Category Energiya-Buran

Preparing the stack

The next step in the launch preparation process was for Buran to be mated with its launch vehicle (Energiya rocket 1L) for an experimental roll-out to pad 37. The 1L rocket had always been well ahead of Buran in its launch preparations. Assembly of the core stage in the Energiya assembly building had begun back in October 1986, shortly after work with the core stage for vehicle 6SL had been completed. In early 1988 (14 January-2 February) the 1L rocket had already spent about three weeks on pad 37 for a variety of tests, including firing tests of the hydrogen igniters and retraction tests of the various platforms connecting the launch towers with the rocket.

The Energiya 1L-Buran stack arrived on the pad in the third week of May (the roll-out date has been given both as 19 May and 23 May). Once again a multi­tude of tests were performed, although none of them involved actual fueling of the rocket or the orbiter. One goal of the pad tests was to see if various sources of electromagnetic radiation at Baykonur did not interfere with the operation of on­board systems. The main problems uncovered during the pad tests were with the interaction between the orbiter and rocket computers and with the ground software needed to analyse telemetry at the cosmodrome and in Mission Control.

Actually, the pad tests in May-June were only part of a broader series of exercises at the cosmodrome intended to simulate pre-launch and post-landing operations, including numerous off-nominal situations. Involved in the exercises were not only the launch and recovery teams, but also the LII pilots, who simulated automatic landings on board Tu-154LL aircraft, with the MiG-25-SOTN performing the role of escort aircraft as it would during Buran’s final descent. The exercises also offered the opportunity to test virtually the entire communication network for the mission, including tracking stations, Mission Control in Kaliningrad, and orbiting communications satellites. Ground crews rehearsed post-landing operations and were trained how to deal with a return-to-launch-site abort during ascent. For this purpose, the OK-MT Buran mock-up was transported to the Yubileynyy runway.

The Energiya-Buran stack returned to the assembly building after about 3-4 weeks of tests (the roll-back date has been given both as 10 June and 19 June). Apparently, the original plan was for the orbiter and rocket to undergo some additional tests and then return to the pad for launch in the summer of 1988. Internal planning documents show that in early 1988 the launch was scheduled for July [37]. However, program managers felt that several problems that had surfaced during testing over the preceding weeks needed to be dealt with and decided to remove Buran from the rocket and return it to its MIK OK processing facility.

The most serious problem had cropped up in April during test firings of an ODU propulsion module at the Primorskiy Branch of NPO Energiya near Leningrad. A valve used in the liquid-oxygen gasification system of the primary thrusters failed

Energiya 1L during pad tests in January 1988 (source: Mashinostroyeniye).

to close when commanded to do so, a problem that could jeopardize the operation of the thrusters in flight. Because of this and other issues with the ODU, it was deemed necessary to remove Buran’s ODU module and partially disassemble it to carry out modification work. This also required changes to the flight software, which had already been adapted numerous times in the preceding months, a penalty the

Energiya-Buran inside the MZK building (source: www. buran. ru).

Russians had to pay for flying Buran unmanned. In the end, Buran went into orbit with the 21st version of the flight software.

After repairs to the ODU and integrated electrical tests with the final version of the flight software, Buran was moved back to bay 4 of the Energiya assembly building on 29 August for reintegration with Energiya 1L. With that work complete, the stack was rolled over to the nearby MZK building on 13 September for a series of hazardous and other operations. These included various loading operations (kerosene for the Buran propulsion system, hydrazine fuel and nitrogen gas for the Auxiliary Power Units, ammonia for the thermal control system, air for the cabin repressurization system), installation of batteries aboard Buran, solid-fuel separation motors on the strap-on boosters, and pyrotechnics for the Buran/core stage separation system.

Finally, the large doors of the MZK were opened in the early hours of 10 October and four diesel locomotives began pulling the impressive 3,500-ton combination of Energiya, Buran, and transporter to launch pad 37. In an old tradition, coins imprinted with the roll-out date were placed on the rails before the assembly passed

by and collected afterwards as souvenirs. It took the assembly some 3.5 hours to inch its way to the launch pad. Then another three hours were required to place the stack into vertical position and another hour to connect the Blok-Ya launch adapter to the launch table. All was now ready for final launch preparations to begin [38].

Building Mir-2

By mid-1991 the 2K1 mission had slipped to 1992 from its original launch date in the first quarter of 1991. Beyond that Buran was now scheduled to take part in the assembly and operation of the Mir-2 complex, where the emphasis would be on the industrial production of ultra-pure medicines and semiconductor materials and also on remote sensing. The plans were presented in detail by Yuriy Semyonov at the congress of the International Astronautical Federation in Montreal in October 1991.

First, the 2K orbiter would go up again in 1993 on an unmanned solo flight (2K2) to test some of the biotechnological installations to be flown under the Mir-2 pro­gram. Then in 1994 the 1K vehicle would fly the first manned mission (1K2) as part of a plan sometimes light-heartedly referred to as “Mir-1.5”, in which Mir would gradually be replaced in orbit by Mir-2. After the launch of the Mir-2 core module by a Proton rocket, Buran would rendezvous with the module, grab it with its two remote manipulator arms, and dock it to a bridge in the cargo bay. Buran would then

1K2 mission as planned in late 1991: 1, Buran picks up Mir-2 core module; 2, Buran docks with Mir; 3, Buran mechanical arm transfers Mir-2 core module to Mir lateral docking port (source: Yuriy Semyonov).

link up with a small docking module on Mir’s multiple docking adapter and again use its manipulator arms to transfer the Mir-2 core module to a lateral docking on Mir previously occupied by the Spektr module. The two modules would remain docked for about two years. After the transfer of the Priroda Earth resources module to the Mir-2 core, Mir and its remaining add-on modules would then have been undocked and discarded, setting the stage for the four-year assembly of the Mir-2 complex (1996-2000).

Before that, in 1995, vehicle 2K would be launched on another autonomous flight (2K3) to test a biotechnological module called 37KBT, based on the original 37KB instrumentation modules. With the emphasis having shifted from fundamental scientific research to biotechnological production, the original plans for the 37KBI scientific add-on modules had been scrapped in late 1989. Buran would now regularly fly two biotechnological modules (37KBT nr. 1 and nr. 2), carrying one up and bringing the other down.

Between 1996 and 2000 there would be two missions annually, one using vehicle 2K to swap out the 37KBT biotechnological modules (2K4, 2K5, 2K6, 2K7, and 2K8) and another using the 1K orbiter for assembly and logistics missions (1K3,1K4, 1K5, 1K6, 1K7). Planned for addition to Mir-2 was a 37KBE “power module’’ equipped with extra solar panels. Further Buran missions would have been required to add a large 85 m truss structure to Mir-2 and outfit it with solar arrays, large radiators, and an array of scientific instruments [30].

The “Mir 1.5’’ plan was dropped in 1992, when it was decided that Mir-2 would

Build-up of Mir-2 using Buran orbiters (source: Yuriy Semyonov).

only be launched after Mir had outlived its usefulness. This would also allow the new station to be placed into a higher inclination orbit (65° vs. 51.6° for Mir) for better remote-sensing coverage. At this point the big Buran-launched 37KB-type modules were abandoned in favor of smaller modules based on the Zenit-launched Progress – M2 cargo ship. The new Mir-2 concept was approved by the Council of Chief Designers in November 1992. Although it left open the option of launching the add-on modules and the station’s truss structure with Buran, Zenit was clearly the preferred option. By the time Mir-2 was merged with Freedom to become the Inter­national Space Station in late 1993, work on Buran had been suspended.

Other payloads

Bolstered by the success of the maiden Energiya launch in 1987, NPO Energiya worked out a series of ambitious plans for future use of the rocket. Taking into account the changing international climate, those missions focused not so much on national, but global needs. Some of these projects bordered on the realm of science fiction and were way beyond even the generous budgets of the Soviet days, which is why the Russians were clearly counting on international partners to join them. The following missions were studied in 1987-1993:

– A constellation of 30 to 40 satellites to restore the depleted ozone layer by aiming laser beams at the stratosphere, causing excited oxygen molecules to break up under the influence of solar radiation and to recombine into ozone molecules. Weighing 60 to 80 tons each, the satellites would have flown in Sun-synchronous orbits at an altitude of 1,600 km, using electric propulsion systems to maneuver from their initial insertion orbits. Using this satellite constellation, it would have taken an estimated 30 years to solve the ozone depletion problem.

– Containers with radioactive waste to be placed into heliocentric graveyard orbits between Earth and Mars at a distance of approximately 1.2 astro­nomical units from the Sun. Weighing 50 tons each, the hardened containers could house 6 to 9 tons of radioactive waste. It was estimated that 10 to 15 Energiya missions would be required annually to dispose of the 100 tons of high-level radioactive waste produced around the world each year. Each container was to be boosted to an 800 km parking orbit by a conventional upper stage before being sent on an escape trajectory by a nuclear electric propulsion system.

– A constellation of solar reflector satellites to illuminate the polar regions, provide energy from space, and improve crop yields by stimulating photo­synthesis. With each of the satellites weighing 5-6 tons, a single Energiya was capable of placing a cluster of 10 to 12 such satellites into a low parking orbit with the help of an upper stage. A reusable, solar electric interorbital space tug would have boosted the satellites to a 1,700 km polar orbit inclined 103° to the equator. Each satellite had a 10 year lifetime and would be usable 8 hours daily, illuminating a 17 km diameter circular area on the Earth’s surface.

– An Earth-to-Moon shuttle service to collect helium-3 on the lunar surface for use in nuclear fusion reactors.

– 20-ton environmental monitoring satellites in geostationary orbit. Using the same UKP platform as the Globis satellites, they would monitor the Earth with optical, infrared, and microwave remote-sensing instruments, study Sun-Earth relations with ultraviolet spectrometers and particle detectors, and relay data from low-orbiting satellites in radio and optical wavelengths.

– 30-ton UKP-based satellites in 600 km polar orbits to monitor observance of international disarmament treaties and perform remote-sensing tasks such as studies of natural resources and environmental monitoring. The 12-ton payload would have included a videospectrometer, optical electronic cameras, and phased-array antennas.

– Satellites to clear the geostationary belt of space debris. Equipped with an engine unit and grappling devices, they would each spend about half a year in 0° to 14° inclination orbits at geostationary altitude, moving defunct satellites and debris to graveyard orbits.

– A 27-ton space-based radio telescope to provide Very Long Baseline Inter­ferometry (VLBI) in concert with ground-based radio telescopes. Called IVS (International VLBI Satellite), this was a joint Soviet-European project put forward in response to a 1989 Call for Mission Proposals for the second medium-size mission under ESA’s Horizon-2000 program. The IVS was to consist of NPO Energiya’s UKP bus and a European-built 20 m diameter radio telescope. With an inclination of 65° and a perigee of 6,000 km, the apogee would be varied from an initial height of 20,000 km to 40,000 km and 150,000 km over the satellite’s five-year operational lifetime. IVS was picked along with five other projects for further assessment in 1991, but was not approved for further development. Had it been selected, it could have flown in 2001 [62].

Even though the Skif-DM launch had demonstrated that Energiya was capable of being used as a heavy cargo carrier, Buran-T failed to gain impetus, mainly due to a lack of interest from the military, who were supposed to be the system’s main customers. A government decree in August 1985 had ordered the Ministry of Defense to work out “technical requirements” for Buran-T and Vulkan in a three-month period and NPO Energiya to prepare a draft government decree on these systems in the first quarter of 1986, outlining their objectives and setting a timeline for their development. The draft was sent for review to the VPK by July 1986 and called for starting Buran-T flights in 1988, with the introduction of the Smerch cryogenic upper stage expected in 1995. It was not until December 1987, one and a half years later, that the VPK responded by rejecting the draft, claiming it had not been agreed upon with the military. For the military a rocket could only be declared operational if there was a concrete payload for it, which was hardly the case for Buran-T. Eventually, the military even withdrew their “technical requirements” for Buran-T [63].

NPO MOLNIYA’S MAKS

Even as the newly created NPO Molniya got down to Buran development in 1976, the Mikoyan bureau contingent in the organization seemingly had a hard time parting with the air-launched Spiral concept. In fact, one NPO Molniya veteran recalls that

Lozino-Lozinskiy was never overly enthusiastic about Buran, which had been forced upon him from above, and that his real passion remained with air-launched systems [3]. Realizing that one of the major drawbacks of Spiral had been the need to develop a futuristic hypersonic aircraft, the Mikoyan designers began drawing up plans for spaceplanes launched from existing subsonic transport planes. The aim was to expand their missions beyond military reconnaissance and offensive operations to satellite deployment/retrieval and space station support. Unlike Buran, such space – planes would be suited to launch payloads usually orbited by expendable launch vehicles and had many other advantages such as quicker turnaround, more launch flexibility, and a wider range of attainable orbits. The new air-launched concept benefited heavily from experience gained in the Spiral, BOR, and Buran programs.

SPACEPLANES OF THE 1950s AND 1960s

For many years official histories of the Soviet space program created the impression that Vostok had been the only Soviet piloted space project in the late 1950s/early 1960s. Not until the days of glasnost in the late 1980s/early 1990s did it emerge that just like the United States the Soviet Union had considered winged spacecraft as an alternative to ballistic capsules in the early years of the space program. Surprisingly, it turned out that this option was studied in no fewer than five design bureaus.

In the US winged spacecraft were long seen as the logical culmination of research into high-speed aeronautics conducted since the mid-1940s with air-launched rocket – propelled X-planes. The first phase had seen aircraft such as the X-1, X-2, and

Skyrocket gradually push the envelope from Mach 1 to Mach 3 between 1947 and 1956. Phase 2 had been initiated in late 1954 with the decision to press ahead with the development of the X-15 high-altitude hypersonic research aircraft, which eventually performed a largely successful test program between 1958 and 1969. Ultimately, suborbital and orbital capability would be achieved using the “boost-glide” principle, where a spaceplane would be launched vertically with the help of a con­ventional rocket and eventually glide back down to the runway like an ordinary aircraft. In late 1957, responding to Sputnik, the Air Force consolidated three “boost-glide” feasibility studies (Hywards, Brass Bell, and Rocket Bomber) into a single program called “Dyna-Soar” or X-20. Unlike the X-15, however, Dyna-Soar was not seen as an experimental system, but an operational weapon system capable of orbital nuclear bombardment, reconnaissance, and satellite identification and neutralization [13].

During 1958 the exigencies of the Cold War and the fledgling space race with the Soviet Union gradually pushed the ballistic capsule approach to the foreground, especially after the formation of NASA in October of that year. Having lost face after the early Sputnik successes, the United States was intent on restoring its reputation by putting the first man into orbit and capsules were a more efficient and quicker way of achieving that goal than winged spacecraft. The Air Force continued work on Dyna-Soar against the backdrop of NASA’s Project Mercury, but in December 1963, with the first flight an estimated three years away, Secretary of Defense Robert McNamara canceled the program. X-20 funds were reappropriated to a military space station called the Manned Orbiting Laboratory (MOL). After that the United States did not have another officially sanctioned spaceplane project until the approval of the Space Shuttle by President Nixon in early 1972.

The winged approach to piloted spaceflight was probably less central in Soviet thinking than it was in the US, at least when it came to building the first manned spacecraft. For one, the Soviet aviation industry and the Air Force were far removed from missiles and space-related matters after the Ministry of the Aviation Industry had declined offers in 1945-1946 to bear responsibility for long-range missile pro­grams. Instead, the assignment went to the Ministry of Armaments, which had developed artillery during the Second World War. This had far-reaching implications for the Soviet space program (essentially an offshoot of the missile program), which until the break-up of the USSR remained tightly in the grip of the “artillery” camp. Moreover, missiles were soon favored over strategic bombers to deliver nuclear warheads to US territory and there was little incentive for research into high-speed, high-altitude aircraft, reflected in the absence of high-altitude “X-type” airplane research programs in the Soviet Union. On top of that, Soviet leader Nikita Khrushchov had become particularly enamored with missiles in the mid-1950s, curtailing contracts for the aviation industry and even dissolving several aviation design bureaus towards the end of the decade.

The earliest plans for piloted missions beyond the atmosphere revolved around the use of converted R-2 missiles to send people on vertical trajectories to altitudes of up to 200 km. Although one common cabin design was planned, different methods were studied for returning the capsule to Earth. One option presented by Korolyov

Подпись: Winged capsule for suborbital mission (reproduced from Peter Stache, Sowjetischer Raketen, Berlin, 1987).
during a speech in September 1955 was to equip such a capsule with wings, allowing it to make a long ballistic suborbital flight rather than a short vertical hop [14].

Research on piloted spaceflight began in earnest in the spring of 1957 with the establishment within OKB-1 of Department 9, which was to focus exclusively on the development of lunar probes and piloted spaceships, signaling the beginning of the bureau’s reorientation from missiles to spaceflight. Between September 1957 and January 1958 OKB-1 and the NII-1 research institute carried out a comparative analysis of various basic shapes for piloted spaceships, paying particular attention to thermal protection requirements and the ^-forces exerted on the crew. The con­clusion was that the heat-resistant alloys available at the time were not up to the task of protecting winged vehicles with high lift-to-drag ratios against the severe thermal stresses of re-entry. Instead, the recommendation was that the first piloted spaceship should have a lift-to-drag ratio between just 0.5 and 0, depending on the ^-forces that were deemed acceptable for the crew. The ship would preferably be shaped as a blunt cone with a rounded nose and a spherical base, with the pilot being ejected from the descent capsule before touchdown.

In April 1958 one of the main obstacles to manned ballistic flight was eliminated when a key meeting of leading experts in the field of aviation medicine came to the conclusion that people could withstand forces of up to 10g as long as the body was properly positioned inside the capsule. All this would lead later that year to preliminary designs for the manned vehicle that eventually became Vostok, redesigned in early 1959 to serve the dual function of carrying people into space and performing unmanned photoreconnaissance missions [15].

Tsybin’s PKA

Nevertheless, Korolyov, a veteran of several rocket plane projects in the 1930s and 1940s, did not abandon the idea of winged piloted spaceflight. Outlining their ideas on the future of spaceflight in a joint letter to the government on 5 July 1958, Korolyov and his associate Mikhail Tikhonravov called for developing a manned space capsule in the 1958-1960 timeframe and then to design a manned vehicle “with a gliding return profile” in 1959-1965 [16].

Preoccupied with work on the R-7 rocket and the first satellites, Korolyov turned to a befriended aircraft designer to start preliminary research on a manned space – plane. This was Pavel V. Tsybin, who had got acquainted with Korolyov back in the early 1930s while building gliders. After leading research on the LL “flying labora­tories” in the late 1940s, Tsybin worked on missiles at N11-88 from 1949 to 1951 and subsequently became involved in the design of the air-launched Kometa anti-ship cruise missile at the Mikoyan design bureau. Finally, in May 1955 Tsybin was placed in charge of a newly founded design bureau called OKB-256, situated in Podberyozye, which in 1956 became part of the newly founded city of Dubna. Its primary assignment was to create the RS, a long-range bomber powered by super­sonic ramjet engines, although by mid-1956 the focus had shifted to a supersonic reconnaissance aircraft named RSR.

Sometime later, presumably in 1958, Korolyov proposed Tsybin to design a small winged spaceship that could be orbited by an R-7 based rocket. Tsybin’s team readily set to work, assisted by specialists from OKB-1. What they came up with was a vehicle called PKA (for “Gliding Space Apparatus’’), which because of its shape was also nicknamed Lapotok (“little bast shoe’’).

Having a launch mass of 3.5 tons, the one-man spaceplane was to be placed into a circular 300 km orbit by a Vostok rocket for missions lasting up to 24-27 hours. Built into the fuselage was a small pressurized cabin with a control panel, life support systems, and three windows, one of them for an astronavigation system. In case of a launch abort, the pilot could eject from the cabin up to an altitude of 10 km and in an emergency at higher altitudes the entire spaceplane would be separated from the rocket. Located behind the cabin was a pressurized instrument compartment with on-

image17

Pavel Tsybin.

orbit and re-entry support systems. The spaceplane also had a detachable engine compartment with two 2,350 kg thrust nitric acid/kerosene engines, one for on-orbit maneuvers and the other for the deorbit burn. Also on this compartment were an infrared vertical sensor and a thermal control system using radiators. The dry mass of the engine unit was 350 kg and the propellant mass at launch was 430 kg. For orientation in orbit and during the early stages of re-entry the ship used small hydrogen peroxide thrusters.

The deorbit, re-entry, and landing phase was to last up to 90 minutes. After the deorbit burn the engine compartment was to be separated at an altitude of 90 km. During re-entry the spaceplane’s steel fuselage was protected from the high tempera­tures by a heat shield consisting of a 100 mm thick organic silicon layer and a 70 mm thick fibre layer as well as by special air ducts to cool the outside structure. Places with maximum heat exposure such as the nose of the heat shield and the leading edges of the two elevons and the tail were to be cooled with the help of liquid lithium. During maximum heating the angle of attack was 55 to 60°. At an altitude of 20 km, having reduced its speed to 500-600 m/s, the PKA would deploy two wings with a span of 7.5 m and an area of 8.7 m2, which until then had remained folded back to protect them against the highest temperatures during re-entry. The spaceplane was to land on a dirt runway using a skid landing gear. Landing speed was 180-200 km/h and landing mass was 2.6 tons.

The preliminary design (“draft plan’’ in Russian terminology) for the PKA was officially approved by Tsybin on 17 May 1959 and the following day Korolyov sent a letter to the State Committee of Defense Technology (GKOT, the former Ministry of Armaments) with the request to include the spaceplane in its long-range plans and assign OKB-256 to the project as the lead organization [17]. However, wind tunnel tests conducted at the Central Aerohydrodynamics Institute (TsAGI) showed that the PKA would be exposed to much higher temperatures than expected (up to 1,500°C), requiring significant changes to the heat shield. Moreover, it turned out

image18

The PKA spaceplane (source: Igor Afanasyev).

that the use of liquid lithium to cool the hottest parts of the fuselage would make the design much heavier and more complex than anticipated [18].

Tsybin invited specialists of the All-Union Institute of Aviation Materials (VIAM) to deal with these issues, but by the end of 1959 clouds were gathering not only over the PKA, but over Tsybin’s design bureau as well. The RS supersonic strategic bomber had been canceled in the wake of the Soviet Union’s early ICBM successes and in October 1959 OKB-256 was absorbed by Myasishchev’s OKB-23. When OKB-23 in turn became a branch of Vladimir Chelomey’s OKB-52 in late I960, Tsybin returned to Korolyov’s OKB-1, where he would eventually go on to play an important role in the Energiya-Buran program and later in the design of single-stage-to-orbit spaceplanes [19].

Myasishchev’s Projects 46 and 48

Vladimir Myasishchev’s OKB-23 (situated in the Moscow suburb of Fili) was mainly engaged in the development of long-range strategic bombers, but branched out into cruise missiles with the M-40/Buran project in 1954-1957 and also did considerable research on spaceplanes even before Tsybin had started his PKA project. Unfortu­nately, most of the archival materials related to Myasishchev’s spaceplane projects have not been preserved, making it difficult to piece together their history. According to Russian historians Myasishchev, inspired by plans for the X-15 and US boost – glide concepts, began spaceplane research “on his own initiative’’ as early as 1956 under a program named Project 46. Also involved in the research were the NII-1 and NII-4 research institutes.

By 1957 he came to the conclusion it would be feasible in the short run to develop a reusable vehicle called a “satelloid’’ or “intercontinental rocket plane’’. Its primary goal would be to conduct strategic reconnaissance over enemy territory without the risk of being shot down by anti-aircraft defense means. Such missions would last 3 to 4 hours, with the spaceplane using radar and both optical and infrared photographic equipment to detect troop movements and spot enemy aircraft and missiles. Included

image19

Vladimir Myasishchev.

image20

Project 46 spaceplane (reproduced from A. Bruk, 2001).

in the early warning network would be high-orbiting relay satellites. Later goals were to send vehicles of this type on bombing missions or to destroy enemy missiles and satellites. A reconnaissance version was expected to be ready by 1963 and a combined reconnaissance/bombing version was planned for 1964-1965. Myasishchev is said to have presented his ideas for spaceplanes during a visit to OKB-23 by Khrushchov in August 1958, but the Soviet leader was unimpressed, telling Myasishchev to stick to the field of aviation and leave rocket-related matters to others.

Undeterred by Khrushchov’s scepticism, OKB-23 pressed on with its spaceplane research. By April 1959 the bureau had worked out plans for a 10-ton rocket plane flying between altitudes of 80 and 150 km and capable of increasing orbital altitude by 100 km (to a maximum of 250 km) and changing orbital inclination by 3°. As Dyna-Soar, it was envisaged as a “boost-glide” system, being launched into orbit by a conventional ballistic rocket and then gliding back to a horizontal runway landing. The launch vehicle was to be an upgraded three-stage version of Korolyov’s R-7 missile. The third stage apparently consisted of four “boost engines’’ drawing propellant from four jettisonable tanks mounted on the spaceplane itself. In April 1960 Myasishchev revised his plans and was now aiming for a 6-ton vehicle flying in 600 km orbits and capable of performing inclination-changing maneuvers of as much

6

.

Meanwhile, OKB-23 was tasked with the development of another manned space vehicle by a government and party decree (nr. 1388-618) issued on 10 December 1959. This decree, considered to be the first macro-policy statement on the Soviet space program, encompassed a wide range of space projects. Myasishchev’s bureau in particular was assigned to develop a manned vehicle capable of ensuring “a reliable link’’ between the ground and “heavy satellites’’. Known as Project 48, this appears to have been an early version of a transportation system for space stations, although it was supposed to solve defense-related tasks as well. It was only the second piloted space project to be officially approved by a party/government decree after Vostok. Work on the project got underway after orders from the State Committee of Aviation Technology (GKAT) on 7 January and 4 March 1960.

Myasishchev’s Projects 46 and 48

48-2 spaceplane (reproduced from A. Bruk, 2001).

Weighing no more than 4.5 tons, the spacecraft was to be launched into a circular 400 km orbit by an R-7 based launch vehicle and stay in orbit anywhere from 5 to 27 hours. Re-entry through the atmosphere was to consist of a ballistic and a “controlled gliding” phase, reducing deceleration forces to no more than 3-4g. This required an aerodynamic shape providing at least some lift and ruled out a Vostok – type spherical design. Thermal protection was to be provided by ceramic tiles and/or by super-cold liquid metals circulating under the spacecraft’s skin.

Myasishchev’s team came up with four possible designs to meet these require­ments, each capable of carrying two men. Vehicle 48-1 (launch mass 4.5 tons) had a cone-shaped fuselage with highly swept delta wings (79°) and fins on the wings and fuselage to provide braking during re-entry. The crew cabin was located in the back. Both the fins and the glider’s engine compartment were to be jettisoned when the spaceplane had decelerated to a speed of Mach 5. Vehicle 48-2 (launch mass 4.3 tons) had a cylindrical fuselage with delta wings (leading edge sweepback of 65°) and small canards in the front. There were vertical tails both on top of and under the fuselage. The crew cabin was situated in the middle and the spaceplane was outfitted with a non-jettisonable engine compartment. The two other schemes envisaged a Mercury/ Gemini look-alike inverted cone with a rotor for a helicopter-type landing (48-3) and a conically shaped spacecraft for a parachute landing (48-4). Missions of the two-man ship were to be preceded by test flights of a single-seater spaceplane to demonstrate

image23

One version of the VKA-23 spaceplane (reproduced from A. Bruk, 2001).

the functioning of life support systems and test the “gliding re-entry” technique. The proposals were reviewed at a meeting of leading aviation specialists on 8 April I960, but no consensus was reached on the way to go forward.

There was yet another OKB-23 proposal for a single-seater spaceplane, which Myasishchev historians also link to Project 48, although it does not appear to have been the aforementioned one-man demonstration vehicle. It has been referred to as VKA-23 (VKA standing for “Aerospace Apparatus” and “23” referring to the name of the design bureau) and was the brainchild of OKB-23 designers L. Selyakov and G. Dermichov, who had originally presented it to NII-1 chief Mstislav Keldysh. Two versions of the delta-wing VKA-23 were studied between March and September 1960, one with a single fin at the rear (launch mass between 3.5 and 4.1 tons, length 9.4m) and one with two fins at the tips of the wings (launch mass between 3.6 and 4.5 tons, length 9.0 m).

The VKA-23 was to be launched either by an R-7 based rocket or a much more powerful rocket developed in-house under the so-called Project 47. In a launch emergency, the pilot could eject from the vehicle up to an altitude of 11 km, higher than that the entire vehicle would be separated from the rocket. The VKA-23 was supposed to borrow some elements from the Vostok spacecraft such as the Chayka orientation system and the Zarya communication system. Thermal protection was provided by ultra lightweight ceramic foam tiles very similar in shape to the ones later used by the US Space Shuttle and Buran. The leading edges of the wings were protected by a thick layer of siliconized graphite. A small turbojet engine was to give the ship extra maneuverability during re-entry. Just like the Vostok cosmonauts, the pilot was not supposed to land inside the ship, but eject at an altitude of about 8 km, with the spacecraft itself making an automatic landing on skids.

Although Project 48 had received the official nod with the party/government decree of December 1959, it was no longer mentioned in an even bigger space decree released on 23 June 1960. Actually, OKB-23 was counting its final days, falling victim to Khrushchov’s policy of downsizing aviation in favor of missiles. In October 1960 Myasishchev’s design bureau became Branch Nr. 1 of the OKB-52 design bureau of Vladimir Chelomey and was assigned to various missile, rocket, and spacecraft projects. Myasishchev was named head of TsAGI, but in 1967 was placed in charge of the EMZ design bureau, which would go on to play a vital role in the Buran program [20].

Energiya-Buran

image5Energiya-Buran is the most powerful space vehicle the world has ever seen, and, had it been given the chance to fully develop, it would have been of great benefit to the people of the Soviet Union and, indeed, the world. It didn’t get that chance, but the political and to some extent economical situation were not ideal.

I had the honor of being selected as the lead test-pilot for Buran. As such, I flew Buran’s analog BTS-002 on 12 occasions in the program that tested the atmospheric portion of Buran missions. The team from the Flight Research Institute named after M. M. Gromov consisted of some of the best test-pilots in the Soviet Union. Two pilots from this select group, Anatoliy Levchenko and I, flew in space on a Soyuz spacecraft as part of our preparations to test Buran in orbit. But, after one unmanned flight and before we had the chance to fly Buran ourselves, the program was canceled.

Buran still speaks to the imagination of the people in Russia and many take pride to have participated in the program, even though it never resulted in even one manned mission in space. At the Baykonur Cosmodrome, a model of Buran can be seen at the main gate one passes when coming from the airport. Engineers and technicians who worked on the program and have since passed away even have Buran etched on their headstones.

It is heart-warming to see that, even outside Russia, Buran still lives and I am happy to see that the authors of this book have managed to write an authoritative history on Energiya and Buran, using original Soviet and Russian sources. I sincerely hope that this book will further spread the knowledge of a program that might have yielded enormous economical profit to the world, had it been given the chance.

image6Igor Petrovich Volk Hero of the Soviet Union Merited Test Pilot

Pilot-Cosmonaut of the Soviet Union

Authors’ preface

This book is about the Energiya-Buran system, the Soviet equivalent of the US Space Shuttle. Originally conceived in 1976, Buran made its one and only flight in November 1988, more than seven years after the inaugural flight of the Space Shuttle. Prudent as the Soviet authorities were, it was conducted in an unmanned mode, a feat not accomplished by NASA in the Space Shuttle program.

Buran was not unique for being a manned spaceflight project that eventually would never carry a man into orbit. There were other Soviet programs that had suffered the same fate, such as the L-1/L-3 lunar program, and the military space station ferry TKS. Unlike these, however, from its conception Buran was a spacecraft without a clearly defined task. It was solely designed and built in response to the Space Shuttle, whose military potential was a source of major concern to the Soviet Union. Unsure what exactly the threat was, the Russians decided to build a vehicle matching the Shuttle’s capabilities to have a deterrent in the long run. From the Russian per­spective, Buran was just another product of the arms race between the superpowers.

The orbiter resembled its American counterpart to the point that they were aerodynamic twins, but there were important differences between the two systems as well. The most notable one was that Buran did not have main engines and was carried into orbit by a powerful launch vehicle (Energiya) that could be adapted for other missions as well. Despite the copying that unquestionably took place, the Russians still had to develop the technology, the materials, and the infrastructure all by themselves and in doing so often followed their own, unique approach. Building upon the lessons learned from their star-crossed manned lunar program, they brought the project to a state of maturity that allowed them to fly two successful launches of the Energiya rocket and one of the Buran orbiter. This was a remarkable feat, irrespective of whether the expenditures were justified or not.

After the maiden Buran flight in 1988, plans were drawn up for another mission in which the orbiter would again go up and land unmanned, although this time it would be briefly boarded in orbit by a visiting Soyuz crew. Only after the second mission had

proven the system to be reliable, would a crew have been allowed to be launched on board the orbiter.

Unfortunately, it would never come to that. As the Cold War drew to a close and the Soviet Union collapsed, the program largely lost its raison d’etre. In a time where funds allocated to large space undertakings were getting scarcer and scarcer, here was a program that was devouring more and more of that money. Slowly but surely, more and more space program officials began to oppose Buran, emphasizing that all this money was disappearing into a bottomless pit, without anyone being able to give a clear answer to that one question: what do we need Buran for?

Finally, the program died a silent death. It was never officially terminated by a government decree, but those who were involved knew the signs. The cosmonauts who had been training for the manned missions began returning to test flying in their respective institutes, transferred to the Soyuz and Mir program, or tried their luck in private industry.

Hardware was scrapped, stored, or offered for sale. The full-scale test model used for the approach and landing tests was sent to Sydney, where it was put on display. Later it was to be shipped to a museum in Germany, but didn’t make it beyond a junkyard in Bahrain, where it still sits at the time of writing.

Another full-scale test model ended up as a tourist attraction in Gorkiy Park in Moscow, while a third has been parked outdoors at Baykonur for several years, where it has been left exposed to the elements. The only Buran orbiter that flew in space was put in storage in the Energiya assembly building, but was totally destroyed when the building’s roof collapsed in May 2002.

In spite of the sad fates of these Buran orbiters, the program was a source of great pride for everyone who participated in it, from engineers to prospective cosmonauts. In many places models of the orbiter, or the entire vehicle, were erected, sometimes as monuments, sometimes just to embellish the streets in which they stand. As Buran’s lead test pilot Igor Volk says in his foreword and as maybe the ultimate sign of pride, many who were involved in it have the vehicle etched on their gravestones.

Despite cancellation of the project, the technology developed for it has not all disappeared down the drain. The rocket engine of Energiya’s strap-on boosters is still being used today by the Zenit rocket and its Sea Launch version and scaled-down versions of the engine currently power the first stage of America’s Atlas rockets and will also be employed in a new family of Russian launch vehicles called Angara. The docking hardware originally developed for Buran was used in the Shuttle/Mir pro­gram and is now actively used on the International Space Station.

Perhaps Buran was born under an unlucky star, but since the programm ended those who designed and built it have gone to a lot of trouble to make sure that the Soviet/Russian counterpart to the US Space Shuttle will be remembered as a state-of – the-art spaceship that was launched by one of the most powerful launch vehicles the world has ever seen. With this book, we hope we can contribute to that endeavor.

Подпись: April 2007Подпись:Bart Hendrickx

Mortsel

Belgium

Acknowledgments

This book is a cooperative effort by two authors, but would probably not have come about without the initiative of David Shayler, who originally came up with the idea to write the book but in the end could not participate in it due to other commitments.

Of particular help in preparing the book were several people who were either directly or indirectly involved in the Energiya-Buran program. Thanks are extended to Buran lead test pilot Igor Volk for his foreword and also to the numerous other Buran test pilots who granted interviews to Bert Vis during his countless travels to Star City, Zhukovskiy, and other locations. Lida Shkorkina was instrumental in arranging many of those interviews and also acted as interpreter during most of them. Thanks are also due to Emil Popov, a veteran of the Military Industrial Commission, who shared recollections of the meetings and discussions in the early 1970s that eventually led to the decision to go ahead with Buran. Nina Gubanova, the widow of Energiya – Buran chief designer Boris Gubanov, provided an original copy of her husband’s hard-to-obtain memoirs.

Our special thanks also go to those who gave the authors access to some rare primary documents, most of them from the archives of the late Ernest Vaskevich, who headed the coordination and planning department of the Departmental Training Complex for Cosmonaut-Testers (OKPKI) in Zhukovskiy, which acted as the Flight Research Institute’s own cosmonaut training center. Many of those documents offer unique insight into the training program of the Buran test pilots as well as crewing issues and flight plans.

The authors also wish to thank several researchers who supported them while writing the book. First and foremost among those is Vadim Lukashevich, the web­master of the www. buran. ru website and without doubt Russia’s leading expert on the history of Buran. Vadim never got tired of answering the authors’ frequent and challenging questions and also kindly granted permission to use many of the pictures and illustrations on his website and CD-ROMs. The book would not have been what it is without his dedication, advice, and continued support.

Appreciation is also due to the staff of the unrivaled Russian space magazine Novosti kosmonavtiki, whose tireless efforts to unravel the mysteries of Soviet space history were a great source of help and inspiration in writing the book. Asif Siddiqi, the highly respected American authority on Soviet/Russian space history, was always willing to help and share information from his rich archives. Chris van den Berg, who has been patiently monitoring Soviet/Russian space-to-ground communications for over 40 years, assisted the authors in making sense of Buran’s communication systems. Peter Pesavento provided valuable information on US intelligence assess­ments of the Soviet shuttle program. Rex Hall granted access to his archives and helped with his knowledge of the Soviet/Russian space program.

Several people kindly allowed the authors to select pictures from their photo collections, including Igor Afanasyev, Edwin Neal Cameron, Sergey Grachov, Vadim Lukashevich, Igor Marinin, Timofey Prygichev, Asif Siddiqi, Rudolf van Beest, Luc van den Abeelen, and Simon Vaughan. Dennis Hassfeld was kind enough to make several line drawings based on original Russian sketches.

We thank Clive Horwood of Praxis for his continued support and Neil and Bruce Shuttlewood of Originator Publishing Services for copy editing and generation of proofs.

Last but not least, the authors wish to extend a special word of thanks to their relatives, who put up with them during two years of painstaking and time-consuming research.

Acknowledgments