor in limited payload weight and stowage space, both on the trip to the Moon and returning. We knew that meeting all these constraints would require some compromises, clever design, and perhaps most important, careful input from the astronauts.

In September 1965, shortly after the Falmouth conference, Will Foster sent MSC a proposed second set of guidelines for Apollo science. In his memo he asked Robert Gilruth, MSC center director, and Max Faget to ‘‘prepare a Pro­gram Plan from which we can establish firm Program Guidelines to which all of us involved in this effort can work.’’4 Foster’s guidelines included discussions of sample return and lunar sample boxes, the Lunar Receiving Laboratory (LRL), the geophysical ground station, recently given the name Apollo Lunar Surface Experiments Package (ALSEP), and the geological hand tools and other equip­ment. He urged MSC to develop the guidelines as soon as possible, since we had little time to deliver the scientific equipment for the first missions.

While these guidelines were being developed we continued selecting the sample analysis PIs. After their proposals were received, Dick Wilmarth, Ed Chao, and Bob Bryson spent the next several months visiting the potential PIs and their labs to determine if they were equipped to conduct the analyses they proposed. Some were, some were not. As a result, OSSA began a program to upgrade the labs even though their proposals had not been officially approved. During the next five years, NASA transferred over $19 million to the sample PIs to purchase equipment and compensate them for their efforts.

As part of its responsibilities, the Field Geology Team began a careful review of the proposals by establishing a geology working group chaired by Shoe­maker. In addition to Shoemaker, the working group consisted of Goddard, Mackin, and Waters from the Field Geology Team, Harry Hess (from the Space Science Board), and Ted Foss and Jack Schmitt from MSC. I served as secretary.

We met over a period of nine months, and at the end of 1966 we sent our report to OSSA. We recommended that almost all the proposals submitted be ac­cepted, a total of forty-one.5 At Dick Wilmarth’s urging we also submitted a list of tests and experiments that should be conducted at the LRL, the equipment the lab should contain, and based on our ongoing studies, the types of con­tainers that should be carried on the missions to hold the different types of samples we expected would be collected.

With Walter Cunningham immersed in his duties with Gemini and Apollo, our astronaut contact for the development of science equipment became Don Lind. Don had been selected in April 1966 as one of the nineteen astronauts in the fifth selection group, less than a year after the first scientist-astronaut selec­tion. He had a Ph. D. in physics, and I had worked with him at Goddard Space Flight Center, where he was employed before his selection. He was an excellent choice to interact with the science community. Since he had also been a navy pilot and had a reputation at MSC as a meticulous worker, his opinions carried a lot of weight with the astronaut office. Jack Schmitt, as the only geologist – astronaut, would become closely involved in designing and developing the tools and experiments, but at this time he was just finishing his flight training.

Lind became our sounding board and made important contributions to Apollo science. He spent many hours trying each new design in a pressure suit, and along with Gordon Swann and other MSC and USGS staff he attempted to validate them in NASA’s converted Air Force KC-135 (nicknamed the ‘‘Vomit Comet’’ for the reaction of many test subjects during the flight parabolas spe­cially calculated to provide short periods of low or zero gravity). Ray Zedekar and others from the MSC Flight Crew Systems Division also worked tirelessly to test and improve the tools.

Simulations continued at Flagstaff through 1966 and 1967, prompting con­siderable refinement in the number and design of the hand tools the Field Geology Team would recommend. Astronaut mobility, dexterity, and visibility in the pressure suit were ultimately the major considerations and led to several unique tools not carried by geologists on Earth. In February 1967 a critical design review (CDR) of the Apollo lunar hand tools was held at MSC.6 Because several of the proposed hand tools were not ready for the review, it was decided to designate a ‘‘hand tool pool.’’ From the pool, a total of about twenty pounds of equipment could be selected for each mission, tailored to the mission’s specific needs. A tentative priority list was established: tool carrier, sample bags (100-200), maps, tongs, hammer, scoop, drive tube number 1, extension han­dle (used with several tools to eliminate bending over), gnomon, drive tube number 2, surveying staff (later dropped from the pool), color chart, drive tube number 3, sample bag dispenser and sealer, aseptic sampler, spring scale, and combination brush/scriber/hand lens.

The tool carrier, a three-legged stand, allowed the astronauts to carry their tools from station to station with one hand and then reach them without stooping. It was used on only two missions, Apollos 12 and 14. A second design carried on the J missions held the tools so that they could be mounted on the rear of the lunar rover.

The gnomon, a unique device, was devised by USGS to be placed in the field of view of the cameras the astronauts used on the lunar surface. It provided geometric and photometric control so that the photographs could be used to make analytical measurements. It consisted of a tripod about fourteen inches high supporting a gimbaled, weighted rod that would hang vertically. The shadow cast by the rod (hence gnomon) showed the direction the camera was pointed so that the astronaut need not estimate it and transmit it by voice. A gray scale on the rod was used for photometric calibration of the black- and-white photos, and a color chart on one leg helped us calibrate the color photos. With all this data available, we were eventually able to make stereo pairs from the photos and produce contour maps of the areas where the photos were taken.

The spring scale would weigh the rock boxes and individual sample bags brought back to Earth. These weights were important to the engineers doing trajectory analysis during the astronauts’ return journey. Those who saw the movie Apollo 13 may remember that Mission Control in Houston could not understand why the returning spacecraft did not respond as expected to the course corrections being made to bring the astronauts back within the narrow corridor in space required for a safe reentry. The combined LM and command module (CM) weights were accurately known, so they should have responded predictably to the small thruster burns. Finally someone remembered that the computer programs had been calculated allowing for a few hundred pounds of returned lunar samples. No samples were on board, since the astronauts had never landed on the Moon. When this figure was corrected and the proper weight inserted into the programs, the returning spacecraft was steered pre­

cisely into the Earth’s atmosphere, allowing the command module to make a safe landing.

At this CDR, concerns again surfaced about the materials used in the tools. One dealt with the magnetometer experiment that would be deployed with the ALSEP and stowed near the tools on the LM. Stainless steel (the preferred material for the hammer and drive tubes, for example) might induce too much remnant magnetism, thus affecting the accuracy of its readings. Another con­cern was how hot or cold the tools would become in full sunlight or shadow, since the gloves used for extravehicular activity (EVA) could tolerate tempera­tures only in the range of —250°F to 175°F. It was decided that the tools would be anodized or given a gold tone to moderate temperatures on the surfaces the astronauts would touch.

Also at this CDR the surveying staff received a careful reexamination. To take full advantage of its capabilities the astronauts would have to make twelve settings at each station, taking a total of five to ten minutes. We were told the astronauts thought this was too long, and most of us agreed; their time on the lunar surface would be our most precious resource. The staff was eventually dropped from the pool. By the time the J missions flew, the ‘‘hand tool pool’’ was no longer required because the science payload was large enough to accom­modate all the needed tools, some of which were new to the J missions or had been redesigned by that time.

With this background, we can now turn to sampling. The geology training the astronauts endured had one primary focus: to instruct them on what sam­ples to collect and how to collect them. The training emphasized thorough verbal descriptions and proper photographic techniques to ensure good docu­mentation of the sampling site. Sampling for geological analysis on Earth has progressed to a fine art, using techniques to fit the problem under study. Proba­bly the greatest change in the past thirty years is the enormous amount of information we can now wring from a small sample (a few ounces or grams). Many of the types of analyses that let us extract this information from such small samples were in their infancy when we began planning for lunar sam­pling. But we knew that any samples brought back to Earth, no matter how small or large, would exponentially increase our knowledge of the Moon and its history. As we began to look closely at the issue and to assess the opportunities the Apollo landings would provide as well as their limitations, the sampling program became more and more sophisticated. This sophistication found its way into the types of samples wanted, the special tools needed to collect them, and the packaging or containment requirements.

Our first concern was the ‘‘grab sample’’ (later named contingency sample), one astronaut’s first order of business once he was on the lunar surface. Every­one agreed on the importance of collecting this sample in case the first EVA was curtailed, but there was little agreement on how much should be collected, how and where it would be collected, how it would be documented, what tool(s) would be used, how it would be packaged (at one point someone suggested using a spare urine bag), where it would be stowed in the LM and the command and service module (CSM), and on and on. We first thought this sample should be passed back to the astronaut in the LM to ensure that something would be returned regardless of the outcome of the landing. This operation would mean using a significant part of the first EVA time to collect the contingency sample. These concerns held not only for the first landing but for all subsequent land­ings as well. In September 1967, after a review of the preliminary timelines at MSC, I raised these issues with Mueller’s office, urging that they be addressed as soon as possible so we could proceed with tool and sample container design, which would in turn affect astronaut training and schedule development.7

Our next concern was the design of the large containers that would hold the samples on the return to Earth. They would have to be stowed in the LM on the outbound passage, then transferred to the CM for the return. Finding stowage space limited their size and weight and also their location relative to the space­craft’s center of gravity, since their weight would differ outbound and during landing maneuvers, during LM takeoff and on the CSM’s return from the Moon. Heavy aluminum boxes, called Apollo lunar sample return containers (ALSRCs), or ‘‘rock boxes,’’ were finally selected to satisfy these constraints.8 They were designed and manufactured by Union Carbide at the Atomic Energy Commission’s Y-12 plant at Oak Ridge, Tennessee. Each box weighed thirteen pounds and had an inner volume of less than one cubic foot, with outside di­mensions of approximately 19 X 11 X 8 inches. They were designed to with­stand fifty gs and to maintain a vacuum seal in case of a hard landing in the ocean. Depending on the type of samples collected, each box could hold twenty to forty pounds of material. Two boxes would be carried on each mission, and after the samples were placed inside they could be sealed while on the lunar surface. The contract with Union Carbide called for the manufacture of twelve items of flight equipment and nine test containers. Two more flight containers were added later to the contract. When the boxes were opened at the LRL, high vacuums were always found, relieving some of the worry on the first three missions that alien organisms might have escaped into the Earth’s atmosphere.

For collecting the contingency sample, a special tool was made with a long handle and attached bag. After the bag was filled, the handle would be discon­nected and the bag placed in an astronaut’s pocket in case they had to make a quick departure (thus resolving the question of spending time to get it back into the LM). With this limitation, small contingency samples were collected on each mission, always close to the LM, without much regard for the location, and not always documented with a photograph. After the contingency sample was safely in the astronaut’s pocket, subsequent sampling became much more ex­acting. Depending on the mission and the prescribed timeline, further sam­pling might be postponed until later in the first and subsequent EVAs. This later sampling would be carefully planned to ensure that the landing site was covered as completely as possible within the radius of operations.

Another concern was what type of contamination would be introduced to the samples during landing by the LM descent stage engine exhaust. The ex­haust, plus the astronauts’ activities once they exited the LM, might introduce carbon compounds, making it hard to tell if any form of life existed on the Moon. In the summer of 1965 MSC gave Grumman (the LM manufacturer) and Arthur D. Little a small contract to study these questions. In November they briefed us on what they had determined.9 There would, of course, be some contamination, estimated to be as much as one ton of various compounds spread over the landing site if they were all absorbed on the lunar surface. But chemical reactions could be predicted based on educated guesses about the composition of lunar soil, and they thought the contaminant molecules intro­duced by the exhaust could be identified during analysis of the lunar samples back on Earth. This study satisfied some, but not everyone, that the problem was understood, in particular the question of contamination from the astro­nauts’ space suits.

Concern that the samples returned might harbor some unknown disease, and the opposite fear that the astronauts might contaminate the samples on the Moon, led to the development of a sampling device called the aseptic sampler. Its function was to retrieve a small sample from an area away from the landing site, where there would be a minimum chance that the exhaust from the LM descent engine would have introduced foreign material into the soil. The asep­tic sampler was also designed and built by Union Carbide at the Y-12 plant, to specifications dictated by the National Academy of Sciences report on back- contamination. Its design became rather complicated. An extension handle would place a small coring tube against the surface a few feet from the ‘‘dirty’’ astronaut in his pressure suit. Two extendable feet would be unfolded to steady the sampler, and the astronaut would then pull a wire to open the coring device and push it into the soil. Surrounding the lower part of the handle was a sterile plastic bag into which the small core tube would be retracted; then the bag would be sealed to avoid any contamination after collection. All these functions were designed to avoid any contact with the astronauts or their gloves, because back on Earth the sample would be studied to detect organic compounds at a level of a few parts per million.

Dick Green, the ALSEP engineer and an office colleague, recalls being pres­ent at the final aseptic sampler training rehearsal by the Apollo 11 astronauts. Sam Phillips was also there to witness the demonstration of another late addi­tion to the astronauts’ workload, a sore point with NASA management (which undoubtedly prompted Phillips’s attendance). As might be expected, the com­plicated device malfunctioned. Phillips made an instant management decision to remove it from the flight and said contamination concerns would have to be resolved by studying the other returned samples (they were).

For the Apollo 12 mission and subsequent ones, two new types of samples somewhat satisfied the requirements addressed by the aseptic sample: the spe­cial environmental sample and the gas analysis sample. But there was no at­tempt to isolate these samples as carefully as if the aseptic sampler had per­formed successfully. The special environmental sample was a small container, large enough to insert a drive tube; it was taken to the Moon tightly sealed to prevent any contamination during the outbound trip. Once a drive tube sample was retrieved on the lunar surface, the container would be opened, the tube inserted, and the container carefully resealed. The gas analysis sample was designed to obtain an uncontaminated sample of any constituents of the ten­uous lunar atmosphere. The container was vacuum sealed on Earth and opened only after the astronauts were on the lunar surface. It would remain open for one or more EVAs, have a small amount of soil added, then be resealed, in hopes of capturing a few atoms or molecules that might be present in the near vacuum on the Moon.

To accommodate the procedures called for by the Field Geology Team and other scientists, several types of sample bags were designed. They would be modified as we learned from the experience of the astronauts using them on the lunar surface and the teams handling the samples back on Earth. In addition to the small Teflon bag that held the contingency sample, three other types of Teflon bags were designed to hold samples designated selected sample, docu­mented sample, and tote bag sample.

The bags for the selected sample (which replaced the bulk sample collected on Apollo 11) could contain a large volume of sample and have enough space to store the core tubes plus the lunar environment and gas analysis samples. The smaller documented sample bags (seven and a half by eight inches) were carried on a twenty-bag dispenser and would be removed individually to hold samples documented by the astronauts’ description and photographs. Each bag was premarked with an identification number that would be relayed back to MSC as the bag was filled to obviate confusion when the sample was opened at the LRL. After the selected and documented sample bags were sealed, they were placed in the ALSRCs. The large tote bag would hold any large rocks the astronauts collected. This bag would not be placed in an ALSRC but would be separately stowed, first in the LM and then in the CM.

Cameras had been part of the astronauts’ equipment since the first Mercury flights. From Gemini flight GT-4 on, they were included in formal experiments. Some good science had resulted from the pictures of Earth taken during the Gemini flights, especially new views of important terrestrial features such as the Himalayas and impact craters never before photographed.10 Cameras would become an essential element in each Apollo mission to preserve what the astro­nauts saw on the lunar surface and in lunar orbit.

On the Moon, cameras were needed for three purposes: to document the individual samples collected; to provide detailed views of the areas where the astronauts were working as well as panoramic views; and to record the place­ment of the ALSEP central station and experiments and of any other experi­ments the astronauts deployed. The Hasselblad camera, which all the astronauts were used to and which was already qualified for space flight, was an immediate candidate for lunar surface photography. Other types of cameras would be added in the months ahead, but the Hasselblad soon became the top choice.

Shoemaker and his Field Geology Team also believed that stereoscopic pho­tographs were necessary to document samples and the general geological scene.

He enlisted Homer Newell, who agreed and wrote to George Mueller that they were ‘‘a necessity on every lunar landing mission.’’11 In the summer of 1966 the Manned Space Flight Experiments Board asked Shoemaker to develop the spec­ifications for a stereo camera. Preliminary work was carried out to develop such a camera, but it was eventually canceled because of payload weight and EVA time constraints. The astronauts were then trained to use the Hasselblads to take stereo pairs.

Integrating the cameras with the astronauts’ activities became a major chal­lenge. They had to be handy but not in the way. How would the astronauts carry, point, and trigger them in their space suits and clumsy gloves? After many trials and errors, the solution was to mount the cameras on the astro­nauts’ remote control unit, a fixture attached at chest level on the outside of the pressure suit. A dovetail bracket on the remote control unit allowed the astro­nauts to slip the cameras on or off with some ease. Test subjects and the astronauts soon became adept at pointing the cameras and compensating for the parallax caused by the camera’s being below their line of sight. Camera controls were modified to be used with gloves. Once this camera was accepted, most of the simulations and training sessions included the Hasselblads, to determine how best to document the projected lunar surface activities and to get the astronauts used to them.

The camera inventory carried in the LM for use on the lunar surface was extensive. One television camera, three 70 mm Hasselblads (two with 60 mm lenses and one with a 500 mm lens), one 16 mm Mauer sequence camera mounted in the LM pilot’s window (to photograph the landing, initial surface activities at the foot of the LM ladder, and rendezvous maneuvers with the CSM in lunar orbit; it was used in later missions on the lunar surface), and about twenty-five film magazines of various types. A seventh camera, the Apollo lunar surface close-up camera (ALSCC), was one of the late additions to the science equipment.

The ALSCC was Tommy Gold’s last attempt to reap some fame from the lunar landings. Still obsessed with the nature of the fine material that con­stituted the lunar soil, he proposed a special camera to take close-up ster­eoscopic photographs of it. He submitted a proposal in 1968, and after some debate on its merits, the SSSC finally agreed to carry his camera. Shoemaker and the Field Geology Team were incensed at this decision, believing it had little scientific merit and, most important, would take time on Apollo 11 and the next missions from the much more important geological tasks and the sampling. Our office supported Shoemaker’s reasoning. We also knew that we would be assigned to oversee the rapid development of the camera while dealing with a potentially difficult PI. We were overruled, and the camera development went forward.

Gold’s photographic objectives required a complicated design for an entirely new type of camera. He wanted the camera’s focal plane to be very short, in lieu of magnifying lenses, so that particles of 0.1 mm or even smaller could be distinguished and measured; achieving this called for taking stereoscopic pairs with the camera close to the lunar surface. Since the astronauts could not bend low enough to set a camera on the surface and operate it, the camera would have to be attached to a long handle. With the camera essentially in direct contact with the surface, a light source would also have to be provided to flash for each stereo pair. On and on went the design requirements for this strange contraption that few favored, including the astronauts, who were vocal in their objections to using it. So much for the politics of science—Tommy had friends in high places.

To add to the complications, when the NASA Procurement Office learned of our plans to get bids to design and build the camera they insisted it be made a ‘‘small business’’ contract. The government’s policy of giving contracts to small businesses deserves support, and my government career after I left NASA de­pended on small business for its success, but this was a bad decision that we knew would give us trouble. Schedules were tight, and the camera’s design would require some clever engineering. We scrambled around and finally lo­cated a company (its name escapes me), and MSC awarded a contract. Robert Jones at MSC was named program manager. After several months of monitor­ing the company’s progress, it became clear that it would be unable to deliver the camera on schedule, if ever.

Now we were in real trouble, since the camera was scheduled to be carried on the first landing mission and we had lost almost six months. But because of the tight schedule, in January 1969 we were able to justify awarding a sole-source contract to the most qualified supplier, Eastman Kodak. Kodak worked literally around the clock and delivered the flight hardware and training cameras on schedule to meet the Apollo 11 launch date. Gold’s camera performed almost flawlessly, thanks to the Kodak engineers, and it was also carried on Apollo 12 and Apollo 14. Although it was not a favorite experiment for the astronauts—a few threatened to throw the camera away—they complied with most of his requests for his unusual photographic subjects and returned forty-nine and a half stereo pairs.

How much new science resulted from analysis of the photographs is debat­able. Gold tried to use them to advance some of his pet theories, and David Carrier, an MSC engineer who had provided oversight on the soil mechanics experiment, reminded me that when he and several other MSC staffers cooper­ated with Gold in writing his report for Apollo 14 they withdrew their names as coauthors because they disagreed with some of his conclusions.

When more weight became available on the J missions, the tool inventory remained essentially the same except that we added a rake, suggested by Lee Silver after the Apollo 12 mission when the astronauts found it difficult to pick up small rocks and collect samples mixed with the lunar soil. We reasoned that such samples would yield a wide variety of lunar rocks, since every landing site might contain ejecta from many distant sources. The rake was designed as a scoop, closed at one end, with wire tines spaced about a quarter inch apart to sift out the loose material but retain the larger pieces. It was used successfully on all three J missions.

We added another important piece of equipment for the J missions, the Apollo lunar surface drill. Two requirements led to its development: the ALSEP heat flow experiment, which needed two holes for inserting the sensors, and the geologists’ and geophysicists’ desire to obtain subsurface samples. Here once again the experience gained in studying a deep drill for the post-Apollo mis­sions was valuable. Jack Hanley, detailed to my office from USGS, had moni­tored the hundred-foot-drill studies at Marshall Space Flight Center, and he was assigned to oversee the drill. The RFP released by MSC called for bids to build a drill that would extract cores to a depth of one hundred inches. The competi­tion was won by Martin Marietta, Denver, teamed with Black and Decker.

The design the Martin Marietta team selected was a battery-powered rotary percussive drill in which the power head imparted short impacts at the same time as the drill pipe (core stem) rotated. The astronaut could also lean on the drill handle to add force and improve the penetration rate. The core stems (a total of six that would be screwed together during the drilling) were fluted on the outside, as in the hundred-foot drill studied by Westinghouse several years earlier, to carry the cuttings or soil to the surface as the drill penetrated into the subsurface. Each core stem, made of fiberglass tubular sections reinforced with boron filaments, was about sixteen inches long. As each one penetrated to its full length, the drill head would be disconnected and another core stem screwed on to continue drilling. A tripod device held the extra sections above the ground until they were connected during the drilling. There was enough bat­tery power to drill three holes: two for the heat flow experiment and one for the core sample.

After five Surveyor spacecraft had landed on the Moon and returned pic­tures and rudimentary data on the characteristics of the lunar surface, many questions still remained about some of the engineering properties of the upper layers of the lunar surface. Since the Surveyor spacecraft had not disappeared in fluffy dust, we now knew that traveling on the lunar surface in some sort of wheeled vehicle would be possible. Using lunar soil to shield shelters while lunar bases were being built (as proposed in the Lunar Exploration System for Apollo studies) also appeared feasible, but more hard data were needed to understand how these soils could be excavated.

The need to predict the behavior of lunar soil, insofar as it would affect the design of vehicles and other equipment, as well as the need to collect other basic information, led to the inclusion of a soil mechanics investigation on the final four Apollo missions. This experiment, closely allied to the field geology stud­ies, consisted of analyzing the astronauts’ observations on the character of the soil as they moved about; photographing the soil after it was disturbed by their activities (e. g., boot prints, tire marks, and trenches), augmented by physical measurements made in situ with penetrometers and other devices; and finally, making measurements on the returned samples.

James Mitchell, from the University of California, Berkeley, was selected as the soil mechanics principal investigator. His team included as coinvestigators Nicholas Costes from MSFC, who had been on the Apollo 11 and Apollo 12 Field Geology Team and had participated in some of our post-Apollo studies, and Dave Carrier from MSC. Don Senich, a former instructor at the Colorado School of Mines who was detailed to my office from the United States Army Corps of Engineers, was to oversee the development of this experiment from headquarters.

A simple penetrometer, consisting of a long aluminum shaft slightly less than half an inch in diameter, was carried for the first time on Apollo 14. It was to be pushed into the surface at several places near the LM to a maximum depth of sixty-eight centimeters. Black and white stripes were painted on the shaft,

and after pushing it as deep as possible each time, the astronaut would read back the number of stripes still above the surface as a measure of the depth achieved. Mitchell’s team would then calculate the forces involved by applying data obtained from terrestrial simulations. On the Apollo 15 and Apollo 16 missions a more sophisticated, self-recording penetrometer was carried. This device consisted of a base plate, a shaft with two different-sized interchangeable nose cones, and an upper housing containing the recorder. An extension handle above the recorder helped the astronauts force the nose cones into the surface. After pushing the penetrometer into the soil, they would remove the data drum from the recorder and return it for analysis.

Chapters 11 and 12 will tell more about how the equipment for the field geology experiment was used on the Moon by the crews of the six landing missions.