Category Energiya-Buran

THE USSR BREAKS UP

Despite all the criticism, preparations continued at Baykonur for future Buran missions. In the summer of 1990 the OK-MT full-scale test orbiter spent a month on pad 37 (6 July-7 August) for crew boarding and evacuation exercises and also for tests in which the fuel cells were loaded with liquid oxygen and liquid hydrogen.

By the first half of 1991 more than two years had elapsed since the first flight, making many wonder if a second flight was going to take place at all. Space officials kept stressing that the 2K1 mission to Mir was still on and would be flown sometime in 1992. One glimmer of hope was a test roll-out of the 2K orbiter to the launch pad in May 1991.

However, it wasn’t long before Buran’s future was further thrown into doubt by events that shook the very foundations of the Soviet Union. On 19 August 1991 tanks rolled into Moscow as a group of Communist Party hardliners calling themselves the State Emergency Committee attempted to take control of the country while Gorbachov was vacationing in the Crimea. The coup was timed to prevent the signing of a new Union Treaty which would have fundamentally recast the relationship between the center and the republics in favor of the latter. Although the putsch collapsed in only three days, it accelerated the events that would lead to the dis­integration of the USSR at the end of the year. Adding to the growing unpopularity of the space program was the fact that one of the coup plotters had been Oleg Baklanov, who had been a strong supporter of the Energiya-Buran program in particular.

In the wake of the failed coup the Russian government took over the union government, ministry by ministry. In the autumn of 1991 the Ministry of General Machine Building was dissolved. The rocket and space enterprises located on Russian territory were transferred to the Russian Ministry of the Industry. Many of the enterprises were expected to merge into specialized conglomerates that would be

2K vehicle on the pad in the spring of 1991. Note missing tiles (source: Luc van den Abeelen).

subordinate to an organization called Rosobshchemash. Established in October 1991 on the vestiges of the Ministry of General Machine Building, it would act as a middleman between the Russian government and other nations for space and defense project orders. It was headed by outgoing MOM minister Oleg Shishkin, with Yuriy Koptev acting as his deputy for space matters. However, several leading companies, including NPO Energiya, refused to join Rosobshchemash. As Koptev later recalled, the organization was ineffective in bringing together the Russian space industry. In December 1991 leading space officials requested the government to set up a Russian Space Agency, in response to which a special commission was created led by Yegor Gaydar, the Minister of Economy and Finance [14].

The committee’s findings were presented to President Boris Yeltsin during a key meeting at the Kremlin on 18 February 1992. It was attended among others by Yuriy Semyonov, Gleb Lozino-Lozinskiy, TsNIIMash director Vladimir Utkin, Vice-President of the Academy of Sciences Yevgeniy Velikhov and Koptev, who had been Gaydar’s deputy in the committee and was the leading candidate to head the new agency. While the formation of the agency topped the agenda, the meeting also addressed the future of specific programs. Opening the meeting, Yeltsin spoke out against the continuation of the Energiya-Buran program. Semyonov countered the President by saying that its cancellation would be a repeat of the flawed decision to terminate the N-l program in the 1970s and would deal an irreparable blow to the country’s scientific, technical, military, and industrial potential. Semyonov was sup­ported by Koptev and Utkin, while Velikhov echoed Yeltsin’s sentiments, calling for an immediate shutdown of the program. The official minutes of the meeting said the future of the Energiya-Buran program would require further analysis, but according to the official history of NPO Energiya “all present at the meeting felt that the fate of the program had been sealed.’’ On 25 February 1992 Yeltsin issued an edict approv­ing the establishment of the Russian Space Agency (RKA) [15].

Skif

After the failed launch of the Skif-DM/Polyus payload by Energiya 6SL on 15 May 1987 (see Chapter 6), KB Salyut continued work on the Skif project, albeit at a slow pace. Original plans to launch Skif-D1 (without a laser payload) and Skif-D2 (with a laser payload) in 1987 and 1988 soon turned out to be unattainable. Several major components of Skif-D1 (both for the FSB and the Payload Module) were finished at the Khrunichev factory by early 1987, but serious problems with the development of the vehicle’s acquisition, tracking, and pointing system delayed the final assembly of the spacecraft. That, combined with the declining support from the Gorbachov administration for Star Wars programs, led to the suspension of all Skif-related work at KB Salyut and the Khrunichev factory in September 1987.

While Skif was supposed to use laser-type weapons to destroy low-orbiting satellites, KB Salyut concurrently also developed the Kaskad system, armed with conventional missiles to destroy satellites in medium and geostationary orbits. Vir­

tually nothing has been revealed about this project, but it was almost certainly also supposed to be launched by Energiya [59].

UKSS

The Universal Test Stand and Launch Pad, used for Energiya fueling tests, test firings, and also for the first launch of Energiya in May 1987, is in relatively good condition. Also run by NIIkhimmash, it is being maintained by a 110-man strong team. Key systems such as the sound suppression water system are still intact. The huge “tank farm’’ situated at some distance from the pad is now used to store liquid oxygen, liquid hydrogen, nitrogen, and helium for other programs [83].

There have been several proposals to revive the UKSS for new rocket programs. One suggestion around the turn of the century was to use it for test launches of the Avrora rocket, a much upgraded version of the Soyuz rocket that would be launched on commercial missions from Christmas Island in the Indian Ocean under a contract between the Asia Pacific Space Center, RKK Energiya, and several other Russian organizations. Unfortunately, the deal to build the rocket and the island launch pad fell through [84]. The UKSS has also been eyed to serve as a launch pad operated and financed jointly by CIS countries for launches of Angara rockets. In the late 1990s there was RKK Energiya’s short-lived Sodruzhestvo proposal and more recently the UKSS was also considered for the Russian/Kazakh Bayterek complex. However, it was later decided that Bayterek will be built on an old Proton site. In late 2004 a group of US experts visited the UKSS and supporting facilities to study its possible use as “an international spaceport’’, but nothing has been heard of such plans since [85].

At any rate, UKSS’ designers say the pad can be quite easily modified to accommodate launch vehicles other than Energiya. Against Soviet/Russian tradition, it would even be possible to assemble rockets on the UKSS vertically. That may eventually become a necessity, because at least part of the railroad track that used to connect the UKSS with the MIK RN has reportedly been removed and reused to connect that assembly building with Site 31 for Starsem missions. The two crawler transporters remain parked outside the MIK RN [86].

SPACE TOURISM

Quite possibly, the next Russian winged spacecraft to make its appearance will not be a state-sponsored vehicle, but one financed by the private sector for suborbital tourist missions. Suborbital space tourism got a major boost in the 1990s with the initiation of the X-Prize (later renamed Ansari X-Prize), a $10 million prize designed to jumpstart the space tourism industry through competition between entrepreneurs and rocket experts around the world. The cash prize would be awarded to the first team that privately built and launched a spaceship capable of carrying three people to 100 km altitude and repeat that launch with the same ship within two weeks.

The M-55X and the C-XXI suborbital rocket plane (source: EMZ).

One of the 26 contenders for the X-Prize was a consortium consisting of the Experimental Machine Building Factory (EMZ) in Zhukovskiy, the Russian Sub­orbital Corporation, and the Virginia-based company Space Adventures, which also brokers deals for millionaires wishing to fly to the International Space Station. On 14 March 2002 the consortium unveiled plans for a system called Constellation XXI, consisting of the M-55X carrier aircraft and the C-XXI suborbital vehicle, both designed by EMZ, which played a leading role in the Buran program as part of NPO Molniya. The M-55X is a modified version of the M-55 “Geofizika”, a high – altitude research aircraft that made its debut in 1988. Journalists invited to EMZ’s facilities were shown one of the M-55 aircraft with a wooden mock-up of the rocket plane suspended above it. The C-XXI was described as a 7.7 m long and 2.02 m high vehicle capable of carrying one pilot and two passengers. It was made up of a crew module and a jettisonable engine unit.

The plan was for the M-55X to carry the C-XXI to an altitude of 17 km, where the pair would separate at a speed of 750 km/h. Shortly afterwards, the C-XXI would ignite a solid-fuel rocket engine that would accelerate it to a speed of 1,600 km/h and take it to an altitude of 50 km. After engine burnout, the engine unit would be separated, while the rocket plane continued to an altitude of over 100 km, allowing the passengers to experience 3 to 5 minutes of weightlessness. The C-XXI would then make a 360° turn to glide to a landing on an ordinary runway at a speed of 220 km/h. All three crew members were supposed to wear pressure suits and could be ejected from the vehicle during the entire piggyback ride on the M-55X as well as during the early and final stages of the ship’s autonomous flight [33].

The Ansari X-Prize was eventually won by Mojave Aerospace Ventures/Scaled Composites, the team led by the famed US aerospace designer Burt Rutan and sponsored by financier Paul Allen. After several powered test flights earlier in the year, the team’s SpaceShipOne, dropped from the White Knight One carrier aircraft, made two successful suborbital flights in September-October 2004 less than two weeks apart. Building upon the success of SpaceShipOne, Rutan teamed up in July 2005 with the British business tycoon Richard Branson to form a new aerospace production company (the “Spaceship Company”) that will build a fleet of commer­cial suborbital spaceships (SpaceShipTwo) and launch aircraft (White Knight Two). Owned and operated by a company called Virgin Galactic, at least five ships will be carrying two pilots and up to six paying passengers on suborbital flights reaching an altitude of 140 km.

Although Constellation XXI lost out in the X-Prize competition, its design now serves as the basis for a new suborbital tourist project that may eventually compete with Virgin Galactic. Space Adventures has again joined forces with EMZ to build an advanced version of the C-XXI that will use the same M-55X as its parent aircraft. Dubbed Explorer, the rocket plane will be able to haul five people to the edge of space and have emergency rescue systems similar to those of its predecessor. Also part of the partnership is Texas-based Prodea, a firm founded by the Ansari family, which put up the $10 million prize money for the X-Prize competition. Space Adventures intends to sell Explorer vehicles to operator companies to conduct the actual missions. It has deals in place to fly the Explorer vehicles from spaceports near major airports in the United Arab Emirates and Singapore [34].

POST-WAR ROCKET PLANES

With turbojet development in the Soviet Union slow to take off, there was continued interest in rocket-propelled aircraft in the first post-war years, not only to counter the new threat of US strategic bombers, but also to explore the behavior of aircraft at supersonic speeds.

One project was initiated before the end of the war at NII-1, the new name given to the former NII-3 after it had merged in May 1944 with Bolkhovitinov’s OKB-293 (which also included a rocket engine department headed by Isayev). Headed by Ilya Frolov, the new effort was mainly intended to compare the performance of a pressure-fed and a turbopump-fed engine in future rocket fighters. For this purpose NII-1 developed two aerodynamically identical airplanes with straight wings: 4302 nr. 2 with a pressure-fed Isayev RD-1M engine and 4302 nr. 3 with a turbopump-fed Dushkin RD-2M-3. The RD-2M-3 was a two-chamber design with a 1,100 kg thrust main chamber and a 300 kg thrust supplementary chamber. Both chambers would be used for take-off, after which the pilot would shut down the main chamber and use the thrust of the smaller one to search for and engage the target. This technique was more fuel-efficient and allowed the plane to stay in the air longer. A glider version (4302 nr. 1) towed by a Tupolev Tu-2 made 46 flights beginning in 1946. Of the two rocket-powered versions only 4302 nr. 2 was eventually flown, making one single flight in August 1947 before funds were transferred to another rocket plane project initiated by Mikoyan.

In February 1946 the Soviet government ordered both the OKB-301 Lavochkin bureau and the OKB-155 Mikoyan bureau to develop rocket interceptors capable of reaching speeds up to Mach 0.95 and altitudes of up to 18 km. Both planes were to be equipped with modified Dushkin RD-2M-3V dual-chamber engines. Lavochkin’s team studied a plane with a radar sight called La-162, but abandoned work on it in late 1946, preferring to fully concentrate their efforts on jet aircraft. The Mikoyan version was called I-270 and was heavily influenced by the German Me-263-V1 rocket fighter, which had been captured by the Red Army and carted off to the Soviet Union. The Me-263-V1 was one in a long line of Messerschmitt rocket fighters, one of which (the “Komet”) had been the only rocket fighter ever to be used in combat. Although the I-270 featured a similar cockpit and landing gear arrangement, it was substantially longer than the Me-263 and also had mid-mounted straight wings and a tee tail rather than the swept wings and tailless design of the German interceptor.

Two experimental I-270 planes were built, one designated Zh-1 and the other Zh-2. Towed by a Tu-2 bomber, Zh-1 made 11 unpowered test flights between February and June 1947. Zh-2 performed the first rocket-propelled flight in Septem­ber 1947, but was irreparably damaged when it landed far off the runway. Zh-1 also suffered damage on its first powered flight in October 1947 when the landing gear

failed to deploy, but was repaired for one final flight in May 1948. The test flights were rather conservative, with the planes developing speeds of only about 600 km/h.

In the second half of 1945 the design bureau of Pavel V. Tsybin was tasked with studying various wing configurations for use at near supersonic speeds. For this purpose the bureau developed “Flying Laboratories” (LL) powered by a Kartukhov PRD-1500 solid rocket motor. Two configurations were tested: LL-1 (or Ts-1) with straight wings and LL-3 (or Ts-3) with 30° forward-swept wings. The LL-1 and LL-3 made about 130 flights in 1947-1948, with the latter reaching speeds of up to Mach 0.97. A planned LL-2 with 30° swept-back wings was not flown because that wing configuration had already been tested on the MiG-15 and La-15 fighters.

Meanwhile, the Soviets were also out to break the sound barrier with rocket – propelled airplanes, relying both on a captured German and a derived domestic design. The German rocket plane was the 346, originally developed by the German Institute for Sailplane Flight (DFS) in 1944. After shutting down its engine, the plane was supposed to glide over enemy territory to take reconnaissance photos and then re-ignite the engine to gain enough speed and altitude to glide back to a friendly base in France or Germany. It had a long, slender fuselage reminiscent of a rocket, with 45° swept-back wings. Thrust was to be provided by a dual-chamber HWK 109-509C. The pilot was supposed to lie in a prone position. In case of an emergency the cabin could be separated from the airplane, with the pilot subsequently ejecting for a parachute landing.

Having fallen into Soviet hands at the end of the war, the German team that had been working on the 346 was sent to Podberyozye (some 100 km north of Moscow) in October 1946 to continue development of the rocket plane under the leadership of Hans Rossing in a newly created Soviet-German design bureau called OKB-2. In the second half of 1948 Rossing’s team completed work on a glider version of the plane called 346-P, which was flown several times by German test pilot Wolfgang Ziese in 1948-1949. The carrier aircraft for these and subsequent test flights was an American B-29 bomber confiscated by the Russians after having made an emergency landing in Vladivostok in 1944. In 1949 Ziese and Soviet pilot Pyotr Kazmin were behind the controls for three drop tests of a version of the 346 carrying a mock-up rocket engine (346-1). Despite landing problems on all three flights, the team pressed ahead with the development of the first rocket-propelled model called 346-3.

Ziese performed three powered flights in August-September 1951. During the third flight he lost control of the plane after engine shutdown, forcing him to separate the cabin and eject. With only one of the two combustion chambers activated during these test flights, the maximum speed reached was just over 900 km/h. The 346 could have broken the sound barrier with both chambers working, but OKB-2 was reportedly wary of making such an attempt because of aerodynamic in­sufficiencies in the airplane. Plans for a delta-wing supersonic rocket plane called 486 were scrapped and the German team was eventually repatriated to the GDR in 1953.

Concurrently with the Germans at Podberyozye, a team under Matus Bisnovat worked on an indigenous supersonic rocket plane called Samolyot-5 (“Airplane-5”). Bisnovat had been placed in charge of the OKB-293 design bureau in June 1946,

image10

when it separated from NII-1 to once again become an independent entity. With its 45° swept-back wings, Samolyot 5 was outwardly very similar to the 346, also featuring a jettisonable cabin. It would use a twin-chamber Dushkin RD-2M-3F with a total thrust of 1,600 kg to reach speeds of up to Mach 1.1.

Bisnovat’s team initially developed a scale model called “Model 6” that was dropped on four occasions from a Tu-2 bomber between September and November 1947. Claims that speeds of Mach 1.28 and Mach 1.11 were attained on the two final flights are hard to verify because the speedometers were not retrieved intact. With the Dushkin engine not yet ready, a glider version designated 5-1 performed three drop tests from a Pe-8 bomber between July and September 1948, but it was damaged beyond repair in a landing accident on the final mission. Eight or nine more drop tests were conducted with airplane 5-2 between January and June 1949, but that same year financing for Samolyot-5 was discontinued even though the Dushkin engine had been test-fired and installed on the 5-2 [9].

By the end of the 1940s the era of the rocket planes was drawing to a close. Because of their limited flight times, they had little military value, among other things because the pilot had a hard time gliding back to a safe landing. Another safety issue was the use of toxic nitric acid in all the rocket engines developed for the Soviet rocket planes. A much cheaper, safer, and more efficient way of shooting down enemy bombers was the use of surface-to-air missiles, something that the Russians realized shortly after the end of the war when they stumbled on advanced German SAM missiles such as the Wasserfall.

After the war, rocket engines were a handy way of testing aircraft performance at supersonic speeds, but their development was gradually being overtaken by that of the jet engine, even though the Russians mainly relied on copies of German and British engines. While Chuck Yeager had become the first man to break the sound barrier on the X-1 rocket plane on 14 October 1947, the Russians achieved the same feat a year later, but not on one of their rocket-propelled aircraft. On 26 December 1948 Oleg Sokolovskiy became the first Soviet pilot to exceed Mach 1, flying a

image11

The Samolyot 5 rocket plane.

Lavochkin La-176 jet plane. Despite the simultaneous development of the 346 and Samolyot-5, no Russian pilot ever flew faster than the speed of sound on a rocket – propelled aircraft. In the first half of 1950 a special commission set up under the Ministry of the Aviation Industry concluded that rocket engines had little future in aviation and a government decree in June 1950 closed down all further work on rocket engines for aircraft at NII-1.

INTERCONTINENTAL BOMBERS

Ever since the reorganization of NII-1 under the Ministry of the Aviation Industry in 1944, one of its main goals had been to incorporate rocket and ramjet technology into aviation. On 29 November 1946 the new head of NII-1 became Mstislav Keldysh. One of his first assignments was to study a German hypersonic winged trans­continental bombardment aircraft known as the Silbervogel (“Silver Bird”) or the “antipodal bomber”. This was the brainchild of Dr. Eugene Sanger and mathematician-cum-wife Irene Brendt, who proposed it in a document in August 1944, one copy of which was found by the Russians in Germany after the war. Launched horizontally by a rocket-powered sled, it would use its own rocket engines to boost itself to orbital altitude and subsequently ricochet off the Earth’s atmo­sphere, dropping a bomb over the desired target during one of the dips. Stalin was impressed enough by the Silbervogel to dispatch an Air Force officer named Grigoriy Tokaty-Tokayev to kidnap Sanger in France in 1948, but Tokaty-Tokayev took the opportunity to defect to the West instead [10].

Actually, by this time Keldysh had already come to the conclusion that the Silbervogel was an unrealistic design, among other things because of the high specific impulse required for the engines and the high propellant load. In 1947 he had come up with an alternative intercontinental bomber that would use a combination of supersonic ramjets (scramjets) and rocket engines to perform a mission very similar

image12

Soviet antipodal bomber.

to the Silbervogel. In what amounted to the first serious Soviet spaceplane proposal, Keldysh’s single-seater bomber would be horizontally rail-launched as the Sanger/ Bredt bomber, but then switch to two wing-mounted scramjets to reach an altitude of 20 km. Subsequently, the scramjets would be jettisoned, after which a 100-ton thrust rocket engine would kick in to send the vehicle to the upper reaches of the atmosphere, where it would fly several “dip-and-skip” trajectories to reach its final target. The scramjet and rocket engines would share several systems such as a common kerosene tank and also a common hydrogen peroxide tank to drive the turbopumps [11].

INTERCONTINENTAL CRUISE MISSILES

As the Cold War shifted into higher gear in the late 1940s, the Russians began looking at more realistic ways of delivering nuclear warheads over intercontinental distances. Unlike the US, the USSR did not have the luxury of having bases along the enemy borderline, making rockets a more convenient way of transporting nuclear bombs than strategic bombers. The leading rocket research institute was NII-88, set up in 1946. Sergey Korolyov, released from the sharaga in 1945 to study V-2 missiles in Germany, headed one of its departments. By the end of the decade NII-88 was investigating both ballistic and cruise missiles as a means of delivering nuclear bombs over long distances. In the winged arena, the emphasis now shifted from a hori­zontally launched piloted bomber with rocket and scramjet engines to a vertically launched unmanned two-stage cruise missile carrying rocket engines in the first stage and supersonic ramjets in a winged second stage. Unlike the ballistic missiles, the cruise missiles would remain within the boundaries of the Earth’s atmosphere, developing top speeds of around Mach 3.

A Soviet government decree issued on 4 December 1950 approved a new rocket research program, one part of which (“theme N-3’’) focused on intercontinental missiles. The conclusion of the N-3 studies was that the development of a cruise missile with a range of 8,000 km was feasible, but needed to be preceded by further

research into scramjets and navigation systems. A government decree on 13 February 1953 gave the go-ahead for the simultaneous development of both intercontinental ballistic and cruise missiles, assigning both tasks to OKB-1, which was the name given to Korolyov’s reorganized department within N11-88 in 1950. Since the cruise missile required a significant leap in technology, OKB-1 would first design an intermediate Experimental Cruise Missile (EKR). With a targeted range of 730 km, it would consist of an R-11 missile as the first stage and a winged second stage with a Bondaryuk RD-40 scramjet.

By the end of 1953 preliminary ground-based testing of EKR components had given the Russians enough confidence to skip this intermediate step and move directly to an intercontinental cruise missile with a range of 8,000 km. Since Korolyov’s OKB-1 was too heavily preoccupied with its R-7 ICBM, responsibility for the cruise missiles was entrusted to the aviation industry by a government decree released on 20 May 1954. Three aviation design bureaus were tapped to build cruise missiles with different missions:

• OKB-49 (Georgiy Beriyev): a missile called Burevestnik (“Petrel”) or “P-100” to be used for long-range reconnaissance (fulfilling the same role as the American U-2 reconnaissance aircraft) and also to deliver small 1.2-ton nuclear warheads.

• OKB-301 (Semyon Lavochkin): a missile called Burya (“Storm”) or La-350 to transport 2.18-ton atomic bombs.

• OKB-23 (Vladimir Myasishchev): a missile called Buran (“Blizzard”) or M-40 to transport 3.4-ton hydrogen bombs.

image13

The Burya (left) and Buran cruise missiles (source: www. buran. ru)

image14

Burya lifts off (source: NPO Lavochkin).

image15

Burya in flight (source: NPO Lavochkin).

Keldysh’s NII-1, which had once again become independent in 1952 after having been a branch of the Central Institute for Aviation Materials (TsIAM) since 1948, had overall scientific supervision of the cruise missile effort, relying on its earlier experience in high-speed and high-altitude aeronautics obtained during the antipodal bomber projects.

All cruise missiles consisted of a “core stage’’ with air-breathing scramjet engines, flanked by rocket-powered “strap-on boosters’’ (two for Burevestnik and Burya and four for Buran), giving them an appearance somewhat reminiscent of the Space Shuttle. Burevestnik seems to have been a very short-lived program that never came close to flying. Buran featured four first-stage boosters with Glushko RD-212 kerosene/nitric acid engines and a core stage with a Bondaryuk RD-018 scramjet. In August 1956 OKB-301 started work on an improved version (Buran-A or M-40A) with upgraded RD-213 engines, increasing payload capacity to 5 tons. Interestingly, Myasishchev at one point considered equipping Buran with a small crew cabin, from which the pilot was to eject prior to impact. One of the objectives of this plan was to see if a man could endure the psychological and physical rigors of hypersonic flight. Buran was scrapped in November 1957 before making its first flight.

Burya’s two strap-ons had Isayev S2.1100 rocket engines (later replaced by the S2.1150) and the core stage was powered by a Bondaryuk RD-012 scramjet. The missile underwent a series of 17 test flights from the Vladimirovka test range in the Volgograd region between September 1957 and December 1960. The maximum range achieved was 6,425 km, less than the prescribed 8,000 km, because the scramjet had a tendency of igniting too early. However, even as Burya was overcoming its teething problems, its fate had already been sealed by the successful test flights of OKB-1’s R-7 ICBM, the first of which took place in August 1957. Cruise missiles were very vulnerable to defensive measures due to their low flight altitudes (around 17-25 km) and took more than two hours to reach their targets, whereas ICBMs could deliver their deadly cargo in a matter of minutes. The US Air Force had come to the same conclusion, closing down its Navaho intercontinental cruise missile project in July 1957. The Soviet government followed suit by releasing a decree on 5 February 1960 that canceled all further work on Burya, although it allowed some of the remaining missiles to be tested in flight [12].

SPACEPLANES OF THE 1950s AND 1960s

For many years official histories of the Soviet space program created the impression that Vostok had been the only Soviet piloted space project in the late 1950s/early 1960s. Not until the days of glasnost in the late 1980s/early 1990s did it emerge that just like the United States the Soviet Union had considered winged spacecraft as an alternative to ballistic capsules in the early years of the space program. Surprisingly, it turned out that this option was studied in no fewer than five design bureaus.

In the US winged spacecraft were long seen as the logical culmination of research into high-speed aeronautics conducted since the mid-1940s with air-launched rocket – propelled X-planes. The first phase had seen aircraft such as the X-1, X-2, and

Skyrocket gradually push the envelope from Mach 1 to Mach 3 between 1947 and 1956. Phase 2 had been initiated in late 1954 with the decision to press ahead with the development of the X-15 high-altitude hypersonic research aircraft, which eventually performed a largely successful test program between 1958 and 1969. Ultimately, suborbital and orbital capability would be achieved using the “boost-glide” principle, where a spaceplane would be launched vertically with the help of a con­ventional rocket and eventually glide back down to the runway like an ordinary aircraft. In late 1957, responding to Sputnik, the Air Force consolidated three “boost-glide” feasibility studies (Hywards, Brass Bell, and Rocket Bomber) into a single program called “Dyna-Soar” or X-20. Unlike the X-15, however, Dyna-Soar was not seen as an experimental system, but an operational weapon system capable of orbital nuclear bombardment, reconnaissance, and satellite identification and neutralization [13].

During 1958 the exigencies of the Cold War and the fledgling space race with the Soviet Union gradually pushed the ballistic capsule approach to the foreground, especially after the formation of NASA in October of that year. Having lost face after the early Sputnik successes, the United States was intent on restoring its reputation by putting the first man into orbit and capsules were a more efficient and quicker way of achieving that goal than winged spacecraft. The Air Force continued work on Dyna-Soar against the backdrop of NASA’s Project Mercury, but in December 1963, with the first flight an estimated three years away, Secretary of Defense Robert McNamara canceled the program. X-20 funds were reappropriated to a military space station called the Manned Orbiting Laboratory (MOL). After that the United States did not have another officially sanctioned spaceplane project until the approval of the Space Shuttle by President Nixon in early 1972.

The winged approach to piloted spaceflight was probably less central in Soviet thinking than it was in the US, at least when it came to building the first manned spacecraft. For one, the Soviet aviation industry and the Air Force were far removed from missiles and space-related matters after the Ministry of the Aviation Industry had declined offers in 1945-1946 to bear responsibility for long-range missile pro­grams. Instead, the assignment went to the Ministry of Armaments, which had developed artillery during the Second World War. This had far-reaching implications for the Soviet space program (essentially an offshoot of the missile program), which until the break-up of the USSR remained tightly in the grip of the “artillery” camp. Moreover, missiles were soon favored over strategic bombers to deliver nuclear warheads to US territory and there was little incentive for research into high-speed, high-altitude aircraft, reflected in the absence of high-altitude “X-type” airplane research programs in the Soviet Union. On top of that, Soviet leader Nikita Khrushchov had become particularly enamored with missiles in the mid-1950s, curtailing contracts for the aviation industry and even dissolving several aviation design bureaus towards the end of the decade.

The earliest plans for piloted missions beyond the atmosphere revolved around the use of converted R-2 missiles to send people on vertical trajectories to altitudes of up to 200 km. Although one common cabin design was planned, different methods were studied for returning the capsule to Earth. One option presented by Korolyov

Подпись: Winged capsule for suborbital mission (reproduced from Peter Stache, Sowjetischer Raketen, Berlin, 1987).
during a speech in September 1955 was to equip such a capsule with wings, allowing it to make a long ballistic suborbital flight rather than a short vertical hop [14].

Research on piloted spaceflight began in earnest in the spring of 1957 with the establishment within OKB-1 of Department 9, which was to focus exclusively on the development of lunar probes and piloted spaceships, signaling the beginning of the bureau’s reorientation from missiles to spaceflight. Between September 1957 and January 1958 OKB-1 and the NII-1 research institute carried out a comparative analysis of various basic shapes for piloted spaceships, paying particular attention to thermal protection requirements and the ^-forces exerted on the crew. The con­clusion was that the heat-resistant alloys available at the time were not up to the task of protecting winged vehicles with high lift-to-drag ratios against the severe thermal stresses of re-entry. Instead, the recommendation was that the first piloted spaceship should have a lift-to-drag ratio between just 0.5 and 0, depending on the ^-forces that were deemed acceptable for the crew. The ship would preferably be shaped as a blunt cone with a rounded nose and a spherical base, with the pilot being ejected from the descent capsule before touchdown.

In April 1958 one of the main obstacles to manned ballistic flight was eliminated when a key meeting of leading experts in the field of aviation medicine came to the conclusion that people could withstand forces of up to 10g as long as the body was properly positioned inside the capsule. All this would lead later that year to preliminary designs for the manned vehicle that eventually became Vostok, redesigned in early 1959 to serve the dual function of carrying people into space and performing unmanned photoreconnaissance missions [15].

Tsybin’s PKA

Nevertheless, Korolyov, a veteran of several rocket plane projects in the 1930s and 1940s, did not abandon the idea of winged piloted spaceflight. Outlining their ideas on the future of spaceflight in a joint letter to the government on 5 July 1958, Korolyov and his associate Mikhail Tikhonravov called for developing a manned space capsule in the 1958-1960 timeframe and then to design a manned vehicle “with a gliding return profile” in 1959-1965 [16].

Preoccupied with work on the R-7 rocket and the first satellites, Korolyov turned to a befriended aircraft designer to start preliminary research on a manned space – plane. This was Pavel V. Tsybin, who had got acquainted with Korolyov back in the early 1930s while building gliders. After leading research on the LL “flying labora­tories” in the late 1940s, Tsybin worked on missiles at N11-88 from 1949 to 1951 and subsequently became involved in the design of the air-launched Kometa anti-ship cruise missile at the Mikoyan design bureau. Finally, in May 1955 Tsybin was placed in charge of a newly founded design bureau called OKB-256, situated in Podberyozye, which in 1956 became part of the newly founded city of Dubna. Its primary assignment was to create the RS, a long-range bomber powered by super­sonic ramjet engines, although by mid-1956 the focus had shifted to a supersonic reconnaissance aircraft named RSR.

Sometime later, presumably in 1958, Korolyov proposed Tsybin to design a small winged spaceship that could be orbited by an R-7 based rocket. Tsybin’s team readily set to work, assisted by specialists from OKB-1. What they came up with was a vehicle called PKA (for “Gliding Space Apparatus’’), which because of its shape was also nicknamed Lapotok (“little bast shoe’’).

Having a launch mass of 3.5 tons, the one-man spaceplane was to be placed into a circular 300 km orbit by a Vostok rocket for missions lasting up to 24-27 hours. Built into the fuselage was a small pressurized cabin with a control panel, life support systems, and three windows, one of them for an astronavigation system. In case of a launch abort, the pilot could eject from the cabin up to an altitude of 10 km and in an emergency at higher altitudes the entire spaceplane would be separated from the rocket. Located behind the cabin was a pressurized instrument compartment with on-

image17

Pavel Tsybin.

orbit and re-entry support systems. The spaceplane also had a detachable engine compartment with two 2,350 kg thrust nitric acid/kerosene engines, one for on-orbit maneuvers and the other for the deorbit burn. Also on this compartment were an infrared vertical sensor and a thermal control system using radiators. The dry mass of the engine unit was 350 kg and the propellant mass at launch was 430 kg. For orientation in orbit and during the early stages of re-entry the ship used small hydrogen peroxide thrusters.

The deorbit, re-entry, and landing phase was to last up to 90 minutes. After the deorbit burn the engine compartment was to be separated at an altitude of 90 km. During re-entry the spaceplane’s steel fuselage was protected from the high tempera­tures by a heat shield consisting of a 100 mm thick organic silicon layer and a 70 mm thick fibre layer as well as by special air ducts to cool the outside structure. Places with maximum heat exposure such as the nose of the heat shield and the leading edges of the two elevons and the tail were to be cooled with the help of liquid lithium. During maximum heating the angle of attack was 55 to 60°. At an altitude of 20 km, having reduced its speed to 500-600 m/s, the PKA would deploy two wings with a span of 7.5 m and an area of 8.7 m2, which until then had remained folded back to protect them against the highest temperatures during re-entry. The spaceplane was to land on a dirt runway using a skid landing gear. Landing speed was 180-200 km/h and landing mass was 2.6 tons.

The preliminary design (“draft plan’’ in Russian terminology) for the PKA was officially approved by Tsybin on 17 May 1959 and the following day Korolyov sent a letter to the State Committee of Defense Technology (GKOT, the former Ministry of Armaments) with the request to include the spaceplane in its long-range plans and assign OKB-256 to the project as the lead organization [17]. However, wind tunnel tests conducted at the Central Aerohydrodynamics Institute (TsAGI) showed that the PKA would be exposed to much higher temperatures than expected (up to 1,500°C), requiring significant changes to the heat shield. Moreover, it turned out

image18

The PKA spaceplane (source: Igor Afanasyev).

that the use of liquid lithium to cool the hottest parts of the fuselage would make the design much heavier and more complex than anticipated [18].

Tsybin invited specialists of the All-Union Institute of Aviation Materials (VIAM) to deal with these issues, but by the end of 1959 clouds were gathering not only over the PKA, but over Tsybin’s design bureau as well. The RS supersonic strategic bomber had been canceled in the wake of the Soviet Union’s early ICBM successes and in October 1959 OKB-256 was absorbed by Myasishchev’s OKB-23. When OKB-23 in turn became a branch of Vladimir Chelomey’s OKB-52 in late I960, Tsybin returned to Korolyov’s OKB-1, where he would eventually go on to play an important role in the Energiya-Buran program and later in the design of single-stage-to-orbit spaceplanes [19].

Myasishchev’s Projects 46 and 48

Vladimir Myasishchev’s OKB-23 (situated in the Moscow suburb of Fili) was mainly engaged in the development of long-range strategic bombers, but branched out into cruise missiles with the M-40/Buran project in 1954-1957 and also did considerable research on spaceplanes even before Tsybin had started his PKA project. Unfortu­nately, most of the archival materials related to Myasishchev’s spaceplane projects have not been preserved, making it difficult to piece together their history. According to Russian historians Myasishchev, inspired by plans for the X-15 and US boost – glide concepts, began spaceplane research “on his own initiative’’ as early as 1956 under a program named Project 46. Also involved in the research were the NII-1 and NII-4 research institutes.

By 1957 he came to the conclusion it would be feasible in the short run to develop a reusable vehicle called a “satelloid’’ or “intercontinental rocket plane’’. Its primary goal would be to conduct strategic reconnaissance over enemy territory without the risk of being shot down by anti-aircraft defense means. Such missions would last 3 to 4 hours, with the spaceplane using radar and both optical and infrared photographic equipment to detect troop movements and spot enemy aircraft and missiles. Included

image19

Vladimir Myasishchev.

image20

Project 46 spaceplane (reproduced from A. Bruk, 2001).

in the early warning network would be high-orbiting relay satellites. Later goals were to send vehicles of this type on bombing missions or to destroy enemy missiles and satellites. A reconnaissance version was expected to be ready by 1963 and a combined reconnaissance/bombing version was planned for 1964-1965. Myasishchev is said to have presented his ideas for spaceplanes during a visit to OKB-23 by Khrushchov in August 1958, but the Soviet leader was unimpressed, telling Myasishchev to stick to the field of aviation and leave rocket-related matters to others.

Undeterred by Khrushchov’s scepticism, OKB-23 pressed on with its spaceplane research. By April 1959 the bureau had worked out plans for a 10-ton rocket plane flying between altitudes of 80 and 150 km and capable of increasing orbital altitude by 100 km (to a maximum of 250 km) and changing orbital inclination by 3°. As Dyna-Soar, it was envisaged as a “boost-glide” system, being launched into orbit by a conventional ballistic rocket and then gliding back to a horizontal runway landing. The launch vehicle was to be an upgraded three-stage version of Korolyov’s R-7 missile. The third stage apparently consisted of four “boost engines’’ drawing propellant from four jettisonable tanks mounted on the spaceplane itself. In April 1960 Myasishchev revised his plans and was now aiming for a 6-ton vehicle flying in 600 km orbits and capable of performing inclination-changing maneuvers of as much

6

.

Meanwhile, OKB-23 was tasked with the development of another manned space vehicle by a government and party decree (nr. 1388-618) issued on 10 December 1959. This decree, considered to be the first macro-policy statement on the Soviet space program, encompassed a wide range of space projects. Myasishchev’s bureau in particular was assigned to develop a manned vehicle capable of ensuring “a reliable link’’ between the ground and “heavy satellites’’. Known as Project 48, this appears to have been an early version of a transportation system for space stations, although it was supposed to solve defense-related tasks as well. It was only the second piloted space project to be officially approved by a party/government decree after Vostok. Work on the project got underway after orders from the State Committee of Aviation Technology (GKAT) on 7 January and 4 March 1960.

Myasishchev’s Projects 46 and 48

48-2 spaceplane (reproduced from A. Bruk, 2001).

Weighing no more than 4.5 tons, the spacecraft was to be launched into a circular 400 km orbit by an R-7 based launch vehicle and stay in orbit anywhere from 5 to 27 hours. Re-entry through the atmosphere was to consist of a ballistic and a “controlled gliding” phase, reducing deceleration forces to no more than 3-4g. This required an aerodynamic shape providing at least some lift and ruled out a Vostok – type spherical design. Thermal protection was to be provided by ceramic tiles and/or by super-cold liquid metals circulating under the spacecraft’s skin.

Myasishchev’s team came up with four possible designs to meet these require­ments, each capable of carrying two men. Vehicle 48-1 (launch mass 4.5 tons) had a cone-shaped fuselage with highly swept delta wings (79°) and fins on the wings and fuselage to provide braking during re-entry. The crew cabin was located in the back. Both the fins and the glider’s engine compartment were to be jettisoned when the spaceplane had decelerated to a speed of Mach 5. Vehicle 48-2 (launch mass 4.3 tons) had a cylindrical fuselage with delta wings (leading edge sweepback of 65°) and small canards in the front. There were vertical tails both on top of and under the fuselage. The crew cabin was situated in the middle and the spaceplane was outfitted with a non-jettisonable engine compartment. The two other schemes envisaged a Mercury/ Gemini look-alike inverted cone with a rotor for a helicopter-type landing (48-3) and a conically shaped spacecraft for a parachute landing (48-4). Missions of the two-man ship were to be preceded by test flights of a single-seater spaceplane to demonstrate

image23

One version of the VKA-23 spaceplane (reproduced from A. Bruk, 2001).

the functioning of life support systems and test the “gliding re-entry” technique. The proposals were reviewed at a meeting of leading aviation specialists on 8 April I960, but no consensus was reached on the way to go forward.

There was yet another OKB-23 proposal for a single-seater spaceplane, which Myasishchev historians also link to Project 48, although it does not appear to have been the aforementioned one-man demonstration vehicle. It has been referred to as VKA-23 (VKA standing for “Aerospace Apparatus” and “23” referring to the name of the design bureau) and was the brainchild of OKB-23 designers L. Selyakov and G. Dermichov, who had originally presented it to NII-1 chief Mstislav Keldysh. Two versions of the delta-wing VKA-23 were studied between March and September 1960, one with a single fin at the rear (launch mass between 3.5 and 4.1 tons, length 9.4m) and one with two fins at the tips of the wings (launch mass between 3.6 and 4.5 tons, length 9.0 m).

The VKA-23 was to be launched either by an R-7 based rocket or a much more powerful rocket developed in-house under the so-called Project 47. In a launch emergency, the pilot could eject from the vehicle up to an altitude of 11 km, higher than that the entire vehicle would be separated from the rocket. The VKA-23 was supposed to borrow some elements from the Vostok spacecraft such as the Chayka orientation system and the Zarya communication system. Thermal protection was provided by ultra lightweight ceramic foam tiles very similar in shape to the ones later used by the US Space Shuttle and Buran. The leading edges of the wings were protected by a thick layer of siliconized graphite. A small turbojet engine was to give the ship extra maneuverability during re-entry. Just like the Vostok cosmonauts, the pilot was not supposed to land inside the ship, but eject at an altitude of about 8 km, with the spacecraft itself making an automatic landing on skids.

Although Project 48 had received the official nod with the party/government decree of December 1959, it was no longer mentioned in an even bigger space decree released on 23 June 1960. Actually, OKB-23 was counting its final days, falling victim to Khrushchov’s policy of downsizing aviation in favor of missiles. In October 1960 Myasishchev’s design bureau became Branch Nr. 1 of the OKB-52 design bureau of Vladimir Chelomey and was assigned to various missile, rocket, and spacecraft projects. Myasishchev was named head of TsAGI, but in 1967 was placed in charge of the EMZ design bureau, which would go on to play a vital role in the Buran program [20].