Category Escaping the Bonds of Earth

THREE HUNDRED HOURS IN SPACE

Since their assignment as Gemini Vll’s prime crew on 1 July 1965, Borman and Lovell had been intensely focused on their primary objective: to spend 14 days – a total of 330 hours – in space, thereby demonstrating that astronauts could physically and psychologically withstand a maximum-length trip to the Moon. The results from the two previous long-duration flights, Gemini IV and V, had been mixed. Jim McDivitt and Ed White had returned fatigued after four days, while Cooper and Conrad had hardly enjoyed their eight days sitting in an area the size of the front seat of a Volkswagen Beetle. Sleeping in shifts of four or five hours apiece had proven impractical, Borman and Lovell learned, so they resolved to sleep and work together. Moreover, they felt that their ‘work’ time would not benefit from a rigid plan, opting instead for a broader outline which they could adapt in orbit.

Their ‘days’ would consist of two work sessions, roughly coinciding with Houston’s ‘morning’ and ‘afternoon’ time zone and fitting in well with the three flight control shifts which would monitor Gemini VII. Storage space, not just for experiments and equipment, but also for foodstuffs, was at a premium. To make the best use of this space, Kenny Kleinknecht accompanied the astronauts to McDonnell’s St Louis plant and decided that waste paper from meals could be kept behind Borman’s seat for the first week and behind Lovell’s for the second.

Suits proved another concern. Several months before, McDonnell had begun an effort to determine if ordinary Air Force flight garments – wired with medical monitoring equipment, communications headsets and oxygen bottles – could be worn as a lighter, more comfortable alternative to the bulky pressure ensembles. In fact, astronauts Gordo Cooper and Elliot See had tested such suits in June 1965 at a simulated 36,000 m in the altitude chamber, with positive results. Then, in July, McDonnell engineer James Correale suggested a lightweight suit akin to Gemini 3’s G3C garment. It would not allow astronauts to continue a mission if the cabin lost pressure, but would provide them with enough margin of safety to get to a recovery area. Of course, from an environmental-control point of view, Gemini operated more efficiently with suits off, but neither NASA nor McDonnell was keen to leave them so vulnerable.

Work on Correale’s suit was begun by the David Clark Company in August, with engineers removing as much ‘corsetry’ as possible from the 10.7 kg ensemble. Replacing its fibreglass helmet was a soft cloth hood, which utilised zips rather than a neck ring to attach it to the torso, and the entire suit could be removed easily and laid on the sides of the Gemini seats, without having to be stowed away. When complete, it weighed some 7.3 kg. It would be removed no sooner than the second day of the mission, to allow time for Gemini VII’s life-support systems to be monitored and verified as satisfactory. However, it would be worn during critical phases such as rendezvous, re-entry and splashdown. The suits were delivered in

November, only a few days before Borman and Lovell were due to launch.

Also ready was one of the largest complements of experiments – primarily medical ones – ever carried aloft. Of the 20 investigations, eight would focus on the physical and physiological responses of the two men. They ranged from calcium-balance studies to in-flight sleep analysis with a portable electroencephalogram to examining the effects of spaceflight on the chemistry of body fluids. (For the EEG, Borman would have two spots shaved on his head and dipilatory rubbed on to accommodate its sensors. Lovell was not involved in this experiment.) They had to closely monitor and keep records of their food and liquid intakes, and ‘outputs’, not only throughout their time in orbit, but also for nine days before launch and four days after splashdown. Their meals were prepared and weighed, gram by gram, by a nutritionist from the National Institutes of Health. Nine experiments were reflights from McDivitt’s and Cooper’s missions, plus three new ones: an in-flight transmitter to be aimed at a laser beacon at the White Sands Test Facility in New Mexico to evaluate optical communications, together with landmark-contrast measurements of shorelines and a study of the usefulness of stellar occultations for navigation.

Although Gemini VII would primarily serve as a passive rendezvous target, the spacecraft itself needed some last-minute modifications to support its ‘extra’ mission. In early November, acquisition and orientation lights, a radar transponder, a spiral antenna and a voltage booster were installed. Further, the decision to fly a joint mission with Gemini VI-A reduced the amount of fuel that Borman and Lovell could use for experiments and station-keeping.

THE ANGRY ALLIGATOR

Following insertion into a 158 x 267 km orbit, Gemini IX-A’s computers set to work determining the rendezvous flight path. Forty-nine minutes into the mission, an inaugural manoeuvre raised their perigee to 232 km, prompting Cernan to remark that he “felt that one, Tom!” A second firing corrected phase, height and out-of­plane errors and established them in an orbit of 274 x 276 km, after which they checked their spacecraft’s systems and stowage lists, removed their helmets and gloves and readied cameras for the rendezvous ahead.

The astronauts acquired their first spotty radar readings at a distance of 240 km from The Blob and had a solid ‘lock’ at 222 km. This led to visible relief on the part of the radar’s Westinghouse builders, who had worried that the unstabilised ATDA and its changing radar reflectivity would cause its acquisition to wobble. Three hours and 20 minutes after launch, the astronauts were rewarded with their first glimpse of the target – now just 93 km away – and as they drew closer saw its flashing acquisition lights. Thinking that the shroud must have jettisoned successfully (the lights could not be seen otherwise), Stafford began slowing Gemini IX-A’s approach profile… and the reality became clear: the shroud was actually gaping half-open, like an enormous pair of jaws. ‘‘It looks,’’ he told Mission Control, ‘‘like an angry alligator.’’

Initial hopes that he might be able to nudge it with his spacecraft’s nose to fully open the jaws were rejected as too risky by Flight Director Gene Kranz and Stafford was forced instead to station-keep less than 12 m away. It was clear, he reported, that the ATDA’s explosive bolts had fired, but two neatly-taped lanyards stubbornly held the shroud in place. The high tensile strength of these lanyards made it unadvisable to nudge the jaws. Moreover, Gemini IX-A’s parachutes were housed in its nose and damaging them was unthinkable.

On the ground, at a strategy meeting that night with Bob Gilruth and Chris Kraft, backup pilot Buzz Aldrin suggested sending Cernan outside to manually clip the lanyards with a pair of surgical scissors. Astronauts Jim McDivitt and Dave Scott, in Los Angeles at the time, were despatched to the Douglas plant to examine a duplicate ATDA and determine if this could be done. Their consensus: it was possible, but would leave many sharp edges which could tear Cernan’s suit. Also, the tumbling of the ATDA, the almost-complete lack of spacewalking experience and the dangers of the explosive bolts holding the lanyards together posed their own risks. ‘‘Gilruth and Kraft were aghast,’’ wrote Deke Slayton and the suggestion, though not entirely outrageous, would lead to the first of many discussions about Aldrin’s suitability to fly Gemini XII.

In the meantime, efforts by controllers to tighten and relax The Blob’s docking cone, in the hope that the action might free the shroud, were unsuccessful. ‘‘That only pushed out the bottom part of the shroud,’’ wrote Cernan, ‘‘and forced the other end, which was open, to partially close. Contracting the collar had the reverse effect, and to us, it seemed that those moving jaws were opening and closing.’’ The alligator, quite literally, was laughing at their misfortune.

After the mission, it would become clear that the problem centred on the fact that the Agena, the ATDA and the shroud were built by three different organisations, namely Lockheed, McDonnell and Douglas. Before McDonnell technicians had made a final inspection on the ATDA at Cape Kennedy, a Douglas engineer had supervised a practice run, with the exception of the lanyards which controlled the electrical disconnect to the explosive bolts. In the interests of safety, the lanyards were not hooked up for the test.

Crucially, the Douglas engineer was then forced to leave to return home and tend his pregnant wife, telling his McDonnell counterpart to “secure the lanyards”. Consequently, on launch day, the McDonnell crew followed procedures published by Lockheed, which had themselves been copied from Douglas documentation. The instructions referred to a blueprint which was not present and the absence of the engineer meant that those technicians responsible for fixing the ATDA’s shroud simply wondered what to do with the dangling lanyards and decided that their best and safest bet was to tape them down. It was those taped-down lanyards which had now ruined Stafford and Cernan’s target in orbit.

Over the years, some historians have commented that having several companies managing different parts of the same vehicle was simply a classic extension of the metaphor ‘too many cooks spoil the broth’ and, indeed, an investigation into the ATDA fiasco would later conclude that future simulations should be practiced completely, experienced people should remain ‘on the job’ and written instructions should be followed exactly.

In the meantime, five hours into the Gemini IX-A mission, Stafford nosed his spacecraft ‘down’ by 90 degrees and fired his forward thrusters for 35 seconds to enter an elliptical equi-period orbit with the ATDA. Simulating a failed radar, they then plotted their position with an on-board sextant, notepad and pencil, checked their results against a pre-planned chart solution and commenced a series of four manoevures to bring themselves back into a station-keeping stance with the target. It was far from easy and, wrote Cernan, represented ‘‘a bitch of an exercise that demanded unimagined mental and physical effort’’. Nonetheless, six and a half hours after launch, they were finally in the vicinity of The Blob, only to depart again shortly thereafter for a third exercise. To prepare for this, at 3:55 pm, a little over seven hours into the mission, Stafford again pulsed the OAMS thrusters to reduce speed and widen the gap between Gemini IX-A and the ATDA.

By now exhausted, the two astronauts checked their systems, took an opportunity to gobble some toothpaste-like mush of chicken and dumplings – ‘‘No crumbs that way,’’ wrote Cernan, but ‘‘not much taste, either’’ – and tried with little success to sleep. Awakened in the small hours of 4 June to begin their second day in orbit, they were almost immediately immersed in the third rendezvous: reducing the size of their orbit to again intercept the still-laughing Blob. By rendezvousing with an object ‘beneath’ them, Stafford and Cernan would mimic the procedures to be followed by an Apollo command module pilot tasked with rescuing a lunar module stuck in a low orbit around the Moon.

Phase and height adjustments, followed by an OAMS burst, placed Gemini IX-A in an orbit of 307 x 309 km and within three hours the astronauts had reduced the gap between themselves and the target to just 28 km. At this stage, by now still ‘above’ and ‘ahead’ of the ATDA, Stafford nosed 19 degrees down and yawed 180 degrees to the left. ‘‘The mental perception was that we were falling straight down to Earth,’’ Cernan recalled years later, ‘‘and we did not even see the gator until we were within three miles of it.’’ Stafford, too, later admitted to sensations of mild vertigo.

THE ANGRY ALLIGATOR

Stafford and Cernan’s first close-up glimpse of The Blob, which Tom Stafford rather appropriately nicknamed “an angry alligator’’.

 

Подпись: The angry alligator 345

At this point, Stafford spotted what appeared to be “a pencil dot on a sheet of paper” and would point out that, had it not been for the radar, the rendezvous would have failed. The rendezvous was completed at 6:21 am and Stafford and Cernan withdrew from the ATDA at 7:38 am, this time for good.

The two men felt justifiably proud: they had conducted no fewer than three rendezvous in less than a day. However, their work had taken its toll. Both were exhausted, as, indeed, was their spacecraft, whose fuel supply had dwindled from 311 kg at launch to less than 25 kg after the marathon rendezvous effort. Ahead, later on 4 June, lay Cernan’s spacewalk, but Stafford donned his command pilot’s cap and told Mission Control that the excursion should be postponed. “We’ve been busier’n left-handed paper-hangers up here,’’ he drawled. “I’m afraid it would be against my better judgement to go ahead and do the EVA at this time… Perhaps we should wait until tomorrow morning.’’ For the first time, Cernan wrote, a pair of astronauts had seemingly ‘questioned’ their duties and, although not a military organisation, some within NASA felt that they were quitting. Yet there was little doubt that Stafford and Cernan were best placed to know the situation inside their spacecraft and Capcom Neil Armstrong duly responded that their recommendation had been accepted. Armstrong would later describe Stafford’s actions as reflecting ‘‘excep­tionally good judgement’’.

As a result, the EVA was moved to 5 June and the remainder of the day was spent focusing upon Gemini IX-A’s experiments and ensuring that both men were fully rested. Stafford and Cernan’s experiment load consisted of seven tasks, one of which was a medical study to measure their reactions to stress by recording their intake and ‘output’ of bodily fluids before, during and after the mission. Codenamed ‘M-5’, it required their wastes to be collected and labelled; a complicated, tricky and messy process whose physical requirements, Stafford growled, amounted to those required for doing a rendezvous and a half.

Elsewhere, Edward Ney’s zodiacal light photography experiment was originally planned to be used during the EVA, but problems forced it to be used instead from inside Gemini IX-A. It consisted of a hand-held camera, equipped with automatic triggering, to obtain images of atmospheric airglow, the zodiacal light, the Milky Way and the celestial field. Overall, Stafford and Cernan would return home with 44 useful images, together with 160 Hasselblad terrain photographs which would prove useful in applications from geology to oceanography. The remaining experiments – including retrieving a micrometeorite collector and controlling the AMU rocket armchair – were assigned to Cernan’s spacewalk. That spacewalk, which began early on 5 June, would force managers and astronauts to rethink everything they thought they knew about extravehicular activity.

MY LAI

In the spring of 1968, as NASA wrung its hands over the Saturn V, the United States’ strategy of attrition in Vietnam seemed to be failing as the ongoing conflict consumed ever more hundreds of lives and President Lyndon Johnson was being pressured by his generals to commit an additional 206,000 troops to the half-million – strong military force already in south-east Asia. At the end of January, a hammer blow struck the misguided sense of complacency that the Vietcong were little more than snipers and unable to mount major co-ordinated attacks. The so-called ‘Tet Offensive’, which ran in three devastating waves until September, was intended to strike military and civilian command centres throughout South Vietnam and spark uprisings among the population. Although it ultimately proved disastrous, militarily, for the Vietcong, the offensive was so vast (countrywide) and so well-organised (involving more than 80,000 troops) that it shocked both Johnson’s failing administration and the American public. In March, citing conflict both abroad and at home, Johnson announced that he had no intention to ‘‘seek and. . . will not accept the nomination of my party for another term as your president’’.

Against this backdrop of self-doubt and introspection came one event which has become infamous as perhaps the most notorious act of mass murder in American military history, involved the tiny South Vietnamese hamlet of My Lai. There, on 16 March, at least 300 – some reports say as many as 500 – unarmed civilians, including women and children, were raped, tortured, mutilated and massacred by American troops. Excuses have been banded around over the years, that such-and-such was reaching for a grenade, for instance, or even that the South Vietnamese peasantry were seen as ‘inhuman’, but the precise reasons for My Lai have never been divulged. When it reached the ears of the world a year later, the incident sparked outrage and condemnation and strengthened already simmering public discontent over an unpopular war.

The so-called ‘Charlie Company’ who gained notoriety for the massacre had arrived in South Vietnam three months earlier, just before the January outbreak of the Tet Offensive. My Lai and several neighbouring hamlets were suspected of harbouring Vietcong fighters and the wheels of a major American offensive were quickly set in motion. It would, the commanders urged, be an aggressive assault, involving the total destruction of the hamlets, the slaughter of livestock and even the pollution of wells. On the evening before the attack, Captain Ernest Medina of Charlie Company advised his men that nearly all civilians at My Lai would have left for market by early morning and only Vietcong sympathisers or fighters would remain. Differing opinions would materialise over the years over whether Medina specifically instructed his men to slaughter women and children. . .

Certainly, upon reaching My Lai soon after dawn, no enemy fighters were found, but their presence was suspected and Lieutenant William Calley – the only military officer to be convicted of murder that day – began shooting at what he later described as a ‘‘suspected enemy position’’. Calley’s actions lit the touchpaper for the murderous rampage that followed: the soldiers began attacking anything that moved, using rifle butts, bayonets and hand grenades to summarily execute young and old alike. At one point, it was said, Calley took a weapon from a soldier who refused to kill… and used it to continue the massacre. When the bloodbath ended, My Lai was torched.

Warrant Officer Hugh Thompson, a helicopter pilot, witnessed much of this from the air and identified many of the soldiers committing the atrocities; his and others’ testimony would prove crucial when the perpetrators were brought to trial. However, the real carnage might have gone unknown had Ron Ridenhour, a former member of Charlie Company, not sent a damning letter in March 1969 to newly-inaugurated President Richard Nixon, numerous congressmen, the Joint Chiefs of Staff, the Pentagon and the State Department, detailing the chain of events at My Lai. Eventually, in September 1969, William Calley was convicted of premeditated murder and 25 other officers were later charged with related crimes. At around the same time, Time, Life and Newsweek magazines broke the story… and public support for the Vietnam War, already on shaky ground, vanished.

LONG HAUL

At 2:30 pm on 4 December, precisely on time, Gemini VII roared into orbit. ‘‘We’re on our way, Frank!’’ yelled Lovell as the Titan rolled and pitched in its ascent trajectory, achieving orbit five and a half minutes later and establishing itself in a 160 km path around the globe. Unfortunately, in spite of its historic nature, it proved to be the least-watched launch to date; many American viewers being outdoors on the bright Saturday afternoon, out Christmas shopping or watching football games.

A minor pressure loss in a fuel cell was soon rectified by applying pressure from the cabin oxygen tank to the fuel cell oxygen tank and Borman and Lovell succeeded, in their first few minutes of orbital flight, to manoeuvre their capsule and fly in formation with the Titan’s discarded second stage. Borman yawed Gemini VII some 180 degrees, at a rate of three or four degrees per second, to face the stage, which he reported was venting its last vestiges of propellant in the form of snowflake-like particles. He manoeuvred to a point 60 m ahead of the Titan, then performed a series of OAMS pulses to approach it, before taking up position around 15-18 m directly ahead of it in terms of their orbital motion. After the flight, Borman, who described the spent stage as ‘‘bigger than the devil’’, would recall that his quick ‘out-and-back’ station-keeping procedure seemed to solve the problem experienced by McDivitt in June, since it took ‘‘a lot of the orbital mechanics out of the situation’’.

By now heading eastwards over the North Atlantic, observation of the Titan became more difficult as it passed right in line with the Sun. Borman fired the OAMS thrusters again to move north-of-track, to get the glare out of his line of sight, but actually created a pattern of criss-crossing paths with the stage and its debris cloud of frozen propellant particles. Using their eyes, a set of four tracking lights on the Titan and a docking light on Gemini VII itself, the astronauts managed to station – keep for around 15 minutes as the rocket tumbled violently and vented frequently. As Borman flew, Lovell performed one of the military-sponsored experiments, taking infrared readings of the Titan with a small photometric instrument on his side of the cabin. The resultant movie images showed white plumes pouring from the stage, whose erratic movements, they recalled later, were both translational and rotational.

“A couple of times,” Borman said, “we got in a little too close and I backed out, because you just do not dare get as close as you do the way this thing is spewing.” In the aftermath of the Gemini VI-A rendezvous a few days later, he would consider the Titan station-keeping a much more difficult and unpredictable exercise. For his part, Lovell, who would command his own Gemini rendezvous with an Agena-D less than a year later, felt that the Titan’s tracking lights were of limited use in judging range and range rates. “We had four lights on,’’ explained Borman, “and I’ll be darned if I will try to judge distance by four lights – or by 50 lights! You have got to have illumination or you have got to have a stable vehicle.’’ Gemini VII had neither. By the time Borman finally executed a ‘breakout’ manoeuvre at 2:51 pm to permanently pull away from the Titan he found that he had expended seven per cent more fuel than anticipated. A little over 20 minutes later, the astronaut saw the stage pass within a couple of degrees of the Moon, then saw it again on their second orbit and again about two and a half hours after launch. By this time, they reported that it was “surrounded by a billion particles’’ of frozen propellant from its engine bell.

With the station-keeping behind them, Borman and Lovell settled down to eight days of experiments before the Gemini VI-A launch on 12 December. Three hours and 48 minutes into the mission, Lovell fired the OAMS in a major perigee-lifting burn lasting 76 seconds, which boosted the low point of Gemini VII’s orbit from 140 to 193 km and also brought them back into close proximity with the Titan. ‘‘We had come back into the vicinity of the booster,’’ said Borman. ‘‘Just about midway through the burn, the booster venting that was still occurring suddenly lit up – became lit up. It looked like we were flying through a lot of foreign objects or debris. I was afraid we were going to hit something.’’ In response, Lovell halted the perigee burn a few seconds early and a trailing strap attached to the rear of Gemini VII whipped forward and slapped against his window; at first, Borman thought that they had hit some debris. They pulsed the OAMS for a few more seconds, getting quite close to the planned ‘delta-V’ for the burn, and settled down to the first of their medical experiments. First were the cardiovascular conditioning cuffs, snapped onto Lovell’s legs. From then on, virtually every bodily action – from thinking to breathing to urinating to defecating – would be monitored.

By 7:00 pm, less than five hours into the mission, they turned to routine housekeeping and at 9:30 pm ate their first meal in orbit. The only real concern,

LONG HAUL

Spectacular view of the Andes from Gemini VII.

judging from the space-to-ground chatter, was a problematic fuel-cell warning light, which intermittently blinked on and off. When the two men came to sleep, Borman found his G5C suit to be much warmer than anticipated, forcing him to turn the control knob to its coolest setting. Next morning, Capcom Elliot See ran through systems checks, their experiment load for the day, football scores, the news that two airliners had collided over New York… and the theme song of Gemini VII’s prime recovery ship, the Wasp: ‘I’ll Be Home For Christmas’. To Borman, it seemed that he and Lovell were safer in space than people on Earth.

As the flight wore on, conditions became somewhat less comfortable, with both men complaining of stuffy noses and burning eyes. The cabin, Borman reported, was too warm. Removing their suits helped, yet even that had been a matter of some debate on the ground. Days earlier, on 29 November, Bob Gilruth had requested approval from NASA Headquarters for the astronauts to remove their suits after the second sleep period and only don them at critical junctures, such as rendezvous and re-entry. By the time Gemini VII launched on 4 December, the plan had been amended slightly: one of them had to be suited at all times, insisted George Mueller and Bob Seamans, but the other could remove his garment for up to 24 hours. Both men, however, had to be fully-suited for rendezvous and re-entry operations. Still, the intense discomfort was there and, as the mission wore on with no major environmental-control issues, the rationale behind the one-suit-on/one-suit-off decision became unsupportable.

Even with his suit unzipped and gloves off, Borman sweated heavily, while the unsuited Lovell remained dry. After 24 hours, Lovell asked to sleep unsuited, to which Borman agreed, despite his own discomfort. Lovell, the larger of the two, had more difficulty getting out of his suit in the confined cabin and, although he donned some lightweight flight coveralls for a few minutes, he removed them just as quickly, due to the intense warmth. After four days of this torment, Borman asked the flight controller on the Coastal Sentry Quebec tracking ship to ask Chris Kraft about the chances of both men taking off their suits. Capcom Gene Cernan discussed the request, firstly, with Deke Slayton, before approaching Kraft, but there was little option but to ask Lovell to put his suit back on so that Borman could remove his. Concern was mounting, however, about how alert the astronauts would be for the Gemini VI-A rendezvous if they were so hot and uncomfortable. Bob Gilruth certainly favoured both men having their suits off at the same time and Chuck Berry, looking at the biomedical data, saw clear signs that blood pressures and pulse rates were closer to normal when Borman and Lovell were unsuited. Eventually, on 12 December – the very day that Schirra and Stafford were due to fly – NASA Headquarters finally agreed to allow the Gemini VII crew to remove their uncomfortable suits.

In spite of their discomfort, the two men got along well, even singing Top 40 hits to each other to pass the time. More musical accompaniment came from Houston controllers, who sent up tunes on a radio band which would not interfere with voice communications, and by the end of the mission Gemini VII’s cabin echoed to Bach, Handel, Glinka and Dvorak. The astronauts’ patience was, however, tried on a number of occasions, most notably when a urine bag broke in Borman’s hands. “Before or after?’’ asked Chuck Berry. When Borman affirmed it was the latter, Berry replied “Sorry about that, chief”. After the flight, Lovell would describe their living and working conditions in a similar manner to Cooper and Conrad: like sitting in a men’s toilet for a fortnight without access to a shower. This did not bode well for the physicians: after splashdown, one of their tasks was to examine calcium loss in space and they would be obliged to not only sift through Borman and Lovell’s liquid and solid waste, but also microscopically analyse the contents of their underwear. . .

The cramped nature of the cabin was further exacerbated by the equipment for their 20 scientific and medical experiments. One of these was a hand-held sextant, which enabled them to sight stars setting on Earth’s horizon and determine that they could navigate their position in space without relying on a computer. (This would prove particularly important when Borman and Lovell next flew together in December 1968, on the first manned lunar mission.) As part of one of their military investigations, they tracked a Minuteman missile launch and acquired infrared imagery of the plasma sheath of ionised air that was created when its warhead plunged back into the denser atmosphere. Other tasks were somewhat less successful. A blue-green laser beam, fired from a transmitting station in Hawaii, could not be kept in sight for long enough to effect experimental voice communications. As useful as these tasks were for future technologies, the monotony of the mission was even affecting flight controllers. “What a helluva bore,” one of them yawned as Borman and Lovell drifted into their second week aloft.

That second week, though, would be one of the most dramatic yet seen. It would begin by scraping its knuckles on a near-disaster and end triumphantly. . . to the sound of ‘Jingle Bells’.

HELLISH SPACEWALK

Original plans, dating back to before the deaths of Elliot See and Charlie Bassett, called for the Gemini IX spacewalker to spend at least two hours outside, remove the AMU from its housing at the back of the spacecraft’s adaptor and test it. He was also supposed to retrieve a micrometeorite package from the Agena, although this was scratched from the flight plan when the target ended up at the bottom of in the Atlantic on 17 May. A subsequent plan to remove a micrometeorite detector from the ATDA was also called off when it proved impossible to dock.

Still, preparations for the excursion were intense. Early on 5 June, Stafford lowered Gemini IX-A’s orbit while Cernan pulled his chest pack down from a shelf above his left shoulder, strapped it on and plugged in a 7.5 m umbilical tether which would provide him with oxygen, communications and electrical power. Years later, he would describe removing the umbilical from its container and attaching it to his suit as akin to unleashing a garden hose in a space no larger than the front seat of a car. Obviously, since the whole cabin would be reduced to vacuum, Stafford also had to be protected and both men laboriously clicked their helmet visors shut, pulled on heavy gloves and pressurised their suits until they went, in Cernan’s words, “from soft to rock-hard around our bodies’’.

Yet Cernan’s suit had much more insulation and protection than that of Stafford. “Out where I was going,’’ he wrote, “the temperature in unfiltered sunlight would be many times hotter than any desert at high noon on Earth, while the nighttime cold could freeze steel until it was as brittle as glass.’’ Approaching dawn on their 31st orbit, the men received permission to go ahead and at 10:02 am Cernan twisted the handle above his head and the huge hatch swung outwards.

Words clearly defied even the normally-chatterbox Cernan at this point as he pushed himself ‘upwards’, stood on his seat and rode “like a sightseeing bum on a boxcar’’ towards the California coastline. Hollering “hallelujah” at the top of his voice, he would later describe the glorious, ever-changing sight as like ‘‘sitting on God’s front porch’’, as orbital darkness gave way, almost instantaneously, to the first stirring of a shimmering dawn.

As was typical in space, there was little time to sightsee. With Stafford holding onto his foot to steady him, Cernan set to work positioning a 16 mm Maurer movie camera on its mounting and retrieving a nuclear emulsion package which recorded radiation levels and measured the impact of space dust. Next, he affixed a small mirror onto the docking bar on Gemini IX-A’s nose, such that Stafford could watch as he made his way towards the AMU at the rear of the spacecraft. Unlike Ed White, Cernan was not equipped with a hand-held zip-gun and he quickly set to work on his next task: to evaluate his ability to manoeuvre himself around by tugging at his snake-like tether.

It would, he wrote in his autobiography, teach him new lessons about Newton’s laws of motion. ‘‘My slightest move would affect my entire body, ripple through the umbilical and jostle the spacecraft,’’ Cernan explained. ‘‘Since I had nothing to stabilise my movements, I went out of control, tumbling every which way, and when I reached the end of the umbilical, I rebounded like a bungee jumper, and the snake reeled me in as it tried to resume its original shape.’’ As he looped around Gemini IX-A, the experience was comparable to wrestling an octopus and Cernan’s only chance at controlling his motions came when he managed to grab the tether tightly at the point at which it emerged from the hatch.

After half an hour of helplessness – and by now having broken the spacewalk

HELLISH SPACEWALK

Two of the few photographs acquired during Gene Cernan’s EVA, showing the nose of Gemini IX-A, the open pilot’s hatch and the snake-like tether at left and the astronaut himself at right.

HELLISH SPACEWALK

endurance times of both Alexei Leonov and Ed White – he somehow seized a handrail and pulled himself towards Gemini IX-A to rest. Clearly, he told Stafford and Mission Control, future spacewalkers would need propulsion and more handholds; otherwise they would be unable to prevent themselves from flopping around like rag dolls on the end of their tethers. Cernan’s rest break was brief: he had to reach the back of the spacecraft before the arrival of orbital dusk to checkout and strap on the AMU, exchange his oxygen umbilicals for those attached to the rocket armchair and commence the next phase of his spacewalk.

His move to the rear of Gemini IX-A was much harder than he could have anticipated. The stiff, bulky suit fought his every move and lacked the two crucial ingredients – flexibility and mobility – that he now desperately needed. Nonetheless, Cernan laboured, hand-over-hand, along a small rail, halting at times to loop his tether through tiny eyelets and thus keep it from damage. Finally, he reached the adaptor at the back of the spacecraft and, swinging himself around it, disappeared from view in Stafford’s mirror. The Sun, too, vanished as Gemini IX-A entered orbital darkness over South Africa.

Working in near-pitch blackness, Cernan flicked on a pair of lights – only one of which worked, yielding a glow little more effective than a candle – and prepared to activate the AMU. Thirty-five meticulous steps lay between him and achieving the goal of becoming the first human satellite; steps ranging from pushing buttons to opening valves and disconnecting, then reconnecting, his oxygen supply. His heart rate, which had reached 155 beats per minute when he arrived at the adaptor section, showed no signs of slowing as Cernan puzzled over why he had been able to accomplish the task with ease in a parabolic aircraft and yet the real thing was leaving him exhausted, drenched with sweat and almost blind. At last, he flipped the last switch and prepared to take the AMU on its maiden outing.

All was far from being well. A hundred minutes into the spacewalk, Cernan was scarcely able to see through his fogged-up visor – the suit’s environmental control system was struggling and failing to absorb the humidity and exhaled carbon dioxide – and his heart rate soared to 195 beats per minute. Unable to wipe the stinging sweat from his eyes, he had no choice but to rub his nose on the inside of his visor just to make a ‘hole’ through which he could see. He also tried increasing the oxygen flow to his suit in a bid to clear the visor, without success.

Cernan’s lack of visibility could hardly have come at a more inappropriate time, precisely as he was completing the intricate procedure of readying the AMU to fly. At one stage, he even had to rely on the reflection in a polished metal mirror on his wrist and on his sense of touch through his thickened gloves for guidance. Merely turning knobs, without adequate leverage, was virtually impossible. So too was telescoping and folding out the AMU’s armrests – getting them extended into place was, he wrote years later, ‘‘akin to straightening wet spaghetti’’.

It was at this point that one of Gemini IX-A’s experiments – known as ‘D-14’, a UHF/VHF polarisation study – met its untimely end at Cernan’s hands. The instrument comprised an extendable antenna in the adaptor section, which had been used successfully during the first portion of the mission to measure inconsistencies of the electron field along Gemini IX-A’s flight path. The astronauts had operated it five times whilst above Hawaii and once over Antigua, but Cernan’s struggles with his suit and the AMU caused him to accidentally break it.

Eventually, after much tugging and twisting, he found success, slid onto the saddle and strapped himself into place. His next step was to disconnect himself from the tether and reconnect himself to the backpack’s life-support and communications supplies. From his position, inside the concave steel adaptor at the rear of Gemini IX-A, he temporarily lost communications with Stafford, who could barely hear Cernan’s crackled garble that he was unable to see in front of his own eyeballs. From the command pilot’s seat, Stafford was now worried for his colleague’s safety, advising Mission Control that communications had degraded and Cernan’s visibility through his visor was so poor that the AMU test was risky.

On the ground, the physicians were coming to similar conclusions: data from Cernan’s biomedical sensors clearly indicated that he was exhausted, expending energy at a rate equivalent to running up a hundred stairs per minute and his heart was pumping three times faster than normal. Cernan knew that their judgement could spell the end of his spacewalk. . . an eventuality that, as a pilot who had been training for more than six months, he had no wish to contemplate. At length, the decision was snatched out of his hands.

The onset of orbital dawn over the Pacific brought the garbled news from Stafford: “It’s a no-go… because you can’t see it now. Switch back to the spacecraft electrical umbilical.’’ The Hawaii capcom concurred with his judgement. Obviously disappointed that he had not only lost his chance to fly the AMU, but that the Air Force’s $10 million rocket armchair was destined to burn up in the atmosphere, Cernan unstrapped and clawed his way back to his hatch. To protect the interior of Gemini IX-A from solar radiation, he had left it partially closed and was now blinded by the Sun as he struggled to find it.

Finally gripping and pulling open the hatch, Cernan twisted himself and pushed his feet through the opening. Stafford manually reeled in the umbilical, then grabbed one of his suited ankles to anchor him back inside the cabin. As he tried to get back inside, Cernan inadvertently kicked the Hasselblad camera that Stafford had been using to photograph the EVA and it drifted off into space. “There went my still pictures,’’ he wrote later, “but I did retrieve the movie camera.’’

Scrunching himself painfully into his seat, still fighting against the stiffness of the suit, he quickly found that he could not close the hatch. Eventually, with Stafford’s help, the pair managed to yank it down and Cernan pumped the handle until the hatch was secure. In his autobiography, he would admit that the pain was so intense that he cried aloud – “but only Tom really knows’’ – and was close to losing consciousness. Then, as Stafford began repressurising Gemini IX-A’s cabin, Cernan felt the rigidity of the suit begin to soften and he was finally able to breathe properly and remove his helmet. The United States’ second spacewalk was over in two hours and eight agonising minutes.

Exhausted, the now-beetroot-faced Cernan was doused with weightless droplets fired by Stafford from a water pistol and strips of skin of his swollen hands tore away as he removed his gloves. He looked, wrote Stafford, “like he’d been baked in a sauna too long’’. However, with the exception of the reaction he might get from the other astronauts – had he screwed up? and would he ever fly again? – Cernan really did not care. He had endured the most traumatic spacewalk to date… and, astonishingly, had lived!

Less than a day later, at 9:00 am on 6 June, Gemini IX-A was bobbing in the Atlantic. Cernan described his first fiery re-entry through the atmosphere as “like a meteoric bat out of hell” and compared the spacecraft to having the aerodynamic characteristics of a bathtub as it plummeted Earthward. They splashed down safely just 700 m from the intended point. So close were they to their prime recovery vessel, the aircraft carrier Wasp, that they were able to offer and acknowledge thumbs-up signals. An hour after hitting the Atlantic, they and their spacecraft were safely aboard.

In his autobiography, however, Cernan would relate that their first moments after splashdown were not entirely idyllic, when rough waves and strong winds gave the impression that Gemini IX-A’s hull had been ruptured. In fact, a harder-than – anticipated landing had ruptured a drinking water line, spilling its contents into the cabin. Still, the discomfort and disappointment was sweetened by the splashdown. It was, wrote Stafford with justifiable pride, “the closest-to-target landing of any manned spacecraft in history’’ prior to the Shuttle.

Gene Cernan’s harrowing EVA would teach a harsh, yet valuable lesson to those engineers, managers and even astronauts who perceived extravehicular activity as a proverbial walk in the park. Why, some journalists asked him in the weeks that followed, was his spacewalk so difficult in comparison to Ed White’s graceful stroll? The key differences, of course, were that White had been equipped with a hand-held propulsion device and that, other than floating around, he was not actually given any specific tasks.

Yet Cernan’s problems – the shortcomings of his suit’s environmental controls, the fogging of his visor, the difficulties encountered when getting back into the spacecraft, the need for handholds, the impossibility of moving without a propulsion device – highlighted an urgent need for such issues to be rectified before the closure of the Gemini chapter in November 1966. Apollo managers, then hard at work preparing for the first flight of their spacecraft in the fourth quarter of 1966, also took heed: future Moonwalkers could not operate on the lunar surface for many hours under such life-threatening conditions. It is quite remarkable, therefore, that by the time Cernan’s backup, Buzz Aldrin, completed his own EVAs on Gemini XII, the problems would have been virtually resolved.

‘THE WALLY, WALT AND DONN SHOW’

Despite the Saturn V’s woes, the situation was somewhat brighter for Spacecraft 101, the command and service module assigned to Apollo 7, the first manned flight. Heavily refurbished and quite different from the machine which had claimed Grissom, White and Chaffee’s lives, it finally arrived at Cape Kennedy on 30 May 1968. By this time, its crew had already been training for more than a year. Commander Wally Schirra, senior pilot Donn Eisele and pilot Walt Cunningham were personally announced before Congress by NASA Administrator Jim Webb on 9 May 1967, with Tom Stafford, John Young and Gene Cernan as their backups. Schirra wanted to call his spacecraft ‘The Phoenix’ – the mythical firebird of classical lore, said to end its 500- year lifespan on a pyre of flames, then return from the ashes – but NASA, fearing unpleasant reminders of Apollo 1, vetoed the idea. Schirra’s crew was also granted a three-man ‘support’ team, drawn from a new pool of astronauts announced in 1966: Jack Swigert, Ron Evans and Bill Pogue. In effect, each Apollo crew would now comprise nine dedicated members, emphasising its complexity over previous Mercury and Gemini missions. In Schirra’s words, the support crew’s role was to ‘‘maintain a flight data file, develop emergency procedures in the simulators and prepare the cockpit for countdown tests’’. Interestingly, Schirra asked Swigert to devise techniques to handle a fuel tank explosion in space. Less than two years after Apollo 7, Swigert would find this task very helpful. . .

From the time that their spacecraft arrived in Florida to the day of their launch on 11 October 1968, Schirra, Eisele and Cunningham would spend nearly 600 hours in the command module simulator, operating the 725 manual controls and responding to countless simulated emergencies and malfunctions. Moreover, they had occupied Spacecraft 101 during an altitude chamber test, had checked out the Chrysler-built slidewire to practice escaping from Pad 34 in the event of a pre-launch emergency, had crawled out of a mockup command module in the Gulf of Mexico and had pored over hundreds of pages of documentation and flight plans.

As Apollo’s first manned flight draws closer, backup senior pilot John Young is inserted into the spacecraft prior to a test at North American’s Downey plant.

North American’s attitude towards the astronauts had changed dramatically, with the company now heartily opening its doors to their inspections, and Schirra, Eisele and Cunningham had not been shy in prowling the Downey plant to check on progress. This irritated Frank Borman, who had been attached to Downey as the astronaut office’s representative. He considered the Apollo 7 crew to be obnoxious and felt that they were just causing disruptions and doing more harm than good. Borman even went so far as to complain to Deke Slayton, who spoke in turn to Schirra. However, it was understandable that the crew behaved as it did: they had seen poor workmanship from North American in the past and three of their comrades had died as a result of it. They wanted to make sure that they would be flying into space in the best possible ship. When Schirra saw an increasingly positive response and commitment from North American, from engineers to managers to the president, Lee Atwood, himself, he was appeased.

On one occasion, Schirra got into trouble himself … albeit to his pleasure. One day in early 1968, he was visiting Downey and, dressed in the required clean-room garb, carefully tried to clamber aboard Spacecraft 101 without damaging any mechanical or electrical parts. “But it was a tight fit,’’ he wrote, “and my knee landed on a bunch of wires. When it did, I felt a sharp slap on my face and I heard a woman’s voice: ‘Don’t you dare touch those wires. Don’t you know we lost three men?’’’ When she found out who Schirra was, the woman was embarrassed and apologetic, but for the commander of Apollo 7, she was just the person NASA needed on its contractor workforce. Schirra’s new-found confidence was shared by John Young, who tracked Spacecraft 101’s progress and concluded that it was ‘‘a pretty clean machine’’.

Elsewhere, fellow astronauts Jim Lovell, Stu Roosa and Charlie Duke simulated how quickly the command module could right itself if it flipped upside down – nose down – in the water (the so-called ‘Stable 2’ position) and for how long it might support them after splashdown. They experienced no difficulties in getting to the manual control switches which inflated three airbags and turned the ship into its upright ‘Stable 1’ orientation. Occasionally, water would splash into the cabin through a post-landing air vent, but the urine collection device proved more than adequate to vacuum this away and dump it overboard. Their consensus: not only was the command module seaworthy, but it could support the astronauts for a prolonged wait of up to two days until recovery. Other astronauts, including Joe Kerwin, Vance Brand and Joe Engle, spent weeks working in test vehicles and concluded that the ship’s systems were virtually trouble-free.

In late July 1968, Schirra, Eisele and Cunningham spent nine hours inside Spacecraft 101 itself under conditions which simulated an altitude of 68.9 km. This gave them the opportunity to perform some of their actual mission tasks and evaluate their ability to work inside pressurised space suits. Technicians purged the cabin, using a mixture of 65 per cent oxygen and 35 per cent nitrogen, then ‘dumped’ the atmosphere so the men were obliged to rely upon their suits as the pressure dropped to almost zero. After an hour in a near-vacuum, the cabin was repressurised with pure oxygen, the normal atmosphere to be used in orbit. A few days later, the backup crew of Stafford, Young and Cernan repeated the exercise with similar success.

For Schirra, it was the altitude chamber testing which ‘sold’ Spacecraft 101 to him. ‘‘I said many times that we would not accept [it] until it had completed its run in the altitude chamber,’’ he wrote, ‘‘similar to the launch pad test where fire killed Grissom, White and Chaffee.’’ The success of these tests prompted him to chortle that Apollo 7 was now on a high-speed track and ‘‘the train is moving out’’.

Spacecraft 101 had begun its manufacturing cycle at North American in early 1966 and, by July of that year, had been assembled, wired, fitted with subsystems and was ready for testing. In the wake of the Apollo 1 fire, it went through a recertification and modification process, during which time its wiring was upgraded and its two-part hatch replaced with the newer unified version. In December 1967, it was finally ready for testing to resume and it passed its three-part acceptance review at Downey in May of the following year. No items were found which might prove ‘‘constraints to launch’’ and on the penultimate day of that month, North American shipped the spacecraft to Cape Kennedy. A flight readiness review in September confirmed that Spacecraft 101 was ‘‘a very good spacecraft”. By that time, wrote Schirra, the crew was ready to go.

For Schirra, Eisele and Cunningham, the events surrounding the Apollo 1 fire and its aftermath were laced with irony. Initially assigned as the prime crew for the original Apollo 2, it had been Schirra’s reluctance to duplicate Gus Grissom’s flight that led him to request its cancellation. In doing so, he had been assigned Apollo 1 backup chores, with no ‘prime’ mission to aspire to. The events of 27 January 1967, in a roundabout way, landed Schirra with the kind of flight he really wanted: something new and challenging. During Apollo 7, he and his crew would spend 11 days in space – the second-longest manned mission to date – and were tasked with the comprehensive and systematic evaluation of the command and service module in Earth orbit.

In theory, Schirra’s mission objectives could be ‘achieved’ in as little as three days, but according to Sam Phillips in a letter to Jim Webb it would be open-ended to 11 days in order ‘‘to acquire additional data and evaluate the aspects of long-duration space flight’’. The countdown, punctuated by three built-in holds to correct any last – minute problems, began on the evening of 6 October and proceeded without incident until ten minutes before launch on the 11th. At that point, thrust-chamber jacket chilldown was initiated for the Saturn’s S-IVB second stage, but took longer than anticipated, forcing a hold of two minutes and 45 seconds. (After launch, analysis confirmed that the chilldown would have occurred without the hold, but waiting, in real time, was prudent in order to meet revised temperature requirements.) The countdown resumed at 10:56 am and the Saturn 1B lifted-off at 11:02:45 am, watched by more than 600 accredited journalists.

If the early stages of the ascent seemed laborious, Time magazine told its readers, they should not have been surprised: the booster weighed 590,000 kg, only slightly less than the 725,750 kg thrust of its first stage. Acceleration from the astronauts’ point of view, therefore, was much calmer and less oppressive than the G loads experienced by previous Mercury and Gemini crews.

Inside the command module, the crew experienced a clear sense of movement, but only Eisele had a good view of the commotion that was going on outside. ‘‘We had a

boost protective cover over the command module,” Cunningham recalled later. “There’s an escape rocket that you can use anytime until you get rid of it, and that’s a little after a minute into the flight. Because that rocket puts out a plume, you had to have a cover over the command module so that you wouldn’t coat the windows and you wouldn’t be able to see anything out of the windows in the event you were coming down on a parachute during an abort. So, the only place you can see out is over Donn’s head in the centre seat. There’s a little round window, about six inches across, and he was the only one that could see out. We had no windows until the boost protective cover [was jettisoned].’’

Two and a half minutes into the thunderous ascent, the eight H-l engines of the Chrysler-built S-IB first stage burned out and it was released, allowing the S-IVB and its single J-2 engine to pick up the thrust and deliver Apollo 7 into orbit. A little under six minutes after launch, as he, Eisele and Cunningham became the first men ever to fly atop a load of liquid hydrogen rocket fuel, Schirra reported that the Saturn was “riding like a dream’’. On the ground, the situation was not quite so dreamy: for a minute or so, the Manned Spacecraft Center had suffered a power failure which temporarily knocked out its lights, control consoles, screens and instruments. Fortunately, generator power took over and no telemetred data was lost.

Despite the successful launch, Schirra would later admit to some anger. Months earlier, during a meeting in Downey, he had learned that Apollo 7 would fly with old Block l-style couches, rather than the improved Block 2 type. The latter, it was realised, would offer better protection for the crew if they happened to inadvertently touch down on land. Schirra felt that if Block l couches had to be used on his flight, the mission rules dealing with wind speeds at launch needed to be revised, since an abort over Florida could push their command module back over land. He agreed to accept Block l couches, on condition that Apollo 7 would not launch if wind conditions were unfavourable. On ll October 1968, winds at the Cape were around 40 km/h, considerably higher than the maximum-allowable 32 km/h needed to avoid a touchdown on land. It was felt that the Saturn lB’s record of reliability made it unlikely that an abort would occur in the early stage of ascent, but to Schirra, commanding the crew that would be flying the thing, it was black and white. “A mission rule had been broken,’’ he wrote. “Needless to say, I was not the happiest guy in town.’’

Ten and a half minutes after launch, following little bumpiness and loads which never exceeded l G, Apollo 7 was inserted perfectly into an orbit of 227-285 km and the S-IVB duly shut down. Both stages of the Saturn performed to near-perfection. Two hours and 55 minutes into the flight, the spacecraft undocked from the S-IVB and pulsed its reaction controls twice to turn back in a simulated rendezvous approach which Moon-bound crews would use to pick up their lunar module. Although there was no lunar module housed inside the stage, it provided useful practice and Schirra brought his ship within l.2 m of the spent S-IVB. Unfortunately, said Cunningham, one of the four adaptor panels had not fully deployed, due to a stuck retention cable, although they would be jettisoned explosively on subsequent flights to ensure lunar module extraction. It “had sort of

Apollo 7’s S-IVB third stage during station-keeping operations.

bounced back,” wrote Deke Slayton. “It posed no danger to the crew, but had this flight carried a lunar module, it might have been tough to get it out of there.”

Elsewhere, the performance of the big SPS engine was highly successful. It was fortunate, indeed, that this was the case, for this was a component which simply ‘had to work’ or lunar crews would not be able to return home. During their mission, Schirra, Eisele and Cunningham oversaw no fewer than eight SPS firings, the first of which posed something of a surprise. In contrast to the exceptionally smooth Saturn IB liftoff, the SPS noticeably jolted the astronauts, prompting Schirra to whoop ‘‘Yabadabadoo!’’ in imitation of Fred Flintstone. Eisele, too, said that the entire crew ‘‘got more than we expected’’ and that the additional boost literally plastered them back into their seats. Eater SPS burns lasted anywhere from half a second to more than a minute in duration and simulated virtually everything from a return from the Moon to a rendezvous with a phantom lunar module.

Other systems aboard Apollo 7 performed equally well. Occasionally, one of the three electricity generating fuel cells would develop unwanted high temperatures, but load-sharing hookups prevented any power shortages. The astronauts complained about noisy fans in the environmental circuits and turned one of them off, but, when this did not help, switched off the other. Visibility through the windows was mixed, with sooty deposits noted shortly after the jettisoning of the Saturn IB’s escape tower and spots of water condensation seen at other times. Two days into the flight, however, Cunningham reported that most of the windows were in fairly good condition, although moisture was gathering between the inner panes in one case. A similar situation was seen by Schirra a few days later. Nonetheless, the windows proved adequate, particularly during the rendezvous and station-keeping with the S – IVB, when they were almost clear. Navigational sightings with a telescope and sextant on any of 37 pre-selected stars proved difficult if done too soon after a waste­water dump and, indeed, the astronauts typically had to wait several minutes for the frozen droplets to disperse. Eisele reported that unless he could see at least 40 or 50 stars at a time, it was tough to decide which part of the sky he was looking at.

On a more mundane level, the ‘waste-management system’ – a somewhat euphemistic term for Apollo’s rudimentary toilet – proved adequate, if annoying. Its defecation bags, which contained a blue germicidal tablet to prevent bacterial and gas formation, could be sealed easily and stored in empty food containers in the command module’s lower equipment bay. However, they were far from ideal, still produced unpleasant odours and took each astronaut 45-60 minutes to complete. Bill Anders, who flew Apollo 8, would later tell Andrew Chaikin that, since nothing in microgravity ‘falls’, it was necessary to ‘‘flypaper this thing to your rear end and then reach in there with your finger [the bags had ‘fingers’ for this] – and suddenly you were wishing you’d never left home!’’ To add insult to injury, the germicidal tablets then had to be kneaded into the contents of the defecation bag to ensure that they were fully mixed. Not surprisingly, many astronauts found themselves postponing their ‘need to go’ for as long as possible and particularly to wait until there was no work to do.

The urine-collection device took the form of a hose with a condom-like fitting on the end, which led, by way of a valve, to a vent on the outside of the command module, out of which would periodically spill a cloud of frozen droplets. (One Apollo astronaut, when asked what he thought was the most beautiful sight in space, responded “Urine dump at sunset!”) During one toilet session, as Cunningham fitted the urine hose to his suit, he instinctively turned his back to the window for privacy. “Walt,” Schirra asked with some humour in his voice, “who is out there?”

As for moving around in the new spacecraft, the astronauts turned, in Schirra’s words, into spacegoing gymnasts. “You can move any place you want to fairly freely,’’ said Cunningham, “and you certainly don’t need strong handholds to take care of it.’’ Exercise was important, though. At first, when they slept in their couches, their bodies curled up into foetal positions, giving them lower back and abdominal pains; these were relieved by working on a stretching device called an Exer-Genie, which relaxed their cramped and aching muscles.

Sleep brought mixed blessings, with Schirra complaining about the around-the – clock operations which disrupted their normal routine. Sometimes they might go to bed as early as 4:00 pm or as late as 4:00 am, he said, and a consensus was finally reached whereby Eisele kept watch on Apollo 7’s systems whilst Schirra and Cunningham slept and vice versa. Two sleeping bags were mounted beneath the couches and the astronauts typically zipped themselves inside, although the incorrect positioning of restraint straps made them less than ideal. Cunningham, certainly, preferred to sleep in his couch with a shoulder harness and lap belt to keep still. However, if two crew members did this, they invariably disturbed their colleague who was awake. By the third day of the flight, thankfully, they had worked out a routine to get enough sleep.

All three men expressed unhappiness over their food, which tended to crumble and whose particles floated around the cabin. Following his Gemini VI-A mission three years earlier, Schirra requested taking coffee with him aboard Apollo, which he did. Not so fulfilling were the head colds which, first Schirra, and then Eisele and Cunningham, developed during the mission. To be fair, this caused severe discomfort, because it proved extremely difficult to clear the ears, nose and sinuses in microgravity. Mucus rapidly accumulated, filling their nasal passages and stubbornly refusing to drain from their heads; indeed, their only relief was to blow their noses hard, which proved painful on their ear drums. A little under a day into the mission, an irritable Schirra, already annoyed that Mission Control had added two thruster firings and a urine dump to their workload, cancelled the first planned television transmission from Apollo 7, “without further discussion’’. It was the first of many conflicts with ground staff.

Indeed, according to Schirra in his autobiography, Donn Eisele, watching over the spacecraft systems at the time, began the dispute with Mission Control over rescheduling the first television transmission early on 12 October. “When I awoke,’’ Schirra wrote, “I could hear Eisele in an argument. I put on a headset and heard a ground controller say, rather insistently, that our first television transmission was on the agenda for that day.’’ Schirra butted in and backed Eisele that they had enough to do on their second day in orbit, with engineering objectives, rendezvous practice and SPS preparations, without having to worry about the transmission. However, there was more to it than that. “We were scheduled to test the TV circuit later that day,” explained Schirra, “and we’d test it before using it. It was an electrical circuit and I had not forgotten than an electrical short had resulted in the loss of the Apollo 1 crew.’’

In fact, Schirra had complained about the scheduling of the transmissions on the ground, before launch, “but hadn’t been able to win the battle,’’ wrote Deke Slayton. “He probably figured there wasn’t much we could do to him while he was in orbit, and he was right, but it made my life kind of difficult.’’ The commander’s antics also upset the flight directors, including Chris Kraft and Glynn Lunney, when he began sarcastically criticising “the genius’’ who designed a particularly balky piece of equipment. “He might have been right,’’ continued Slayton, “but it sure didn’t endear him to the guys on the ground to have the astronaut implying they were idiots over the open line for everyone to hear.’’ Eisele and Cunningham, despite their admonitions to the contrary, followed Schirra’s lead. After one test which he perceived as pointless, Eisele, clearly annoyed, quipped that he “wanted to talk to the man, or whoever it was, that thought up that little gem’’. ‘The man’ turned out to be Flight Director Lunney himself. Going over the mission tapes and transcripts after the flight, Cunningham would conclude that he ‘‘never had any problem with the ground’’, although Deke Slayton felt that all three men ‘‘were pretty testy’’. One flight controller even muttered, only half-jokingly, about letting the Apollo 7 crew land in the middle of a typhoon . . .

Still, on the third day of the mission, the first of seven eagerly awaited transmissions began, marking the first live televised event from an American manned spacecraft. Each one took place as Apollo 7 passed between Corpus Christi in Texas and Cape Kennedy, the only two ground stations equipped to receive the transmissions. The crew opened the first telecast with a sign which read ‘From the lovely Apollo room, high atop everything’, then aimed their camera through the window as they passed above New Orleans and over Florida. Later transmissions included tours of the command module, demonstrations of the Exer-Genie and explanations of how food was prepared in space and how dried fruit juice was reconstituted with water. All in all, the telecasts were well-received and the astronauts enjoyed them, displaying cards with ‘Keep Those Cards and Letters Coming In, Folks’ . . . and offering Schirra a chance to gain revenge on Deke Slayton by asking him, live, if he was a turtle. Sitting in Mission Control, the gruff Slayton acknowledged that he had recorded his answer, switching off his microphone to utter the necessary answer: ‘‘You bet your sweet ass I am!’’ After the flight, these ‘Wally, Walt and Donn Shows’ proved so popular that the astronauts even won a special Emmy award.

By 12 October, the day that Schirra cancelled the first transmission, Apollo 7 had drifted about 130 km from the S-IVB. The crew’s task was to re-rendezvous with it. This was not as straightforward as it had been on Gemini, since the command module lacked a rendezvous radar and the astronauts were unable to read their range and closing velocity to the target. However, wrote Schirra, ‘‘we made it through the rendezvous, with each of us ageing about a year’’, and Apollo 7 edged to within 20 m of the discarded stage. The manoeuvre proved quite traumatic, with no clear awareness of their closing motions, and the S-IVB itself was spinning throughout like an angry whale. Twenty metres was close enough, before moving away. The stage eventually re-entered the atmosphere on 18 October, its debris splashing into the Pacific Ocean.

Experimental work included synoptic terrain photography, employing a hand­held 70 mm Hasselblad 500C camera to monitor the Carolina bays in the United States and examine wind erosion in desert regions, tropical morphology and the origin of the African rift valley. Imagery was also acquired of Baja California, parts of Mexico and the Middle East in support of geological inquiries and geographical urban studies were aided by photographs of New Orleans and Houston. Islands in the Pacific, extensive coverage of northern Chile and Australia and other areas added to Apollo 7’s photographic haul. Overall, that haul amounted to some 500 images, of which more than a third proved usable, although the need to change film magazines, filters, settings and keep cameras steady accounted for the improper exposure of many frames. Weather photography was also important, with numerous images of various cloud and meteorological structures, including the best-ever photographs of a tropical storm, in this case Hurricane Gladys and Typhoon Gloria. Pre-flight and post-flight X-rays of bones also contributed towards a demineralisa­tion study, whilst sampling before launch and after splashdown helped to determine cellular changes in the astronauts’ blood.

The final days of what both Wernher von Braun and Sam Phillips were lauding as “the perfect mission’’ were marred by the worsening head colds. Schirra’s, indeed, had materialised barely 15 hours after launch, forcing him to admit that he had “gone through eight or nine Kleenexes’’, so he had to endure it for most of the 11- day mission. (He also took Actifed, to which he became so attracted that he helped sell it on television commercials after leaving the astronaut corps.) Years later, Walt Cunningham would blame Schirra’s cold on a dove-hunting trip that the Apollo 7 crew took in a rainy Florida shortly before launch. “Wally was kind of a General Bull Moose complex,’’ Cunningham said. “What’s good enough for Bull Moose is good enough for the world. So, when Wally had a cold, everybody had to be miserable.’’

A head cold anywhere is miserable, but in the pressurised confines of a spacecraft, it proved much more so, and Eisele and Cunningham quickly succumbed. Physician Chuck Berry advised them to take aspirin and decongestant tablets and, as re-entry neared, they began to worry that the build-up of pressure whilst wearing their helmets might burst their eardrums. ft was not an idle fear. During his days at test pilot school, Schirra had made a short flight in a propellor aircraft, with a head cold, and “almost busted an ear drum’’. The choice he now faced on Apollo 7 – not wearing a helmet or running the risk of lifelong hearing loss – was an easy one to make.

Deke Slayton explicitly ordered the crew to wear their helmets, but Schirra refused, agreeing only to keep them stowed in case of emergencies. There were, admittedly, contingency options in place for returning home suitless, perhaps in the event of contamination, but after almost 11 days it seemed unlikely that cabin pressure would fail during re-entry. Each man took a decongestant pill an hour before hitting the atmosphere and endured no major problems. As the command module’s pressure was raised to conditions approximating normal sea-level, Schirra,

Eisele and Cunningham performed the Valsalva manoeuvre – holding their noses, closing their mouths and vigorously exhaling through their nostrils – to keep their middle ears equal to the increasing cabin pressure. In doing so, they avoided ruptured ear drums… but aroused the wrath of flight controllers. All three men would be “tarred and feathered” for their insubordination during the mission. Schirra had already announced his retirement from NASA and probably could not have cared less, but Eisele and Cunningham, who had followed their commander’s lead, would never fly again.

“SITTIN’ HERE BREATHING’’

The immediate aftermath of a launch, Jack Albert said later, was normally something of an anticlimax. Except, that is, on 4 December 1965, when spirits remained high. Another Gemini would be despatched in just a few days’ time, and, judging from the minimal damage sustained by Pad 19, one major obstacle standing in the way of the joint mission had dissolved. The next day, the two stages of GLV-VI had been erected and by sundown the Gemini VI-A spacecraft was added. A computer problem quashed hopes to launch on 11 December, but the installation of a replacement part brightened prospects for Schirra and Stafford to fly a day later.

On the morning of the 12th, the astronauts awoke, showered, breakfasted and suited-up just as they had seven weeks earlier, albeit on this occasion Schirra dispensed with smoking a cigarette. Launch was scheduled for six seconds past 9:54 am and the countdown clock ticked perfectly toward an on-time liftoff. Precisely on cue, the Titan’s first-stage engines ignited with a familiar whine. Then, after less than 1.2 seconds, they shut down. Instantly, Schirra, his hand clasping the D-handle which would have fired his and Stafford’s ejection seats and boosted them to safety, faced a life-or-death decision. The mission clock on the instrument panel had started running, as it would in response to the vehicle lifting off, but Schirra could feel no movement in the rocket. If the Titan had climbed just a few centimetres from the pad at the instant of shutdown, there was a very real risk that its 150,000 kg of volatile propellants could explode in a holocaust, known, darkly, among the astronauts, as a Big Fucking Red Cloud (BFRC).

In his autobiography, Stafford remembered vividly the moment that the behemoth came alive and, just as vividly, the instant at which its roar ceased. ‘‘The sound of the engines died even though the clock started and the computer light came on, both indications that we had lifted off,’’ he wrote. ‘‘But I could feel that we hadn’t moved. More important, there was no word from [Capcom] Al Bean, confirming liftoff, which was critical.’’ In fact, it was the feeling of stillness in the

Titan that convinced Schirra not to risk ejecting. Kenneth Hecht, head of the Gemini escape and recovery office, was surprised that he did not eject, but in reality, neither Schirra nor Stafford had much confidence in the seats and, as test pilots, instinctively desired to remain with their ‘bird’ for as long as possible. Stafford felt that the 20 G acceleration of an ejection would have left him with, at best, a cricked neck for months. Moreover, there was a very real risk of death. ‘‘Given that we’d been soaking in pure oxygen for two hours,’’ Stafford wrote, ‘‘any spark, especially the ignition of an ejection seat rocket, would have set us on fire. We’d have been two Roman candles shooting off into the sand and palmetto trees.’’ Yet Schirra would not have put them in undue danger. ‘‘If that booster was about to blow,’’ he said, ‘‘if we really had a liftoff and settled back on the pad, there was no choice. It’s death or the ejection seat.’’

In emotionless tones, the unflappable Schirra reported that propellant pressures in the Titan were lowering and Martin’s test conductor, Frank Carey, responded in a similarly calm manner with ‘‘Hold kill’’, a missile-testing term denoting a shutdown. Although Schirra knew that the rocket had not left the pad and that the mission clock – which should have started at the instant the Titan began to climb – was wrong, his ‘gutsiness’ that morning would win him deserved praise from his fellow astronauts. Had he and Stafford ejected, the entire rendezvous would have been over. There would have been no way that Gemini VI-A could have been readied for another launch attempt in less than the six remaining days of Borman and Lovell’s mission. Moreover, with the increasing likelihood that another Agena-D would not be ready until the spring of 1966, the crucial step of proving rendezvous as a means of getting to the Moon would have been seriously jeopardised.

When the smoke had cleared, and after receiving assurances that the ejection seat pyrotechnics had been safed, Guenter Wendt and his team returned to the capsule to begin extracting the two disappointed astronauts. ‘‘It took 90 minutes to raise the erector and get us out, a lot longer than it should have,’’ wrote Stafford. ‘‘Although he had kind words for Guenter and the pad crew, Wally was furious.’’ The families of the two men were also understandably anxious and, from then onwards, it would become standard practice to have another astronaut present with them during a launch attempt. The day itself was already a bad one: a Cape Kennedy rescue helicopter had crashed in the nearby Banana River and Randy Lovelace – bane of the astronauts’ lives during their selection – and his wife had been killed in a private aircraft crash in Aspen, Colorado.

Later that same afternoon, President Johnson told Jim Webb that he was ‘‘greatly disturbed’’ by the abort, although he was assured that enough time remained to identify the Titan glitch, fix it and get Gemini VI-A into orbit before the end of Borman and Lovell’s mission. That glitch did not take long to find: an electrical tail plug had dropped prematurely from the base of the rocket and activated an airborne programmer – a clock in Gemini VI-A’s cockpit which should not have started until liftoff. The plug was supposed to require 18 kg of ‘pull’ in order to separate, but had rattled loose from its housing. Although it had been installed properly, tests revealed that some plugs did not fit as snugly as others and pulled out more easily.

Then, as engineers pored over engine trace data, it became clear to Ben Hohmann of the Aerospace Corporation that the Titan’s oxidiser pressure and overall thrust had begun to decline before the plug fell out. Subsequent analysis of oscilloscope wiggles identified a blockage in the gas generator and, eventually, an Aerojet technician found the answer: a thimble-sized dust cover had been accidentally left on its fuel inlet port during processing. Months earlier, when the engine was still at Martin’s plant in Baltimore, the gas generator had been removed for routine cleaning and when the check valve at its oxidiser inlet was detached, a plastic cover was installed to keep dirt out. As checkout of the engine proceeded, the dust cap was overlooked and forgotten. To be fair, its location would have been almost impossible to find. However, had the initial tail plug dropout not stopped the launch, the gas generator blockage certainly would have done. “It was serendipitous that we shut down,’’ said Joe Wambolt, then a Gemini propulsion engineer, in an interview published years later in Quest magazine, “because the other engine was not going to thrust.’’ In his autobiography, Wally Schirra wrote that, had he known of this ‘second’ brewing problem at the time, he probably would have chosen to fire the ejection seats.

By 13 December, the gas generator had been cleaned and replaced and the launch was provisionally targeted for the 16th, just two days before Borman and Lovell were due to return to Earth. However, Elliot See radioed the Gemini VII crew with the news that, barring any further problems, the 15th seemed a more likely launch date.

In addition to demonstrating the steely nerves of the Gemini VI-A crew – one of Schirra’s first messages had been ‘‘We’re just sittin’ here breathing’’ – the abort also verified, in the most dramatic manner possible, that the Titan’s malfunction detection system worked. Sensing no upward movement, it had correctly and automatically closed the valves to prevent more fuel entering the combustion chambers and had duly shut down the engines. Catastrophe had been averted. In the Soviet Union, Nikolai Kamanin, fuming over his nation’s failure to catch up with the Americans, admitted in his diary that, despite the abort, a successful Gemini rendezvous was only a matter of days away. Indeed it was.

“NOTHING SPECIAL”

Deke Slayton and others have freely admitted that they were forced to rethink the practicalities of EVA in the seven-week interval between Geminis IX-A and X. Fortunately, the latter mission would star as its spacewalker a man who, perhaps more so than any other astronaut, knew the G4C pressure suit literally inside out. Michael Collins, who described himself as “nothing special’’, “lazy” and “frequently ineffectual”, would later gain eternal fame as ‘the other one’ on the Apollo 11 crew.

Before that, as John Young’s pilot on Gemini X, he would become the first man to make two extravehicular activities, the first man to physically touch another vehicle in space… and, alas, the first spacewalker to bring home absolutely no photographic record of his achievement.

Slayton saw Young and Collins as a perfect team. Both were obsessive hard – workers, but in contrast to Young’s reserved and publicity-shy nature, the gregarious Collins was “smooth and articulate”. Prior to his selection in October 1963, to improve this smoothness, the Air Force sent its astronaut applicants to ‘charm school’, in which Collins learned more social skills essential for spacefarers: wearing knee-length socks ‘‘that go on forever’’, abhorring hairy legs and needing to hold hands on hips in a particular way ‘‘because people you don’t want to talk about hold ‘em the other way!’’

With a father, uncle and elder brother who would all rise through the ranks to become generals, it was obvious that Collins would follow in their military footsteps. He entered the world in Rome on 31 October 1930, becoming the first American astronaut born outside the United States, and throughout his childhood was often on the move: from Italy to Oklahoma, to Governor’s Island in Upper New York Bay, to Maryland, to Ohio, to Puerto Rico and to Virginia. Whilst in Puerto Rico, Collins took his first ride in a twin-engined Grumman Widgeon, although he would admit that as graduation from West Point neared in 1952, his ‘‘love affair with the airplane had been neither all-consuming nor constant’’.

Nonetheless, he graduated from the Military Academy in the same class as fellow astronaut-in-waiting Ed White and his eventual choice of the Air Force as his parent service was based on two factors. The first was sheer wonder over where aeronautical research would lead in years to come. . . whilst the second was simply to avoid accusations of nepotism, ‘‘real or imagined’’, since his uncle happened to be the Army’s chief of staff at the time! As a cadet, Collins completed initial flight training in Mississippi aboard T-6 Texans, before moving on to jets at Nellis Air Force Base in Nevada, flying the F-86 Sabre.

Nuclear-weapons-delivery training followed at George Air Force Base in California, as part of the 21st Fighter-Bomber Wing, and Collins transferred with the detachment to Chaumont-Semoutiers Air Base in France in 1954. Two years later, whilst participating in a NATO exercise, he was forced to eject from his F-86 when a fire erupted behind his cockpit. He met Pat Finnegan in the officers’ mess and, despite their differing religious beliefs – she being a staunch Roman Catholic, he a nominal Episcopalian – the couple married in 1957.

Subsequent work as an aircraft maintenance officer, during which ‘‘dismal’’ time he trained mechanics, was followed by a successful application to join the Experimental Flight Test Pilot School at Edwards in August 1960. It involved flying on a totally new level. ‘‘Fighter pilots can be impetuous; test pilots can’t,’’ Collins recounted years later. ‘‘They have to be more mature, a little bit smarter. . . more deliberate, better trained – and they’re not as much fun as fighter pilots.’’ By this time, he had accumulated over 1,500 hours in his logbook, the minimum requirement for a prospective student at the exalted school. (In fact, his class included future astronauts Frank Borman and Jim Irwin.)

“NOTHING SPECIAL”

An exhausted Cernan puts on a brave face for Tom Stafford’s camera after finally removing his helmet. The world’s longest EVA to date had uncovered a chilling reality: that spacewalking was hazardous and by no means routine.

Two years later, when John Glenn completed America’s first orbital spaceflight, Collins took notice and submitted his application for the 1962 astronaut intake. He underwent the full physical and psychological screening process, narrowly missing out on selection and, despite his disappointment, moved on to study the basics of spaceflight, flying the F-104 Starfighter to altitudes of 27 km and receiving his first taste of weightlessness. He had barely returned to fighter operations when, in June 1963, NASA announced its intent to choose more astronauts. Years later, Deke Slayton would write that the 1962 selection panel considered Collins a good candidate who had been “held back to get another year of experience”.

Initial instruction as part of the third class of 14 spacefarers, whom the press widely dubbed ‘The Apollo Astronauts’, included lunar geology, a subject for which Collins had no great enthusiasm or interest; ironic, perhaps, in view of where his career would eventually take him. Although he felt, like Slayton, that the New Nine was probably the best all-round astronaut group yet chosen, Collins admitted that the Fourteen were the best-educated: with average IQs of 132, an average 5.6 years in college and even an ScD among them.

Completion of initial training led to assignment to oversee the G4C extravehicular suit and he would express annoyance at being left out of the loop in May 1965 when a closed-door decision was made to give Ed White a spacewalk on Gemini IV. In his autobiography, Collins described the suit and the astronaut’s relationship with it, as “kind of love-hate… love because it is an intimate garment protecting him 24 hours a day, hate because it can be extremely uncomfortable and cumbersome”. The suit, and the timeline for which astronauts were to get fitted for it, provided a never – ending source of rumour as to who would be assigned next to a mission slot.

Recognition for this work came in June 1965 with a backup assignment, teamed with Ed White, to Gemini VII. Despite falling ill with viral pneumonia shortly thereafter, Collins recovered promptly and performed admirably, even taping a ‘Home Sweet Home’ card inside Jim Lovell’s window on launch morning. His eventual assignment, with John Young, to Gemini X came in January 1966, by which time White had been named to the first Apollo mission. ‘‘I was overjoyed,’’ wrote Collins. ‘‘I would miss Ed, but I liked John, and besides I would have flown by myself or with a kangaroo – I just wanted to fly.’’

WALT AND ‘WHATSHISNAME’

In truth, Air Force Major Donn Fulton Eisele’s NASA career was waning by the time Apollo 7 splashed down. Born in Columbus, Ohio, on 23 June 1930, Eisele had followed the classic path to become an astronaut: a bachelor’s degree from the Naval Academy in 1952, a master’s credential in astronautics from the Air Force Institute of Technology and graduation from the Aerospace Research Pilots’ School at Edwards Air Force Base in California. Prior to his selection as an astronaut, along with Cunningham, in October 1963, Eisele served as a project engineer and test pilot at the Air Force’s Special Weapons Center at Kirtland Air Force Base in New Mexico.

The easygoing Eisele’s performance as an astronaut is hinted at by Deke Slayton in his autobiography, when he notes that his original intention was to “try out some of the guys who, frankly, I thought were weaker’’ on the Apollo 1 mission. “My original rotation had Donn Eisele and Roger Chaffee as the senior pilot and pilot, working for Gus,’’ he continued. Had it not been for the fact that Eisele damaged his shoulder during a zero-G training flight aboard a KC-135 aircraft just before Christmas 1965, he might have been in the senior pilot’s seat aboard Apollo 1, instead of Ed White. Instead, Slayton considered it easier to swap Eisele for White, the latter of whom was previously attached to Wally Schirra’s original Apollo 2 crew.

Eisele quickly assumed the moniker ‘Whatshisname’, bestowed upon him by Schirra and Cunningham, when nobody seemed to be able to pronounce his surname. Phonetically, it ran EYE-SEL-EE, but when NASA Administrator Jim Webb tried to introduce the crew to President Lyndon Johnson, he mistakenly called him Donn ‘Isell’. ‘‘From then on,’’ Schirra wrote, ‘‘Donn was ‘Whatshisname’’’.

Eisele’s career, in addition to Apollo 7, was harmed by a particularly ugly divorce from his wife Harriet, the result of an affair which caused his work in the astronaut office to suffer. Indeed, the pressures of the job had led many astronauts to look elsewhere, outside the marital home, and after Eisele it would be John Young who would next go through a divorce. Unlike Eisele, however, Young did not allow his personal life to disrupt his work and remained devoted to the space programme. Stories would abound over the years that the funeral of one astronaut killed in the early Sixties – his name was never divulged – was attended not only by his wife and family. . . but also by his long-term mistress, discreetly escorted to the ceremony by a close and trusted friend.

In spite of the criticisms levelled at them in the wake of Apollo 7, both Eisele and Cunningham were at least considered for backup roles on future missions. The former had already been assigned to serve as the backup command module pilot on Apollo 10, the dress-rehearsal for the first lunar landing. For Tom Stafford, the commander of that mission’s prime crew, however, Eisele’s assignment was little more than “a temporary step into oblivion’’. Cunningham, on the other hand, would work for several years on the United States’ space station project, Skylab, and even trained as backup commander for its first mission. He “wanted to fly again,’’ wrote Deke Slayton. “In spite of the flight operations opinion that he shouldn’t, I wasn’t going to rule him out. But it was a numbers game.’’ Cunningham, like Eisele, never flew again.

Ronnie Walter Cunningham was born on 16 March 1932 in Creston, Iowa, and came to be seen as one of ‘the scientists’ among the astronaut corps, owing to his credentials as a civilian physicist. He received bachelor’s and master’s degrees from the University of California at Los Angeles in 1960 and 1961, respectively, then began doctoral research, which he completed, save for his final thesis. However, his military experience certainly paralleled his scientific knowledge: he joined the Navy in 1951, began flight training and served on active duty, then as a reservist, with the Marine Corps. ‘‘In the Navy, in those days, you ran the risk of being assigned to torpedo bombers or transport pilots,’’ Cunningham recalled, ‘‘and the Marine Corps guaranteed you that your first tour. . . would be flying single-engine fighter planes.’’ He remained a reservist throughout his astronaut career. Prior to selection as one of ‘The Fourteen’ in October 1963, Cunningham worked for the Rand Corporation, performing research in support of classified projects and problems relating to the magnetosphere.

‘‘I was working on defence against submarine-launched ballistic missiles, trying to write in… the crudest fashion the equations that would intercept a missile on the rise,’’ Cunningham explained. ‘‘At the same time, I was doing my doctoral work on the Earth’s magnetosphere. It was a tri-axial search coil magnetometer and we were trying to measure fluctuations in the Earth’s magnetic field. It was during this period that I applied and got accepted at NASA. I never did finish the thesis.’’

As a non-test pilot, possessing an air of academia and a self-confessed irreverance to authority, Cunningham stood out among the Fourteen. He ‘‘seemed determined to be different from the rest of us,’’ wrote his 1963 classmate Gene Cernan, ‘‘whether reading The Wall Street Journal while we busted our asses during a classroom lecture or driving a Porsche instead of a Corvette.’’ He would also lose support through his criticisms, notably over the performance of Neil Armstrong and Dave Scott during the Gemini VIII emergency. When Cunningham claimed years later that he, Schirra and Eisele had been tarred and feathered for their antics on Apollo 7, Cernan would retort that it was ‘‘probably with good reason’’.

FIRECRACKERS, FOOTBALLING AND THE F-86

It was third time lucky when Wally Schirra – newly raised from commander to captain in June 1965, part of President Johnson’s spot-promotion of active-duty military astronauts – and Air Force Major Thomas Patten Stafford Jr boarded their spacecraft under clear blue skies on the warm morning of 15 December. Launch at 8:37:26 am was perfect, the Titan behaving flawlessly and inserting them into an elliptical orbit of 160-260 km. The bald-headed Stafford was another of NASA’s 1962 astronaut intake whom Deke Slayton described as ‘‘too green’’ to have been a realistic candidate for the Project Mercury selection. Indeed, as Slayton and his six colleagues were announced in April 1959, Stafford was barely graduating from test pilot school and his height would have rendered him ineligible anyway. Further, had it not been for the decision to increase the height limit for the larger Gemini spacecraft, Stafford would not have been picked at all.

In time, he would become one of NASA’s most accomplished astronauts, flying four times into space, including a lunar voyage and command of the joint Apollo – Soyuz mission with the Soviets. His habit of trying to speak faster than he could think led fellow astronauts to nickname him ‘Mumbles’. During Al Shepard’s training to command Apollo 14, Stafford would also take charge of the astronaut office as its chief. He was born in Weatherford, Oklahoma, on 17 September 1930, the son of a dentist father and a teacher mother, becoming an avid reader and an enthusiastic watcher of each silvery DC-3 airliner which frequently soared above his childhood home. After the Pearl Harbour bombings, Stafford took a paper round to buy parts and build his own balsa wood model aeroplanes and in 1944 he took his first flight in a two-seater Piper Cub. That flight alone, he wrote, ‘‘made me eager to become a fighter pilot and help win the war’’.

The young Stafford would not engage in combat in the Second World War, but his dream would one day come true. In high school, he excelled in football, eventually becoming captain, although he recounted in his autobiography that he was far from perfect: shooting out streetlights with a BB gun, throwing a firecracker into the police station and attempting, with his friends, to disrupt their English lessons with a cleverly orchestrated symphony of coughing. ‘‘The neighbours could always tell when I had been caught,’’ he wrote. ‘‘I would be out front painting the fence as a punishment, like Tom Sawyer.’’

His footballing abilities, though, drew the attention of the University of Oklahoma’s coach, although Stafford had also applied for, and would receive, a full ROTC scholarship from the Navy to study there. He had already undertaken some military training in 1947 as part of the Oklahoman National Guard and was even called to temporary duty when the small town of Leedey was hit by a tornado. Stafford also worked on manoeuvres to plot howitzer targets and his calculations contributed to his battery receiving an award for the most outstanding artillery unit. The following year, 1948, brought both success and tragedy: acceptance into the Naval Academy, tempered by the death of his father from cancer.

During four years at Annapolis, he was assigned to the battleship Missouri, where he met another midshipman named John Young. ‘‘We would have laughed,’’ Stafford wrote, ‘‘at the suggestion that someday we would become astronauts flying in space and circling the Moon together.’’ After graduation in 1952 with a bachelor’s degree, his decision to opt for an Air Force, rather than naval, career was inspired by his eagerness to fly the F-86 Sabre jet. He achieved his coveted silver wings from Connally Air Force Base in Waco, Texas, late the following year. By now married to Faye Shoemaker, Stafford underwent advanced training in the F-86 – ‘‘the hottest thing in the sky’’ – and the T-33 Shooting Star. He was then assigned to an interceptor squadron, based in South Dakota, and later moved to Hahn Air Base in Germany as a flight leader and flight test maintenance officer for the Sabre.

Few opportunities for promotion almost led Stafford to resign from the Air Force in 1957 and he even drafted application letters to numerous airlines. . . before deciding to stay in the service when he first saw the F-100 Super Sabre jet and the forthcoming F-104 Starfighter. “If I went to an airline,” he wrote, “I’d be flying the equivalent of cargo planes and could say goodbye to high-performance fighters.’’ He tore up the letters and was promoted to captain the following year, together with selection for the Air Force Experimental Test Pilot School at Edwards. His time there, he remembered, saw him working harder than ever before. “Each morning’s flight generated a pile of data from handwritten notes, recording cameras, oscilloscopes and other instruments. We had to reduce this data to a terse report that we submitted to the instructors and we had a test every Friday.’’ From such schools, pilot astronauts were, are and will continue to be drawn.

Stafford graduated first in his class in May 1959, stayed on at Edwards as an instructor and, over the next couple of years, oversaw a number of newer test pilot candidates, including Jim McDivitt, Ed White, Frank Borman and Mike Collins. He also met a visitor from the Navy’s test pilot school, an aviator named Pete Conrad. Additionally, he co-authored two flight test manuals: the Pilot’s Handbook for Performance Flight Testing and the Aerodynamics Handbook for Performance Flight Testing. By the spring of 1962, he was due for a permanent change of station and confidently expected to study for an advanced master’s degree in a technical field, but was picked to attend Harvard Business School; a business administration credential, he realised, would benefit both his military career and any subsequent plans he had. In April, Stafford also learned that NASA was recruiting its second class of astronauts and submitted his application. Five months later, and three days after starting his master’s degree at Harvard, he received the call from Deke Slayton that would truly change his life.