Category Space Ship One

Rocket-Engine Operation

On November 18, 2003, Scaled Composites qualified a rocket engine in preparation for the first powered flight of SpaceShipOne.

“The nice thing about this particular type of hybrid motor is the nitrous oxide is room temperature in the oxidizer tank in front. It self-pressurizes to about 750 pounds per square inch,” Doug Shane
said. This eliminated the need for complicated and expensive pumps to flow the oxidizer into the CTN. In figure 5.15a panel on the belly of SpaceShipOne is removed, exposing the engine bay, so the CTN could be easily mounted.

The oxidizer tank was filled with liquid nitrous oxide through its forward bulkhead. The MONODS pumped the nitrous oxide at 300 pounds per square inch and 0 degrees Fahrenheit. To bring the temperature up to room temperature and maintain it there, engine bleed air from White Knight flowed into SpaceShipOne and was directed at both ends of the tank during captive carry.

The rocket engine of SpaceShipOne could only be fired once. After the rocket engine was armed and the fire switch thrown, the igniter produced a significant amount of heat, causing combustion between the oxidizer and fuel.

“SpaceShipOne does not have a throttle. It is on or off,” Rutan said. “There was no need for a throttle.”

For the spaceflights, the force of thrust was 16,800 pounds-force (74,730 newtons). However, because of performance concerns and

Rocket-Engine Operation

Подпись: ~ J ґ

Fig. 5.13. Scaled Composites was able to monitor the performance of each rocket engine tested during the development phase. Data collected by sensors on the TST was relayed to engineers real-time for analysis. Mojave Aerospace Ventures LLC, photograph by David M. Moore

к_________________________________________________________________________________________

Rocket-Engine Operation

Rocket-Engine Operation

г ; ^

Fig. 5.15. Between each spaceflight, it was necessary to replace the spent CTN with a fully fueled CTN. The spent CTN can be refurbished by refueling the rubber inside the casing and replacing the ablative nozzle. Mojave Aerospace Ventures LLC, photograph by Scaled Composites

( >

Fig. 5.14. This photograph shows the rocket engine before the engine

fairing was attached. The cantilever rocket-engine design patented by Scaled Composites had the CTN fixed to the oxidizer tank at one end but completely unsecured at the nozzle end. Mojave Aerospace Ventures LLC, photograph by Scaled Composites

V__________________________________________ J the additional payload required by the Ansari X Prize competition, additional nitrous oxide oxidizer and rubber fuel were added, as well as an increase in burn duration. The thrust and the specific impulse (I$p), a measure of efficiency of the rocket engine, were not officially released by Scaled Composites.

Peak performance occurred once the rocket engine ignited. As the rubber burned away and the oxidizer tank emptied, the amount of thrust gradually reduced.

About sixty seconds into the burn, the nitrous oxide began a transition from liquid to gas because there was more room in the oxidizer tank for it to expand, which caused a significant decrease in thrust. At this point, the combustion was uneven throughout the CTN and caused SpaceShipOne to chug along for about five seconds. The ride then smoothed out for the remainder of the burn now that the nitrous oxide had transformed to gas.

During the flight, the engine performance and parameters could be monitored in the cockpit by the pilot and on the ground in Mission Control.

Rocket-Engine Operation

Brian Binnie stands in front of SpaceShipOne with its feather extended. In addition to the feather, SpaceShipOne required three other systems for control during a spaceflight: the mechanical flight control system for subsonic speeds, the electric flight control system for supersonic speeds, and the reaction control system (RCS) for space. Mojave Aerospace Ventures LLC, photograph by Scaled Composites

 

Rocket-Engine Operation

SpaceShipOne Instruments and Controls

paceShipOne is part airplane, missile, spacecraft, and glider. Like the North American X-1S, it was flown by hand. Figure 6.1 shows SpaceShipOne during a glide test flight with its control surfaces clearly visible on the tail booms.

To complete each spaceflight mission, it had to transition between a variety of flight phases, including takeoff, captive carry, boost, coast, feather, glide, approach, and landing. Flying these phases, SpaceShipOne crossed between three distinct flight regimes: subsonic, supersonic, and zero-g. Different flight control systems were required to operate in each regime. A basic mechanical control system was used in subsonic flight, while an electric – powered control system and a reaction control system (RCS) were required in supersonic and zero-g flight, respectively.

SpaceShipOne had a set of instruments and controls for each flight control system that the pilot had to switch between. Figure 6.2 shows Mike Melvill in the cockpit holding the control stick of SpaceShipOne with the nose cone detached.

Subsonic Flight Control

SpaceShipOne essentially flew like a light airplane—some of the time anyway. It had a mechanical flight control system that operated manually, similar to that of a Cessna 172 or Piper Cub. A simple cable-and-rod linkage tied the stick and rudder pedals

Rocket-Engine Operation

Подпись: Г

Rocket-Engine Operation

г ^

Fig. 6.1. SpaceShipOne was the first manned aircraft to use tail booms attached to the wingtips. Unlike almost every other aircraft, the wings had no control surfaces. The pilot maneuvered SpaceShipOne with control surfaces that were all located on the tail booms, an upper and lower rudder at the back of each tail boom, flying or movable horizontal stabilizers, and elevons at the trailing edge of each horizontal stabilizer. Mojave Aerospace Ventures LLC, photograph by Scaled Composites

Fig. 6.2. With the nose cone detached, Mike Melvill gets some practice at the controls of SpaceShipOne as Steve Losey, the crew chief, looks on. SpaceShipOne had room for a pilot up front and two passengers in the back row. Mojave Aerospace Ventures LLC, photograph by David M. Moore

N

to the control surfaces. The connections between the pilot’s controls in the cockpit and the control surfaces are shown in figure 6.3. No hydraulics were used for flight control.

All of the control surfaces were located on the tail booms. An upper and lower rudder were mounted at the end of each tail boom. The rudder pedals in the cockpit moved the upper rudders for control of yaw. Refer to figure 6.4 for SpaceShipOne s flight axes and rotations. Each rudder pedal worked independently and deflected the corresponding upper rudder outward only. By depressing both, the upper rudders acted a little bit like a speed brake.

On the horizontal stabilizer, elevons combined the functions of conventional ailerons on the wings and elevators on the tail. The control

f ‘ ^

Подпись:Подпись:Подпись:Rocket-Engine OperationFig. 6.3. This diagram shows the different control systems and the linkages from the controls in the cockpit to the control surfaces. The reaction control system (RCS) and the landing gear are also shown in this cutaway. Mojave Aerospace Ventures LLC, provided courtesy of Scaled Composites

V________________ )

Подпись: Not# Skid (Aids runway braking extends only, gravity and spring driven, crush damper) components

f >1

Fig. 6.4. Each of the three flight control systems allowed SpaceShipOne to maneuver along the flight axes. Pitch and roll were controlled by the elevons at subsonic speeds and by the movable horizontal stabilizers at supersonic speeds. The upper rudders and lower rudders controlled yaw at subsonic and supersonic speeds, respectively. RCS thrusters mounted on the wings and fuselage controlled pitch, roll, and yaw in space. James Linehan

V__________________________________________ J

Rocket-Engine Operationf Л

Fig. 6.5. At the trailing edge of each horizontal stabilizer was an elevon. When both elevons moved in the same direction, the pitch of SpaceShipOne changed. When moved differentially, roll changed. The photograph shows the poor airflow over a horizontal stabilizer during a stall test, as indicated by the small strings attached to the surface. Mojave Aerospace Ventures LLC, video capture provided courtesy of Discovery Channel and Vulcan Productions, Inc.

V______________________________ J

stick moved the elevons, which allowed the pilot to control pitch and roll of SpaceShipOne. Figure 6.5 shows a horizontal stabilizer during testing after modification.

Breaking the Sound Barrier (11P)

On December 17, a flimsy aircraft that no one thought would fly prepared to launch from sand-swept dunes. This wasn’t the Mojave Desert, though. It was 1903 in Kitty Hawk, North Carolina. The Wright brothers proved that a couple of bicycle makers could accomplish the unbelievable—powered, controlled, and sustained flight. Their famous flight is shown in figure 8.1.

One hundred years later, to the day, Scaled Composites also looked to make the unbelievable believable. SpaceShipOne was ready for its first rocket-powered test flight.

The sound barrier posed the greatest challenge the team had yet to face. The choice of pilots was not a straightforward one. Mike Melvill, the most experienced test pilot with Rutan designs, had already piloted SpaceShipOne seven times. Pete Siebold and Brian Binnie had each only flown SpaceShipOne once. During such a critical junc­ture, the test pilot with the greatest stick tim SpaceShipOne would seem like the most likel candidate. But Binnie was selected. The entire fate of Rutan’s space program now rested in his hands.

Flight Test Log Excerpt for 11P

Date: 17 December 2003

Flight Number Pilot/Flight Engineer

SpaceShipOne 11P Brian Binnie

White Knight 43L Pete Siebold/Cory Bird

Objective: The eighth flight of SpaceShipOne and first powered flight, fifteen-second burn of the rocket motor and supersonic flight. Motor light-off at altitude and inflight engine performance. Vehicle handling qualities through transonics and feather performance from altitude.

One of the most obvious reasons for the selection was Binnie’s experience flying supersonic jets for the U. S. Navy. “I would suspect that certainly was part of the thinking that went into it,” Binnie said. “I was also kind of the anointed test director for the rocket motor. So, I was very familiar with all the ins and outs with the motor and its performance. I was comfortable with its design and robustness and performance, more so than perhaps anybody else. And perhaps I had, right from the first time I saw it fire, this image in my mind of how it would play out when put into a vehicle. I was very motivated to fly that flight.”

Binnie also had flown Roton, a spaceship prototype produced by Rotary Rocket, Inc., that was half rocket and half helicopter. “That vehicle was decidedly scary to fly,” Binnie said. “I flew it three times. I thought, ‘You know, if I have to do this one or two more times, I’m pretty sure I’m going to kill myself.’ I was honestly sort of fearful that I’d climb into this thing and not climb out. I never felt that way with the spaceship. There were certainly things that could go wrong that could cause an accident, but I never felt that the accident was going to be life threatening.”

With Pete Siebold flying White Knight, Cory Bird released SpaceShipOne at 47,900 feet (14,600 meters). Dropping down, Binnie stabilized SpaceShipOne and started to pull the nose up.

“We knew very little about it. It was all about risk. Our standard for success was, literally, if the rocket motor lit off even for just a few seconds and we shut it down, we were going to call that a success,” Binnie said.

How would the rocket engine function? Would SpaceShipOne hold together during the enormous acceleration? What about the messy transonic region? How about the cockpit? Would it shake too much or be too loud to operate the vehicle? How would the untested controls work at supersonic? Would SpaceShipOne climb quickly enough so that an overspeed didn’t rip it to pieces?

“This was the riskiest flight of our whole program, probably times five or ten,” Doug Shane said.

At 44,400 feet (13,530 meters) and flying Mach 0.55, Binnie lit the rocket engine. “It’s a real rush to kind of ride something that powerful. Like I said, it is like a tsunami comes through the cabin. You are just taken away. So, it is very exhilarating,” Binnie said.

As SpaceShipOne rocketed upward, it broke the sound barrier after only 9 seconds. Figure 8.2 shows SpaceShipOne’s rocket engine firing.

Binnie shut down the rocket engine after a burn duration of 15 seconds as SpaceShipOne hit a maximum speed of Mach 1.2 (800 miles per hour or 1,290 kilometer per hour) while having pulled more than 3 g’s. As SpaceShipOne became the first manned vehicle to have ever used a hybrid rocket engine, it pointed up at 60 degrees and still climbed. SpaceShipOne continued to coast upward and was upside down by the time it reached near-weightlessness at an apogee of 67,800 feet (20,670 meters). Binnie then descended for about a minute with the feather deployed and retracted it at 35,000 feet (10,670 meters).

“It was manageable,” Binnie said. “It wasn’t the most graceful flight. If you looked at it from inside the cockpit, there were a lot of snakes being killed. The boost part of it went extremely well, all things considered, and gave us a lot of confidence that we had a design that was capable. It was only the landing that marred an otherwise wonderful day.”

Breaking the Sound Barrier (11P)

Г ^

Fig. 8.2. Brian Binnie took the controls of SpaceShipOne for test flight number 11P, one hundred years after the flight of the first successful airplane, in which the 1903 Wright Flyer had flown for 12 seconds. Even though Binnie burned the rocket engine for only 15 seconds,

SpaceShipOne broke the sound barrier after only 9 seconds. Mojave Aerospace Ventures LLC, video capture provided courtesy of Discovery Channel and Vulcan Productions, Inc.

ч___________________ ;______________________ J

Breaking the Sound Barrier (11P)

c ^

Fig. 8.3. A crash landing blemished an otherwise successful first rocket – powered test flight. SpaceShipOne touched down harder than the landing gear could handle, causing the left rear main landing gear to collapse and SpaceShipOne to skid off the runway. Mojave Aerospace Ventures LLC, video capture provided courtesy of Discovery Channel and Vulcan Productions, Inc.

v__________________________________________ J

On the landing, which had proved to be a surprising and persist­ent source of trouble for Scaled Composites, SpaceShipOne hit very hard. The left main landing gear collapsed, and SpaceShipOne skidded to the left and off the runway into the dirt, as shown in figure 8.3 and figure 8.4.

Burt Rutan gave some clarification about the cause of the crash landing during a press conference late in 2004. He said, “We were testing at that time, a flight control modification that would give us a better margin on flutter in the transonic area. And that damper in the flight controls had gotten so cold that the controls were extremely sticky. That landing wasn’t Brian’s fault. It was the fault of us not doing the proper thing, and that is put­ting a heater on the damper so that it didn’t freeze up on him on the landing approach.”

Breaking the Sound Barrier (11P)
As Binnie was flaring up for the landing, the damper unfroze. The controls buffeted like SpaceShipOne was going to stall. It was actually just the control linkages responding differently, but there was no way that Binnie could have known this. So, he dropped the nose to prevent the stall that he thought was about to occur. As a result, SpaceShipOne came in too fast and too hard for the fragile landing gear.

Paul Allen

Up to this point, design and development had been relegated to computer analysis and foam models. Burt Rutan hadn’t been ready to approach anyone for funding until he felt ready that he could deliver what he’d promised. Figure 1.12 shows Rutan and aerodynamicist Jim Tighe during early computer analysis.

For the design of SpaceShipOne and White Knight, Scaled Composites would rely heavily on computer analysis because the vehicles would not go through wind-tunnel testing. Figure 1.13 shows an evaluation of SpaceShipOne as the tail booms bend downward.

Around this time, Rutan and philanthropist Paul Allen, who cofounded Microsoft in 1975 with his high school friend Bill Gates, had begun exploring the possibility of using high-altitude airplanes circling over Fos Angeles as a way to provide broadband wireless to the city. “My first couple of meetings with Paul were not about space at all,” recalled Rutan. “There was an interest that he had in something else I was doing. It was related to Proteus for telecommu­nications.” They eventually got around to talking about space, and Rutan’s idea for a very low-cost suborbital spacecraft. Allen turned out to be a bit of a space enthusiast and became quite interested. But Rutan was still not comfortable with his design, which was still based upon a capsule and parachutes at the time.

Once fiber optics took off, using an airborne telecommunications platform was no longer feasible, but Rutan hadn’t stopped thinking about the spaceship. “I figured out the ‘carefree’ reentry, and I thought I could have something that could land as a glider, be more operable, and a lot safer. I didn’t know that ‘carefree’ reentry would work. I just had a good feeling about it.”

In the spring of 2000, Rutan felt he was ready for funding. “I actually asked for a meeting with Paul. And I said, ‘Fisten, I think

Paul Allen

Г Л

Fig. 1.5. The first engineer that Burt Rutan hired at Scaled Composites,

Doug Shane, was responsible for the flight testing of SpaceShipOne and White Knight. During the flight tests, Shane’s was the cool, calm voice on the Mission Control side of the radio. Mojave Aerospace Ventures LLC, photograph by David M. Moore

V_____________________________ )

г л

Fig 1.6. Before the design of SpaceShipOne was conceived, Burt Rutan developed a concept for a single-seat rocket to be launched into space off of Proteus, a high-altitude research aircraft.

Fig. 1.7. As Proteus reached launch altitude, it would perform a zoom maneuver by pointing up at a steep angle to assist the trajectory of the rocket on its suborbital flight. Mojave Aerospace Ventures LLC, provided courtesy of Scaled Composites

V____________________________ )

I could do this now.’ And he put out his hand and shook it and said, ‘Let’s do it.’”

Like many kids growing up in the late 1950s and 1960s, Allen remembered the television cart being wheeled into his classroom to watch Mercury, Gemini, and Apollo launches. Science and technology had fascinated him whether he was building model rockets or reading science fiction. “I always had in the back of my mind, would I ever have the opportunity to do something in a space-related initiative?” Allen recalled. “And so when the SpaceShipOne opportunity came up, I was very excited to pursue it.”

Paul Allen’s company, Vulcan, Inc., and Scaled Composites began a partnership called Mojave Aerospace Ventures. Although Allen and Rutan were aware at the time of the creation of the X Prize by Peter

Diamandis, their initial goal, however, was getting to space and not necessarily winning the X Prize.

“None of these meetings were about the X Prize,” Rutan said. “People think we did the program for the X Prize. But keep in mind, the X Prize wasn’t even funded until halfway through our program. And, in fact, I had an opinion that Peter Diamandis would never get the funds for it. So, we had written him off.”

By the time the partnership was finalized a few months into 2001 and Allen provided the funding to Rutan, winning the X Prize had also become a goal of Mojave Aerospace Ventures. “There were two ways for me to recoup my investment,” Allen said. “One was the winning of the X Prize, and one was the licensing we’d be able to achieve with a company like Virgin Galactic. Those were the possible

Подпись: Early ConfigurationPaul AllenҐ ^

Fig. 1.8. After completing the boost, the capsule separated from the booster. It is here where Burt Rutan first applied the idea of a feathered,

"carefree" reentry. Small arms pointing upward from the capsule would safely decelerate and steady the capsule during reentry. Mojave Aerospace Ventures LLC, provided courtesy of Scaled Composites

V___________________ )

ґ ^

Paul AllenFig. 1.9. Because of Burt Rutan’s decades of experience designing aircraft, he decided to abandon the idea of a rocket and parachutes.

His next designs focused on winged aircraft that could make horizontal landings on a runway.

Fig. 1.10. Still called a feather, early winged designs used large spoilers and elevons for reentry. Below the speed of sound this configuration worked. However, reentry occurred above Mach 1, and these configurations could not be controlled. Mojave Aerospace Ventures LLC, provided courtesy of Scaled Composites

к J

future mechanism of payment back when we were evaluating all this stuff. You didn’t necessarily assume you were going to win. And you didn’t know what the other competition was like.”

Now things started to move full speed ahead.

Between Spaceflights

Preparing SpaceShipOne for its next spaceflight was a relatively simple task that required only minimal maintenance. The spent compo­nents of the rocket engine were replaced with fully fueled components, and the oxidizer tank was refilled. The air bottles used to activate the feather and run the reaction-control system and other systems had to be recharged. The ablative coating for the thermal protec­tion system was restored. And since every flight was an envelope expansion, theTONU was updated after a thorough review of the flight data.

X-15 Comparison

The North American X-15 was the first of three winged vehicles ever to have reached space, the Space Shuttle and SpaceShipOne being the other two. The basic mission profile was similar for these vehicles in that they all used two stages to reach space and glided back to Earth for an unpowered landing. However, the X-15 and SpaceShipOne shared much more in common compared to the Space Shuttle, which was a fully operational spacecraft designed to transport large payloads back and forth from orbit, whereas the other two were research and proof-of-concept vehicles that only reached suborbital altitudes.

Originally conceived in 1954, the X-15 first flew in 1959 and flew the last time in 1968. Its two primary goals were to fly at Mach 6— hypersonic speeds begin at Mach 5—and reach an altitude of 250,000 feet (76,200 meters). The X-15’s 199 powered flights directly influ­enced the Mercury, Gemini, Apollo, and Space Shuttle space programs as well as the U-2 and SR-71 reconnaissance aircraft.

Table 3.2 shows a comparison between the X-15 and SpaceShipOne.

To conserve fuel, the X-15 was dropped from the wing of a NASA B-52 carrier aircraft at an altitude of 45,000 feet (13,720 meters), as shown in figure 3.20. For its high-altitude mission, the rocket engine burned for up to 2 minutes, and then the X-15 returned from space and glided in for a landing.

This trajectory flown by the X-15 was, however, quite a bit differ­ent from that flown by SpaceShipOne. Figure 3.21 shows the trajecto­ry flown by SpaceShipOne and compares it with both the high-speed and high-altitude trajectories of the X-15.

The most apparent difference was in the profile width of the X-15 high-altitude mission and the SpaceShipOne mission. The X-15 had to cover 331 miles (533 kilometers) in order to reach an apogee above 62.1 miles (100 kilometers), whereas SpaceShipOne only needed 40 miles (64 kilometers) to accomplish the same feat.

Both had the same amount of weightless time and view, but the X-15 traveled much faster to achieve this. The higher speeds meant greater aerodynamic loads and thermal protection require­ments. But the most important difference was that the X-15 had to expend much more energy to reach the same altitude. The greater the energy needed to get from point A to point B, the more expensive it is to fly.

Primarily constructed of lightweight, high-strength titanium, it had skin of Inconel X, a chrome-nickel alloy that would withstand temperature as high as 1,200 degrees Fahrenheit. The black coating helped dissipate heat, and it was necessary to design gaps into the fuselage to allow for temperature expansion, which was a feature carried over to the SR-71.

A liquid oxygen oxidizer and an anhydrous ammonia fuel powered the liquid rocket engines, providing a thrust of 28,000—57,000 pounds-force (125,000—254,000 newtons). A reaction-control system that used hydrogen peroxide thrusters on the nose and wings allowed the X-15 to maneuver outside the atmosphere.

Another similarity was the landing gear. To reduce weight and simplify the design, the X-15 used two landing skids at the rear of the vehicle, compared to the single skid at the nose used by SpaceShipOne.

On August 22, 1963, the X-15 set an altitude record of 354,200 feet (108,000 meters). Four years later, on October 3, 1967, a high­ly modified version renamed the X-15A-2 set a speed record of Mach 6.70, or 4,520 miles per hour (7,270 kilometers per hour). The entire aircraft had to be covered in a white ablative coating to increase the thermal protection of the skin up to 2,000 degrees Fahrenheit. This was a peak speed, and the X-15 could only run its engine for about two minutes. However, if this speed could be maintained, it would be possible to travel the distance from New York City to Fos Angeles in just over a half an hour.

Although it was a tremendously successful program, four major accidents occurred. One of them claimed the life of test pilot Michael Adams due to a control-system failure during reentry. This accident and the Space Shuttle Columbia accident, also occurring during reentry, were key influences that drove Rutan to develop the “carefree” feather reentry.

Although White Knight began flying about a year before SpaceShipOne, construction of both vehicles began at about the same time. High strength, lightweight composites of carbon fiber/epoxy were used to build the primary structure of both vehicles. Tyson V. Rininger

Tier One

Burt Rutan does not release much information about a newest aircraft while it’s under development. In fact, it is usually not until the aircraft is ready to fly that people finally get a glimpse of his newest project. The in-house name of their secret space program was Tier One. This name wasn’t uncommon to Scaled Composites. Rutan used “tier one,” “tier two,” and “tier three” to designate what he described as the “fun factor” of a program. When tier-one programs came around, the company would always bid on them, since they were highly motivational programs for his employees, which helped him retain his skilled staff while being out in the middle of a great big desert. Scaled Composites normally used the aircraft’s name as the in-house program name. But this program of course had two vehicles.

“I was making a point to my employees that this was going to be the most fun program that we’ve ever done and the most important one for us to do,” Rutan said.

“That was the original reason behind calling the SpaceShipOne program Tier One. Later on when we started to entertain if we should do other manned spacecraft, I just had a feeling that I should make a category for different basic areas of manned spacecraft. Because it seemed like a good breakdown, I defined that if we do programs in the future that send people to Earth orbit, it would be called Tier Two. If we do things that send people outside of Earth orbit to other heavenly bodies like the Moon and Mars, it would be called Tier Three.”

The spacecraft and the carrier aircraft needed names, too. The spacecraft was Rutan’s Model 316, and the carrier aircraft was Model 318. “Those I assign when I first look at the requirements and
have the first idea of what would be the configuration solution. Those model numbers were assigned years before we had a funded program for building.”

Tier One

Г

Fig. 1.11. The feather mechanism, the most innovative feature of SpaceShipOne, allowed the rear half of the wings and the tail booms to fold upward, which prevented dangerous heat buildup upon reentry but enabled a very stable descent. Mojave Aerospace Ventures LLC, provided courtesy of Scaled Composites

к_____________________________ )

Tier OneПодпись:г

Fig. 1.12. Since wind-tunnel testing was not part of the design and development of SpaceShipOne because of the large expense, Scaled Composites used a computer method called computational fluid dynamics (CFD) to model the aerodynamics. The photograph shows designer Burt Rutan and aerodynamicist Jim Tighe reviewing a computer analysis of SpaceShipOne. Mojave Aerospace Ventures LLC, photograph by Scaled Composites

к_____________________________ ;

Подпись: C-JWSet Mod» 1,(852378 H; TctslT«rel»*n CcrtoJ Tefal Tijruijrcr. Подпись:

SpaceShipTwo and its launch aircraft are Models 339 and 348, respectively.

Rutan added, “We’ve only flown thirty-nine manned airplanes. Most of the concepts don’t get funded and developed.”

One example of this is Model 317. This was the design that squeaked between theTier One spacecraft and its mothership. A new – concept vertical takeoff and landing (VTOL) light aircraft, the tail-sit­ter would take off like a helicopter but fly conventionally.

White Knight was named by Cory Bird, an employee of Scaled Composites who also flew as a flight engineer in the carrier aircraft on several of the test flights. Bird had made a drawing of a knight in white armor, which Rutan thought was very clever. The drawing ended up being the insignia for White Knight, too.

And although Rutan names very few of his airplanes, the spacecraft was an exception. “I wanted to make a point that other manned systems that carried people into space tended to be capsules or spacecraft. But if you read fantasy that kids do, it’s always a spaceship. And I thought this is interesting in that there has been a lot of manned spacecraft, capsules, and vehicles, and all these boring names. I felt that this might be the first thing that flies people into space, that you have the moxie to call it a spaceship.”

So, since he considered it the first spaceship, he mixed the words around with numbers. “And I thought, I don’t have any problem

Ґ ‘ Л

Fig. 1.13. By using computer analysis, Scaled Composites was able to evaluate the aerodynamic characteristics of SpaceShipOne even before construction got started. However, it was still necessary to test SpaceShipOne in flight to get the complete picture. Mojave Aerospace Ventures LLC, provided courtesy of Scaled Composites

V_____________________________ ) calling this SpaceShipOne because I want to build a SpaceShipTwo, and I want to build a SpaceShipThree.”

Figure 1.14 shows SpaceShipOne mated up to White Knight before the public unveiling and even before paint schemes were added.

In order to be able to fly, though, SpaceShipOne and White Knight each needed a tail number, which is unique identification that every aircraft has similar to a car’s license plate, and had to be registered with the FA A. SpaceShipOne was given N328KF, which stood for

328,0 feet, the boundary line between Earth’s atmosphere and space, while White Knight was given N318SL, where the 318 model number and the SL stood for spaceship launcher.

“We didn’t get our first choices on that,” Rutan said. “For example, I wasn’t particularly enamored by 328KF. I would have rather had 100KM, 100 kilometers. But it was taken.”

Along with the tail number, the type of aircraft had to be identi­fied to the FA A. White Knight was pretty straightforward, but SpaceShipOne wasn’t so clear cut. The FA A felt that commercial launch licensing was required for SpaceShipOne. This was a somewhat long and drawn-out process. So as not to delay flight testing, Scaled Composites initially registered SpaceShipOne as a glider. This made perfect sense because about half the time during a spaceflight SpaceShipOne was a glider. But more importantly, the initial flight test­ing would be done without a rocket engine. So, by calling it a glider first, Scaled Composites was able to buy some time before having to get their commercial launch license, even though Rutan had no intention of using SpaceShipOne commercially.

“When I was out in Mojave for the first-time flight of the X Prize that Mike Melvill flew, it was the first time I had a chance to spend some time with Burt’s design team,” Poberezny said. “And what was striking was the intelligence that he recruited, the youth and the motivation. In other words, they were hungry and they were motivated to be successful and to make a difference. So, I give Burt a lot of credit. When he saw talent, he brought them in.”

Tier OneПодпись: Wingspan: Wing area: Fuselage diameter: Gross weight: Crew capacity: Crew compartment: Engines: Thrust: Fuel: Fuel capacity: Payload capacity: Ceiling: v г

Fig. 1.14. Shown before their paint schemes were added, SpaceShipOne and White Knight share virtually identical cockpits and instruments. But where White Knight has jet-engine controls, SpaceShipOne has rocket-engine controls. Mojave Aerospace Ventures LLC, photograph by Scaled Composites

к______________________________________

Rutan gave direction and vision to his staff but still allowed them to exercise their own strengths and abilities. And Rutan would depend on the contributions of the entire team at Scaled Composites to get SpaceShipOne into space.

On April 18, 2003, slightly more than two years after receiving Paul Allen’s backing, Rutan was ready to go public. SpaceShipOne could no longer be hidden away in Scaled Composites’ hangar. All the compo­nents ofTier One were in place, and SpaceShipOne was ready for flight testing. Figure 1.15 shows SpaceShipOne after the curtain dropped.

White Knight had been flying since August 2002. It was strange enough looking, yet similar enough to the way-out look of Proteus that Scaled Composites didn’t worry too much about it occasionally being spotted ahead of time. Both these aircraft have been widely described as looking like giant prehistoric insects or spaceships from Star Trek.

It would be a full month, though, before SpaceShipOne would take to the air for the first time. However, Rutan had a surprise in store for his guests at the coming-out party. He had White Knight do fly-bys for everyone gathered at the flightline in front of the Scaled Composites hangar. Figure 1.16 shows Proteus, the original spaceship launcher, and White Knight, the new spaceship launcher, flying together, and table 1.1 gives the specifications for White Knight.

Aside from the two vehicles, the other important Tier One compo­nents were revealed, refer to figure 1.17.The test stand trailer (TST) was a partial mockup of SpaceShipOne used to develop the rocket engine. A tanker truck called the mobile nitrous oxide delivery system (MONODS) supplied the nitrous oxide (N20) to the oxidizer tank on the TST and in SpaceShipOne. And the Scaled Composites unit mobile (SCUM) truck was used for ground control, providing

Table 1.1 White Knight Specifications 82 feet (25 meters)

468 square feet (43.5 square meters)

60 inches (152 centimeters) for maximum outer diameter

19.0 pounds (8,620 kilograms) at takeoff with SpaceShipOne

one pilot (front seat) and two passengers (back seat) "short-sleeved" pressurized cabin two J-85-GE-5 turbojets with afterburners 7,700 pounds-force (34,000 newtons)

JP-1

6,400 pounds (2,900 kilograms)

8,000-9,000 pounds (3,630-4,080 kilograms)

53.0 feet (16,150 meters)

Tier One

Подпись: ґ Л Fig. 1.15. On April 18, 2003, ten years after Burt Rutan had started to sketch-out designs for a spaceship, the curtain dropped to give the public its very first view of SpaceShipOne. Mojave Aerospace Ventures LLC, photograph by David M. Moore V J

_____________________ J

Tier One

Tier One

г

Fig. 1.16. Proteus, flying below White Knight, first took flight in 1998 and was originally planned as the carrier aircraft for a single-person rocket. As the spacecraft design evolved into SpaceShipOne, the larger White Knight was required. Mojave Aerospace Ventures LLC, photograph by Scaled Composites

к________________

a telemetry link with the TST during rocket-engine testing or SpaceShipOne during a flight.

The last component, shown in figure 1.18, was the flight simulator, which Scaled Composites specially designed for Tier One. It was the first flight simulator Scaled Composites ever built and used for one of their aircraft.

Having a sponsor instead of a customer, building with a robust design approach, performing incremental testing, incorporating as many similarities between SpaceShipOne and White Knight as possible, and conducting extensive pilot training in the flight simulator, White Knight, and Extra 300 aerobatic plane would all prove key factors upon which the success of Tier One would depend.

Г ^

Fig. 1.17. Tier One, the space program of Scaled Composites, comprised SpaceShipOne, the spacecraft; White Knight, the carrier aircraft; test stand trailer (TST), the rocket-engine testing platform; mobile nitrous oxide delivery system (MONODS), the nitrous oxide (N20) supply tanker; and Scaled Composites unit mobile (SCUM) truck, a ground-control station. Mojave Aerospace Ventures LLC, photograph by Scaled Composites

V____________________________ )

Tier One

Г Л

Fig. 1.18. Jeff Johnson, project manager for Mojave Aerospace Ventures, sits at the simulator control desk and monitors the progress of a simulation. One of the most critical components of Tier One was the flight-training simulator. Primarily designed by Pete Siebold, it allowed the test pilots to practice and refine the techniques required to fly the challenging trajectory of SpaceShipOne. Mojave Aerospace Ventures LLC, photograph by David M. Moore

V________________ J

Tier One

On November 22, 2001, Steve Bennett’s Starchaser team, based in the United Kingdom, became the first competitor to launch a vehicle while displaying an X Prize logo. The single-person Nova capsule, unmanned at the time, rode atop the Starchaser 4 booster. The rocket reached a height of 5,541 feet (1,689 meters). Courtesy of Starchaser Industries

SpaceShipOne Construction

A

t the front of SpaceShipOne’s stout fuselage, many small portholes take the place of a conventional canopy or windshield, giving the vehicle its truly far-out look. As shown in the views in figure 4.1 and figure 4.2, the twin tail booms are another of the spaceship’s most distinguishing features. In terms of function, however, SpaceShipOne’s feather mechanism is unique among all aircraft and spacecraft. The forward half of each wing is fixed, but the rear halves, including the tail booms, fold upward for reentry.

The appearance of SpaceShipOne bears resemblance to aspects of several pioneering rocketcraft. The bullet-shaped fuselage appears very similar in shape to the Bell X-1, shown in figure 4.3. However, the X-l itself shares a common shape with the V-2 rocket, which was initially modeled after a rifle bullet. The use of a delta wing and stabilizers at the wingtips is also reminiscent of NASA’s early lifting bodies, as shown in figure 4.4.

Burt Rutan’s innovative use of composites took shape in the 1970s when he built his second aircraft, theVariEze. Now with SpaceShipOne, an aircraft so radically different in function, purpose, and performance, Rutan and the Scaled Composites team had to tap deep into their expertise. And when this wasn’t sufficient, they had to risk taking a leap. Their decades of experience with the manufactur­ing of strong, lightweight composite aircraft would be tested to the limits, because so much of the design and construction was brand-new territory. So how does one go about building a spaceship? This is a question that wouldn’t have

SpaceShipOne ConstructionSpaceShipOne Construction

г ; ^

Fig. 4.1. Among SpaceShipOne’s most distinct features are the round windows on its bullet-shaped nose, the outboard tail booms at the wingtips, and the thick, swept-back wings mounted high on the fuselage. Mojave Aerospace Ventures LLC, photograph by Scaled Composites

__________________ J

( ^

Fig. 4.2. At a length of 28 feet (8.5 meters), SpaceShipOne is shorter

than the Bell X-1, the very first X-plane. However, the width of SpaceShipOne, the distance between the tips of the horizontal stabilizers on the tail booms, is 27 feet (8.2 meters), which is comparable in size to the wingspan of the X-1. Mojave Aerospace Ventures LLC, photograph by Scaled Composites

V_____________________________________ J

r ; л

SpaceShipOne ConstructionFig. 4.3. Parked in front of the B-29 mothership, the X-1 was built by Bell Aircraft Corporation for the U. S. Army Air Forces and the National Advisory Committee for Aeronautics, the predecessors of the U. S. Air Force and NASA, respectively. The X-1 ‘s revolutionary use of structures and pioneering aerodynamic shapes and controls enabled Chuck Yeager to become the first to break the sound barrier, flying faster than Mach 1. NASA-Dryden Flight Research Center

к__________ J

г ; л

SpaceShipOne ConstructionFig. 4.4. Known as lifting bodies because they were considered wingless, the rocket-powered X-24A, M2-F3, and HL-10 (left to right) dropped from a B-52 to explore the possibility of returning from space in an unpowered glide. Up until then, spacecraft had only returned from space using parachutes, and the data obtained by these vehicles helped pave the way for the Space Shuttle. NASA-Dryden Flight Research Center

к )

Table 4.1 Size Comparisons for Rocketcraft

SpaceShipOnea

X-1

X-15b

Space Shuttle

Length

28 feet

30.9 feet

51 feet

122.2 feet

(8.5 meters)

(9.4 meters)

(15.5 meters)

(37.2 meters)

Wingspan

16.4 feet

28 feet

22 feet

78.1 feet

(5.0 meters)c

(8.5 meters)

(6.7 meters)

(23.8 meters)

Height

8.8 feet

10.8 feet

13 feet

56.6 feet

(2.7 meters)

(3.3 meters)

(4.0 meters)

(17.3 meters)

Weightd

7,937 pounds

12,250 pounds

38,000 pounds

242,000 pounds

(3,600 kilograms)

(5,557 kilograms)

(17,237 kilograms)

(110,000 kilograms)

a: For last spaceflight of SpaceShipOne. b: For modified X-15A-2 without drop tanks.

c: SpaceShipOne’s width of 27 feet (8.2 meters) is its widest dimension.

d: Gross weights are given except for the Space Shuttle, which is given for landing weight.

v______________________________________ ____________________________________ J

an answer until SpaceShipOne was ready for flight testing. Even then, after each step forward and envelope expansion, it was necessary to make modifications or refinements to overcome the technical challenges that waited in the wings.

The Ansari X Prize Blasts Off

P

rizes and competitions during aviation’s infancy sparked what is one of the largest industries today. With that in mind, Peter Diamandis, the founder of the X Prize Foundation, sought to stimulate a similar excitement and interest. But this time the sights were set a little bit higher, 100 kilometers (62.1 miles or 328,000 feet) high to be exact. Here the atmosphere is all but nonexistent, and aerodynamics really don’t matter much anymore.

The Ansari X Prize would draw teams competing from Argentina, Canada, England, Israel, Romania, Russia, and the United States. Figure 2.1 and figure 2.3 show some of the many different approaches the teams had in their attempts to snatch the Ansari X Prize.

Yet there was much to overcome. The biggest obstacle was public perception. How could any one of these teams—not governments—accomplish something straight out of the pages of science fiction books?

“When I talked to people during dinner conversation about building a spaceship,” said Anousheh Ansari, the title sponsor of the Ansari X Prize, “they completely thought I was a nutcase. They were surprised. Of course now, nobody thinks we’re crazy. But back in 2002, you talked about spaceships and building spaceships and no one believed you.” Where there is a will, there is a way to space. But it would not be an easy one. Beyond the idealistic beauty and mystical draw, space is relentlessly unforgiving. There is no pulling off to the shoulder and calling roadside assistance. There is no limping back to the airfield on just one of four remaining engines. Even the most

The Ansari X Prize Blasts Off

Ґ “ Л

Fig. 2.2. Spaceflight is risky. Had it not been for the ingenuity of NASA engineers back on Earth and the determination of the crew aboard Apollo 13, the three astronauts would not have survived a crippling explosion that forced them to abort their mission before reaching the surface of the Moon. Their damaged service module is shown. But history shows that aviation during its infancy was just as perilous, if not more so. NASA-Johnson Space Center

V_______________ )

 

A. Acceleration Engineering D. Fundamental Technology G. Pablo de Leon and Associates Corporation

 

B. Lone Star Space Access E. Interorbital Systems H. TGV Rockets Systems

 

C. American Astronautics F. Discraft Corporation I. Rocketplane Limited, Inc.

 

Fig. 2.1. A total of twenty-six teams from seven countries registered for the Ansari X Prize. In order to register, teams had to prove they had a well-conceived design and the expertise capable of turning the design into a working spacecraft. Some of the teams were in existence even before the Ansari X Prize was announced, while others formed afterwards. X PRIZE Foundation

 

The Ansari X Prize Blasts OffThe Ansari X Prize Blasts Off

The Ansari X Prize Blasts Off

careful planning cannot completely remove the cold grip of space, as in figure 2.2, where the damaged Apollo 13 service module is shown after the crew narrowly escaped catastrophe during an aborted Moon landing.

Is the price worth it? Each and every day people face risk in their homes and once they step outside. It is familiar risk, though. But it doesn’t mean this risk goes away just because people become accustomed to it.

“You cannot have great breakthroughs without risk,” insisted Diamandis. “By definition, something that is a true breakthrough, the day before it’s a breakthrough, it’s a crazy idea. If it is not a crazy idea, then it is not a breakthrough. It’s a small, incremental improve­ment. Computing with silicon instead of vacuum tubes was a crazy idea. So, how do you embrace allowing people to try their crazy ideas?

“How do you allow people to take those risks, people who want to take the risks and not regulate against it? I think space is a very risky business still, and that’s okay. I had publicly said that during the course of the X Prize, people may lose there lives. But they are doing it for something they deeply believe in.”

Peter Diamandis

Like many people, Peter Diamandis’ fascination with space began back when he was a child. But unlike many people, he has not stood idly by waiting for the stars to come to him. His obsession with the point where gravity loses its touch, and the places beyond, firmly took root while he was an aerospace engineering student at Massachusetts Institute of Technology. He had the chance to meet astronauts-in-training back then, but this forced the realization that his chances of becoming an astronaut himself were remote and that even if he did make it as one, he would fly to space maybe twice in a decade. Figure 2.4 shows Diamandis as SpaceShipOne made its way to space on October 4, 2004.

The government space programs do work well in specific ways, but very few people will ever get the chance to go up. “That wasn’t my vision of spaceflight,” Diamandis said. “I wanted to go as a private pioneer in my own ship whenever I wanted to go.”

Dennis Tito spent $20 million to fly to the International Space Station (ISS) aboard a Russian Soyuz in 2001, becoming the first

Peter DiamandisПодпись:Подпись:B. IL Aerospace Technologies D. ARCA

F. Suborbital Corporation

Fig. 2.3. The competitors pursued many different approaches, although not every one managed to launch hardware. Concepts were either ground-launched or air-launched, and while most were rockets, many were space planes, with the exception of one flying saucer that would ride upon "blastwave" pulsejets. The air – launched vehicles were either carried or towed by an aircraft or lifted by a giant balloon. The methods of reentry were just as varied. X PRIZE Foundation

Fig. 2.5. Atlantis, Discovery, and Endeavor are the remaining three operational Space Shuttles. First launched on April 12, 1981, exactly twenty years after Cosmonaut Yuri Gagarin’s first-ever spaceflight, the Space Shuttle had been the only U. S. vehicle to carry people into space for twenty-three years prior to the spaceflights of SpaceShipOne. Six Space Shuttles were built, although the first Space Shuttle, Enterprise, never reached space. In 1986, Challenger exploded during liftoff, and in 2003, Columbia broke apart during reentry. Dan Linehan

Ґ

Fig. 2.4. Peter Diamandis, the founder of the X Prize Foundation, gives the thumbs up as SpaceShipOne makes its way up to space during the second Ansari X Prize flight.

After reading The Spirit of St Louis by Charles Lindbergh, Diamandis was inspired to create a space prize modeled after the early aviation prizes.

Dan Linehan

Peter DiamandisPeter Diamandis

Peter Diamandisf ^

Fig. 2.6. Thousands and thousands of space enthusiasts crowded into the high desert of Southern California to watch the spaceflights of SpaceShipOne as Mojave Airport transformed into a spaceport. Mojave Aerospace Ventures LLC, photograph by David M. Moore

v___________________________________________ /

paying space tourist. Diamandis has reported that the cost to fly the Space Shuttle, shown in figure 2.5 preparing to launch to the ISS, has ranged from $500 million to $750 million for just one flight, of which propellants make up only 1 percent of that cost. These figures keep the gate to the space frontier shut pretty tight for most people. There just had to be another way.

While flying together over the Hudson River in 1994, Gregg Maryniak, a longtime friend and business partner, wondered when Diamandis would also get his pilot’s license. Diamandis had already stopped and started several times. This was unusual, considering Diamandis’ deep desire for space. One might expect that for someone with dreams of traveling among the stars, a pilot’s license was a good thing to have. But as history continues to remind us, the shortest distance between point A and point В is not necessarily a straight line. Diamandis was far too consumed with what was well beyond where the air is thin.

“Gregg asked me if I had ever read The Spirit of St. Louis,” Diamandis said. Maryniak had explained that he received the book as a gift, and it helped motivate him to finish his pilot’s license. Shortly after their flight, Maryniak gave a copy of The Spirit of St. Louis to Diamandis. But if anything, the book proved to sidetrack Diamandis, resulting in the unanticipated consequence of drastically changing not only how people reach space but also who gets to go.

“As I read that book, I had no idea that Lindbergh crossed the Atlantic to win a prize and that nine different teams had spent $400,000 to win the $25,000 prize,” Diamandis said. “And by the time I finished reading the book, the whole idea of the X Prize had come to mind.”

What Diamandis realized was that a prize could be the catalyst needed for the development of a new breed of spacecraft that could demonstrate the public’s desire for commercial spaceflight. “We needed a paradigm shift,” Diamandis said. “People had become so stuck in their way of thinking that spaceflight was only for the government—only largest corporations and governments could do this—it could never be done by an individual. This thinking was paralyzing us, and that was what I was trying to change.”

When Lindbergh made his famous crossing, the airplane had been in existence for a little more than two decades. It was still a novelty. Some enterprising individuals foresaw the economic advantages of aviation, while others stoked the fanfare and fervor. As a result, hundreds of aviation competitions were established to see who could fly the farthest, the fastest, the highest. It was as much about pushing the limits as it was about drawing boundaries where none had ever existed.

At a time when aviation was in its infancy, prizes and competi­tions put its growth on afterburners. And during these times, people could look in the mirror and see themselves in the cockpit, goggles drawn and wrapped in a scarf, without having to use too much imagination. Although some of the flyers were wealthy and privi­leged and others had renown and notoriety, Charles Lindbergh, an airmail pilot, and others like him, proved aviation was in reach of the common person.

Diamandis saw this vision, only with rocket ships and space helmets. His passion was contagious. He energized many talented and dedicated people who joined this march toward space, contributing thousands and thousands of volunteer hours along the way. Figure 2.6 shows the crowds who gathered to share in this vision.

1927: New York to Paris

In 1919, Raymond Orteig created the Orteig Prize for the first non­stop flight across the Atlantic Ocean from New York to Paris or from Paris to New York. Orteig, born in France, owned hotels in New York City. Prizes had been enticing aviators and aircraft makers for a decade now. Newspapers sponsored them because it gave their readers something exciting to read. Businesses sponsored them because they saw financial opportunity.

Aviation technology was not up to the challenge, and Orteig had to extend the deadline of the prize. Come 1926, still no one had claimed the prize. Only one team made an attempt, but they crashed on takeoff.

On May 20, 1927, with only 20 feet (6 meters) to spare, the Ryan NYP Spirit of St. Louis cleared the telephone wires a short distance from the edge of the runway at Roosevelt Field on Long Island. Charles Lindbergh, shown in figure 2.7, had just lifted off for his first solo attempt at crossing the Atlantic Ocean. Several failed attempts had already been made by other competitors by now. Nine teams were in the race to win the $25,000 Orteig Prize. Four men had died trying, and two others, setting out together right before Lindbergh, were lost over the Atlantic.

To make the journey, Lindbergh would have to strip the plane down to the bare minimum to maximize the amount of fuel he could carry. Table 2.1 shows the specifications of the Spirit of St. Louis. So much of the aircraft was gas tank, by design, that Lindbergh had to use a periscope to see directly ahead of the aircraft because a gas tank in front

1927: New York to Parisг———————————————————-

Table 2.1 Spirit of St. Louis Specifications

Ryan Airlines Company highly modified M-2 46 feet (14 meters)

27 feet 8 inches (8 meters)

Подпись: *Подпись: Manufacturer: Type: Wingspan: Length: Height: Empty weight: Gross weight: Engine: Power:

1927: New York to Paris

9 feet 10 inches (3 meters) 2,150 pounds (975 kilograms) 5,135 pounds (2,330 kilograms) Wright Whirlwind J-5C 223 horsepower

1927: New York to Paris

Подпись: Г Fig. 2.7. In 1927, Charles Lindbergh, an unknown airmail pilot, reshaped aviation after crossing the Atlantic Ocean nonstop in an aircraft for the first time, as he flew the Spirit of St. Louis from New York to Paris. The solo flight took 33.5 hours to complete and covered 3,610 miles (5,810 kilometers). X PRIZE Foundation

Ґ Л

Fig. 2.8. The Spirit of St. Louis was specially designed by Charles Lindbergh to make the transoceanic flight. Much of the aircraft was a fuel tank, leaving little room for anything else. Lindbergh had to use a periscope to see in front of the airplane, and he elected not to bring a parachute or radio, to save weight. NASA-Langley Research Center

V__________________________________________ У

of the cockpit blocked the view forward. In a plane that weighed 2,150 pounds (975 kilograms) empty, it carried 451 gallons (1,710 liters) of fuel for a total takeoff weight of 5,135 pounds (2,330 kilograms).

Back in 1927, if you went down in the water, you were gone. There was no satellite tracking, there were no helicopters or airplanes that you could signal. There was no radar. And shipping was nothing like it is today, so rescue from a nearby vessel was highly unlikely. When Lindbergh got behind the controls of that plane and took off, he was all alone with only the vastness of the Atlantic Ocean more than willing to catch him if he fell. And there was less than just a slim chance of him not making it back.

So, the Spirit of St. Louis, shown in figure 2.8, didn’t have a radio, navigational lights, or gas gauges. Lindbergh didn’t even bring a parachute. A radio didn’t do any good over the middle of the ocean and, back in those days, was a lot of weight. The same held true for the navigational lights when the wiring was also factored in. Even gas gauges were redundant, since there would not be much he could do about it if the tanks went dry. But the reverse argument could be made. Each of these could help his chance of survival under some specific circumstances. What if a ship was nearby? Lights and a radio could certainly help. What if he was over land? He should be able to make an emergency landing, but there were circumstances where
bailing out was not out of the question. Lindbergh had to balance the potential benefit of each safety item with the problems he would potentially face if he ran out of fuel. And that’s how he decided.

“He was thinking his way all the way around the problem, though,” said Erik Lindbergh, the grandson of Charles Lindbergh. “I think he minimized every possible risk he could except for lack of sleep. And if he had had a good seven hours worth of sleep, he would have really changed his risk factor.”

Lindbergh didn’t even use a typical leather pilot’s seat. Instead, he used a wicker chair. He did, however, equip himself with four sandwiches, two canteens of water, and an inflatable, rubber life raft.

Lindbergh believed that for a multi engine aircraft, there was only a greater risk of an engine failure, even though most of the other competitors were using that type of aircraft. Today, a Boeing 767 flies overseas with only two engines. If one fails, it still has enough power to reach land by either turning around or by continuing on, whichever distance is shorter. That wasn’t necessarily the case for the multi – engine aircraft of that time.

“He was doing things like cutting the corners off of his map, which is really a negligible weight,” said Erik Lindbergh. “And yet when you look at the competitors, some of them had champagne and croissants on board so they could party when they got there. But they never made if off the ground. So, attention to detail and reducing the risk factors was critical to him surviving the flight.”

Charles Lindbergh became an instant international hero on the evening his wheels touched down in Paris. And people’s interest in aviation exploded. Charles Lindbergh said, “I was astonished at the effect my successful landing in France had on the nations of the world. To me, it was like a match lighting a bonfire.”

Erik Lindbergh said of his grandfather’s accomplishment, “Before he flew across the Atlantic, people who flew in airplanes were known as barnstormers and daredevils and flying fools. And after he flew across the Atlantic, people who flew in airplanes were known as pilots and passengers. It truly was a paradigm shift if there ever was one.”

As a result of this new popularity, referred to as the Lindbergh boom, in the United States the number of applications for a pilot’s license tripled and the number of licensed aircraft quadrupled during 1927. The number of passengers flying aboard U. S. airlines also dramatically increased from 5,782 in 1926 to 173,405 in 1929. Nowadays, the aviation transportation sector is a $300 billion industry.

The X Factor

Now that the idea was hatched, what to name it?

“The letter X initially stood for the variable for the person’s name that funded the prize, just like the Orteig Prize,” Diamandis said. “It worked because $10 million was the number I thought was the right number. I wanted it to be enough money to be of substantial importance to the world, but not so big that it would attract the Lockheeds or Boeings. I didn’t want the winner to be a traditional player. I wanted it to be somebody who was going to really work hard on how to do this thing cost effectively and worry about every penny spent.”

Finding a title sponsor to put up the prize money proved very difficult, so the X hung around for a lot longer than Diamandis had anticipated. But when the title sponsor did come along, the Xhad already become symbolic. X stood for the Roman numeral ten, as in

A N S A R I

The X Factor

PRIZE

f Л

Fig. 2.9. Initially, the X in the X Prize was only a place holder to be replaced when Peter Diamandis found a title sponsor. But gradually it took on its own significance. X stood for $10 million, X had been used for the early X-planes, and X meant mysterious or extreme. So, when a title sponsor did come along, the X remained. X PRIZE Foundation

V_____________________________________ J

the number of millions in the prize. X denoted a vehicle of an exper­imental nature, as with the X-planes. X also had the connotation of being extreme or mysterious. “So, after we found the Ansaris,” Diamandis said, “we decided to keep it and make it the Ansari X Prize.” The logo is shown in figure 2.9.