On 27 April 1967, an unusual communique was issued by the Soviet news agency, Tass. Days earlier, Vladimir Komarov – veteran of Voskhod 1 and the first cosmonaut to make two spaceflights – had been launched into orbit aboard the new Soyuz spacecraft. Within hours, however, euphoria had vanished into tragedy. In a handful of sentences, carefully crafted by the secretary of the Central Committee of the Communist Party, Dmitri Ustinov, it was revealed that Komarov’s ship had ‘‘descended with speed’’ from orbit, ‘‘the result of a shroud line twisting’’. The result: ‘‘the premature death of the outstanding cosmonaut’’. Little more would be known in the western world for nearly three decades and only recently would details begin to trickle out. They would uncover a harrowing tragedy still shrouded in myth, mystery and rumour.
Soyuz was the brainchild of Sergei Korolev, the famous ‘Chief Designer’ of early Soviet spacecraft and rockets, with the original intention that it would support a series of lunar missions to rival the United States’ Apollo effort. When it became increasingly clear that neither the Soyuz, nor an enormous booster rocket needed to reach the Moon, called the ‘N-1’, would be able to beat the Americans, the Soviet paradigm shifted to near-Earth missions: in 1971, they would establish the world’s first space station in orbit. Soyuz would provide a ferry for missions which, by the end of the Seventies, would be routinely spending many months aloft. Four decades later, its basic design remains operational and, heavily modified, continues to transport cosmonauts and astronauts from a variety of nations to and from the International Space Station.
In his 1988 book about the early Soviet space programme, Phillip Clark traced the history of its development back to a three-part ‘Soyuz complex’ – a manned craft, a dry rocket block and a propellant-carrying tanker – which Korolev envisaged in the
Yuri Gagarin, Yevgeni Khrunov, Vladimir Komarov, Alexei Yeliseyev and Valeri Bykovsky during training for the Soyuz 1/2 joint mission. Note the EVA suits worn by Khrunov and Yeliseyev, providing clear evidence that an extravehicular transfer between the two spacecraft was probably planned.
|
early Sixties could be assembled in orbit for circumlunar missions. The first part, known as ‘Soyuz-A’, was closest in appearance to the spacecraft which actually flew. Measuring 7.7 m long, it comprised three sections: a cylindrical orbital module, a bell-shaped descent module to house the crew positions and a cylindrical instrument module for manoeuvring equipment, propellant and electrical systems. According to Korolev’s early blueprints, Soyuz-A weighed around 6,450 kg, but unlike the eventual version it was not fitted with solar panels.
Supporting Soyuz-A were the ‘dry’ Soyuz-B rocket block and the propellantcarrying Soyuz-V tanker. Clark has hinted that a typical flight profile would have begun with the launch of a Soyuz-B, followed, at 24-hour intervals, by up to four Soyuz-Vs, which would dock, deliver their propellant loads, then separate. When the Soyuz-B had been fully fuelled, a manned Soyuz-A would be launched to dock onto the rocket block. ‘‘Mastering rendezvous and docking operations in Earth orbit may have been one of the primary objectives of the Soyuz complex,’’ wrote Asif Siddiqi, ‘‘but the incorporation of five consecutive dockings in Earth orbit to carry out a circumlunar mission was purely because of a lack of rocket-lifting power in the Soviet space programme.’’ Nonetheless, the sheer ‘complexity’ of the Soyuz complex seems to have foreshadowed its restructuring sometime in 1964 and effected a postponement of its maiden voyage until at least 1966. It was as a result of this setback, Clark explained, that the stopgap Voskhod effort was ultimately born.
When Voskhod began with such apparent promise – the world’s first three-man cosmonaut crew, then the first-ever spacewalk – it surprised many in the western world, among them NASA’s astronauts, when nothing more was heard from the Soviets until April 1967. “They hadn’t flown in over two years,’’ wrote Deke Slayton, “which nobody could understand… Some people were beginning to say there wasn’t really a race to the Moon, and on the evidence you had to admit that possibility.” It was Korolev’s successor, Vasili Mishin, who spearheaded the abandonment of Voskhod, which many within the Soviet space programme felt was a diversion of resources from the more versatile Soyuz. “Given what we know about Voskhod,’’ added Slayton, “it was the right decision.’’
By October 1969, seven manned Soyuz spacecraft would have rocketed into orbit. However, a key physical difference between these missions and the original Soyuz-A concept was that they employed a pair of rectangular solar panels, mounted on the instrument module, to generate electrical power. The total surface area of these wing-like appendages was 14 m2, each measuring 3.6 m long and 1.9 m wide. The remainder of the craft’s design was strikingly similar to Soyuz-A: a spheroid orbital module, 2.65 m long and 2.25 m wide, atop the beehive-shaped descent module, itself 2.2 m long and 2.3 m wide at its base. Beneath the descent module was the cylindrical instrument module, 2.3 m long and 2.3 m wide. In total, Soyuz was somewhat larger than Apollo’s command module, yet smaller than the combined command and service module.
Its propulsion system, designated ‘KTDU-35’, consisted of a pair of engines operating from the same fuel and oxidiser supply. The primary engine had a specific impulse of some 2,750 m/sec, equivalent to around 280 seconds’ burn time, and a thrust of 417 kg, with early reports speculating that the propulsion system was capable of lifting Soyuz to an altitude of 1,300 km. This led Clark to suggest that a propellant load of 755 kg would have been required. Propellants took the form of unsymmetrical dimethyl hydrazine and an oxidiser of nitric acid, loaded in tanks on the instrument module. Clark speculated that, for the first few Soyuz missions at least, a lower-than-full propellant supply of around 500 kg was probably carried.
Like Vostok and Voskhod before it, the spacecraft and its three-stage rocket – an uprated version of Korolev’s Little Seven, including four tapering boosters strapped to its central core – were typically delivered to the launch pad horizontally aboard a railcar. The Soyuz’ own propellants were fully loaded before attachment to the rocket’s third stage, after which a payload shroud was installed and, following rollout, the entire combination was tilted into an upright position. Four cradling arms, nicknamed ‘the tulip’, supported the rocket at its base and a pair of towering gantries provided pre-launch servicing access. Cosmonauts entered the spacecraft through its orbital module and dropped down into their seats in the descent module.
Yet the development of this complex spacecraft had been mired in technical and managerial problems since the death of Sergei Korolev in January 1966. Indeed, only days before Soyuz 1 was launched, engineers are said to have reported no fewer than 200 design problems to party leaders, all of which were overruled by the political pressure of getting a cosmonaut back into space. Even Vladimir Komarov, the man who would fly Soyuz 1, is reputed to have said one night in March 1967 that he would not – could not – turn down the assignment, even though he knew the spacecraft was imperfect and his chances of returning alive were slim. His reason: Yuri Gagarin, the first man in space and the Soviet Union’s most treasured hero, was Komarov’s backup. When asked by Gagarin’s KGB friend Venyamin Russayev why he could not simply resign from Soyuz 1, Komarov’s response was simple. “If I don’t make this flight, they’ll send the backup pilot instead,’’ he said slowly. “That’s Yura, and he’ll die instead of me. We’ve got to take care of him.’’
Russayev was so concerned by Komarov’s admission that he spoke to one of his own superiors, Konstantin Makharov, whose department dealt with spaceflight matters relating to personnel. Makharov told him that he intended “to do something’’ and asked Russayev to pass on a letter to Ivan Fadyekin, the head of Department Three, who directed him instead to a close personal friend of Leonid Brezhnev himself, a KGB man named Georgi Tsinev. The letter consisted of a covering note from a team of the cosmonauts, led by Gagarin, together with a ten – page document detailing all 200 problems with Soyuz. “While reading the letter,’’ Russayev was quoted by Jamie Doran and Piers Bizony as saying, “Tsinev looked at me, gauging my reactions to see if I’d read it or not.’’ It seemed to Russayev that Tsinev knew of Soyuz’ inadequacies, but was not interested in the details. “He was glaring at me very intently,’’ Russayev continued, “watching me like a hawk, and suddenly he asked, ‘How would you like a promotion up to my department?’ He even offered me a better office.’’’ Russayev carefully declined the offer and Tsinev kept the document. . . which was never seen again. Makharov was fired, without a pension; Fadyekin was demoted simply for reading the document; and the hapless Russayev was stripped of all space-related responsibilities. ‘‘I kept my head down like a hermit for the next ten years,’’ he said later.
Against this backdrop, Soyuz’ problems had become almost chronic, with difficulties involving its Igla docking system, its simulators, its space suits, its hatches, its parachutes and its environmental controls. At one stage, early in its development, over 2,000 defects awaited resolution. Further, a series of unmanned Soyuz test flights under the ‘Cosmos’ cover name suffered troubles of their own. Phillip Clark noted that, as the break in Soviet manned launches stretched through 1965 and 1966, it became ‘‘almost a sport’’ among analysts to find evidence that a future crewed spacecraft was undergoing trials. Certainly, the flight of Cosmos 133 on 28 November 1966 and that of Cosmos 140 in early February of the following year were strongly suggestive of bearing some link with Soyuz. The first suffered a malfunctioning attitude-control system, which caused rapid fuel consumption and unanticipated spinning. An inaccurate retrofire and the likelihood that it would land in China eventually forced flight controllers to issue a self-destruct command to Cosmos 133. It exploded early on 30 November.
Two months later, Cosmos 140 suffered similar attitude and fuel problems, but at least remained controllable. . . for a while. Its control system malfunctioned during retrofire, producing a steeper-than-intended re-entry which burned a 300 mm hole into the heat shield. The only reason its parachutes successfully deployed was because of this burn-through; otherwise, they would have failed… an ominous harbinger of what would befall Komarov in April. Clearly, a Cosmos 140-type event would have doomed a human occupant, but the descent module separated successfully, parachuted to Earth and crashed through the ice of the frozen Aral Sea. It was retrieved by divers in 10 m of water and, astonishingly, the results of its mission were deemed “good enough” for Komarov to take the helm of a future flight.
In his autobiography, Alexei Leonov remarked that the Cosmos 140 burn – through had been caused by a flawed design feature which was slightly different to that on a manned Soyuz and admitted that “there was no chance of the fault recurring”. Still, today, it seems ludicrous to have even contemplated a manned mission with such unpromising test results and unforgiving hardware. Political pressure seems to have been the overriding impetus driving Soyuz’ schedule. One Soviet heat shield engineer, Viktor Yevsikov, hinted in 1982 that “some launches were made almost exclusively for propaganda purposes. . . the management knew that the vehicle had not been completely debugged: more time was needed to make it operational, but the Communist Party ordered the launch despite the fact that preliminary launches had revealed faults in the co-ordination, thermal control and parachute systems’’. The situation was so bad, admitted Yevsikov, that Vasili Mishin himself refused to sign the endorsement papers permitting Soyuz 1 to fly. He felt it was unready.
Mishin, despite being an excellent mathematician and fast-thinking engineer, was no Korolev. He had none of his predecessor’s stature or clout and was not renowned for his diplomatic skills. “Lacking the political instincts of, say, a Wernher von Braun or a Sergei Korolev,’’ wrote Asif Siddiqi, “he suffered dearly. Some would argue that so did the Soviet space programme in the coming years.’’ Nonetheless, with little opposition, Mishin was named Chief Designer in May 1966 and, although he quickly asserted himself, his insistence on filling the cosmonaut corps with nonpilot engineers from the OKB-1 design bureau to fly the early Soyuz missions infuriated Nikolai Kamanin. In his diary, the latter fumed that Mishin placed no value in six years’ worth of experience of his command’s training of cosmonauts to fly space missions. Kamanin considered it absurd that Mishin wanted to prepare civilian engineers for Soyuz command positions, with no pilot training, no parachute experience, no medical screening and no centrifuge practice. Eventually, under pressure from Dmitri Ustinov, Mishin was forced in July 1966 to accept pilot- cosmonauts for Soyuz command positions, with OKB-1 engineers filling support roles. It was only the first of many stand-offs between he and Kamanin which would place their relationship at a very low ebb.
Mishin’s desire to fly civilians into space had been shared by Sergei Korolev and, intermittently in the early Sixties, a few OKB-1 engineers had passed preliminary screening, but were never seriously considered by the Soviet Air Force. When eight military cosmonauts began training for the first Soyuz missions in September 1965, Korolev entrusted one of his engineers to explore the possibility of forming a parallel group of civilians. Eleven candidates passed initial tests at the Institute of Biomedical Problems and several months later, on 23 May 1966, Mishin signed an official order to establish the first non-military cosmonaut group. Candidates Sergei Anokhin, Vladimir Bugrov, Gennadi Dolgopolov, Georgi Grechko, Valeri Kubasov, Oleg Makarov, Vladislav Volkov and Alexei Yeliseyev seemed to have little hope of actually flying into space and the nomenclature used to describe them – ‘cosmonaut – testers’ – seemed to support the assumption that they would be of limited use.
Despite his doubts, Kamanin was finally appeased when Grechko, Kubasov and Volkov passed tests at the Air Force’s Central Scientific-Research Aviation Hospital and arrived at the cosmonauts’ training centre, Zvezdny Gorodok, on 5 September. Within two months, another pair, Yeliseyev and Makarov, had also arrived. All five, wrote Siddiqi, ‘‘were accomplished engineers’’, Grechko having worked on fuelling Korolev’s R-7s and Makarov having been involved in Vostok, Voskhod and Soyuz development. Unfortunately, Anokhin, Bugrov and Dolgopolov did not pass the Air Force’s screening and were never considered for positions on the early Soyuz missions.
For the others, however, a seat on a spaceflight seemed only months away. Military pilot Vladimir Komarov had long been pointed at Soyuz 1, owing to his expertise, but Mishin, naturally, wanted two civilian engineers on the three-man Soyuz 2 crew. Nikolai Kamanin opposed this move, feeling that the complexity of the early missions made it inadvisable. A compromise was reached, thanks to the chief of the Communist Party’s Defence Industries Department, Ivan Serbin, who suggested flying an Air Force pilot (Yevgeni Khrunov) and an OKB-1 engineer (Alexei Yeliseyev) alongside Vostok 5 veteran Valeri Bykovsky on Soyuz 2. A few days later, on 21 November 1966, Komarov told a State Commission meeting at Tyuratam that he had been picked to fly Soyuz 1 and that Bykovsky, Khrunov and Yeliseyev would follow aboard Soyuz 2. It was a triumph for the civilians. Yet had Yeliseyev flown as planned on Soyuz 2, he would not only have become the first of Mishin’s civilians to enter space, but would have also been the first of them to die during his descent to Earth…
Over the years, western observers suspected that the Soyuz 1 mission had been pushed to fly prematurely and improperly as a political stunt in advance of the May Day celebrations, since 1967 coincided with the half-century anniversary of the Bolshevik Revolution. Additionally, Leonid Brezhnev was in Karlovy Vary in Czechoslovakia at the time, at a meeting of the Soviet bloc leadership; the propaganda value of a major space success, for him, would be incalculable. In a dispatch to the Washington Star newspaper, Moscow correspondent Edmund Stevens wrote that the space effort under Mishin was less able to resist political pressure than Korolev had been. (It was even suggested that Leonid Smirnov, chairman of the Military-Industrial Commission, had personally told Komarov, still sceptical about Soyuz’ readiness, that the cosmonaut might as well remove all of his military decorations if he refused to fly the mission… )
In the days preceding the manned shot, rumours hinted of a space spectacular to rival Gemini and Apollo: a joint mission involving not one Soyuz, but two, and perhaps featuring rendezvous, docking and even the spacewalking transfer of crew members from one vehicle to the other. Reuters, for example, revealed on 19 April 1967 that such stories were circulating with some excitement in Moscow. Three days later, western journalists in the Soviet capital were told that two spacecraft with five or six cosmonauts would be launched, beginning on 23 April. If all went well with the first mission, it seemed likely that Soyuz 2 would fly at 3:10 Moscow Time the next morning. Komarov would attempt a docking on Soyuz 2’s first or second orbit and the two spacecraft would remain docked for perhaps three days. “There was speculation,” Time magazine told its readers on 5 May, “that the second ship had a restartable engine that would push the joined ships as far out as 50,000 miles.” This was obviously a false assumption, but it does highlight the uncertainty of exactly what the Soviets were up to.
Actually, the joint mission, and specifically the spacewalking transfer of cosmonauts between two spacecraft, had caused concern for months. The hatch in the Soyuz orbital module, for example, was barely 66 cm in diameter, scarcely wide enough for a fully-suited man to get outside and virtually impossible for him to get back inside. (The problems of space suits ‘ballooning’ had already been experienced by Alexei Leonov.) A redesign of the hatch, Mishin realised, would add months to the schedule and the decision was instead taken to modify the suits by moving their oxygen supplies from the cosmonaut’s back to his waist. Enlarged hatches would then be implemented on later missions. Nikolai Kamanin was unimpressed. ‘‘I am personally not fully confident that the whole programme of flight will be completed successfully,’’ he wrote, ‘‘although there are no sufficiently weighty grounds to object to the launch. In all previous flights we believed in success. Today, there is not such confidence in victory. . . This can perhaps be explained by the fact that we are flying without Korolev’s strength and assurances.” It did not bode well for the four men assigned to fly the Soyuz 1/2 joint mission.
Photographs released over the years have shown Komarov training with Bykovsky, Khrunov and Yeliseyev, the latter pair clad in EVA-type suits, confirming that they would have attempted the risky Soyuz-to-Soyuz transfer. Others show Yuri Gagarin, Komarov’s backup, assisting Khrunov with his helmet. In their biography of Gagarin, Jamie Doran and Piers Bizony pointed out that it was Korolev’s death in January 1966 which refocused the First Cosmonaut on somehow getting himself back into space. His renewed self-discipline and vigour in completing an engineering diploma at the Zhukovsky Air Force Academy impressed Nikolai Kamanin sufficiently to assign Gagarin in October 1966 as Komarov’s backup. However, despite his confidence, Kamanin noted in his diary that Gagarin’s importance to the Soviet state made it unlikely he would ever fly again.
Years later, Soviet journalist Yaroslav Golovanov would recall Gagarin’s behaviour in the hours before the Soyuz 1 launch as quite unusual. ‘‘He demanded to be put into the protective space suit,’’ Golovanov was quoted by Doran and Bizony. ‘‘It was already clear that Komarov was perfectly fit to fly, and there were only three or four hours remaining until liftoff time, but he suddenly burst out and started demanding this and that. It was sudden caprice.’’ Venyamin Russayev expressed his belief over the years that Gagarin was trying to elbow his way onto the mission to save Komarov from almost certain death in a botched spacecraft. Others have countered that, since Komarov was not meant to wear a space suit on Soyuz 1, Gagarin’s antics were actually designed to encourage his comrade to take one as an additional safety margin. Alternatively, maybe Gagarin was simply trying to disrupt matters somehow. Whatever the reality, archived pre-launch footage of the cosmonauts from that fateful third week of April 1967 – an unhappy Komarov, a downcast Gagarin and a team of very dejected technicians – show that that the atmosphere at Tyuratam was one of tense pessimism.
Other official images of Komarov arriving at the launch site showed him quite differently: bedecked with flowers… as, indeed, were Bykovsky, Yeliseyev and Khrunov, also in attendance for their own mission a day later. Plans for the flights were still very much in flux. Disagreement flared over whether to dock automatically or manually, with Mishin favouring the former and Komarov expressing confidence that he could guide Soyuz 1 by hand to a linkup from a distance of 200 m. At length, the chair of the State Commission, Kerim Kerimov, supported an automatic approach to 50-70 m, followed by a manual docking, although his judgement was still hotly contested.
Nevertheless, at 3:35 am Moscow Time on 23 April, Soyuz 1 was launched and inserted into a satisfactory orbit of 201-224 km. Within moments of reaching space, the Soviets referred to his mission, by name, as ‘Soyuz 1’, clearly indicating that a ‘Soyuz 2’ would follow soon. Fellow cosmonaut Pavel Popovich told Komarov’s wife, Valentina, that he was in orbit, to which she responded that ‘‘he never tells me when he goes on a business trip!’’ Four and a half hours into the mission, a bulletin announced that the flight was proceeding normally; as, indeed, did another report at 10:00 am. More than 12 hours then elapsed before any more news emerged from the Soviets, and when it did finally come, it was devastating. Not only had there been no Soyuz 2 launch, but, stunningly, Komarov had lost his life during re-entry.
Little information other than the basics were forthcoming in the terse final report. It alluded to Soyuz 1’s ‘‘very difficult and responsible braking stage in the dense layers of the atmosphere’’ and concluded that the ‘‘tangling of the parachute’s cords’’ had caused the spacecraft to fall ‘‘at a high velocity, this being the cause of the death of Colonel Vladimir Komarov’’. Twenty years later, Phillip Clark wrote of ‘‘persistent reports’’ that problems had been experienced during Soyuz 1’s first few hours in orbit. Its left-hand solar array failed to deploy properly, depriving Komarov of more than half (some sources say as much as 75 per cent) of his electricity supply. Soyuz 1 would be forced to run on batteries for a shortened mission of around a day in orbit. The subsequent, unusual, lack of televised images from the cabin and no other reports of in-flight activities lent credence to notions that the flight was in deep trouble.
A backup telemetry antenna also failed, probably triggering intermittent reception, and problems with solar and ionic sensors prevented Komarov from achieving even basic control of his craft’s orientation. (It later became clear that the Sun sensor had actually been contaminated by Soyuz’ thruster exhausts.) Although the antenna failure was a minor annoyance, the solar sensor was more serious, because without it Soyuz 1 could not be properly oriented for rendezvous and docking. During his fifth orbit, the cosmonaut tried to use his periscope and Earth’s horizon to reorient the craft, but found it virtually impossible to do so. The failure of the left-hand solar panel to open had also left Soyuz 1 in an asymmetric configuration, which made attitude control far more difficult. At one point, Komarov even knocked with his boots on the side of the spacecraft, to free a stubborn deployment mechanism for the panel, but without success. By this time, the Soyuz 2 launch – already hampered by heavy rain at Tyuratam, but now exacerbated by the ongoing problems in orbit – had been called off and the focus had shifted instead to ensuring Komarov’s safe return to Earth.
Attempts to bring him home, Clark continued, were planned on the 16th, 17th and 18th orbits, with the first retrofire attempt called off, presumably because the spacecraft could not be properly stabilised. Indeed, Doran and Bizony have reported that, at one stage, Komarov complained with fury: “This devil ship! Nothing I lay my hands on works properly.’’ Unlike the spherical Vostok, the underside of Soyuz’ bell-shaped descent module was distinctly flattened and it had an offset centre of gravity to provide it with some aerodynamic ‘lift’ during re-entry. However, it also required far more precision as it began to enter the atmosphere and, with Soyuz 1’s guidance system out of action, the cosmonaut could not keep it under control. When it began to spin, he attempted to fire his attitude-control thrusters to stabilise the situation, but their close proximity to the navigation sensors meant that he could not accurately align the spacecraft. In desperation, Komarov resorted to using the Moon to work out his alignment.
The first retrofire attempt apparently began at 2:56 am on 24 April, but the problems forced the automatic control system to inhibit it. A decision was made shortly thereafter not to make another attempt on the 17th circuit, but to use that pass over Russia to prepare him for re-entry on the next orbit. Sometime between 3:30-4:00 am, a Japanese station received signals from Soyuz 1 and Tass announced that a routine communications event was being held between mission controllers and Komarov. That ‘event’, according to some, was far from routine. In August 1972, a former National Security Agency analyst, under the pseudonym Winslow Peck (real name Perry Fellwock), reported being on duty at a monitoring station near Istanbul in Turkey on the morning of Komarov’s death. According to Fellwock’s report, the cosmonaut and ground controllers knew that the situation would produce fatal consequences and Komarov even spoke personally to his wife, Valentina, and to a tearful Soviet premier Alexei Kosygin. ‘‘He told [his wife] how to handle their affairs and what to do with the kids,’’ wrote Fellwock. ‘‘It was pretty awful. Towards the last few minutes, he was falling apart. . . ’’
These and other harrowing, though unverified, reports imply that Komarov knew that the problems with Soyuz 1 were insurmountable. Unconfirmed stories over the years hinted that, when he finally began re-entry, he grumbled that ‘‘the parachute is wrong’’ and ‘‘heat is rising in the capsule’’. Evidently, the actual retrofire on his 18th orbit was far from perfect, in light of the asymmetrical shape of the spacecraft and the inability of the attitude-control thrusters to maintain proper orientation. Still, retrofire began at 5:59 am and ran for long enough to ensure entrance into the atmosphere. The Yevpatoriya control station in the Crimea picked up voice communications at 6:12 am, in which Komarov apparently advised them of the results of the retrofire and his loss of attitude, before entering a period of blackout as heated plasma surrounded the spacecraft.
During re-entry, the descent module should have separated from the remainder of the Soyuz – the orbital and instrument sections – about 12 minutes after retrofire. Parachute deployment should have begun 14 minutes later and touchdown some 39 minutes and 27 seconds after retrofire. Komarov’s voice reappeared during re-entry, sometime between 6:18 and 6:20 am, and was described as calm and unhurried, in spite of the 8 G load imposed by what was effectively a steep, ‘ballistic’ descent. Notwithstanding these problems, Soyuz 1 might still have landed safely. Then its parachutes failed.
In his autobiography, fellow cosmonaut Alexei Leonov related being based in the control centre, participating in the recovery effort. He wrote that ‘‘the brake chute deployed as planned and so did the drag chute, but the latter failed to pull the main canopy out of its container. While the reserve chute was then triggered, it became entangled with the cords of the drag chute and also failed to open’’. Indeed, Soyuz 1’s landing point – at 51.13 degrees North latitude and 57.24 degrees East longitude, some 65 km east of the industrial city of Orsk, in the southern Urals – was considerably farther west than normal and has been seen by many analysts as ‘‘consistent with a purely ballistic re-entry. . . and no parachute deployment’’. Locals in the Orsk area, who witnessed the final stages of the descent, confirmed that Soyuz 1’s parachutes were simply turning, not filling properly with air…
Meanwhile, Soviet anti-aircraft radar installations detected the incoming descent module at 6:22 am and predicted its ‘landing’ two minutes later. Elsewhere, listening posts in Turkey are said to have intercepted Komarov’s cries of rage and frustration as he plunged to his death, cursing the engineers and technicians who had launched him in a fault-ridden spacecraft. Whether this really happened will probably never be known with certainty. Travelling at more than 640 km/h, Soyuz 1 hit the ground like a meteorite, killing the cosmonaut instantly and completely flattening the descent module. Solid-fuelled rockets in its base – meant to cushion the touchdown – detonated on impact, causing the remains to burst into flames. The whole landing site was soon engulfed in smoke and the first helicopter pilot on the scene quickly judged that it was a fatal situation. ‘‘But he also knew he was on an open loop with Yevpatoriya and the Ministry of Defence satellite control centre in Moscow,’’ wrote Deke Slayton. ‘‘All he said was ‘the cosmonaut is going to need emergency medical treatment outside the spacecraft’, at which point the lines were cut by somebody in the rescue units.’’
The misleading call for ‘urgent medical attention’ is an intriguing story in itself. Flight surgeons Oleg Bychkov and Viktor Artamoshin, members of the search and rescue group which found Soyuz 1, recounted later that their helicopter touched down 70-100 m from the point of impact. ‘‘Everybody rushed to the capsule,’’ they wrote, ‘‘but only upon reaching it, realised that the pilot would no longer need help. Fire inside the spacecraft was spreading and its bottom completely burned through with streams of molten metal dripping down.’’ The rescue team was equipped with coloured flares to signal the overflying aircraft about the situation on the ground. No code existed to denote the death of the cosmonaut, so they were forced to fire the flare which equated to Komarov needing medical aid. It was this misunderstood message which, tragically, kindled some hope that Vladimir Komarov had survived.
On the ground, the flames were so fierce that portable foam extinguishers proved insufficient and the would-be rescuers began shovelling heaps of dirt onto the capsule. The force of impact had already reduced it from its normal 2 m height to a tangled mess no more than 70 cm tall and it was during the frantic firefighting effort that Soyuz 1 literally collapsed, leaving a pile of charred wreckage and a couple of congealed pools of molten aluminium, topped by the circular entrance hatch. Nearby lay the three parachutes. Komarov’s remains were “excavated” from what was left of his ship at 9:30 am and his death was pronounced as having been caused by multiple injuries to the skull, spinal cord and bones. Later eyewitness reports revealed that his ‘body’ took the form of a ‘lump’, 30 cm wide and 80 cm long, while Venyamin Russayev recounted that a heel bone was the only recognisable fragment left…
By this time, Nikolai Kamanin himself was on the scene and it was he who telephoned Dmitri Ustinov, who in turn contacted Leonid Brezhnev. Five hours later, it was Ustinov who carefully edited Tass’ communique on the subject of Komarov’s death.
A government investigation, headed by V. V. Utkin of the Flight Research Institute of the Aviation Industry, revealed that Soyuz 1’s parachute container had opened at an altitude of 11 km and had become ‘deformed’, squeezing the main canopy and preventing it from opening correctly. Although a small drogue had come out, the main parachute simply could not exit the container, and not just because of the deformation. The drogue was supposed to impart a force of 1,500 kg to pull out the main parachute, whereas it actually required upwards of 2,800 kg, perhaps a result of air pressure in the descent module pushing against the container. Such problems had never arisen in tests, Utkin’s panel found, but attributed them to the abnormal and ‘random’ conditions surrounding the Soyuz 1 descent. Future missions, the panel decreed, would benefit from enlarged and strengthened parachute containers. The failure of the drogue to pull out the main parachute was compounded by its backup canopy. This quickly became entangled with the fluttering drogue, leaving nothing to arrest Komarov’s meteoric fall to Earth.
Unofficially, gross negligence on the part of manufacturing technicians has also been blamed for Komarov’s death. During pre-flight preparations, explained Asif Siddiqi, the Soyuz 1 and 2 spacecraft were coated with thermal protection materials and placed in a high-temperature test chamber. Both were evaluated with their parachute containers in place, but lacking covers. This resulted in the interiors of both containers becoming covered with a polymerised coating, which formed a very rough surface and directly prevented Soyuz 1’s parachute from deploying. ‘‘Clearly,’’ wrote Siddiqi, ‘‘the most chilling implication of this manufacturing oversight was that both Soyuz spacecraft were doomed to failure – that is, if Komarov had not faced any troubles in orbit and the Soyuz 2 launch had gone on as scheduled, all four cosmonauts would have died on return.’’ None of this was mentioned in the official Soyuz 1 accident report.
As the Soviets, like the Americans, dug in for a lengthy period of self-criticism and introspection to make their craft spaceworthy, not another cosmonaut would venture aloft until October 1968. That cosmonaut, Georgi Beregovoi, would establish a new record as the oldest man yet to be launched into orbit, aged 47. He was also one of Yuri Gagarin’s harshest critics – a senior Soviet Air Force officer, Second World War combat veteran and decorated test pilot, albeit unflown in space – who considered the First Cosmonaut to be “an upstart’’ and a bit-of-a-lad who was “too young to be a proper Hero of the Soviet Union’’. Their relationship in the months before Komarov’s death grew so stormy that Gagarin even shouted that Beregovoi would never fly in space.
Seven months after Gagarin’s untimely death in an aircraft crash, Beregovoi finally got his chance. It was he who would lay the ghost of Vladimir Komarov to rest and nurse Soyuz through its first successful manned mission.