Category Energiya-Buran

THE FIRST LAUNCH ATTEMPT

On 26 October the State Commission in charge of test flights of the Energiya-Buran system met at Baykonur to set a launch date for the mission. Such commissions were set up routinely in the Soviet Union to oversee launch preparations for specific projects. The composition of the Buran State Commission reflected the importance attached to the flight. Established in December 1985, it was headed by none less than the Minister of General Machine Building himself, initially Oleg Baklanov, replaced in April 1988 by Vitaliy Doguzhiyev. In all, the commission numbered 44 people, including 9 ministers, 10 deputy ministers, the President of the Academy of Sciences, leading Ministry of Defense officials, and several general and chief designers (Glushko, Gubanov, Semyonov, Lozino-Lozinskiy, Konopatov, Radovskiy, Barmin, Andryushenko, and Lapygin). The “technical leader” of the State Commission, somewhat comparable with a “launch director” in the US, was NPO Energiya head Valentin Glushko. However, the 80-year old Glushko, who had suffered a stroke only months earlier, was recovering in a Moscow hospital and had to be replaced by his deputy Boris Gubanov. Final preparations at the pad were the responsibility of the military teams of the so-called 6th Test Directorate under the leadership of Major – General Vladimir E. Gudilin.

Despite last-minute concerns over problems with another ODU test firing near Leningrad on 19 October, the commission declared Energiya and Buran ready to go. With meteorologists predicting excellent weather conditions, the commission set the launch for 29 October at 6:23.46 Moscow time (8:23.46 local time at Baykonur, 3: 23.46 gmt), a decision announced by TASS the same day. Lift-off was timed such that the launch could be observed by the orbiting crew of the Mir space station (Vladimir Titov, Musa Manarov, and Valeriy Polyakov). Mir would be a minute or two short of a Baykonur flyover at lift-off time, allowing the crew to watch virtually the entire launch. Mir’s orbit had been adjusted on 16 October to permit close coordination during the brief Buran flight, including launch and retrofire. However, the observations from Mir were not a strict requirement and the launch was not likely to be scrubbed if that objective could not be met. The main constraint for the launch window was to ensure a landing at Baykonur well before local sunset, ideally around noon. Speaking to reporters later that same day, Doguzhiyev did not hide the tension felt around the cosmodrome:

“No one is indifferent or passive at the cosmodrome… Behind outward calm

there is much nervous pressure. Even we [State] Commission members find it

difficult to answer questions’’ [41].

Among the final tasks to be accomplished at the pad in the last three days prior to launch was the retraction of the 145 m high rotating service structure, a relic of the N-1 days, which was now moved back to its parking position, fully exposing Buran to the elements. Strict safety measures were in place to protect personnel against any potential accidents on the pad. The region around the launch complex was divided into four safety zones. Zone 1 (2 km radius around the pad) was completely evacuated 12 hours before launch. By that time any personnel involved in final countdown operations were required to go to hermetically sealed and heavily armored bunkers, from where all final launch preparations (including fueling) were controlled. The bunkers were said to be capable of surviving impacts of rocket debris. Zone 2 (5 km radius) was cleared of personnel at T — 8 hours as final preparations got underway for loading of liquid hydrogen. Zones 3 and 4 (8.5 km and 15 km radius) were evacuated at T — 4 hours and T — 3 hours to ensure safety of people in case of an explosion during engine ignition and during the early stages of ascent. The rules were much stricter than at the Kennedy Space Center, where people are allowed to watch Shuttle launches in open air from a distance of just about 5 km.

Two days before the planned launch, concern arose over some equipment in Buran’s automatic landing system. VNIIRA, the design bureau in charge of the system, requested installing back-up equipment aboard the orbiter and first test that aboard a Tu-134B aircraft. Although this required activation of all the navigation and landing support systems at the Yubileynyy runway, the landing tests were authorized given the potentially catastrophic consequences of a failure in the auto­matic landing system. The back-up equipment was successfully tested during several approaches to the Yubileynyy runway on 28 October.

On the eve of the launch, Soviet officials backed down from their earlier promises to provide live television coverage of the launch and were now planning to show the recorded launch 35 minutes after the event. The landing would not be carried live either. As expected, the planned launch time of 3: 23 gmt went by without any comment from the Soviet media. Anxiety grew as nothing was heard in the following 45 minutes or so. Finally, shortly after 4:00 gmt, TASS broke the silence by issuing a brief two-line statement:

“As has been reported earlier, the launch of… Energiya with the orbital ship Buran had been planned for 6.23 Moscow time on 29 October. During pre­launch preparations a four-hour delay of the launch has been announced.’’

This now theoretically put the launch time at 7: 23 gmt, raising serious doubts among observers that the launch would take place that day at all. According to the original flight plan, landing would have taken place at 6: 49 gmt, but the launch delay would now move this to around 11: 00 gmt (16: 00 local time at Baykonur), close to sunset. At around 7: 30 gmt, shortly after the rescheduled launch time, TASS reported what had been obvious all along:

“During final launch preparations for the rocket carrier Energiya with the orbital ship Buran there was a deviation in one of the launch support systems. As a result of this an automatic command was issued to stop further work. At the present time work is underway to eliminate the problems. A new launch date and time will be announced later.’’

It wasn’t until later in the day and in press interviews the following days that officials began providing details about the exact cause of the scrub. It turned out the countdown had been halted at T — 51 seconds because a platform had failed to properly retract from the rocket. When it came to describing the exact nature of that platform, Soviet space officials, not used to communicating problems to the media, did a poor job. Talking to a Pravda reporter, Vladimir Gudilin, the head of launch pad operations, said:

“51 seconds before the launch one of the servicing platforms did not move away from the rocket. To be more precise, it visually moved away, but the signal confirming this did not reach the computer checking the launch readiness of all systems. Until the last seconds this platform holds an aiming platform, controlling the gyroscopes. The computer [did not receive the retraction signal] and instantaneously stopped the launch program” [42].

Buran’s ISS legacy

Despite the fact that the Soviet orbiters had long been mothballed by the time ISS construction began, one piece of Buran technology does play a vital role in station

APAS-95 docking port (source: NASA).

Russian Pirs module. Central and aft parts are derived from Buran’s Docking Module (source: NASA).

operations. This is the Androgynous Peripheral Docking System (APDS—Russian acronym APAS), a Russian-built docking mechanism that allows Space Shuttles to dock with the US-built Pressurized Mating Adapters (PMAs) on the ISS “node” modules. Built at RKK Energiya under the leadership of Vladimir Syromyatnikov, the first APAS (APAS-75) was developed back in the 1970s for the Apollo-Soyuz Test Project. A modified version (APAS-89) appeared in the 1980s to enable Soviet orbiters to dock with the axial APAS docking port of Mir’s Kristall module. In the end, Buran never flew to Mir and the Kristall APAS docking port was used only once by Soyuz TM-16 in 1993.

In July 1992 NASA initiated the development of the Orbiter Docking System (ODS) to support Shuttle flights to Mir. Mounted in the forward end of the payload bay, the ODS consists of an external airlock, a supporting truss structure, and an APAS docking port. While the first two elements were built by Rockwell, the APAS was manufactured by RKK Energiya. Although Energiya’s internal designator for the Shuttle APAS is APAS-95, it is essentially the same as Buran’s APAS-89. While the ODS was slightly modified for Shuttle missions to ISS, APAS remained unchanged. There was even a suggestion to launch Buran to Mir to test the docking system prior to the beginning of the Shuttle-Mir flights [31].

The APAS consists of a three-petal androgynous capture ring mounted on six interconnected, ball screw shock absorbers that arrest the relative motion of the two vehicles and prevent them from colliding. The APAS-89 differs from APAS-75 in several key respects. It is much more compact (although the inner egress tunnel diameter is more or less the same), has twelve structural latches rather than eight, the guide ring and its extend/retract mechanism are packaged inside rather than outside the egress tunnel, and the three guide petals are pointed inboard rather than outboard [32].

Russian plans to sell their entire Buran Docking Module to NASA fell through, but its design did serve as the basis for the construction of the Russian Pirs airlock module, docked to ISS in September 2001. This retains the central part of the adapter’s spherical section (2.55 m in diameter). Mounted to its aft end is a small section of the Buran airlock’s cylindrical tunnel (without the extendable part) and attached to the front end is the forward part of a Soyuz-TM/Progress-M orbital module. The design was more complex than that of the Docking Module of Mir (316GK), which did not have to be used as an airlock and was merely an extension to the Kristall module to facilitate Shuttle dockings [33].

Groza and Energiya-M

In the course of Energiya’s history several studies were made of configurations in which the core stage was flanked by just two strap-ons, providing payload capacities of between about 30 and 60 tons. The first version, called RLA-125, was proposed in 1976 and another one known as Groza (“Thunderstorm”) appeared in the mid-1980s. Groza, using a standard core stage with four RD-0120 engines and two strap-ons, had a reported payload capacity to low orbit of up to 63 tons. The Cargo Transport Container strapped to the side would be a downsized version of that developed for Buran-T. Groza required virtually no modifications to the existing Energiya pads. All that needed to be done was to bolt the strap-ons more firmly to the pad because the rocket would be more susceptible to high winds. Because of this, launch weather rules were also tightened.

On 25 December 1984 the Soviet government released a major decree on rocket and space systems to be developed in the period 1986-1995. One of these was planned to be a series of rockets with payload capacities between 30 and 60 tons, although it is not clear what payloads exactly were being considered. Three systems were adopted for parallel studies: a modernized version of the Proton rocket, several heavier versions of the Zenit (11K37), and Groza. As mentioned earlier, these boosters were to use a standardized series of cryogenic upper stages, Shtorm for Proton and Vikhr for the 11K37 and Groza.

The preliminary design for Groza was completed in December 1985. However, on 18 August 1988 the Ministry of General Machine Building ordered NPO Energiya to modify the rocket in order to make it compatible with more realistic payloads of between 25 and 40 tons. This made it necessary to reduce the number of RD-0120 engines to one or two and hence make the core stage smaller. The first idea was to reduce the diameter of the core stage to 4.1 m or 5.5 m and lower the propellant mass to between 200 and 450 tons. However, since this would have required different manufacturing techniques, it was decided to retain the standard Energiya core stage diameter of 7.7 m. By late 1989 engineers were focusing on a version with one RD-0120 engine and a propellant mass of around 240 tons. With the core stage (called Blok-V) only about half as high as that of Energiya, the payload had to be stacked on top rather than strapped to the side. At the intersection between the core stage and the payload bay the rocket would taper off to a diameter of 6.7 m, the same as that of the 14S70 Cargo Transport Container of Buran-T. With a length of 25 m,

Energiya-M on the UKSS pad (source: www. buran. ru).

the payload bay was probably almost identical in dimensions to the Cargo Transport Container for Groza. The concept was approved by the Council of Chief Designers on 19 July 1990. Initially called Neytron (“Neutron”), the new rocket eventually became known as Energiya-M.

Four configurations were considered for the payload section, one in which the satellite would occupy the entire bay and have its own engine system (N-11) and three where the satellite would be attached to various upper stages (N-12, N-14, and N-15).

The N-12 was a Blok-DM modification with an engine known as the 11D58MF and was also planned for use on Zenit, Proton, and the original Angara. It allowed the rocket to place 29 tons into low Earth orbit or up to 3 tons into geostationary orbit. The N-14 was a Blok-DM modification with the standard 11D58M engine and was identical to the second stage of the 204GK upper-stage combination planned for Buran-T. It was capable of delivering a 5.5-ton payload to geostationary orbit. The N-15, able to launch 6.5 tons into geostationary orbit, was a LOX/LH2 upper stage but no further information on this is available. It is known that in 1992 work got underway on a LOX/LH2 upper stage known as Yastreb carrying the RO-97 engine of KBKhA. This stage was primarily intended for Proton, Zenit, and Angara, but with slight modifications could also be mounted on Energiya-M. However, it was smaller than the N-15 and also had its propellant tanks configured differently.

As early as 1990 a mock-up of Energiya-M was ready for tests at Baykonur. It was placed both on the UKSS pad and Energiya-Buran pad 37. It was only afterwards, on 8 April 1991, that the government issued a decree ordering NPO Energiya, KB Yuzhnoye, and KB Salyut to come up with competing proposals for boosters in the 25 to 40-ton payload range. This basically was a repeat of the order given in the 25 December 1984 decree, although in a somewhat lighter payload class. KB Salyut and KB Yuzhnoye had apparently also been optimizing their Proton and 11K37 designs. Eventually, on 6 July 1991 the Ministry of General Machine Building opted for Energiya-M. Between 1991 and 1993 preparations were made for starting production of flight models.

During that period, NPO Energiya worked out plans to launch a 30-ton space – plane (OK-M2) atop the rocket and also to turn the two strap-ons into reusable flyback boosters, something which appears to have been studied as early as 1989. Another idea was to launch the rocket from an ocean-based platform near the equator. This would not only allow Energiya-M to loft heavier payloads, but would also resolve the political problems associated with flying it from Baykonur, which became foreign territory after the collapse of the Soviet Union. One exotic mission considered for the ocean-launched Energiya-M was to deposit radioactive waste into heliocentric orbits, eliminating the risks involved in launching such dangerous payloads over populated territories. These studies formed the basis for the creation of the international Sea Launch venture, which would eventually use the three-stage Zenit rocket.

Despite the fact that Energiya-M used existing hardware and infrastructure and outperformed rockets like the Titan-4 and Ariane-5, it was ahead of its time. At the time there was simply no demand for the types of satellites that the rocket could place into orbit. On 15 September 1992 the Russian government started yet another com­petition to develop a family of even lighter rockets, which would eventually evolve into the Angara series. By late 1993 government funding for Energiya-M was stopped, with Russian Space Agency officials stating there was no demand for the rocket on the market. The following year NPO Energiya made an ultimate attempt to attract Western customers to Energiya-M and other Energiya variants, but to no avail. The prototype Energiya-M still stands today inside the Dynamic Test Stand at Baykonur [66].

MAKS design features

The plans underwent further changes with the inception in the mid-1980s of the more capable An-225 Mriya carrier aircraft. Although conceived in the first place to transport Buran and elements of the Energiya rocket from the manufacturers to the Baykonur cosmodrome, designers may have had air-launch capability in the back of their minds from the outset.

The Mriya-based system was dubbed the Multipurpose Aerospace System (Mnogotselevaya aviatsionno-kosmicheskaya sistema or MAKS). The rocket was now replaced by an expendable external fuel tank (VTB), perched on top of which was either a reusable spaceplane (MAKS-OS) or an expendable unmanned cargo canister (MAKS-T). Also envisaged was a fully reusable unmanned winged cargo carrier with integrated propellant tanks (MAKS-M).

The OS was a 26-ton, two-man spaceplane with a length of 19.3 m, a height of 8.6 m, and a wingspan of 8.6 m. As on Spiral and BOR, the wings could be folded back for re-entry. The thermal protection system was the same as that of Buran, although a different material was needed for the much thinner wing leading edges. Behind the crew compartment was a 2.8 x 6.8 m payload bay. The original plan was for the spaceplane to have three Kuznetsov NK-45 LOX/LH2 main engines with a vacuum thrust of 90 tons each. That idea was turned down in favor of a tripropellant LOX/LH2/kerosene engine called RD-701, developed at NPO Energomash on the basis of the RD-170. Although this lowered the mean specific impulse, it still resulted in better performance because the external tank became much lighter by reducing the amount of liquid hydrogen, which is a low-density fuel taking up a lot of volume.

The RD-701 is a twin-chambered, staged, combustion cycle engine. Each chamber has a pair of turbopumps. One pump processes liquid oxygen and kerosene, which is turned into an oxygen-rich gas at 700 atmospheres after passing through a preburner. The other pump feeds liquid hydrogen to the main combustion chamber at ambient temperatures. The RD-701 has two modes of operation, combining first and second-stage engine characteristics in one package. During the initial phase it burns 81.4 percent liquid oxygen, 12.6 percent kerosene, and 6 percent liquid hydro-

MAKS launch.

gen, producing a total thrust of 400 tons with a specific impulse of 415 s. Then it switches to a combination of just liquid oxygen and hydrogen, with the thrust decreasing to 162 tons, but the specific impulse climbing to 460 s, helped by the deployment of a nozzle extension.

A typical MAKS-OS launch profile would see Mriya climb to an altitude of 9 km and assume the proper pre-launch attitude. The spaceplane would then ignite its main engine while still riding piggyback on the aircraft, making it possible to check its performance before separation. Some ten seconds later the 275-ton combination of spaceplane and external tank would be released from the Mriya to begin the trip to orbit. The engines would shut down before the spaceplane reached orbital velocity, allowing the external tank to burn up over the ocean across the world some 19,000 km from the launch point. The OS would then perform two burns of its two hydrogen peroxide/kerosene orbital maneuvering engines to place itself into orbit.

The basic version of the OS was designed to launch and retrieve small and medium- size satellites. Payload capacity was 8.3 tons to a 200 km orbit with a 51° inclination and 4.6 tons back to Earth. For space station missions there were two configurations. In one of them (TTO-1) the payload bay would house a small pressurized module capable of carrying four passengers plus cargo. This would be used for crew rotation or rescue missions, although the latter required additional fuel supplies for quick maneuvering. In the other (TTO-2) the payload bay would remain unpressurized and carry structures such as solar panels, antennas, or propellant tanks for refueling a space station. In both configurations a docking adapter was installed just behind the crew compartment. Also considered was an unmanned OS without a crew compart­ment and with a slightly enlarged cargo bay to fly heavier payloads (9.5 tons into a 200 km, 51° inclination orbit). Before committing MAKS-OS to flight, NPO Molniya planned to fly a suborbital unmanned demonstrator (MAKS-D). This would have the same size and shape as the OS, but would be equipped with a single RD-120 Zenit second-stage engine fed by propellant tanks in the payload bay.

In the MAKS-T configuration the OS was replaced by an unmanned cargo canister equipped with an RD-701 tripropellant engine and an upper stage for inserting payloads into the proper orbit. Maximum payload capacity was 18 tons to a 200 km, 51° inclination orbit, and 4.8 tons to geostationary orbit. For geo­stationary missions the Mriya would fly to the equator to make maximum use of the Earth’s eastward rotation and be refueled in flight.

MAKS-M was a fully reusable, unmanned, winged cargo container with integrated propellant tanks, designed to deliver payloads to low orbits (5.5 tons to a 200 km, 51° orbit). Situated in between the propellant tanks was a cargo bay slightly larger than that of the OS. An earlier version of this (VKS-D) had the cargo bay on top of the propellant tanks. NPO Molniya designers even floated the idea of transforming VKS-D into a suborbital intercontinental passenger plane capable of carrying 52 passengers to any point on the globe within 3 hours at a price of $40,000 per ticket.

NPO Molniya had plans to further upgrade the MAKS system by fitting the Mriya with more powerful NK-44 engines and eventually by replacing Mriya with a giant twin-fuselage triplane called Gerakl (“Heracles’’) with a phenomenal 450-ton cargo capacity. A similar plane had already been studied for air launches in the early 1980s under the name System 49M. In the even more distant future the hope was to finally realize the old Spiral dream by developing an air-launched system based on a hypersonic carrier aircraft (VKS-G) [6].

Myasishchev’s Projects 46 and 48

Vladimir Myasishchev’s OKB-23 (situated in the Moscow suburb of Fili) was mainly engaged in the development of long-range strategic bombers, but branched out into cruise missiles with the M-40/Buran project in 1954-1957 and also did considerable research on spaceplanes even before Tsybin had started his PKA project. Unfortu­nately, most of the archival materials related to Myasishchev’s spaceplane projects have not been preserved, making it difficult to piece together their history. According to Russian historians Myasishchev, inspired by plans for the X-15 and US boost – glide concepts, began spaceplane research “on his own initiative’’ as early as 1956 under a program named Project 46. Also involved in the research were the NII-1 and NII-4 research institutes.

By 1957 he came to the conclusion it would be feasible in the short run to develop a reusable vehicle called a “satelloid’’ or “intercontinental rocket plane’’. Its primary goal would be to conduct strategic reconnaissance over enemy territory without the risk of being shot down by anti-aircraft defense means. Such missions would last 3 to 4 hours, with the spaceplane using radar and both optical and infrared photographic equipment to detect troop movements and spot enemy aircraft and missiles. Included

image19

Vladimir Myasishchev.

image20

Project 46 spaceplane (reproduced from A. Bruk, 2001).

in the early warning network would be high-orbiting relay satellites. Later goals were to send vehicles of this type on bombing missions or to destroy enemy missiles and satellites. A reconnaissance version was expected to be ready by 1963 and a combined reconnaissance/bombing version was planned for 1964-1965. Myasishchev is said to have presented his ideas for spaceplanes during a visit to OKB-23 by Khrushchov in August 1958, but the Soviet leader was unimpressed, telling Myasishchev to stick to the field of aviation and leave rocket-related matters to others.

Undeterred by Khrushchov’s scepticism, OKB-23 pressed on with its spaceplane research. By April 1959 the bureau had worked out plans for a 10-ton rocket plane flying between altitudes of 80 and 150 km and capable of increasing orbital altitude by 100 km (to a maximum of 250 km) and changing orbital inclination by 3°. As Dyna-Soar, it was envisaged as a “boost-glide” system, being launched into orbit by a conventional ballistic rocket and then gliding back to a horizontal runway landing. The launch vehicle was to be an upgraded three-stage version of Korolyov’s R-7 missile. The third stage apparently consisted of four “boost engines’’ drawing propellant from four jettisonable tanks mounted on the spaceplane itself. In April 1960 Myasishchev revised his plans and was now aiming for a 6-ton vehicle flying in 600 km orbits and capable of performing inclination-changing maneuvers of as much

6

.

Meanwhile, OKB-23 was tasked with the development of another manned space vehicle by a government and party decree (nr. 1388-618) issued on 10 December 1959. This decree, considered to be the first macro-policy statement on the Soviet space program, encompassed a wide range of space projects. Myasishchev’s bureau in particular was assigned to develop a manned vehicle capable of ensuring “a reliable link’’ between the ground and “heavy satellites’’. Known as Project 48, this appears to have been an early version of a transportation system for space stations, although it was supposed to solve defense-related tasks as well. It was only the second piloted space project to be officially approved by a party/government decree after Vostok. Work on the project got underway after orders from the State Committee of Aviation Technology (GKAT) on 7 January and 4 March 1960.

Myasishchev’s Projects 46 and 48

48-2 spaceplane (reproduced from A. Bruk, 2001).

Weighing no more than 4.5 tons, the spacecraft was to be launched into a circular 400 km orbit by an R-7 based launch vehicle and stay in orbit anywhere from 5 to 27 hours. Re-entry through the atmosphere was to consist of a ballistic and a “controlled gliding” phase, reducing deceleration forces to no more than 3-4g. This required an aerodynamic shape providing at least some lift and ruled out a Vostok – type spherical design. Thermal protection was to be provided by ceramic tiles and/or by super-cold liquid metals circulating under the spacecraft’s skin.

Myasishchev’s team came up with four possible designs to meet these require­ments, each capable of carrying two men. Vehicle 48-1 (launch mass 4.5 tons) had a cone-shaped fuselage with highly swept delta wings (79°) and fins on the wings and fuselage to provide braking during re-entry. The crew cabin was located in the back. Both the fins and the glider’s engine compartment were to be jettisoned when the spaceplane had decelerated to a speed of Mach 5. Vehicle 48-2 (launch mass 4.3 tons) had a cylindrical fuselage with delta wings (leading edge sweepback of 65°) and small canards in the front. There were vertical tails both on top of and under the fuselage. The crew cabin was situated in the middle and the spaceplane was outfitted with a non-jettisonable engine compartment. The two other schemes envisaged a Mercury/ Gemini look-alike inverted cone with a rotor for a helicopter-type landing (48-3) and a conically shaped spacecraft for a parachute landing (48-4). Missions of the two-man ship were to be preceded by test flights of a single-seater spaceplane to demonstrate

image23

One version of the VKA-23 spaceplane (reproduced from A. Bruk, 2001).

the functioning of life support systems and test the “gliding re-entry” technique. The proposals were reviewed at a meeting of leading aviation specialists on 8 April I960, but no consensus was reached on the way to go forward.

There was yet another OKB-23 proposal for a single-seater spaceplane, which Myasishchev historians also link to Project 48, although it does not appear to have been the aforementioned one-man demonstration vehicle. It has been referred to as VKA-23 (VKA standing for “Aerospace Apparatus” and “23” referring to the name of the design bureau) and was the brainchild of OKB-23 designers L. Selyakov and G. Dermichov, who had originally presented it to NII-1 chief Mstislav Keldysh. Two versions of the delta-wing VKA-23 were studied between March and September 1960, one with a single fin at the rear (launch mass between 3.5 and 4.1 tons, length 9.4m) and one with two fins at the tips of the wings (launch mass between 3.6 and 4.5 tons, length 9.0 m).

The VKA-23 was to be launched either by an R-7 based rocket or a much more powerful rocket developed in-house under the so-called Project 47. In a launch emergency, the pilot could eject from the vehicle up to an altitude of 11 km, higher than that the entire vehicle would be separated from the rocket. The VKA-23 was supposed to borrow some elements from the Vostok spacecraft such as the Chayka orientation system and the Zarya communication system. Thermal protection was provided by ultra lightweight ceramic foam tiles very similar in shape to the ones later used by the US Space Shuttle and Buran. The leading edges of the wings were protected by a thick layer of siliconized graphite. A small turbojet engine was to give the ship extra maneuverability during re-entry. Just like the Vostok cosmonauts, the pilot was not supposed to land inside the ship, but eject at an altitude of about 8 km, with the spacecraft itself making an automatic landing on skids.

Although Project 48 had received the official nod with the party/government decree of December 1959, it was no longer mentioned in an even bigger space decree released on 23 June 1960. Actually, OKB-23 was counting its final days, falling victim to Khrushchov’s policy of downsizing aviation in favor of missiles. In October 1960 Myasishchev’s design bureau became Branch Nr. 1 of the OKB-52 design bureau of Vladimir Chelomey and was assigned to various missile, rocket, and spacecraft projects. Myasishchev was named head of TsAGI, but in 1967 was placed in charge of the EMZ design bureau, which would go on to play a vital role in the Buran program [20].

Energiya-Buran

image5Energiya-Buran is the most powerful space vehicle the world has ever seen, and, had it been given the chance to fully develop, it would have been of great benefit to the people of the Soviet Union and, indeed, the world. It didn’t get that chance, but the political and to some extent economical situation were not ideal.

I had the honor of being selected as the lead test-pilot for Buran. As such, I flew Buran’s analog BTS-002 on 12 occasions in the program that tested the atmospheric portion of Buran missions. The team from the Flight Research Institute named after M. M. Gromov consisted of some of the best test-pilots in the Soviet Union. Two pilots from this select group, Anatoliy Levchenko and I, flew in space on a Soyuz spacecraft as part of our preparations to test Buran in orbit. But, after one unmanned flight and before we had the chance to fly Buran ourselves, the program was canceled.

Buran still speaks to the imagination of the people in Russia and many take pride to have participated in the program, even though it never resulted in even one manned mission in space. At the Baykonur Cosmodrome, a model of Buran can be seen at the main gate one passes when coming from the airport. Engineers and technicians who worked on the program and have since passed away even have Buran etched on their headstones.

It is heart-warming to see that, even outside Russia, Buran still lives and I am happy to see that the authors of this book have managed to write an authoritative history on Energiya and Buran, using original Soviet and Russian sources. I sincerely hope that this book will further spread the knowledge of a program that might have yielded enormous economical profit to the world, had it been given the chance.

image6Igor Petrovich Volk Hero of the Soviet Union Merited Test Pilot

Pilot-Cosmonaut of the Soviet Union

Authors’ preface

This book is about the Energiya-Buran system, the Soviet equivalent of the US Space Shuttle. Originally conceived in 1976, Buran made its one and only flight in November 1988, more than seven years after the inaugural flight of the Space Shuttle. Prudent as the Soviet authorities were, it was conducted in an unmanned mode, a feat not accomplished by NASA in the Space Shuttle program.

Buran was not unique for being a manned spaceflight project that eventually would never carry a man into orbit. There were other Soviet programs that had suffered the same fate, such as the L-1/L-3 lunar program, and the military space station ferry TKS. Unlike these, however, from its conception Buran was a spacecraft without a clearly defined task. It was solely designed and built in response to the Space Shuttle, whose military potential was a source of major concern to the Soviet Union. Unsure what exactly the threat was, the Russians decided to build a vehicle matching the Shuttle’s capabilities to have a deterrent in the long run. From the Russian per­spective, Buran was just another product of the arms race between the superpowers.

The orbiter resembled its American counterpart to the point that they were aerodynamic twins, but there were important differences between the two systems as well. The most notable one was that Buran did not have main engines and was carried into orbit by a powerful launch vehicle (Energiya) that could be adapted for other missions as well. Despite the copying that unquestionably took place, the Russians still had to develop the technology, the materials, and the infrastructure all by themselves and in doing so often followed their own, unique approach. Building upon the lessons learned from their star-crossed manned lunar program, they brought the project to a state of maturity that allowed them to fly two successful launches of the Energiya rocket and one of the Buran orbiter. This was a remarkable feat, irrespective of whether the expenditures were justified or not.

After the maiden Buran flight in 1988, plans were drawn up for another mission in which the orbiter would again go up and land unmanned, although this time it would be briefly boarded in orbit by a visiting Soyuz crew. Only after the second mission had

proven the system to be reliable, would a crew have been allowed to be launched on board the orbiter.

Unfortunately, it would never come to that. As the Cold War drew to a close and the Soviet Union collapsed, the program largely lost its raison d’etre. In a time where funds allocated to large space undertakings were getting scarcer and scarcer, here was a program that was devouring more and more of that money. Slowly but surely, more and more space program officials began to oppose Buran, emphasizing that all this money was disappearing into a bottomless pit, without anyone being able to give a clear answer to that one question: what do we need Buran for?

Finally, the program died a silent death. It was never officially terminated by a government decree, but those who were involved knew the signs. The cosmonauts who had been training for the manned missions began returning to test flying in their respective institutes, transferred to the Soyuz and Mir program, or tried their luck in private industry.

Hardware was scrapped, stored, or offered for sale. The full-scale test model used for the approach and landing tests was sent to Sydney, where it was put on display. Later it was to be shipped to a museum in Germany, but didn’t make it beyond a junkyard in Bahrain, where it still sits at the time of writing.

Another full-scale test model ended up as a tourist attraction in Gorkiy Park in Moscow, while a third has been parked outdoors at Baykonur for several years, where it has been left exposed to the elements. The only Buran orbiter that flew in space was put in storage in the Energiya assembly building, but was totally destroyed when the building’s roof collapsed in May 2002.

In spite of the sad fates of these Buran orbiters, the program was a source of great pride for everyone who participated in it, from engineers to prospective cosmonauts. In many places models of the orbiter, or the entire vehicle, were erected, sometimes as monuments, sometimes just to embellish the streets in which they stand. As Buran’s lead test pilot Igor Volk says in his foreword and as maybe the ultimate sign of pride, many who were involved in it have the vehicle etched on their gravestones.

Despite cancellation of the project, the technology developed for it has not all disappeared down the drain. The rocket engine of Energiya’s strap-on boosters is still being used today by the Zenit rocket and its Sea Launch version and scaled-down versions of the engine currently power the first stage of America’s Atlas rockets and will also be employed in a new family of Russian launch vehicles called Angara. The docking hardware originally developed for Buran was used in the Shuttle/Mir pro­gram and is now actively used on the International Space Station.

Perhaps Buran was born under an unlucky star, but since the programm ended those who designed and built it have gone to a lot of trouble to make sure that the Soviet/Russian counterpart to the US Space Shuttle will be remembered as a state-of – the-art spaceship that was launched by one of the most powerful launch vehicles the world has ever seen. With this book, we hope we can contribute to that endeavor.

Подпись: April 2007Подпись:Bart Hendrickx

Mortsel

Belgium

Acknowledgments

This book is a cooperative effort by two authors, but would probably not have come about without the initiative of David Shayler, who originally came up with the idea to write the book but in the end could not participate in it due to other commitments.

Of particular help in preparing the book were several people who were either directly or indirectly involved in the Energiya-Buran program. Thanks are extended to Buran lead test pilot Igor Volk for his foreword and also to the numerous other Buran test pilots who granted interviews to Bert Vis during his countless travels to Star City, Zhukovskiy, and other locations. Lida Shkorkina was instrumental in arranging many of those interviews and also acted as interpreter during most of them. Thanks are also due to Emil Popov, a veteran of the Military Industrial Commission, who shared recollections of the meetings and discussions in the early 1970s that eventually led to the decision to go ahead with Buran. Nina Gubanova, the widow of Energiya – Buran chief designer Boris Gubanov, provided an original copy of her husband’s hard-to-obtain memoirs.

Our special thanks also go to those who gave the authors access to some rare primary documents, most of them from the archives of the late Ernest Vaskevich, who headed the coordination and planning department of the Departmental Training Complex for Cosmonaut-Testers (OKPKI) in Zhukovskiy, which acted as the Flight Research Institute’s own cosmonaut training center. Many of those documents offer unique insight into the training program of the Buran test pilots as well as crewing issues and flight plans.

The authors also wish to thank several researchers who supported them while writing the book. First and foremost among those is Vadim Lukashevich, the web­master of the www. buran. ru website and without doubt Russia’s leading expert on the history of Buran. Vadim never got tired of answering the authors’ frequent and challenging questions and also kindly granted permission to use many of the pictures and illustrations on his website and CD-ROMs. The book would not have been what it is without his dedication, advice, and continued support.

Appreciation is also due to the staff of the unrivaled Russian space magazine Novosti kosmonavtiki, whose tireless efforts to unravel the mysteries of Soviet space history were a great source of help and inspiration in writing the book. Asif Siddiqi, the highly respected American authority on Soviet/Russian space history, was always willing to help and share information from his rich archives. Chris van den Berg, who has been patiently monitoring Soviet/Russian space-to-ground communications for over 40 years, assisted the authors in making sense of Buran’s communication systems. Peter Pesavento provided valuable information on US intelligence assess­ments of the Soviet shuttle program. Rex Hall granted access to his archives and helped with his knowledge of the Soviet/Russian space program.

Several people kindly allowed the authors to select pictures from their photo collections, including Igor Afanasyev, Edwin Neal Cameron, Sergey Grachov, Vadim Lukashevich, Igor Marinin, Timofey Prygichev, Asif Siddiqi, Rudolf van Beest, Luc van den Abeelen, and Simon Vaughan. Dennis Hassfeld was kind enough to make several line drawings based on original Russian sketches.

We thank Clive Horwood of Praxis for his continued support and Neil and Bruce Shuttlewood of Originator Publishing Services for copy editing and generation of proofs.

Last but not least, the authors wish to extend a special word of thanks to their relatives, who put up with them during two years of painstaking and time-consuming research.

Acknowledgments

The roots of Buran

When Buran swooped down to a safe landing on its Baykonur runway on 15 Novem­ber 1988, it marked the culmination of more than just the 12 years needed to take it to the launch pad since its official approval by a Soviet government and Communist Party decree in February 1976. Even by the start of the Buran program the Soviet Union possessed a rich database on high-speed aeronautics, gradually accumulated through four decades of work on rocket-propelled aircraft, intercontinental cruise missiles and smaller spaceplanes.

THE FATHER OF SOVIET SPACEPLANES

The first man in the Soviet Union to widely advocate the idea of winged spacecraft was Fridrikh Tsander. Born in 1887 in the Latvian capital Riga into an intellectual German family, Tsander became obsessed with the idea of space travel around the age of 20 and was one of the Soviet Union’s most prominent popularizers of space exploration in the 1920s (with one of his lectures attended by Lenin himself in December 1920). Although inspired by the work of great spaceflight theoreticians like his compatriot Konstantin E. Tsiolkovskiy and the German Hermann Oberth, Tsander was convinced that the most practical way of reaching other planets was not with powerful and expensive rockets, but with winged vehicles. Tsander outlined his ideas in the journal Tekhnika і zhizn in 1924 in an article called “Flights to Other Planets’’, openly taking issue with the ideas of Oberth and Tsiolkovskiy:

“For flight to the upper layers of the atmosphere and also for landing on planets possessing an atmosphere, it will be advantageous to use an aeroplane as a construction keeping the interplanetary ship in the atmosphere. Aeroplanes, having the capability of conducting a gliding descent in case of an engine

image7

Fridrikh Tsander.

shutdown, are far superior to parachutes, proposed for the return to Earth by Oberth in his book “Rocket to the Planets”.

Parachutes do not offer the possibility of freely choosing a landing site or continuing the flight in case of a temporary engine shutdown, and therefore it would be advisable to use them only for flights without people. The part of the rocket that is operated by a man, should be equipped with an aeroplane. For descending to a planet having sufficient atmosphere, using a rocket, as proposed by K. E. Tsiolkovskiy, will also be less advantageous than using a glider or an aeroplane with an engine, because a rocket consumes much fuel during the descent and its descent will cost, even if there is only one person in the rocket, tens of thousands of rubles, whereas descending with an aeroplane costs only several tens of rubles, and with a glider, nothing at all.”

In this and other works Tsander expounded on the design of an interplanetary spaceplane that would reach space by using a combination of propeller, jet, and rocket engines. As the atmosphere got thinner, unneeded metallic components would move into a boiler to be melted into more rocket fuel. For propulsion during the interplanetary cruise, Tsander proposed screens or mirrors driven by solar light, early precursors of today’s solar sails.

THE FIRST ROCKET PLANES The RP-1

Tsander did more than just generate fancy ideas. He set about turning his ideas into practice in the late 1920s with the development of an experimental rocket engine called the OR-1. In the autumn of 1931 Tsander took the initiative to establish an amateur group to study the practical aspects of rocketry and space exploration. Called the Group for the Investigation of Reactive Motion (GIRD), one of its four sections aimed to install rocket engines on gliders and thereby create a high-altitude aircraft, an idea promoted by the young engineer Sergey P. Korolyov. The engine to be used initially would be Tsander’s OR-2. Generating 50 kg of thrust, it used gasoline and liquid oxygen as propellants and had sophisticated features such as regenerative cooling of the combustion chamber using gaseous oxygen, a nozzle­cooling system using water, and a pressure feed system using nitrogen.

In early 1932 a decision was made to put the OR-2 on the BICH-11 flying wing glider. The resulting rocket plane, called RP-1, would be a modest machine, capable of developing a speed of 140 km/h, reaching an altitude of 1.5 km, and staying in the air for just about 7 minutes. However, GIRD had plans for more sophisticated rocket planes, including the RP-3, a two-man plane using a combination of piston and rocket engines to reach altitudes of 10-12 km [1].

While development of the engine got underway, Korolyov himself made several unpowered test flights of the BICH-11 to test its flying characteristics. Before tests of the engine got underway, the overworked and frail Tsander was sent to a sanatorium in the Caucasus, but contracted typhoid fever on the way and passed away on 28 March 1933 at the age of 45. His infectious enthusiasm was surely missed by the GIRD team. Korolyov’s daughter would later describe Tsander as an “adult child’’ in everyday affairs, but the “highest authority’’ in rocket matters [2]. One cannot even begin to imagine what further contributions this man could have made to Soviet rocketry had he not died such an untimely death.

Tests of the OR-2 engine in 1933 proved unsatisfactory and attempts to replace the gasoline by ethanol to facilitate cooling did not produce the expected results either. Modifying the glider to carry a rocket engine also turned out to be more difficult than expected, with one of the requirements being to drop the fuel tanks in flight to increase safety. Before the RP-1 ever had a chance to make a powered flight, GIRD was forced to change direction.