Category Escaping the Bonds of Earth

MOONSHIP

Project Apollo, which brought about the deaths of Grissom, White and Chaffee and which also enabled the steps of Neil Armstrong and Buzz Aldrin on the Moon, was born very soon after NASA’s own creation late in 1958. At that time, it was expected that exploration of the Solar System would be one arena in which the abilities of men, rather than machines, would be required. A fundamental obstacle, however, was the distinct absence of large boosters capable of fulfilling such roles and in mid-December of that year, newly installed Administrator Keith Glennan listened as Wernher von Braun, Ernst Stuhliner and Heinz Koelle presented the capabilities of existing hardware and stressed the need for a new ‘family’ of rockets. Landing men on the Moon, for the first time, was explicitly discussed as a long­term objective and, indeed, Koelle suggested a preliminary timeframe for achieving this as early as 1967.

Von Braun’s vision for the new family of rockets was that, first and foremost, their engines should be arranged in a ‘cluster’ formation, directly carrying an aviation concept into the field of spacegoing rocketry. The famed missile designer also discussed propellants and the idea of employing different combinations for different stages… then broached the subject of precisely how such enormous boosters could deliver a manned payload to the lunar surface. Von Braun had five methods in mind: one involving a ‘direct ascent’ from Earth to the Moon, the other four involving some sort of rendezvous and docking of vehicles in space. In whatever form the mission took, the rocket would need to be enormous, comprising, he said, ‘‘a seven-stage vehicle’’ weighing ‘‘no less than 6.1 million kg’’. Alternatively, he suggested flying a number of smaller rockets to rendezvous in Earth orbit and assemble a 200,000 kg lunar vehicle, which could then depart for the Moon. Aside from the immense practical problems of building and executing such a plan were the very real unknowns, Stuhlinger added, of how men and machines could operate in a weightless environment, with concerns of temperature, radiation, micrometeorites and corrosion an ever-present hazard.

Glennan’s focus at the time was, of course, Project Mercury, although in testimony before Congress early in 1959 he and his deputy, Hugh Dryden, admitted that there was ‘‘a good chance that within ten years’’ a circumnavigation of the Moon might be achieved, although not a landing, and that similar projects may be underway in connection with Venus or Mars. In support of NASA’s long-term aims, Glennan requested funding to begin developing the cornerstone for such epic ventures – the booster itself – and presented President Dwight Eisenhower with a report on four optional ‘national space vehicle programmes’: Vega, Centaur, Saturn and Nova. Although the first and last of these scarcely left the drawing board, the others would receive developmental funding and von Braun’s team, which had championed a rocket known as the Juno V, gained backing to develop it further under the new name ‘Saturn’.

In April 1959, Harry Goett, later to become director of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, was called upon to lead a research steering committee for manned space exploration. The major conclusions of his panel were that, after Project Mercury had sent a man into orbit, the agency’s goals should encompass manoeuvring in space, establishing a long-term manned laboratory, conducting a lunar reconnaissance and landing and eventually surveying Mars or Venus. ‘‘A primary reason,’’ remarked Goett of the choice of the Moon as a major

target, “was the fact that it represented a truly end objective which was self-justifying and did not have to be supported on the basis that it led to a subsequent more useful end.”

Elsewhere, efforts to begin developing the Saturn were gathering pace. Its challenges, though, were both huge and staggering, with propellant weights alone for a direct-ascent rocket producing a vehicle of formidable scale; indeed, even the prospects for constructing a lunar spacecraft in Earth orbit would require more than a dozen ‘smaller’ launches and the added complexity of rendezvous, docking and assembly operations. At this early stage, the problems of being able to store cryogenics for long periods in space, to have a throttleable lunar-landing engine and takeoff engine with storable propellants and auxiliary power systems were first identified.

Unfortunately, midway through Dwight Eisenhower’s second term in office, and with the emphasis of his administration on balancing the budget ‘‘come hell or high water’’, it proved impossible for Glennan to formally commit NASA to a long-term lunar effort. Instead, small groups at the agency’s field centres began springing up, including one within the Space Task Group, which considered a second-generation manned vehicle capable of re-entering the atmosphere at speeds almost as great as those needed to escape Earth’s gravitational pull. ‘‘The group was clearly planning a lunar spacecraft,” wrote Courtney Brooks, James Grimwood and Loyd Swenson, and by the autumn of 1959 sketches of a lenticular re-entry vehicle had emerged and crystallised to such a point that its designers even applied for it to be patented.

Early January of the following year finally brought approval from Eisenhower for NASA to accelerate development of von Braun’s Saturn and offered the first hint of political support for manned space efforts beyond Project Mercury. Within weeks, Glennan’s request to Abe Silverstein, director of the Office of Space Flight Programs, to encourage advanced design teams at each NASA field centre and within the aerospace industry began to bear fruit: von Braun’s team proposed a Saturn-based lunar exploration design and J. R. Clark of Vought Astronautics offered a brochure entitled ‘A Manned Modular Multi-Purpose Space Vehicle’. At this point, of course, Project Mercury had yet to accomplish its first manned mission; however, regardless of their limited chances of receiving presidential or congressional approval, the proposals continued.

Other efforts focused on exactly how the spacecraft and other hardware could be delivered to the lunar surface in the most economical way. In May 1960, NASA’s Langley Research Center sponsored a two-day conference on rendezvous, with several techniques discussed, although it was recognised that they would be unlikely to bear fruit until the agency secured funding for a flight test programme.

It was at around this time that the decision was made over naming the spacecraft which would bring about the most audacious engineering and scientific triumph in the history of mankind. The name ‘Apollo’, formally conferred upon the programme on 28 July 1960 by Hugh Dry den, would honour the Greek god of music, prophecy, medicine, light and – perhaps above all – progress. ‘‘I thought the image of the god Apollo riding his chariot across the Sun,’’ wrote Abe Silverstein, who had consulted a book on mythology to come up with the name, ‘‘gave the best representation of the grand scale of the proposed programme.’’

The scope of Apollo, Bob Gilruth and others revealed to more than 1,300 governmental, scientific and industry attendees at a planning session in August, was for a series of Earth-orbital and circumlunar expeditions as a prelude for the first manned landing on the Moon. Guidelines for the design of the spacecraft would be fourfold: it would need to be compatible with the Saturn booster under development by von Braun’s team, it had to be able to support a crew of three men for a period of up to a fortnight and it needed to encompass the lunar or Earth-orbital needs of the project, perhaps in conjunction with a long-term space station. By the end of October, three $250,000 contracts were awarded to teams led by Convair, General Electric and the Martin Company for initial studies.

In spite of this apparent brightening of the lunar project’s chances, Glennan himself remained unconvinced that Apollo was ready to move beyond the feasibility stage and felt a final decision would have to await the arrival of the new president in January 1961. By this point, Glennan was estimating Apollo to cost around $15 billion and felt that the Kennedy administration needed to spell out, clearly, and with no ambiguity, its precise reasons for pursuing the lunar goal, be they for international prestige or scientific advancement. At around the same time, Hugh Dryden and Bob Seamans directed George Low to head a Manned Lunar Landing Task Group, detailed to draft plans for a Moon programme, utilising either direct – ascent or rendezvous, within cost and schedule guidelines, for use in budget presentations before Congress. When Low submitted his report in early Lebruary, he assured Seamans that no major technological barriers stood in the way and that, assuming continued funding of both the Saturn and Apollo, a manned lunar landing should be achievable between 1968-70.

Moreover, Low’s committee was considerably more optimistic than Glennan in terms of cost estimates: they envisaged spending to peak around 1966 and total some seven billion dollars, reasoning that by that time the Saturn and larger Nova-type boosters would have been built and an Earth-circling space station would probably be in existence. It stressed, however, that manned landings would require a launch vehicle capable of lifting between 27,200 and 36,300 kg of payload; the existing conceptual design, dubbed the ‘Saturn C-2’, could boost no more than 8,000 kg towards the Moon. Low’s group advised either that several C-2s needed to be refuelled in space or an entirely new and more powerful booster awaited creation. Both approaches seemed realistic, the committee concluded, with Earth-orbital rendezvous probably the quickest option, yet still requiring the technologies and techniques to refuel in space.

Of pivotal importance in the subsequent direction of Apollo was the new president, John Litzgerald Kennedy, who had already appointed a group before his inauguration to assess the perceived American-Soviet ‘missile gap’ and investigate ways in which the United States could pull ahead technologically. The group was headed by Jerome Wiesner of the Massachusetts Institute of Technology – later to become Kennedy’s science advisor – and it advocated, among other points, that NASA’s goals needed to be both redefined and sharpened. Another key figure, and long-time ally of NASA, was Vice-President Lyndon Johnson, who pushed strongly to appoint James Webb, a man with immense experience in government, industry and public service, to lead NASA. On 30 January 1961, Webb’s appointment as the agency’s second administrator was authorised by Kennedy.

It was Webb who would guide NASA through the genesis of Apollo; indeed, his departure from the agency would come only days before the project’s first manned launch in October 1968. His importance to America’s space heritage and the respect in which he continues to be held will be recognised, just a few years from now, by the launch of the multi-billion-dollar James Webb Space Telescope (JWST), successor to Hubble. Yet Webb’s background was hardly scientific or in any way related to space exploration: a lawyer by profession, he directed the Bureau of the Budget and served as Undersecretary of State for the Truman administration, but throughout the Sixties he would prove NASA’s staunchest and most fierce champion.

Also championing the agency’s corner was President Kennedy himself, who, only weeks before Yuri Gagarin’s flight, raised its budget by $125 million above the $1.1 billion appropriations cap recommended by Eisenhower. Much of this increase was funnelled into the Saturn C-2 development effort and, specifically, its giant F-1 engine. Built by Rocketdyne, the F-1 – fed by a refined form of kerosene, known as ‘Rocket Propellant-1’ (RP-1), together with liquid oxygen – remains the most powerful single-nozzled liquid engine ever used in service. Although it experienced severe teething troubles during its development, particularly ‘combustion instability’, it would prove impeccably reliable and the cornerstone to a lunar landing capability.

By this time, Convair, General Electric and the Martin Company had submitted their initial responses to NASA, none of which overly impressed the agency’s auditors; indeed, recounted Max Faget, all three had stuck rigidly with the same shape as the Mercury capsule. Some theoreticians had already predicted that a Mercury-type design would be unsuitable for Apollo’s greater re-entry speeds and Space Task Group chief design assistant Caldwell Johnson had begun investigating the advantages of a conical, blunt-bodied command module.

Early in May 1961, after more adjustments and rework, the contractors offered their final proposals to NASA. Convair envisaged a three-component Apollo system, its command module nestled within a large ‘mission module’. Notably, it would return to Earth by means of glidesail parachute and develop techniques of rendezvous, docking, artificial gravity, manoeuvrability and eventual lunar landings. General Electric offered a semi-ballistic blunt-bodied re-entry vehicle, with an innovative cocoon-like wrapping to provide secondary pressure protection in case of cabin leaks or micrometeoroid punctures. Martin, lastly, proposed the most ambitious design of all. Conical in shape, its Apollo was remarkably similar to the design ultimately adopted, although it featured a pressurised shell of semi – monocoque aluminium alloy coated with a composite heat shield of superalloy and a charring ablator. Its three-man crew would sit in an unusual arrangement, with two abreast and the third behind, in a set of couches which could rotate to better absorb the G loads of re-entry and enable better egress.

All three contractors spent significantly more than the $250,000 assigned by NASA, with Martin’s study topping three million dollars, requiring the work of 300 engineers and specialists and taking six months to complete. In their seminal work on the development of Project Apollo, Brooks, Grimwood and Swenson pointed out that, had times been less fortunate, NASA may have been obliged to spend months evaluating the contractors’ reports before making a decision. However, it was at this time that Yuri Gagarin rocketed into orbit and John Kennedy pressed Lyndon Johnson to find out how the United States could beat the Russians in space. On 25 May 1961, before a joint session of Congress, he made the lunar goal official… and public.

In the wake of Kennedy’s speech, one of the key areas into which the increased funding would be channelled was a new booster idea called ‘Nova’; this was considered crucial to achieving a lunar landing by the direct-ascent method. At this stage, although NASA was ‘‘studying’’ orbital rendezvous as an alternative to direct – ascent, Hugh Dryden explained that ‘‘we do not believe… that we could rely on [it]’’. More money and increased urgency for Apollo was not necessarily a good thing: both Webb and Dryden felt that decisions over direct-ascent or orbital rendezvous and liquid or solid propellants would have been better made two years further down the line.

Nonetheless, rendezvous as an option was steadily coming to the fore, with a realisation that it could provide a more attractive alternative to the need for enormous and unwieldy boosters, instead allowing NASA to use two or three advanced Saturns with engines that were already under development. Although Earth-orbital rendezvous was considered safer, a lunar-orbit option would require less propellant and could be done with just one of von Braun’s uprated Saturn ‘C-3’ rockets.

The Apollo spacecraft which would fly missions to the Moon was also taking shape. Max Faget, the lead designer of the Space Task Group, set the diameter of its base at 4.3 m and rounded its edges to fit the Saturn for a series of test flights. These rounded edges also simplified the design of an ablative heat shield which would be wrapped around the entire command module. Encapsulating the spacecraft in this way provided additional protection against space radiation, although on the downside it entailed a weight penalty. Others, including George Low, saw merits in both blunt-bodied and lifting-body configurations and suggested that both should be developed in tandem. Most within the Space Task Group, however, felt that a blunt body was the best option.

Notwithstanding these issues, in August 1961 NASA awarded its first Apollo contract to the Massachusetts Institute of Technology, directing it to develop a guidance, navigation and control system for the lunar spacecraft. Two months later, five aerospace giants vied to be Apollo’s prime contractor, with the Martin Company ranked highest in terms of technical approach and a very close second in technical qualification and business management. In second place was North American Aviation, whom the NASA selection board recommended as the most desirable alternative. On 29 November 1961, word quickly leaked out to Martin that its scores had won the contest to build Apollo, but proved premature; the following day, it was announced by Webb, Dryden and Seamans that North American would be the prime contractor, in light, it seemed, of their long-term association with NASA and NACA and their spaceflight experience. The choice of North American, whose fees were also 30 per cent lower than Martin, would in many minds return to haunt NASA in years to come.

Rumour quickly abounded that it was politics, and not technical competency, which had won North American the mammoth contract. Astronaut Wally Schirra would recount that he felt the decision was made because companies in California had yet to receive their fair share of the space business, while others pointed to the company’s lobbyist Fred Black, who had developed a close relationship with Capitol Hill insider Bobby Gene Baker, a protege of Vice-President Lyndon Johnson.

As North American and NASA hammered out their contractual details, the nature of Apollo’s launch vehicle remained unclear, as, indeed, was its means of reaching the Moon. It was likely that the production of large boosters capable of accomplishing a direct-ascent mission would take far longer than the development of smaller vehicles. The attractions of rendezvous were also becoming clearer as a means of meeting Kennedy’s end-of-the-decade deadline. At around this time, Bob Gilruth wrote that “rendezvous schemes may be used as a crutch to achieve early planned dates for launch vehicle availability and to avoid the difficulty of developing a reliable Nova-class launch vehicle’’.

As the debate over the launch vehicle continued, it was recognised that, in whatever form it took, it would be enormous and would demand a correspondingly enormous launch complex. Under consideration were Merritt Island, north of Cape Canaveral, together with Mayaguana in the Bahamas, Christmas Island, Hawaii, White Sands in New Mexico and others. Only White Sands and Merritt Island proved sufficiently economically competitive, flexible and safe to undergo further study. The final choice: a 323 km2 area of land on Merritt Island for a site later to become known (after the assassination of President John Kennedy) as the Kennedy Space Center. One of the most iconic structures to be built here in the mid-Sixties, and associated forever with the lunar effort, was the gigantic Vehicle (originally ‘Vertical’) Assembly Building (VAB), used to erect and test the Saturn rockets. Standing 160 m tall, 218 m long and 158 m wide, it covered 32,400 m2 and to this day remains the world’s largest single-story building.

Elsewhere, a site near Michoud in Louisiana was picked for the Chrysler Corporation and Boeing to assemble the first stages of the Saturn C-1 and subsequent variants. In October 1961, NASA purchased 54 km2 in south-west Mississippi and obtained easement rights over another 518 km2 in Mississippi and Louisiana for a static test-firing site for the large booster, prompting around a hundred families, including the entire community of Gainsville, to sell up and relocate. It was around the same time that the decision to move the Space Task Group – now superseded by the Manned Spacecraft Center – from Virginia to Houston, Texas, was made.

On the morning of 27 October 1961, shortly after 10:06 am, the maiden mission in support of Apollo got underway with the test of the Saturn 1 (originally C-1) rocket from Pad 34 at Cape Canaveral. Although the vehicle was laden with dummy upper stages, filled with water, its performance was satisfactory, but its 590,000 kg of thrust was woefully insufficient to send men to the Moon and back. Still, it marked the first of ten Saturn 1s launched, which, by the time of its last flight in July 1965, had carried a ‘boilerplate’ command and service module into orbit. Most engineers envisaged the lunargoing Saturn would need at least four or even five F-1 engines in its first stage. This would permit an Earth-orbit or lunar-orbit rendezvous mode to deliver a payload to the Moon’s surface. Despite continuing interest in a large, direct-ascent Nova, employing as many as eight F-1s, the decision was taken on 21 December to proceed with a rocket known as the Saturn C-5 (later the Saturn V), capable of supporting both Earth-orbital and lunar-orbital rendezvous missions.

However, direct ascent was still considered by many as the safest and most natural means of travelling to the Moon, sidestepping the dangers of finding and docking with other vehicles in space. Yet procedures for exactly how a lander might be brought onto the lunar surface remained sketchy, with some suggesting the bug-like spacecraft touching down vertically on deployable legs or horizontally on skids. An Air Force-funded study, begun in 1958 and called ‘Lunex’, had already addressed a direct-ascent method of reaching the Moon. However, Wernher von Braun doubted it was possible to build a rocket large enough to accomplish such a mission and favoured rendezvous with smaller vehicles. Before coming to NASA, von Braun’s team had proposed a mission known as ‘Project Horizon’, which justified the need for a lunar base for military, political and, lastly, scientific purposes. He felt that only Saturn was powerful enough to complete such a mission and one of his conditions upon joining NASA was that its development should continue.

Against this backdrop came the appearance of the lunar-orbital rendezvous plan, whereby a craft would descend to the Moon’s surface and, after completing its mission, return to rendezvous with a ‘mother ship’. The landing crew would then transfer to the orbiting mother ship and return to Earth. Since 1959, in fact, this idea had been recognised as the best technique to reduce the total weight of the spacecraft. Many within NASA, however, were terrified by the prospect of attempting rendezvous so far from home. Proponents, on the other hand, considered it relatively simple, with no concerns about weather or air friction, lower fuel requirements and no need for a monster Nova rocket. ft was NASA engineer John Houbolt who finally convinced Bob Seamans to place it on an equal footing with direct ascent and Earth-orbital rendezvous when a decision came to be made. By July 1962, the decision had been made: lunar-orbital rendezvous would be adopted, employing a separate lander in addition to the command ship.

At the same time, the first steps to actually design the lander got underway, with early plans ranging from short-stay missions involving one man for a few hours to seven-day expeditions with crews of two. One design took the form of an open, Buck Rogers-like ‘scooter’ with landing legs, which the fully-suited astronaut would manoeuvre onto the surface. As these plans crystallised, the paucity of knowledge of the lunar surface material, and the effect of exhaust gases on its rocks and dust, made it imperative that astronauts could ‘hover’, brake their spacecraft and select an appropriate landing spot.

North American, which had already been awarded the contract to build the command and service modules, strongly opposed the lunar-orbital rendezvous mode, partly because it wanted its spacecraft to perform the landing. (fndeed, in August 1962, cartoons adorned its factory walls, depicting a somewhat disgruntled Man in the Moon looking suspiciously at an orbiting command and service module and declaring ‘‘Don’t bug me, man!’’) With this in mind, North American made a strong bid to build the lander, which NASA rejected on the basis that the company already had its hands full with the development of the main spacecraft. By September 1962, 11 companies had submitted proposals to build the lander and in November the Grumman Aircraft Engineering Corporation of Bethpage, New York, was chosen for the $388 million contract. Although each bidder was judged technically and managerially capable, Grumman had spacious design and manufacturing areas, together with clean-room facilities to assemble and test the lander.

The decision to proceed with lunar-orbital rendezvous eliminated the requirement for the Apollo command module to land on the Moon, but created a new problem: the need for a form of docking apparatus by which it could link up with Grumman’s lander. The need was quickly identified for a series of Earth-orbital missions to demonstrate and qualify the command module’s systems before committing them to lunar sorties; the result was the Block 1 and 2 variants, the second of which provided the docking hardware and means of getting to the Moon. By mid-1963, North American had begun work on an extendable probe atop the command module, which would fit into a dish-shaped drogue on the lunar lander.

As the design of the command module moved through Block 1 and 2 variants, so the lunar module itself was changing into its final form: a two-part, spider-like ‘bug’ which would deliver astronauts to the Moon’s surface and back into orbit. Its four­legged descent stage would be equipped with the world’s first-ever throttleable rocket engine, whilst the ascent stage, housing the pressurised cabin, would have a fixed – thrust engine to boost the crew back into lunar orbit. The organic appearance of the lunar module produced something which Brooks, Grimwood and Swenson described as ‘‘embodying no concessions to aesthetic appeal. . . ungainly looking, if not downright ugly’’. Operating within Earth’s atmosphere, obviously, would be unnecessary and aerodynamic streamlining was ignored by the Grumman designers. However, when the time came for the ascent stage to liftoff from the lunar surface, its exhaust in the confined space of the inter-stage structures – ‘fire-in-the-hole’ – could produce untoward effects, perhaps tipping the vehicle over. Clearly, many problems remained to be solved.

Shape-wise, the ascent stage was originally spherical, much like that of a helicopter, with four large windows for the crew to see forward and ‘down’. This design was ultimately discarded when it became clear that the windows would need extremely thick panes and strengthening of the surrounding structure. Two smaller windows were chosen instead, but the need for visibility remained very real, eliminating the spherical cabin design in favour of a cylindrical one with a flat forward bulkhead cut away at various planar angles. The windows became small, flat, triangular panels, canted ‘downwards’ so that the crew would have the best possible view of the landing site.

Changing from a spherical to a cylindrical cabin, though, meant that Grumman’s engineers could not easily weld the structure. By May 1964, they had decided to weld areas of critical structural loads, but rivets would be employed where this was impractical. The interior of the 4,930 kg ascent stage cabin, with a volume of 60 m3, made it the largest American spacecraft yet built and NASA pressed Grumman to make its instruments as similar to those in the command module as possible. As it evolved, the astronauts became an integral part of it, with Pete Conrad working on the design perhaps more so than anyone else. He was instrumental in implementing electroluminescent lighting inside the lunar module, as well as the command module, reducing weight and power demands.

Another crucial change in the design of the lunar module was the removal of seats, which were seen as too heavy and restrictive in view of the fact that the astronauts would be clad in bulky space suits. Bar stools and metal cage-like structures were considered, but the brevity of the lunar module’s flight and moderate G loads eventually rendered them totally unnecessary. Moreover, standing astronauts would have a better view through the windows and the eliminated worry about knee room meant that the cabin could be reduced in size. Instead of seats, restraints would be added to hold the astronauts in place and prevent them from being jostled around during landing.

The hatch, through which the astronauts would exit and re-enter from the lunar surface, was changed from circular to square to make it easier for their pressurised suits and backpacks to fit through. At the base of the 10,334 kg descent stage were five legs, later reduced to four as part of a weight-versus-strength trade-off, and 91 cm footpads with frangible probes to detect surface impact. Keeping the lander’s weight down was of pivotal importance, to such an extent that NASA paid Grumman $20,000 for every kilogram they could shave off. Even the weight of the astronauts helped determine which of them would fly the lunar module and which would not.

Inside the third stage of the Saturn V launch vehicle, the lander’s legs would be folded against the structure of the descent stage and extended in space. In addition to its ascent and descent engines, the lunar module possessed 16 small attitude-control thrusters, clustered in quads, pointing upwards, downwards and sideways around the ascent stage for increased manoeuvrability. The ascent engine, built by Bell, was a key component which simply had to work to get the astronauts away from the lunar surface; as a result, it was the least complicated device, with a pressure-fed fuel system employing hypergolic propellants. The descent engine was more challenging, since it had to be throttleable: Rocketdyne, its builder, used helium injection into the propellant flow to decrease thrust while maintaining the same flow rate.

As the command, service and lunar modules took shape, the launch vehicles for the Earth-orbital (Saturn 1B) and lunar (Saturn V) missions also approached completion. The two-stage Saturn 1B – Gus Grissom and Wally Schirra’s “big maumoo’’ – underwent its first test on 26 February 1966 and also marked the first ‘real’ flight of a ‘production’ Apollo command and service module. The rocket’s S-IB stage had arrived at Cape Kennedy in mid-August of the previous year, followed by the S-IVB a month later. By the end of October, the rocket’s instrument unit and the command and service module for the mission, designated ‘Apollo-Saturn 201’ (AS – 201), were in Florida. After numerous delays, including lower-than-allowable pressures in the S-IVB, the flight got underway at 11:12 am. The S-IB carried the Saturn to an altitude of 57 km, whereupon the S-IVB took over and boosted AS-201 to an altitude of 425 km.

After raising its own apogee to 488 km, the command and service module’s SPS engine was ignited to accelerate its return to Earth. Splashdown came at 11:49 am, half an hour after launch, and the undamaged spacecraft was hauled aboard the recovery vessel Boxer. Despite problems, AS-201 proved that the Apollo spacecraft was structurally sound and that its heat shield could survive a high-speed re-entry. However, its SPS had not performed as well as expected; firing, but only operating correctly for about 80 seconds, after which its pressure fell by 30 per cent due to helium ingestion into its oxidiser chamber. Managers, obviously, did not want such an event to occur during a return from the Moon. The SPS problem had to be rectified. Further, the effects of microgravity on the propellants in the S-IVB, which would be needed to perform the translunar injection burn, needed to be better understood.

Consequently, a decision was taken to reverse the plan of unmanned Saturn 1B launches for the remainder of the year. The six-hour AS-203 mission, not planned to carry a command and service module, was shifted ahead of AS-202 and launched on 5 July. It satisfactorily demonstrated that the S-IVB’s single J-2 engine could indeed restart in space and that the propellants behaved exactly as predited. Seven weeks later came AS-202, during which the SPS was fired four times without incident, demonstrating its quick-restart capabilities, and the heat shield was tested. Its 90- minute mission cleared the way for Apollo 1, still internally dubbed ‘AS-204’, at the end of the year.

WISEGUY

“That’s a vagina,’’ quipped Charles ‘Pete’ Conrad Jr. “Definitely a vagina.’’ The psychiatrist noted his response without a word, perhaps realising, perhaps not, that he was the victim of yet another wisecrack from the gap-toothed, balding Navy lieutenant. Yet, despite his comments about each of the Rorschach cards shown to him, Conrad was not entirely obsessive about the female genitalia. He had actually been tipped-off the night before by another astronaut candidate, Al Shepard: what the NASA psychiatrists were really looking for was male virility. ‘‘I got the dope on the psych test,’’ Shepard had assured him. ‘‘No matter what it looks like, make sure you see something sexual.’’ So Conrad did.

His key concern, though, that spring in 1959, had been the impact that this crazy ‘Project Mercury’ idea might have on his career. Instead of logging hours in the Navy’s new F-4 Phantom fighter, he spent a week at the Lovelace Clinic in Albuquerque, New Mexico, much of his time focused on the provision of stool,

semen and blood samples and the collection of 24-hour bagfuls of urine. On the evening before a major stomach X-ray, told not to drink alcohol after midnight, Conrad had sat up until 11:57 pm draining a bottle with Shepard and another naval aviator called Wally Schirra to loosen themselves up for the next day. Conrad doubted that Lovelace’s invasive tests had anything remotely to do with spaceflight: the physicians, he told Shepard, seemed far more interested in “what’s up our ass’’ than in their flying abilities. Shepard had warned him to be careful – to give the right answers to questions and to remember that Lovelace’s staff were watching their every move.

In spite of his frustration, Conrad persevered. He followed Shepard’s advice, saw the female anatomy in every Rorschach card, deadpanned to a psychologist that one blank card was upside down, pedalled a stationary bicycle for hours, sat in a hot room for an age, then dunked his feet into ice-cold water and argued with one of the physicians that he considered it pointless to have electricity zapped into his hand through a needle. However, all this torture, Conrad felt, would at least give him the opportunity to lay his entire naval career on the line for just one chance to fly something even faster: to ride a rocket, outside Earth’s atmosphere, “at a hell of a lot more Machs than anything he was flying right now’’. Flying higher and faster, and pushing his own boundaries, had been the story of Conrad’s life.

Born in Philadelphia, Pennsylvania, on 2 June 1930, the offspring of a wealthy family which made its fortune in real estate and investment banking, Conrad’s father insisted that he be named ‘Charles Jr’ – “no middle name’’ – although his strong – willed mother, Frances, felt that this tradition of Charleses should be broken. Frances liked the name ‘Peter’, wrote Nancy Conrad in her 2005 biography of her late husband, and although it never became his official middle name, Charles Conrad Jr would become known as ‘Peter’ or ‘Pete’ for the rest of his life. His fascination with anything mechanical reared its head at the age of four, when he found the ignition key to his father’s Chrysler and reversed it off the drive. Later, in his teens, he worked summers at Paoli Airfield, mowing lawns, sweeping and doing odd jobs for free flights. Aged 16, he even repaired a small aircraft single-handedly. Conrad was an engineer and tinkerer at heart.

Education-wise, he would partly follow in his father’s footsteps: the private Haverford School, from which he was expelled, then the Darrow School in New York, where Conrad’s dyslexia was identified and where he shone. Although his father intended him to attend Yale University, he actually enrolled in 1949 at Princeton, with a Reserve Officers Training Corps (ROTC) scholarship from the Navy to pay for his studies in aeronautical engineering. Graduation in 1953 brought him not only his bachelor’s degree, but also a pilot’s licence with an instrument rating, marriage (to Jane DuBose) and entrance into naval service.

He breezed through flight training, earning the callsign ‘Squarewave’ as a carrier pilot. In ‘Rocketman’, his widow wrote that Al Teddeo, executive officer of Fighter Squadron VF-43 at Naval Air Station Jacksonville, Florida, had his doubts when he first met the young, seemingly-wet-behind-the-ears ensign one day in 1955. Those doubts were soon laid to rest when Teddeo discovered that Conrad could handle with ease any manoeuvre asked of him. Tactical runs, strafing runs, spin-recovery tests; Ensign Conrad did it all. “Hell, we refuelled three times till I just had to get back to my desk,” Teddeo recalled years later. “It was like telling a kid at the fair that it was time to go home.”

Next came gunnery training at El Centro, California, and transition from jet trainers to the F-9 Cougar fighter, before reporting to Pax River in 1958 to qualify as a test pilot. Later that same year, he received, along with over a hundred others, classified instructions to attend a briefing in Washington, DC. Conrad was told to check into the Rice Hotel under the cover name of ‘Max Peck’. Only when he got there did he find that another 35 ‘Max Pecks’ were also there – including an old naval buddy, Jim Lovell. Neither Conrad nor Lovell would make the final cut for the Mercury selection, but their day would come three years later.

Whereas Lovell was cast aside for a minor liver ailment, however, Conrad’s cause for failure proved a little ironic. “Unsuitable for long-duration flight,’’ read the explanatory note. He had, it seemed, shown a little too much cockiness and independence during testing; characteristics which were at loggerheads with the panel’s notion of a good, all-rounded, level-headed astronaut. Six years after reading those words, Conrad and his Gemini V command pilot, Gordo Cooper, would rocket into space and set a new record… for long-duration spaceflight!

PACIFIC RETURN

On the ground, the television networks – which had cancelled their showings of ‘Batman’ and, ironically, ‘Lost in Space’ – were deluged with complaints from viewers as attention turned to a dramatic recovery effort. Original plans called for Gemini VIII to land in the Atlantic and be picked up by the aircraft carrier Boxer; however, the earlier-than-expected return called instead for a splashdown in the western Pacific during their seventh orbit.

The timing was strict. Gemini VIII’s flight path had precessed so far westwards that it would be another full day before Armstrong and Scott could reach a location from which they could be easily recovered. Consequently, a naval destroyer named the Leonard F. Mason, based off the coast of Vietnam, was directed to intercept the new splashdown point, 800 km east of Okinawa. It would be the only Gemini splashdown in the Pacific, in a landing zone designated ‘Dash 3’. ‘‘I looked it up in our manuals,’’ wrote Scott. ‘‘Dash 3 was a secondary landing zone in the South China Sea. It was over 6,000 miles away from our primary landing site.’’

It was far from ideal. By this time, John Hodge’s ‘blue’ flight control team had been at their consoles for 11 hours and a second (‘white’) team, headed by Gene Kranz, reported for duty to supervise the end of the mission. Kranz’s team had more experience in recovery procedures than that of Hodge and, had Gemini VIII run to its intended three-day length, he would have overseen re-entry and splashdown anyway. It made sense, therefore, for Kranz to take the helm.

The news of an impending return was met with grim resignation by Armstrong and Scott, who ran through their pre-retrofire checklists with the capcoms at the Coastal Sentry Quebec, Rose Knot Victor and Hawaiian tracking stations. Unlike Gemini V, which had been nursed through a lengthy mission, despite problems, the situation in which Armstrong and Scott found themselves was compounded by a dangerously-low propellant load. By this time, having tested each of the OAMS thrusters in a now-stable Gemini VIII, Armstrong had identified the glitch with the No. 8 unit, which Scott later described as not exhibiting ‘‘a consistent, linear problem… it was really screwed up’’. In fact, the thruster had been off when it should have been on, and vice-versa, on several occasions. The cause, however, would have to wait for the post-flight investigation.

Loading the re-entry flight program into Gemini VIII’s 4,000-word-memory computer was difficult, particularly as it was already overloaded from the rendezvous with the Agena. This required Scott to erase the rendezvous and docking programs, then feed the re-entry data into the computer by means of a keypad and an on-board device known as an auxiliary tape memory unit. As he worked to punch in a series of nine lines of seven-digit numbers, Scott was relieved that the unflappable Jim Fucci, aboard the Coastal Sentry Quebec, was there to watch his every move. ‘‘He read off those numbers as if he was talking about taking a stroll in the park,’’ Scott wrote. ‘‘I entered them quickly so that I could transmit them back to verify with him before we lost contact again.’’

Gemini VIII’s retrorockets duly ignited at 9:45 pm, whilst out of radio contact, high above a remote part of south-central Africa. Worse, retrofire was conducted during orbital darkness, giving Armstrong and Scott no horizon by which to judge alignment. Minutes later, over the Himalayas, the spacecraft entered the tenuous upper atmosphere and as it continued to descend through the steadily thickening air, Scott reported that he could see nothing but a pinkish-orange glow through his window… then haze and, finally, minutes before splashdown, the glint of water! Ten hours and 41 minutes after leaving Cape Kennedy, at 10:22 pm, the spacecraft hit the Pacific with a harsh thump and Scott yelled “Landing Safe!”

Throughout all this – during the launch, rendezvous, docking, crisis with and without the Agena, re-entry and splashdown – Jimmy Mattern’s watch, tightly strapped around Armstrong’s wrist, continued to tick faithfully…

Despite having suffered severe space sickness and, now, seasickness as the spacecraft’s windows rhythmically rolled and pitched with each wave, the astronauts swiftly proceeded through their post-splashdown checklist, shutting down electrical systems, placing switches and valves into their correct positions and activating their high-frequency communications antenna. Only now did Armstrong and Scott regret not taking Mission Control’s advice to swallow meclizine motion sickness tablets before re-entry. “When Mission Control told us about three-foot waves,’’ Scott wrote, “they had forgotten to mention the 20-foot swells!’’

Scott called the search-and-rescue team from Naha Air Base in Okinawa by their callsign ‘Naha Rescue One’, but was met with silence on the radio. Both men were hot in their suits, particularly Scott, whose ensemble had extra layers to provide radiation protection on his spacewalk. Fumes from the ablated heat shield, too, left them nauseous. Within half an hour, a C-54 aircraft, flown by Air Force pilot Les Schneider, which had spotted Gemini VIH’s descent and splashdown, arrived on the scene. Its crew visually checked the spacecraft, marked its landing co-ordinates and dropped three pararescue swimmers and an emergency liferaft. For the Naha Rescue One team, which was more accustomed to missions in Vietnam, Laos and Cambodia in those war-charged times, 16 March 1966 was a distinctly different and highly memorable day.

Notwithstanding the rough swells, the pararescue swimmers, themselves queasy, affixed a flotation collar to the spacecraft, then signalled the C-54 with a ‘thumbs-up’ that Armstrong and Scott were alive and well. This was duly radioed to other aircraft in the area, to the Leonard F. Mason, then to Hawaii, to NASA’s Goddard Space Flight Center and finally to Mission Control in Houston, from where public affairs officer Paul Haney announced the news to an anxious world. Meanwhile, the encounter between the antiquated C-54 and the state-of-the-art Gemini was, said Neil Armstrong, ‘‘the most unusual rendezvous in aviation history’’.

Three hours after splashdown, in the small hours of 17 March, the two astronauts and their spacecraft were safely aboard the Mason. The rough seas, though, had made the hoisting of Gemini VIII difficult, to such an extent that it kept crashing against the side of the destroyer, denting its nose at one point. The Mason’s crew, wrote Scott, had initially been less than happy about being given the task of recovering Gemini VIII. They had just completed a seven-week tour in Vietnam and been given a brief spell of liberty in Okinawa. However, their spirits rose as the realisation set in that the astronauts were safe. In spite of their tiredness and the

PACIFIC RETURN

Scott and Armstrong, surrounded by recovery swimmers after performing the Gemini project’s first – and only – splashdown in the Pacific.

 

effects of nausea, Armstrong and Scott managed smiles and greetings for the crew and were found to be healthy, suffering from minimal dehydration.

They were, however, shaken by what had actually come close to disaster… as, indeed, had many within NASA. Deputy Administrator Bob Seamans had been advised of the crisis over the telephone whilst at the reception to the prestigious Robert H. Goddard Memorial Dinner and swore that he would never again be caught in such a position during the critical phase of a future mission.

At the same time, publicly, NASA was reluctant to over-emphasise the near­disaster, particularly if it wanted continued funding for a Moon landing by 1970. When Life magazine proposed titling its Gemini VIII article as ‘Our Wild Ride in Space by Neil and Dave’, its editor-in-chief received a firm request from Armstrong to change it to something less melodramatic. Ultimately, bound by an ongoing contract, the magazine agreed and would publish watered-down headlines for Gemini VIII and subsequent missions.

In spite of the troubles, President Lyndon Johnson reassured the American public that his administration remained firmly committed to John Kennedy’s goal of bootprints on the Moon before the end of the decade. Some have argued over the years that Armstrong’s coolness was pivotal in his selection to command Apollo 11, although some isolated individuals within the astronaut office speculated that his status as a civilian test pilot had contributed to the failure.

Indeed, Walt Cunningham, later to fly Apollo 7, would criticise what he saw as flaws in both astronauts’ performance, while Tom Stafford felt that the decision to undock from the Agena was a flawed one. Gene Kranz, on the other hand, perceived the crisis as the result of a broader training failure – malfunction procedures did not cover the problems encountered whilst the Gemini and Agena were docked – and both Frank Borman and Wally Schirra praised Armstrong and Scott’s actions as having prevented disaster. Indeed, without their safe return and the knowledge of what had happened, an erroneous assumption that the Agena was to blame could have diseased the final days of Gemini and made it very difficult for Apollo, with its emphasis on rendezvous and docking, to proceed. ‘‘It could have been a showstopper,’’ admitted Dave Scott.

Gene Cernan, though, rationalised the critics’ thinking. ‘‘Screwing up was not acceptable in our hypercompetitive fraternity,’’ he told James Hansen. ‘‘Nobody got a free ride when criticism was remotely possible. Nobody.’’ Still, Gemini VIII did little damage to either man’s career. Definitive testament came two weeks after the flight, when the Gemini VIII Mission Evaluation Team “positively ruled out’’ any errors on the astronauts’ part and, indeed, Bob Gilruth himself praised them for their ‘‘remarkable piloting skill’’. Scott was promoted to lieutenant-colonel and assigned a seat on an Apollo crew within days, while Armstrong received the backup command slot for Gemini XI. Still, the quiet civilian was demoralised by what he saw as only a partial success.

Had he been ‘‘smarter’’, Armstrong said later, he might have figured out the problems earlier, perhaps saving Scott’s EVA and some of the mission’s other objectives. Many of Gemini VIII’s experiments – the zodiacal light photography task, the growth of frogs’ eggs, the synoptic terrain studies, the nuclear emulsions

PACIFIC RETURN

Armstrong (left) and Scott with crewmen aboard the recovery ship Mason.

and the cloud spectrophotography – were left incomplete and some have speculated over the years that, had Scott’s EVA been underway when the spinning started, he may have seen the burst from the stuck-on No. 8 thruster and warned Armstrong to shut off its propellant.

However, others considered it fortuitous that Scott’s EVA had never come to pass. It “had seemed terribly complex and dangerous,’’ wrote Mike Collins. The need for Scott to get outside, manoeuvre himself to Gemini VIII’s adaptor section and worry about swapping connectors and keeping track of tethers was, in Collins’ mind, too risky at such an early stage. “My own EVA scheme on Gemini X was far from ideal,’’ he wrote, “in that I had to stuff everything into an already crowded cockpit, but at least I could make nearly all my preparations inside the pressurised cocoon… Not so with Dave’s complicated gear.’’

Other naysayers have added that, during the uncontrollable spinning, Scott may have been whirled around so violently on his tether as to have hit the side of Gemini VIII, almost certainly producing fatal injuries…

WITCH HUNT

The fire in the AS-204 spacecraft on 27 January 1967 left plenty of blame to go around and both North American, whose workmanship was seen as shoddy, and NASA, who had overseen them and given their seal of approval, were savaged by the media, by the public and by lawmakers alike. The media, indeed, were making up their own stories. On 10 February, for example, Time magazine cited the New York Times as having quoted an unidentified official who claimed that Grissom, White and Chaffee had screamed repeatedly for help in those frantic seconds. Their bodies, the official added, had been incinerated. . .

Fearing that Congress could pull the plug on Apollo with immediate effect, the agency set to work on the night of the disaster on its own internal review, with an eight-man panel headed by Langley Research Center director Floyd Thompson. Although Olin Teague, chair of the House Space Subcommittee, was keen for NASA to complete its work, others within the Senate were impatient and called for a hearing on 27 February. There, Administrator Jim Webb was verbally grilled, with representatives condemning ‘‘the level of incompetence and carelessness” as ‘‘just unimaginable”. Recriminations took an uglier turn when Senator Walter Mondale probed Webb for details of something called ‘The Phillips Report’.

Apollo’s programme manager, a retired Air Force general named Sam Phillips, had strongly criticised North American’s performance as prime contractor for over a year. He considered their relationship with NASA to be quarrelsome and disagreeable and had established a ‘tiger team’ to inspect the situation. This had

Seated before a Senate hearing, NASA’s senior management were verbally grilled and NASA’s “carelessness” and “incompetence” were particularly attacked. From left to right are Bob Seamans, Jim Webb, George Mueller and Sam Phillips.

left him with serious concerns, so much so that on 16 December 1965 he wrote a scathing memo to North American chairman Lee Atwood, placed the company on notice to improve and told George Mueller, NASA’s associate administrator for the Office of Manned Space Flight, that he had “lost confidence” in the prime contractor. Now, in the spring of 1967, Jim Webb revealed that he had never been made privy to the contents of Phillips’ report.

Others, including North American inspector Thomas Baron, had since 1965 condemned the level of poor workmanship they saw at Cape Kennedy, together with infractions of cleanliness and safety rules. Although Baron’s judgements were refuted by North American in its congressional testimony, they cannot have helped to quieten those who were looking for blame. Some, including the writer Erik Bergaust in his 1968 book ‘Murder on Pad 34’, even implied that NASA had blood on its hands for racing recklessly with the decade and killing the three men in the process.

Against this backdrop of public and media fury, the Thompson board worked for ten weeks, assisted by 1,500 technicians, and traced all possible sources of fire in Apollo’s 30 km of electrical wiring and even re-enacted the blaze in a command module mockup. Additionally, Spacecraft 014, the Block 1 vehicle originally assigned to Wally Schirra’s Apollo 2 mission, was shipped from Downey to Cape Kennedy for systematic dismantling and inspection alongside the burnt-out Spacecraft 012. Cabin pressures, the investigators found, had soared from the normal test pressure of 1.15 bars, slightly above sea-level equivalent, to 2.0 bars, rupturing the spacecraft’s hull, but it was Bureau of Mines expert Robert van Dolah who revealed the damning truth: an escape hatch, capable of being opened in a couple of seconds, might have saved the astronauts. Thompson’s report was published on 9 April and ran to 3,300 pages. It found no definitive cause for the fire, but suspected an unexplained arc on wiring beneath Grissom’s left footrest, which spurted to another object and ignited the 100 per cent oxygen atmosphere.

The report cited ‘‘deficiencies in command module design, workmanship and quality control’’, including uncertified and highly-flammable materials in the cabin, as having contributed to the tragedy. Additionally, it revealed that many safety checks simply were not done, nor was there enough fire-suppression equipment at Pad 34. ‘‘It was,’’ wrote Deke Slayton, ‘‘about as scathing a document as you’d ever see from a government agency towards itself.’’

Days later, Thompson and others found themselves testifying before the House and quickly discovered that even pro-Apollo congressmen were fiercely unsympa­thetic. Some lawmakers even went so far as to suggest reviewing the business of selecting contractors for the lunar effort. At one stage, responding to a question from Congressman John Davis of Georgia, North American’s John McCarthy raised the possibility that Grissom himself might have inadvertently started the fire by kicking a batch of loose wires. Although Slayton admitted that McCarthy’s comment was only raised in response to a question, he wrote that ‘‘it really pissed me off… because there were no grounds for the story – it was pure speculation, not to mention physically impossible’’.

The effect of the fire elsewhere in the space agency was equally dramatic. Bob Gilruth, who had become a virtual father figure to many of the astronauts, broke down in tears upon learning of the tragedy. In his autobiography, Wally Schirra recalled taking him out on for a spin on his Cal 25 sailboat a few months after the accident and, whilst manning the tiller, Gilruth fell asleep. “Maybe it was the first chance he’d had to relax, to realise he had to push ahead and forget the tragedy,” Schirra wrote. “Gilruth was carrying a tremendous load.’’ So too was Joe Shea, the man who might have been inside the command module, sitting in precisely the spot where the fire started that terrible evening. He took the fire very badly, shifting into overdrive in an impossible personal crusade to solve Apollo’s problems… and, in doing so, drove himself to the brink of a breakdown. Eventually, he was moved to NASA Headquarters, then left to work for Raytheon. Years later, Shea would wonder if he could have snuffed out the fire… and convinced himself, with 70 per cent certainty, that he could have successfully smothered it.

It was the straight-talking Frank Borman who summed up what should happen in testimony on 17 April. “Let’s stop the witch hunt,’’ he told Congress, “and get on with it.’’ Getting on, though, would involve more than a year and $75 million-worth of changes to turn Apollo into a very different machine to that in which Grissom, White and Chaffee had died. Its cabin would now be pressurised with a mixture of 60 per cent oxygen and 40 per cent nitrogen, then steadily replaced with pure oxygen at partial pressure after launch as the nitrogen leaked out. No major structural reworking of the command module would be necessary. All flammable materials were to be removed and, crucially, a new 32 kg single-piece hatch was implemented, which opened outwards and could be sprung in just five seconds. Its mechanism, assisted by a cylinder of compressed nitrogen gas, could be opened with a little finger.

Elsewhere, aluminium plumbing, which melted at 580°C, was replaced by stainless steel, and coolant pipelines which could release flammable glycol when ruptured were ‘armour-plated’ with high-strength epoxy. Wire bundles were encased in protective metal panels and nylon netting and plastic containers were replaced by fire-retardant materials such as Teflon. Intricate ‘Velcro maps’ were created to limit the presence of this useful, but highly flammable, material and identify exactly where every piece of it would be located in the command module’s cabin. Paperwork was kept to a minimum, to such an extent that the crews were barred from taking reading materials with them. ‘‘No books or magazines,’’ wrote Wally Schirra. ‘‘Nor could we take anything made of paper to play with, such as cards or puzzles. We would find boredom a serious problem as we progressed through ten days in orbit.’’

The space suits to be worn by the astronauts had their nylon outer coatings replaced by beta cloth – an advanced fibreglass material produced by Owens – Corning Fibreglass Corporation – and supported by 14 layers of fire-resistant material. ‘‘We’re paying a price for safety,’’ Apollo 7 flight director Glynn Lunney told Time magazine. ‘‘The suits are bulkier, the fibreglass itches like hell and the seat belts are difficult to cinch down because they are so stiff, but you are seeing a spacecraft several hundred per cent improved.’’ Further, an emergency venting system capable of reducing the cabin pressure in seconds provided an extra safeguard to snuff out fires. Overall, the changes increased Apollo’s weight by 1,750 kg and placed it just beneath the Saturn V’s total lifting capacity for lunar missions. As a

result, parachutes were enlarged to permit safer splashdowns at greater weights, some redundant systems were eliminated and lead ballast was removed.

By extension, of course, the disaster which had befallen the command module could also afflict Grumman’s lunar module and increased fervour was placed on reviewing its materials, too. Nylon-based items were replaced by beta cloth and ‘booties’ were installed over circuit breakers to lessen the risk of electrical shorts. This work on the lunar module – the machine which would actually set men on the Moon – refocused attention on the key question: would John Kennedy’s dream ever be realised, within the decade, or at all? At the beginning of 1967, NASA had spent $23 billion on Project Apollo and many now questioned the need for America to go there. The continuing threat of the Soviet Union provided one reason: Leonid Brezhnev’s increasingly regressive and repressive regime had, only a year before, consigned writers Yuli Daniel and Andrei Sinyavsky to hard labour for penning satirical, anti-Soviet texts. In some minds, it harked back to far darker times under Stalin.

When physicist Edward Teller was asked by Congress what he expected men to find on the Moon, he replied: ‘‘The Russians!’’ Even now, the sense of fear was as strong as ever. For their part, the Russians, mysteriously, had been conspicuously absent from the manned spaceflight business for almost two years by the time of the Apollo 1 fire, but their ambitions in Earth orbit were ready for a new resurgence. The death of Sergei Korolev and the appearance of a successor, Vasili Mishin, had pushed the Soviet Union’s new spacecraft – Soyuz (‘Union’) – further and further behind schedule. Now, three months after the deaths of Grissom, White and Chaffee, it was ready to go. Or was it?

“EIGHT DAYS OR BUST”

Although Gemini V, the first to carry and utilise fuel cells for electrical power, had long been planned to fly for seven or even eight days, the success of its predecessor and the performance of Jim McDivitt and Ed White had emboldened NASA to move up their estimates for the first lunar landing from 1970 to 1969 and, perhaps, said Joe Shea, as early as mid-1968. Both Gemini IV astronauts would remain very much part of the unfolding action: White was named within weeks to the backup command slot for Gemini VII, an assignment rapidly followed by the coveted senior pilot’s seat on the maiden Apollo voyage. McDivitt, too, would go on to great things: commanding Apollo 9, a complex engineering and rendezvous flight to pave the way for the first Moon landing. He would even be offered, but would refuse, the chance to walk on the lunar surface himself.

First, though, came the adulation. After an initial Houston reception, they headed for Chicago, where a million people greeted them and showered them in tickertape along State Street and Michigan Avenue. This was followed, in Washington, DC, by another parade down Pennsylvania Avenue to the Capitol, receptions in the Senate, meetings with foreign diplomats and even a free trip to Paris to upstage the appearance of Yuri Gagarin and a mockup of Vostok 1 at 1965’s Air Show. It is unknown to see such scenes as tickertape parades for astronauts today and, perhaps, the only ones in the foreseeable future may be for the men and women who return to the Moon or become the first to tread the blood-red plains of Mars.

In the Sixties, however, every mission was heroic. Moreover, despite the appalling workload and the inevitable strain the astronaut business placed on marriages and families, every man who left Earth’s atmosphere was a fully-fledged hero. Not for nothing did Gerry and Sylvia Anderson name their five Thunderbird heroes after five of the heroes of the Mercury Seven: Alan, Virgil, John, Scott and Gordon. For one of those heroes, Gordo Cooper, and his rookie pilot, Pete Conrad, the reality in the build-up to their mission was one of exhausting 16-hour workdays, plus weekends, and a tight schedule to launch on 1 August 1965, eight weeks after McDivitt and White splashed down. Cooper and Conrad and their backups, Neil Armstrong and Elliot See, had only been training since 8 February, giving them less than six months to prepare for the longest mission yet tried. “We realised they needed more time,” wrote Deke Slayton. “I went to see George Mueller to ask him for help and he delayed the launch by two weeks.”

Despite the pressure, Cooper and Conrad found time to give some thought to names for their spacecraft, even though NASA had officially barred them from doing so. Due to its pioneering nature, the two men wanted to call Gemini V ‘The Conestoga’, after one of the broad-wheeled covered wagons used during the United States’ push westwards in the 18th and 19th centuries. Their crew patch, in turn, would depict one such wagon, emblazoned with the legend ‘Eight Days or Bust’. This was quickly vetoed by senior managers, who felt it suggested a flight of less than eight days would constitute a failure, and Conrad’s alternative idea – ‘Lady Bird’ – was similarly nixed because it happened to be the nickname of the then-First Lady, wife of President Johnson. Its possible misinterpretation as an insult could provoke unwelcome controversy which NASA could ill-afford. The astronauts, however, would not be put off and Cooper pleaded successfully with Jim Webb to approve the Conestoga-wagon patch, although the administrator greatly disliked the idea. The duality of the word ‘bust’ as denoting both a lack of success and the female breasts did not help matters, either. . .

Preparations for Gemini V had already seen Conrad gain, then lose, the chance to make a spacewalk. According to a January 1964 plan, the Gemini IV pilot would depressurise the cabin, open the hatch and stand on his seat, after which an actual ‘egress’ would be performed on Gemini V (Conrad’s mission), a transfer to the back of the spacecraft and retrieval of data packages on Gemini VI and work with the Agena-D target vehicle on subsequent flights. Following the Voskhod 2 success, however, plans for a full egress were accelerated and granted to Ed White. The result: instead of ‘Eight Days or Bust’, Gemini V would come to be described by Cooper and Conrad as ‘Eight Days in a Garbage Can’; they would simply ‘exist’ for much of their time aloft, to demonstrate that human beings could survive for at least the minimum amount of time needed to get to the Moon and back. (The maximum timespan for a lunar mission, some 14 days, would be an unwelcome endurance slog earmarked for the Gemini VII crew.)

Yet the Conestoga mission did have its share of interesting gadgets: it would be the first Gemini to run on fuel cells, would carry the first production rendezvous radar and was scheduled to include exercises with a long-awaited Rendezvous Evaluation Pod (REP). Originally, it was also intended to fly the newer, longer-life OAMS thrusters, although these were ready ahead of schedule and incorporated into Gemini IV. Only weeks after Cooper, Conrad, Armstrong and See began training, on 1 April 1965 fabrication of the Gemini V capsule was completed by McDonnell,

“EIGHT DAYS OR BUST”

A tired and heavily-bearded Conrad (left) and Cooper aboard the recovery ship after the flight.

 

Подпись: 270 Pushing the Envelope

tested throughout May in the altitude chamber and finally delivered to Cape Kennedy on 19 June. Elsewhere, GLV-5 – the Titan booster assigned to launch the mission – was finished in Baltimore, accepted by the Air Force and its two stages were in Florida before the end of May. Installation on Pad 19 followed on 7 June, the day of McDivitt and White’s splashdown, and Gemini V was mounted atop the Titan U on 7 July. Five days later, the last chance for an EVA on the mission and, indeed, on Geminis VI and VII, was rejected by NASA Headquarters. There seemed little point in repeating what White had already done and, further, Cooper and Conrad, not wishing to be encumbered by their space suits for eight days, had campaigned vigorously for greater comfort in orbit by asking to wear helmets, goggles and oxygen masks. The launch of Gemini V was scheduled for 19 August.

It would be a false start. Thunderstorms ominously approached the Cape, rainfall was copious and a lightning strike caused the spacecraft’s computer to quiver. The latter, provided by IBM, had caused concern on Gemini IV and, this time around, had been fitted with a manual bypass switch to ensure that the pilots would not be left helpless again. The attempt was scrubbed with barely ten minutes remaining on the countdown clock and efforts to recycle for another try on 21 August got underway. On this second attempt, no problems were encountered. Aboard Gemini V, Cooper turned to Conrad. “You ready, rookie?’’ Conrad, white as a sheet, replied that he was nervous. Surely the decorated test pilot who had flown every supersonic jet the Navy owned wasn’t scared? Conrad milked the silence in the cabin for a few seconds, then burst out laughing. “Gotcha!” he said with his trademark toothy grin. “Light this son-of-a-bitch and let’s go for a ride!’’ And ride they did. At 8:59:59 am, Cooper and Conrad were on their way.

Ascent was problematic when noticeable pogo effects in the booster jarred the men for 13 seconds, but smoothed out when the second stage ignited and were minimal for the remainder of the climb. Six minutes after launch, as office workers across America snoozed away their Saturday morning, Gemini V perfectly entered a 163-349 km orbit. Nancy Conrad wrote that her late husband compared the instant of liftoff to “a bomb going off under him, then a shake, rattle and roll like a ’55 Buick blasting down a bumpy gravel road – louder than hell’’.

Hitting orbit made Cooper the first man to chalk up two Earth-circling missions. (Gus Grissom, of course, had piloted a suborbital flight on Liberty Bell 7, before commanding the orbital Gemini 3.) However, Gemini V would shortly encounter problems. The flight plan called for the deployment of the 34.5 kg REP, nicknamed ‘The Little Rascal’, from the spacecraft’s adaptor section, after which Cooper would execute a rendezvous test, homing in on its radar beacon and flashing lights. Before the REP could even be released, as Gemini V neared the end of its first orbit, Conrad reported, matter-of-factly, that the pressure in the fuel cells was dropping rapidly from its normal 58.6-bar level. An oxygen supply heater element, it seemed, had failed. Nonetheless, as they passed over Africa on their second orbit, Cooper yawed the spacecraft 90 degrees to the right and, at 11:07 am, explosive charges ejected the REP at a velocity of some 1.5 m/sec. Next, the flight plan called for Gemini V to manoeuvre to a point 10 km below and 22.5 km behind the REP, although much of this work was subsequently abandoned. However, Chris Kraft’s ground team was becoming increasingly concerned as the fuel cell pressures continued to decline and when a pressure of 12.4 bars was reached this was insufficient to operate the radar, radio and computer. Kraft had little option but to tell the astronauts to cancel their activities with the pod.

It seemed likely that a return to Earth would be effected and Kraft ordered four Air Force aircraft to move into recovery positions in the Pacific for a possible splashdown some 800 km north-east of Hawaii. A naval destroyer and an oiler in the region were also ordered to stand by. Keenly aware of the situation, Cooper radioed that a decision needed to be made over whether to abort the mission or power down Gemini V’s systems and continue, to which Kraft told him to shut off as much as he could. All corrective instructions proved fruitless: neither the automatic or manual controls for the fuel cell’s oxygen tank heater would function. Nor could the heater itself, located in the adaptor section, be accessed by the crew. Cooper and Conrad even manoeuvred their spacecraft such that the Sun’s rays illuminated the adaptor, in the hope that it might stir the system back to life. It was all in vain.

By now, most of their on-board equipment – radar, radio, computer and even some of the environmental controls – had been shut down and, as Gemini V swept over the Atlantic on its third orbital pass, there was much speculation that a re-entry would have to be attempted before the end of the sixth circuit, since its flight track thereafter would take it away from the Pacific recovery area. Then, as the astronauts passed within range of the Tananarive tracking station in the Malagasy Republic, off the east coast of Africa, Cooper reported that pressures were holding at around 8.6 bars, suggesting, Kraft observed, that “the rate of decrease is decreasing”. As he spoke, the oxygen pressures dropped still lower, to just 6.5 bars, and fears were high that if they declined much further, Gemini V would need its backup batteries to support another one and a half orbits and provide power for re-entry and splashdown. The astronauts were asked to switch off one of the fuel cells to help the system and as they entered their sixth orbit the pressures levelled-out at 4.9 bars.

Capcom Jim McDivitt asked Cooper for his opinion on going through another day under the circumstances. “We might as well try it,’’ replied Cooper, but Kraft remained undecided. After weighing all available options, including the otherwise satisfactory performance of the cabin pressure, oxygen flow and suit temperatures, together with the prestige to be lost if the mission had to be aborted, he and his control team emerged satisfied that oxygen pressures had stabilised at 4.9 bars. If there were no more drops, Gemini V would be fine to remain in orbit for a ‘drifting flight’, staying aloft just long enough to reach the primary recovery zone in the Atlantic, sometime after its 18th orbit. Admittedly, with barely 11 amps of power, only a few of the mission’s 17 experiments could be performed, but Kraft felt ‘‘we were in reasonably good shape. . . we had the minimum we needed and there was a chance the problem might straighten itself out’’. As Cooper and Conrad hurtled over Hawaii on their fifth orbit, he issued a ‘go’ for the mission to proceed.

With the reduced power levels, the REP, which kept the spacecraft company up until its eighth orbit, was useless for any rendezvous activities. ‘‘That thing’s right with us,’’ Cooper told Mission Control during their sixth circuit of Earth. ‘‘It has been all along – right out in back of us.’’ Two orbits later, Conrad turned Gemini V a full 360 degrees, to find that the pod had re-entered the atmosphere to destruction. Nonetheless, Gemini V’s radar did successfully receive ranging data from the REP for some 43 minutes.

As the mission entered its second day, circumstances improved and oxygen pressures climbed. “The morning headline,” Kraft radioed the astronauts on 22 August, referring to a newspaper, “says your flight may splash down in the Pacific on the sixth orbit.” Having by now more than tripled that number of orbits, Conrad replied that he was “sorry” to disappoint the media. Despite the loss of the REP, on their third day aloft Cooper conducted four manoeuvres to close an imaginary ‘gap’ between his spacecraft and the orbit of a phantom Agena-D target. This ‘alternate’ rendezvous had been devised by the astronaut office’s incumbent expert, Buzz Aldrin. Cooper fired off a short burst from the aft-mounted OAMS thrusters to lower Gemini V’s apogee by about 22 km, then triggered a forward burn to raise its perigee by some 18 km and finally yawed the spacecraft to move it onto the same orbital plane as the imaginary target. One final manoeuvre to raise his apogee placed Gemini V in a co-elliptical orbit with the phantom Agena. Were it a ‘real’ target, he would then have been able to guide his spacecraft through a precise rendezvous. Such exercises would prove vital for Gemini VI, which was scheduled to hunt down a ‘real’ Agena-D in October 1965, and one of the greatest learning experiences, said Chris Kraft, ‘‘is being able to pick a point in space, seek it out and find it’’.

Notwithstanding the successes, the glitches continued. On 25 August, two of the eight small OAMS thrusters jammed, requiring Cooper to rely more heavily on their larger siblings and expend considerably more propellant than anticipated. It was at around this time that Gemini V broke Valeri Bykovsky’s five-day endurance record and Mission Control asked Cooper if he wanted to execute ‘‘a couple of rolls and a loop’’ to celebrate; the laconic command pilot, however, declined, saying he could not spare the fuel and, besides, ‘‘all we have been doing all day is rolling and rolling!’’ When the record of 119 hours and six minutes was hit, Kraft blurted out a single word: ‘‘Zap!’’ Gordo Cooper, with an additional 34 hours from Faith 7 under his belt, was now by far the world’s most flown spaceman. His response when told of the milestone, though, was hardly historic: ‘‘At last, huh?’’

The dramatic reduction of available propellant made the last few days little more than an endurance run. Kraft told the astronauts to limit their OAMS usage as much as possible and many of their remaining photographic targets – which required them to manoeuvre the spacecraft into optimum orientations – had to be curtailed. Still, a range of high-quality imagery was acquired. The hand-held 70 mm Hasselblad flew again to obtain photographs of selected land and near-shore areas and, of its 253 images, some two-thirds proved useful in post-mission terrain studies. These included panoramas of the south-western United States, the Bahamas, parts of south-western Africa, Tibet, India, China and Australia. Images of the Zagros Mountains revealed greater detail than was present in the official Geological Map of Iran. Cooper and Conrad also returned pictures of meteorological structures – including the eye of Hurricane Doreen, brewing to the east of Hawaii – together with atmospheric ‘airglow’. In addition, they took pictures of the Milky Way, the zodiacal light and selected star fields. Other targets included two precisely-timed Minuteman

missile launches and infrared imagery of volcanoes, land masses and rocket blasts.

The scientific nature of many of these experiments did not detract – particularly in the eyes of the Soviet media – from the presence of a number of military-sponsored investigations. Cooper and Conrad’s flight path carried them over North Vietnam 16 times, as well as 40 times over China and 11 times over Cuba, prompting the Soviet Defence Ministry’s Red Star newspaper to claim that they were undertaking a reconnaissance mission. The situation was not helped by President Johnson’s decision, whilst the crew was in orbit, to fund a major $1.5 billion Air Force space station effort, known as the Manned Orbiting Laboratory (MOL). Among the actual military experiments undertaken by Gemini V were observations of the Minuteman plume and irradiance studies of celestial and terrestrial backgrounds, together with tests of the astronauts’ visual acuity in space to follow up on reports that Cooper had made after his Faith 7 mission. Large rectangular gypsum marks had been laid in fields near Laredo, Texas, and Carnarvon, Australia, although weather conditions made only the former site visible.

Cardiovascular experiments performed during the mission would reveal that both men lost more calcium than the Gemini IV crew, although principal investigator Pauline Beery Mack expressed reluctance to predict a ‘trend’, since “a form of physiological adaptation may occur in longer spaceflight”. Medically, Chuck Berry’s main concerns were fatigue and his advice was that they get as much sleep as possible. ‘‘I try to,’’ yawned Conrad at one stage, ‘‘but you guys keep giving us something to do!’’ All in all, they managed between five and seven hours’ sleep at a time and expressed little dissatisfaction with Gemini V’s on-board fare: bite-sized, freeze-dried chunks of spaghetti and meatballs, chicken sandwiches and peanut cubes, rehydratable with a water pistol. An accident with a packet of shrimp, though, caused a minor problem when it filled the cabin with little pink blobs. Conrad even tried singing, out of key, to Jim McDivitt at one point.

Years later, Conrad would recall that the eight-day marathon was ‘‘the longest thing I ever had to do in my life’’. He and Cooper had spent the better part of six months training together, so ‘‘didn’t have any new sea stories to swap with one another… there wasn’t a whole lot of conversation going on up there’’. Nancy Conrad would recall her late husband describing how the confined cabin caused his knees to bother him – their sockets felt as if they had gone dry – and that he would have gone ‘‘bananas’’ if asked to stay aloft any longer. (Ironically, on two future missions, Conrad would stay aloft for much, much longer. . . but on those occasions, his tasks would include a couple of meandering trots around the lunar surface and floating inside a voluminous space station.) He found it hard to sleep, hard to get comfortable and the failures meant he and Cooper spent long periods simply floating with nothing to do. After the flight, he told Tom Stafford that he wished he had taken a book, and this gem of experience would be noted and taken by the crew assigned to fly the 14-day mission.

Nancy Conrad described Cooper’s irritation at losing so much of his mission. He was far from thrilled that the two main tasks for Gemini V, rendezvous and long – duration flight, were becoming little more than ‘‘learning-curve opportunities’’ and suggested throwing an on-board telescope in the Cape Kennedy dumpster when it twice refused to work. Later, when the spacecraft was on minimum power and the astronauts were still expected to keep up with a full schedule, Cooper snapped “You guys oughtta take a second look at that!” As for physical activity, he grimaced that his only exercise was chewing gum and wiping his face with a cleansing towel.

On the ground, Deke Slayton was concerned that such an attitude would not help Cooper’s reputation with NASA brass. Indeed, Gemini V would be his final spaceflight and, although he would later complain bitterly about ‘losing’ the chance to command an Apollo mission, some within the astronaut corps would feel that Cooper’s performance and strap-it-on-and-go outlook had harmed his career. Tom Stafford was one of them. ‘‘Gordo… had a fairly casual attitude towards training,’’ he wrote, ‘‘operating on the assumption that he could show up, kick the tyres and go, the way he did with aircraft and fast cars.’’

To spice matters up still further, worries about the fuel cells continued to plague Gemini V’s final days. Their process of generating electricity by mixing hydrogen and oxygen was producing 20 per cent too much water, Kraft told Conrad, and there were fears that the spacecraft was running out of storage space. This water excess might back up into the cells and knock them out entirely. In order to create as little additional water as possible, the astronauts powered down the capsule from 44 to just 15 amps and on 26 August Kraft even considered bringing them home 24 hours early, on their 107th orbit. However, by the following day, the water problem abated, largely due to the crew drinking more than their usual quota and urinating it into space, and a full-length mission seemed assured.

Eitherway, they had long since surpassed Bykovsky’s Vostok 5 record. In fact, by the time Cooper and Conrad splashed down, they would have exceeded the Soviets on several fronts: nine manned missions to the Reds’ eight, a total of 642 man-hours in space to their 507 and some 120 orbits on a single mission to their 81. At last, after eight years in the shadows – first Sputnik, then Gagarin, Tereshkova, Voskhod 1 and Leonov – the United States was pulling ahead into the fast lane of the space race. When it seemed that Gemini V might come home a day early and miss the scheduled Sunday 29 August return date, mission controllers in Houston even played the song ‘Never on Sunday’, together with some Dixieland jazz.

The astronauts also had the opportunity on the last day of the mission to talk to an ‘aquanaut’, Aurora 7 veteran Scott Carpenter, who was on detached duty to the Navy. Carpenter, who had broken his arm in a motorcycle accident a year before and been medically grounded by NASA, was partway through a 45-day expedition in command of Sealab II, an underwater laboratory on the ocean floor, just off the coast of La Jolla, California. The Sealab effort, conceived jointly by the Navy and the University of California’s Scripps Institution of Oceanography, sought to discover the capacity of men to live and work effectively at depth. In doing so, Carpenter became the first person to place ‘astronaut’ and ‘aquanaut’ on his career resume. Yet, unlike Cooper and Conrad, his chances of returning to space were non­existent. He had not impressed senior NASA managers with Aurora 7 and, indeed, the partial success of an operation to repair the injury to his arm meant he would remain grounded anyway. He resigned from NASA in early 1967.

The music, the chat with Carpenter and even Conrad’s dubious singing did little

to detract from the uncomfortable conditions aboard the capsule. As they drifted, even with coolant pipes in their suits turned off, the two men grew cold and began shivering. Stars drifting past the windows proved so disorientating that they put covers up. Sleep was difficult. Chuck Berry had wired Conrad with a pneumatic belt, a blood-pressure-like cuff, around each thigh, which automatically inflated for two minutes of every six throughout the entire mission. The idea was that, by impeding blood flow, it forced the heart to pump harder and gain its much-needed exercise. Berry felt that if Conrad came through Gemini V in better physical shape than Cooper, who did not wear the belt, a solution may have been found for ‘orthostatic hypotension’, the feelings of lightheadedness and fainting felt by some astronauts after splashdown.

For the two astronauts, that splashdown could not come soon enough. By landing day, 29 August, their capsule had become cluttered with rubbish, including the litter of freeze-dried shrimp, which had escaped earlier in the mission. The appearance of Hurricane Betsy over the prime recovery zone prompted the Weather Bureau to recommend bringing Gemini V down early and Flight Director Gene Kranz agreed to direct the Lake Champlain to a new recovery spot. At 7:27:43 am, Cooper fired the first, second, third, then fourth OAMS retrorockets, then gazed out of his window. It felt, he said later, as if he and Conrad were sitting ‘‘in the middle of a fire’’. Since it was orbital nighttime, they had no horizon and were entirely reliant upon the cabin instruments to control re-entry. In fact, Gemini V remained under instrument control until they passed into morning over Mississippi.

Cooper held the spacecraft at full lift until it reached an altitude of 120 km, then tilted it into a bank of 53 degrees; whereupon, realising that they were too high and might overshoot the splashdown point, he slewed 90 degrees to the left to create more drag and trim the error. Although experiencing a dynamic load of 7.5 G after eight days of weightlessness, the astronauts did not, as some had feared, black out. The parachute descent was smooth. No oscillations were evident and the 7:55:13 am splashdown, though 170 km short of the planning spot, was soft. As would later be determined, the computer had been incorrect in indicating that they would overshoot. A missing decimal point in a piece of uplinked data had omitted to allow for Earth’s rotation in the time between retrofire and splashdown. In fact, Cooper’s efforts to correct the false overshoot had progressively drawn them short of the recovery zone. ‘‘It’s only our second try at controlling re-entry,’’ admitted planning and analysis officer Howard Tindall. ‘‘We’ll prove yet that it can be done.’’

Gemini V had lasted seven days, 22 hours, 55 minutes and 14 seconds from its Pad 19 launch to hitting the waves of the western Atlantic and the crew was safely aboard the Lake Champlain by 9:30 am. With the exception of the failed REP rendezvous, and one experiment meant to photograph the target, all of Cooper and Conrad’s objectives had been successfully met. Yet more success came when Chuck Berry realised that, despite the days of inactivity with little exercise aboard the capsule, the astronauts were physiologically ‘back to normal’ by the end of August, clearing the way for Frank Borman and Jim Lovell to attempt a 14-day endurance run on Gemini VII in early 1966. First, though, Wally Schirra and Tom Stafford would fly Gemini VI for one or two days in October and complete the first rendezvous with an

Agena-D target. The mission – or, rather, missions – that would follow would snatch victory from the jaws of defeat and set aside another obstacle on the path to the Moon. But not before suffering a major setback of its own.

ROCKET ARMCHAIRS AND FIREPROOF PANTS

One saving grace of the crisis was that Scott had the presence of mind, before undocking, to switch over command of the Agena to Mission Control. The result: the Gemini VIII-Agena Target Vehicle (GATV-VIII) could – and would – be reused during a subsequent mission. Four months later, Gemini X’s John Young and Mike Collins would fly part of their own rendezvous, docking and spacewalking extravaganza with the Agena. In the days after Armstrong and Scott splashed down, the rocket’s main engine was fired ten times, its various systems were vigorously tested and it successfully received and executed more than 5,400 commands. By 26 March, its electrical power had been exhausted and it could no longer be effectively controlled, but by this stage it had been raised into a higher orbit to permit inspection by the Gemini X crew.

Before Young and Collins could complete their mission, however, came Gemini IX; stricken, it seemed, by bad luck since the dull, chill February day when its prime crew lost their lives in St Louis. Days after the deaths of Elliot See and Charlie Bassett, their backups, Tom Stafford and Gene Cernan, were appointed to replace them. With a launch scheduled for mid-May, Stafford would record the shortest turnaround between flights of any space traveller thus far, blasting off just five months after his Gemini VI-A splashdown. Newly-promoted to become the ‘new’ Gemini IX backups were Jim Lovell and Buzz Aldrin, who, by following Deke Slayton’s three-flight crew rotation system, were now in prime position to fly the Gemini XII mission in November 1966.

Gemini XII, the last flight in the series, was originally to be the preserve of Stafford and Cernan in their capacity as See and Bassett’s backups. In fact, in his autobiography, Cernan recalled trips to McDonnell’s plant in St Louis to inspect and train on the Gemini IX capsule. . . yet finding himself, in rare moments of spare time, drifting down the line of almost-complete spacecraft to take a wistful look at the skeletal form of Gemini XII, his and Stafford’s ship. Years later, Cernan would still recall his desire to know every switch, every circuit breaker, every instrument, every bolt and rivet, inside the Gemini before he and Stafford took this engineering marvel into the heavens.

The prime and backup crews for Gemini IX were announced in early November 1965 and, indeed, with Stafford still busy preparing for his mission with Wally Schirra, Cernan was forced to train alone with See and Bassett until early the following year. His role not only shadowed Bassett, but prepared himself for the possibility, however remote, of actually flying the mission and conducting a lengthy EVA wearing an Air Force contraption known as the Astronaut Manoeuvring Unit (AMU). It looked, Cernan wrote, “like a massive suitcase” that was “so big that it would be carried aloft folded up like a lawn chair and attached within the rear of the Gemini”. (In fact, the Air Force’s project officer for the AMU, Major Ed Givens, was selected by NASA as an astronaut candidate in April 1966.)

Having manoeuvred himself over to the device, Bassett would “slip onto a small bicycle-type seat, strap on the silver-white box and glide off into space, manoeuvring with controls mounted on the armrests’’. Sounding very much like something from a Buck Rogers episode, the AMU had evolved through seven years of developmental work, with its focus on military tasks associated with a Pentagon-sponsored space station called the Manned Orbiting Laboratory. “The possibility of using it to send someone scooting off to disable an enemy satellite,’’ wrote Cernan, “wasn’t mentioned in public because we weren’t supposed to be thinking about the militarisation of space.’’

For NASA’s purposes, however, the 75 kg AMU provided an essential tool in understanding how effectively astronauts could work and manoeuvre outside the confines of their spacecraft. When he was named to Gemini IX, Bassett was tasked with an EVA that would span at least one 90-minute circuit of the globe and would be able to control his movements and direction by means of 12 hydrogen peroxide thrusters. The AMU was also equipped with fuel tanks, lights, oxygen supplies, storage batteries and radio and telemetry systems. The device would be controlled by knobs on the end of the AMU’s twin arms – a left-hand one providing direction of motion, a right-hand one for attitude – although, for safety, Bassett would remain attached to Gemini IX by a 45 m tether throughout the spacewalk.

Undoubtedly raising Cernan’s hopes for his own mission was the possibility that, if Bassett’s excursion went without a hitch, plans were afoot for a more autonomous AMU spacewalk on Gemini XII, perhaps untethered. In the days before enormous water tanks became the norm for EVA training, Bassett and Cernan spent much of their time physically conditioning themselves. Both men recognised that vast reserves of strength and stamina would be required to handle the demands of a spacewalk encased inside a bulky pressurised suit and resorted to lengthy spells in the gym, games of handball and hundreds of press-ups. “Before long,’’ Cernan wrote, “we grew Popeye-sized forearms.’’

Their suits needed to be somewhat different from that worn by Ed White on Gemini IV, partly in recognition of the demands of the AMU, as well as to provide additional comfort and protection. The new ensembles included a white cotton long – john-type undergarment for biosensors, a nylon ‘comfort’ layer, a Dacron-Teflon link net to maintain the suit’s shape and several layers of aluminised Mylar and nylon for thermal and micrometeoroid protection. Guarding them from the searing hydrogen peroxide plumes from the AMU (one of which would jet directly between

Bassett’s legs!) were the heat-resistant ‘trousers’ of the suit. These were composed of 11 layers of aluminised H-film and fibreglass, topped by a metallic fabric woven from fibres of the alloy Chromel R. One day during training, Bassett and Cernan watched as a technician charred the material with a blowtorch for five minutes, telling them that despite the intense temperature of the AMU’s exhausts, they would remain comfortable within their suits.

As Cernan continued his training as Bassett’s understudy, the pair – indeed, the foursome, if one also counted See and Stafford – spent so much time working together than a relationship akin to family developed. Despite their intense focus on Gemini IX, Stafford and Cernan undoubtedly looked forward to their own rendezvous, docking and spacewalking adventure with their own Gemini, their own Agena and their own AMU, towards the end of 1966. All that changed on the morning of 28 February, when it became clear that Cernan’s first journey into space would come much sooner, more unexpectedly and more horrifyingly, than he could have ever imagined or wished.

OUTER SPACE TREATY

On the evening that the Apollo 1 crew lost their lives, the astronaut office in Houston was unusually quiet. At one point, only Al Bean was on duty and it was he who received the first word from Cape Kennedy of the fire. Several other astronauts were at Downey, California, running through simulations and practice for their missions… and a select delegation was at the White House in Washington, DC. There, veteran astronauts Scott Carpenter, Gordo Cooper, Jim Lovell, Neil Armstrong and Dick Gordon witnessed the signing by President Johnson of a document popularly called ‘The Outer Space Treaty’. Four decades later, the document has around a hundred signatories and a further two dozen who are partway through their ratification of it.

Officially, it is known as ‘The Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, Including The Moon and Other Celestial Bodies’. Essentially, the document forms the basis for the earliest international space law and on the very day that Grissom, White and Chaffee died, it was opened for signing by the United States, Great Britain and the Soviet Union. Its 17 articles decree that signatories will refrain from the placement of nuclear weapons or weapons of mass destruction into Earth orbit, onto the Moon or onto any other celestial body. The treaty explicitly states that the Moon and other celestial bodies are to be used for peaceful purposes and forbids weapons-testing and military exercises or implacements on them. Moreover, it denies signatories the right to ‘claim’ a celestial resource, such as the Moon, as its own and declares all to be “province of mankind’’. It also assures the safe and cordial return of any astronauts or cosmonauts who make an unexpected landing within the borders of another nation.

The astronauts liked to call it the ‘‘non-staking-a-claim treaty’’ and as the afternoon wore into evening, they mingled with guests at the event, including ambassadors from the Soviet Union (Anatoli Dobrynin), Great Britain (Patrick Dean) and Austria (Kurt Walheim, later Secretary-General of the United Nations). In his biography of Armstrong, James Hansen noted the astronaut’s recollection that the event ended at 6:45 pm and that, with the exception of Carpenter, the NASA delegation returned to the Georgetown Inn on Wisconsin Avenue. When they got to their rooms, they were greeted by flashing red lights on their answer machines. Something terrible had happened in Florida. A difficult year lay ahead.

TEACHER’S SON

To this day, Gherman Stepanovich Titov remains the youngest person ever to have flown into space, a record he has held for almost five decades. On 6 August 1961, he was just a month shy of his 26th birthday. Born on 11 September 1935, he was named Gherman – an unusual name for a Russian – by his father, in honour of a favourite Pushkin character from ‘The Queen of Spades’. Titov’s own love of literature, though, went far beyond the inspiration for his name: in his cosmonaut days, he was well-known for quoting long reams of poetry or fragments from stories or novels. Jamie Doran and Piers Bizony have hinted that, in the “egalitarian workers’ and peasants’ paradise’’ that was the old Soviet Union, this may have harmed his chances of becoming the first man in space. Unlike Pushkin, whose liberal views and influence on generations of Russian rebels led the Bolsheviks to consider him an opponent to bourgeois literature, Titov’s pride, love of poetry and reading and a ‘‘suspicion of class’’ bestowed on him by his learned father made him somewhat less appealing to Nikita Khrushchev’s regime than Yuri Gagarin.

His breakthrough to reach the hallowed ranks of the first cosmonaut team in March 1960 came about through his excellence as a MiG fighter pilot. Titov had entered the Ninth Military Air School at Kustanai in Kazakhstan in 1953, transferring to the Stalingrad Higher Air Force School two years later, where he commenced military flight training. Following qualification, in September 1957 he was attached to two different Air Guard regiments in the Leningrad Military District and subsequently became a Soviet Air Force pilot in the Second Leningrad Aviation Region. His selection as a cosmonaut, he would recall more than three decades later, was almost a fluke, with the answers he gave to the physicians and psychologists bordering on arrogance. He seemed non-committal in his interviews even when the subject of ‘‘flying sputniks’’ in orbit was broached. However, he said, ‘‘I was curious about how it would be to fly a sputnik and I was told that I had been called to Moscow. I went to Moscow and I was enrolled into the cosmonauts’ team’’.

Titov’s selection was lucky in another way, too. At the age of 14, he had crashed his bicycle and shattered his wrist. Instead of revealing the injury to his parents, he nursed it secretly, unwilling to show any sign of weakness, particularly as he had already signed up for elementary training at aviation school. During his time as a cadet, fearful that his injury would be discovered, Titov bluffed them by performing early-morning exercises on a set of parallel bars, until his damaged wrist appeared as good as the other. When he underwent intensive X-rays for the cosmonaut selection in 1960, the medical staff found nothing amiss. Only years after his Vostok 2 flight, when they learned of the injury, did they tell him that his recruitment would never have been sanctioned if they had known.

“WE GAVE IT AWAY”

As Kennedy battled through the closing months of his election campaign, NASA battled with similar tenacity and vigour to launch the first man into space. Many in the United States, however, were already echoing Louise Shepard’s sentiment that the Soviets remained in pole position to accomplish the historic feat. Project Mercury, Time magazine told its readers in September I960, “is not far behind, but it will be at least nine months before a US astronaut will enter orbit’’. ‘Orbit’ would prove the pivotal point, for neither America’s first man in space, nor even its second, would achieve orbit – they would experience little more than 15-minute suborbital arcs over the Atlantic Ocean, into space and back down – and the nation’s first piloted circuit of the globe would not come until February 1962. Still, in the weeks after Kennedy’s inauguration, Al Shepard and John Glenn were dividing their time between Langley Research Center in Virginia and the swamp-fringed Cape Canaveral launch site in Florida, familiarising themselves with ‘Spacecraft No. 7’: the vehicle which, since October of the previous year, had been earmarked for the first mission.

Unlike the huge spherical Vostok which had ferried Yuri Gagarin into space, the Mercury capsule was a cone-shaped machine, 1.9 m across the blunt, ablative heat shield at its base and 2.9 m tall, with a total habitable volume of just 1.6 m3 and an approximate weight at launch of 1,930 kg. The idea that a blunt cone was the most suitable shape to prevent a rocket-carried warhead from burning up in the atmosphere had arisen in the early Fifties, thanks to the work of NACA engineers Julian Allen and Al Eggers. Attached to its nose was a cylindrical parachute compartment and at its base a cylindrical package of three retrorockets. Its cramped nature prompted the astronauts to smirk that, far from ‘flying’ the spacecraft they actually ‘wore’ it. ‘‘You get in with a shoehorn,’’ added McDonnell’s pad leader Guenter Wendt, ‘‘and get out with a can opener!’’ During the early stages of ascent, capsule and astronaut would be protected by a pylon-like, solid-fuelled Launch Escape System (LES), capable of whisking them away from an exploding or malfunctioning rocket. This measured 5.15 m tall and produced 23,580 kg of thrust. Under normal circumstances, however, it was intended that the LES would be jettisoned shortly after the burnout of the rocket, although many engineers doubted its effectiveness and felt that a catastrophic failure would give an astronaut little chance of survival.

The Mercury capsule was equipped with attitude-control thrusters to enable yaw, pitch and roll exercises, but was incapable of actually changing its orbit. The three solid-fuelled retrorockets provided an ability to return to Earth, firing in sequence at five-second staggered intervals, in a ‘ripple’ fashion, although one was sufficient to complete this task if the others failed. To guard against temperatures as high as 5,200°C at its base during re-entry, a heat shield composed of fibreglass, bonded with a modified phenolic resin, was employed. By charring, melting and peeling off, taking heat with it, this ‘ablative’ material would protect the structure of the spacecraft from the high heat flux of hypersonic re-entry into the atmosphere. It was first tested atop an Atlas rocket in September 1959, surviving re-entry in remarkably good condition. The heat shield was not, in fact, an integral part of the spacecraft, but was held in place by a series of hooks. Between it and the base of the capsule was a folded rubber-and-glass-resin ‘landing bag’, 1.2 m deep, which would unfold and fill with air shortly before splashdown in the ocean. This would act as an absorber,

“WE GAVE IT AWAY”

The Mercury spacecraft. Note the parachute container at the top and the retrorocket package at the base of the capsule.

 

softening the shock of landing from 45 G to 15 G, before filling with water to provide a kind of ‘sea-anchor’.

Mercury was the brainchild of NACA aerodynamicist Max Faget, adapted from Allen and Eggers’ blunt-cone design, and received the go-ahead on 7 October 1958, only six days after NASA’s birth. The name arose from that of the fleet-footed messenger of Roman mythology and, wrote Loyd Swenson in ‘This New Ocean’, a seminal 1966 work on Project Mercury, ‘‘seemed too rich in symbolic associations to be denied. The esteemed Theodore von Karman had chosen to speak of Mercury, as had Lucian of Samosata, in terms of the ‘re-entry’ problem and the safe return of man to Earth’’. By mid-January 1958, McDonnell had been awarded the $18.3 million contract to build the spacecraft, beating Grumman, which was heavily loaded with conceptual naval projects at the time. Faget’s original design for a ballistic capsule envisaged that it would re-enter the atmosphere at an attitude 180 degrees from that of launch, such that the G forces would be imposed on the front of the body under acceleration and deceleration; in effect, its ‘tail’ during launch would become its ‘nose’ during the journey back to Earth. Initial sketches from late 1957 revealed a squat, domed body with a nearly flat heat shield, the former slightly recessed from the perimeter of the latter, leaving a narrow ‘lip’ to deflect airflow and minimise heat transfer. However, this configuration proved dynamically unstable at subsonic speeds, so Faget’s group lengthened the capsule and removed the heat shield lip.

By March of the following year, the design resembled an elongated cone, which provided dynamic stability, but hypersonic wind tunnel tests showed that too much heat would be transferred by turbulent convection. Further, engineers could not figure out how to incorporate parachutes into the upper part of the nosecone, prompting its redesign into a rounded shape with a short cylinder attached to the top. Heat-transfer concerns, however, remained, and it was not until the late summer that the design, incorporating maximum stability, relatively low heating and a suitable parachute compartment, had been finalised. Faget’s team argued that by launching the capsule on a ballistic trajectory, its automatic stabilisation, guidance and control equipment could be minimised and the only manoeuvre it would be required to make would be to fire the retrorockets to decelerate and dip into the atmosphere for aerodynamic drag. In fact, added Faget, even that manoeuvre did not need to be too precise to accomplish a successful recovery.

In theory, Spacecraft No. 7 – the seventh of 20 Mercury capsules built by McDonnell – should have been capable of flying Shepard almost immediately, but after delivery to Cape Canaveral on 9 December 1960, it became necessary to implement 21 weeks’ worth of unexpected tests, repairs and rework. Additionally, the landing bag, beneath the heat shield, which would cushion its splashdown in the Atlantic Ocean, had to be installed and communications hardware checked. Its reaction-control system needed attention, whilst damaged and corroded hydrogen peroxide fuel lines required replacement and a variety of other obstacles surrounded equipment, minor structural defects and even the need to install a manual bilge pump to remove seawater. The need for the latter had been compounded by the successful, though harrowing, flight of a chimpanzee named Ham. He had been launched atop a Redstone in late January, but his capsule had suffered a multitude of niggling malfunctions. Firstly, a faulty valve had fed too much fuel into the rocket’s engine, causing Ham to fly too high and too far, whereupon the tanks ran dry, the spacecraft separated too early and re-entered the atmosphere too fast and at the wrong angle. Temperatures soared and a glitch ‘rewarded’ Ham not with banana pellets for pulling the right levers and pushing the right buttons, but with electric shocks. At the end of the mission, with the capsule filling with seawater and about to sink, ‘‘a very pissed-off chimp’’ was safely fished from the Atlantic by the recovery forces.

Wernher von Braun, whose team had designed and built the Redstone, feared that Shepard’s mission, then scheduled for March, could be similarly affected and opted for one final unmanned launch. The astronaut, however, pushed NASA officials and even von Braun himself to go ahead with his mission, regardless of the risk, feeling that he could handle and overcome any Ham-type problems. The German stood firm, though, and a nervous NASA stood beside him.

‘‘We were furious,’’ remembered Chris Kraft. ‘‘We had timid doctors harping at us from the outside world and now we had a timid German fouling our plans from the inside.’’ Furthermore, Jerome Wiesner, recently picked by President Kennedy as his science advisor, warned of the harm a dead astronaut could cause the new administration and pressed for another test flight. In addition, having inherited chairmanship of the President’s Science Advisory Committee (PSAC), he convened a panel of experts to assess the situation and recommend whether or not to proceed with Shepard’s launch. After viewing astronauts ‘flying’ in the simulators, whirling in the MASTIF and pulling up to 16 G in the centrifuge, the panel concluded that the manned mission should proceed. Their report, ironically, landed on Kennedy’s desk on the afternoon of 12 April 1961.

By this point, Shepard’s launch had already been postponed until the end of the month and, despite the crushing disappointment of Vostok 1, both he and Glenn continued to train feverishly, rehearsing every second of the 15-minute ‘up-and – down’ mission that would arc 188 km into space and back to Earth, splashing into the Atlantic some 200 km downrange of the Cape. It would be a suborbital ‘hop’: the Redstone, capable of accelerating to around 3,500 km/h, lacked the impulse to deliver Shepard into orbit – an Earth-girdling flight would have to await the Atlas – but the mission would prove to the world that the United States was in the game. Today, wrote Chris Kraft in his foreword to Neal Thompson’s biography of Shepard, it is easy to dismiss it and, when placed alongside Vostok 1, it was insignificant, but in the spring of 1961 it captivated not only America, but the world. ‘‘Add to this the fact that the reliability of a rocket-propelled system in 1961 was not much better than 60 per cent,’’ wrote Kraft, ‘‘and you may begin to have a feel for the anxiety all of us were experiencing.’’

The Redstone itself was a direct descendant of the infamous V-2, used by Nazi Germany with such devastating effect in the Second World War, and had been employed as a medium-range ballistic missile to conduct the United States’ first live nuclear tests during Operation Hardtack in August 1958. It remained operational within the Army until 1964, gaining a reputation as the service’s workhorse and, as a non-military launcher, as ‘Old Reliable’. Initial production, under the auspices of prime contractor Chrysler, had gotten underway at the Michigan Ordnance Missile Plant in Warren, Michigan, in 1952. Meanwhile, the Rocketdyne division of North American Aviation built its Model A-7 engine, Ford Instrument Company supplied its guidance and control systems and Reynolds Metals Company fabricated its fuselage. As a weapon, it could be armed with an atomic warhead with a yield of 500 kilotons of TNT or a 3.75 megaton thermonuclear warhead and, indeed, batteries of Redstones were stationed in West Germany until as late as 1964.

A direct outgrowth of the Redstone was the Jupiter-C intermediate-range ballistic missile, which, some observers believe, could have beaten Sputnik 1 by orbiting an artificial satellite in August 1956, had the political will been there. President Eisenhower’s administration, however, preferred to launch America’s first satellite atop a civilian rocket named Vanguard, rather than with a modified military weapon, and the chance was lost. The Vanguard failed spectacularly in December 1957, exploding on the pad, but less than two months later a Jupiter-C successfully lofted the United States’ first satellite, Explorer 1, into space.

A number of modifications were incorporated into the Redstone from 1959 onwards to complete the metamorphosis from a warhead-laden weapon to a man­rated launch vehicle; its reliability as a tactical missile, though high, was inadequate for an astronaut. Since redesigning it to provide the required assurances could have meant implementing a totally new, expensive and lengthy development programme, it was decided instead to adapt the existing model with only the changes needed for a manned flight. In January 1959, the Army Ballistic Missile Agency (ABMA) received the go-ahead to convert the rocket and, two months later, the Space Task Group requested the implementation of an effective abort system. By June, ABMA had submitted its response and, throughout the remainder of the year and into 1960, the design was finalised and implemented: an automatic system, capable of shutting down the Redstone’s engine and transmitting separation abort signals to the Mercury capsule and its attached LES tower. Had the rocket veered off-course, a range safety officer at the Cape would have had little option but to remotely destroy it. However, a three-second delay existed between the transmission of the abort command and the actual destruction of the Redstone, offering a hair’s breadth of time for the capsule to be pulled clear of the conflagration.

It had long been recognised that some emergencies could develop too rapidly for a mission to be manually aborted and, moreover, the astronaut’s own performance under the dynamic conditions of a launch were not known. During their analysis of this problem, ABMA engineers studied 60 Redstone flights, identifying a huge number of components which could conceivably fail. It would be impractical to accommodate them all. However, the study did find that many malfunctions – loss of attitude control and velocity, a lack of proper combustion chamber pressure in the engine or perhaps power supply problems – led to similar results, thus permitting the inclusion of relatively few abort sensors.

Constructed from aluminium alloy, the single-stage Redstone measured 25.4 m long and weighed 3,720 kg. Ignition of its engine was initiated from the ground and liftoff occurred when approximately 85 per cent of its rated thrust had been achieved. During ascent, carbon jet vanes in the exhaust of its propellant unit, coupled with air rudders, served to control its attitude and stability. Its Model A-7 engine, fuelled by a mixture of ethyl alcohol and liquid oxygen, together with a hydrogen peroxide-fed turbopump, yielded 35,380 kg of thrust and was essentially the same as that used by the military Redstone, although a number of improvements had been implemented for efficiency and safety. The Jupiter-C’s use of a highly-toxic propellant mixture called hydyne had been ruled out in favour of alcohol, although the use of the latter was more erosive of the jet vanes. Engine operations continued until the Redstone had reached a pre-determined velocity, at which stage an integrating accelerometer emitted a signal to initiate shutdown by closing off the hydrogen peroxide, liquid oxygen and fuel valves. As pressures in the thrust chamber decreased, a timer started in the Mercury capsule which triggered its separation from the tip of the Redstone.

Other modifications included lengthened tanks, the walls of which were thickened to handle the increased loads of the capsule and heavier propellant haul, and changes were made to increase the reliability of critical electronic components in the Redstone’s instrument section. Indeed, the entire layout of this section was extensively revamped to accommodate new control and abort systems. The elongated propellant tanks and increased payload weight, however, meant that the rocket tended to become more unstable in the supersonic region of flight, around 90 seconds after liftoff, and necessitated the inclusion of 310 kg of steel ballast. Stringers were also added to the inner skin of the Redstone’s aft section to support the weight of the Mercury capsule. The overall ‘burn time’ of the engine for suborbital launches was shortened by 20 seconds to 143.5 seconds in total, prompting the addition of heat-resistant stainless steel shields for the stabilising fins. Additionally, nitrogen-gas purging equipment was added to the tail to prevent an explosive mixture from accumulating in the engine compartment whilst the Redstone sat on the pad.

The first three unmanned test flights evaluated each of these modifications and the combined performance of both the rocket and the capsule under real mission conditions. The first, named Mercury-Redstone 1 (MR-1), was intended to put the abort system fully through its paces, in addition to achieving the kind of velocities – around Mach 6.0 – that the suborbital astronaut would experience and demonstrating the ability of the capsule to separate satisfactorily from the rocket. A launch attempt on 7 November 1960 was scrubbed due to low hydrogen peroxide pressures in the capsule’s thrusters and was rescheduled for the 21st. At 8:59 that morning, ignition occurred on time, but as the Redstone made to leave the pad, a shutdown signal was initiated. The thrust buildup was sufficient for the rocket to rise 10 cm, before it settled back onto its pedestal. However, the shutdown signal had caused the LES tower to fire, producing huge clouds of smoke which momentarily hid the Redstone from view. Flight Director Chris Kraft, watching the proceedings, was astonished by the tremendous acceleration, thinking it to be the actual liftoff. . . ‘‘but then the smoke cleared and the missile was still there!’’ Wally Schirra described the fiasco as ‘‘a memorable day, especially for someone who likes sick jokes’’.

The rocket swayed slightly, but remained upright and did not explode. Worryingly, though, the LES – which shot 1.2 km high and landed 360 m from

“WE GAVE IT AWAY”

In full view of the world’s media, the Redstone carries its first human passenger into space.

 

the pad – had not pulled the Mercury capsule clear of the Redstone and, as the shocked flight controllers watched, the drogue parachute popped out of its nose, followed by the main canopy and lastly, accompanied by a green cloud of marker dye, an auxiliary chute. All three fluttered pathetically down onto the pad. The rocket, meanwhile, was left alone as its liquid oxygen and high-pressure nitrogen were drained, its fuel and hydrogen peroxide tanks emptied, its circuits deactivated and its destruct arming devices removed. (Initial suggestions to relieve the pressurised propellant tanks by shooting holes in them with a rifle, thankfully, were squashed.)

“The press had a field day,” Kraft recalled later. “It wasn’t just a funny scene on the pad. It was tragic and America’s space programme took another beating in the newspapers and in Congress.’’ Time magazine bemoaned ‘Lead-Footed Mercury’ and ridiculed Wernher von Braun for downplaying the MR-1 fiasco, although a New York Times journalist urged President-elect Kennedy to persevere.

Investigators would find that the shutdown had been triggered by a ‘sneak’ circuit, created when two electrical connectors in a two-pronged booster tail plug separated in the wrong order. And why did the capsule fail to separate along with the LES? According to NASA’s investigation report, it was because the G load sensing requirements had not been met. Ordinarily, after an engine cutoff, a ten-second timer was initiated and, upon its expiration, was supposed to separate the capsule if acceleration was less than 0.25 G. However, MR-1 had settled back onto the pad before the timer expired and the G-switch, sensing 1 G of acceleration, blocked the separation signal. On-board barostats, meanwhile, properly sensed that the rocket’s altitude was less than 3 km and therefore activated the parachutes. ‘‘Once we realised that the capsule had made the best of a confusing situation and had gone on to perform its duties just as it would have on a normal flight,’’ John Glenn said later, ‘‘we were rather proud of it.’’ However, to avoid a recurrence, a ‘ground strap’ was added to maintain grounding of the vehicle during all umbilical disconnections and changes to the electrical network distributor prevented a cutoff signal from jettisoning future LES towers prior to 130 seconds after liftoff.

The undamaged spacecraft would be recycled and reused on the MR-1A flight just four weeks later. Despite some difficulties with a leakage in the capsule’s high – pressure nitrogen line and a faulty solenoid valve in its hydrogen peroxide system, the mission was launched successfully at 11:15 am on 19 December. Thankfully, the abort system performed as advertised, although a malfunction of the velocity integrator caused the Redstone’s velocity cutoff to occur 78 m/sec higher than planned, thus boosting the capsule 9.6 km above its intended 205 km altitude. Accelerations during re-entry were correspondingly more severe and high tail winds during the final portion of the flight led to MR-1A splashing into the Atlantic 32 km further downrange than anticipated. The source of the velocity integrator problem was traced to excessive torque against the pivot of the accelerometer, caused by electrical wires; five of these were replaced and a softer wire material was implemented. This solved the problem, as the chimpanzee Ham’s MR-2 flight at the end of the following month would demonstrate.

Ham was not the first animal to have been launched by the United States. A pair of Rhesus monkeys, nicknamed ‘Sam’ and ‘Miss Sam’, from the School of Aviation

“WE GAVE IT AWAY”

Ham, the chimpanzee occupant of MR-2.

 

Medicine in San Antonio, Texas, had been launched atop Little Joe rockets in December 1959 and January I960, respectively. Although neither of their Mercury capsules reached space (Sam achieved an altitude of 88 km, Miss Sam of 15 km), their flights demonstrated that living creatures could survive a launch and return alive. Unfortunately, the flights of the Rhesus monkeys and chimpanzees, though significant, would offer an excuse for some test pilots to heap further ridicule on the Mercury Seven. When asked if he was interested in riding a capsule into orbit, Chuck Yeager had laughed. “It doesn’t really require a pilot,” he said, “and, besides, you’d have to sweep the monkey shit off the seat before you could sit down!’’

Ham – the name was an acronym for the Holloman Aerospace Medical Center, based at Holloman Air Force Base in New Mexico, which prepared him for his mission – was launched at 11:54 am on 31 January 1961. Chosen specifically because of their close approximation to human behaviour, a colony of six chimpanzees, four female and two male, accompanied by 20 medical specialists and handlers from Holloman, had arrived at Cape Canaveral’s Hangar S a few weeks earlier. The chimps were split into two groups to prevent the spread of any contagion and were led through training exercises with the help of Mercury capsule mockups in their compounds. By the end of the month, each of the chimps was somewhat bored, but nevertheless an expert at pulling levels and pushing buttons in the right order, receiving either banana pellets or mild electric shocks for doing the right (or wrong) thing. The day before launch, James Henry of the Space Task Group and Holloman veterinarian John Mosely examined the six chimps and settled on a particularly frisky and good-humoured male as the prime candidate, with a female as his backup. Both were put on low-residue diets, instrumented with biosensors and, early on the 31st, outfitted in their space suits, placed in their contoured couches and taken to the launch pad. With 90 minutes to go, Ham, described as “still active and spirited’’, was inserted inside the MR-2 capsule.

His home for the 16-minute mission boasted a number of significant innovations, including an environmental control system, live retrorockets, a voice communica­tions device and the accordion-like pneumatic landing bag. The latter was attached to the heat shield and shortly before splashdown, the pair would drop 1.2 m, filling with air to help cushion MR-2’s impact. In the water, the deflated landing bag and heat shield were intended to serve as an anchor, keeping the spacecraft upright.

Ham’s liftoff was successful, although his Mercury capsule, programmed to travel 183 km into space and 468 km downrange of the Cape, actually flew 67 km higher and 200 km further downrange than intended. The chimp experienced six and a half minutes of weightlessness and endured 14.7 times the force of normal terrestrial gravity at one point during his re-entry. He survived and seemed to be in good spirits, despite having to wait for several hours before being picked up by the dock landing ship Donner. After splashdown, his heat shield had skipped on the water, bounced against the capsule’s base and punched two holes in the pressure bulkhead. As MR-2 capsized, the open cabin pressure relief valve let in yet more seawater. By the time he was rescued, it was estimated that there was around 360 kg of seawater inside the capsule. Ham, however, seemed in good cheer, gobbling down a pair of apples and half an orange on the recovery ship’s deck.

Post-flight analysis would reveal that the Redstone’s mixture ratio servo control valve failed in its full-open position, causing early depletion of the liquid oxygen supply; consequently, the propellant consumption rate increased, the turbopump ran faster and led to higher thrust, an earlier-than-scheduled engine shutdown and the inadvertent ‘abort’ of the MR-2 spacecraft. Nonetheless, the basic controllability and habitability of Mercury was deemed a success. In the wake of Ham’s flight, the reliability of the booster-capsule combination was reassessed, culminating in an estimated probability of success at somewhere between 78 and 84 per cent. However, many components had been designed to parameters which exceeded those demanded by the Space Task Group and launch operations personnel had devised their own methods which were more conducive to flight success. Taking this into account, the overall reliability of the system was judged at 88 per cent for launch and 98 per cent for the survival of the astronaut. These assurances were confirmed by one final test prior to Shepard’s mission – the Mercury-Redstone Booster Development (MR-BD) flight, launched at 12:30 pm on 24 March.

Although it was doubtful that any of the problems experienced on either MR-1A or MR-2 would have endangered Shepard, had he been aboard, the Space Task Group’s scrupulous attention to reliability meant that all significant outstanding modifications to the Redstone had to be dealt with. Von Braun also invoked one of the original ground rules, which insisted that no manned flight would be attempted until all responsible parties felt assured that everything was ready. Shepard’s mission was fatefully postponed until 25 April. The MR-BD test, meanwhile, was perfect: the Redstone flew flawlessly, with its thruster control servo valve’s closed position adjusted to 25 per cent open and flight sequencer timer changes prevented a recurrence of the problems on Ham’s flight. Control manoeuvres were executed to evaluate the effect of higher-than-normal angles of attack, confirming that the Redstone could withstand additional aerodynamic loads. No attempt was made to separate rocket and capsule and they splashed down together, some eight and a half minutes after launch, before sinking to the bottom of the Atlantic. The success of MR-BD had cleared the way for MR-3 – the first manned mission – to launch.

To help them prepare more effectively for the flight, Shepard and Glenn had, since February, been using a pair of McDonnell-built Mercury simulators for 55-60 hours per week. They went through flight plans together and, indeed, Shepard ‘flew’ more than 120 simulated Redstone launches during this period. As February wore into March, the training became yet more exacting: both men even went through the ritual of their pre-flight medical examinations, just as they would on launch morning, and were instrumented with biosensors and outfitted in their silver pressure suits. A week after Gagarin’s mission, on 19 April, Shepard sat in the actual capsule, atop its Redstone, on Pad 5 at the Cape, with the hatch open, meticulously plodding through each of the procedures he would follow.

By this time, he had nicknamed his tiny spacecraft ‘Freedom 7’ – not, as some observers would hint, in honour of the seven Mercury astronauts, but rather to reflect its status as the seventh capsule off the McDonnell production line. According to assistant flight director Gene Kranz, the name was adopted during the final Freedom 7 training exercises. On later missions, each member of the Mercury Seven

would suffix their own spacecraft with the number as something of a good-luck charm.

By now, the launch was officially scheduled for 7:00 am on 2 May and, in late April NASA timetabled a full dress rehearsal, with Gordo Cooper standing in for Shepard. He duly suited-up, rode the transport van out to the base of Pad 5 and jokingly bawled “I don’t want to go! Please don’t send me!” before being shoved into the elevator. The assembled journalists, apparently, did not appreciate Cooper’s gallows humour and the following morning’s newspapers even went so far as to criticise NASA for its astronaut’s inappropriate horseplay at such a tense moment. Meanwhile, Shepard checked out of a Holiday Inn where he had been staying with his wife, dropped her at the airport and drove to the astronaut quarters in the three – story Hangar S at the Cape. Since they were still required to maintain the official ‘secret’ that the first American in space could be any one of them, Shepard, Grissom and Glenn shared the same air-conditioned quarters, which had been specially decorated for them by their nurse, Dee O’Hara.

The heavens opened to heavy rain and storms early on 2 May, as the trio arose and ate a breakfast of bacon-wrapped filet mignon and scrambled eggs, together with orange juice and coffee. Since defecation in the spacecraft was, at best, difficult, such ‘low-residue’ launch-morning diets had been enforced by NASA. (Indeed, the astronauts’ lawyer and agent, Leo D’Orsey, when told about the diet, had exclaimed ‘‘No shit?’’ Shepard responded with a grin, ‘‘Exactly!’’)

The intention was that the public ‘final choice’ of who was to fly would be made that morning, with some officials even suggesting bringing all three men out of their quarters wearing hoods to keep the charade going until one of them boarded the Pad 5 elevator. Shepard, wrote Neal Thompson, opposed this lunacy and opted instead to emerge from Hangar S in his pressure suit and wade through the teeming journalists. It made little difference: the rain was so bad that the launch was scrubbed, although not before the identity of America’s first astronaut became known to the newsmen. ‘‘An alert reporter standing by the hangar door,’’ wrote Gene Kranz, ‘‘had seen him and broke the story. The secret was out.’’

Originally planned as a 48-hour postponement, it was soon realised that an attempt early on 4 May would be impossible, so foul was the weather. However, at 8:30 that night, the two-part, ten-hour-long countdown began for a launch the following morning. The stunted nature of this countdown owed itself to past experience, which showed that it was preferable to run it in two short segments to permit the launch crews responsible for both Freedom 7 and the Redstone to be adequately rested and ready. A built-in hold of some 15 hours was called when the clock hit T-6 hours and 30 minutes, during which time various pyrotechnics were installed into the capsule and the hydrogen peroxide system to feed Freedom 7’s thrusters was serviced. The countdown resumed at 11:30 pm and proceeded smoothly until another hour-long built-in hold at T-2 hours and 20 minutes, intended to check that all preparations had been made before Shepard’s departure for the launch pad.

PUSHING THE ENVELOPE

The situation within Mission Control, Deke Slayton recounted, was far from fine. Slayton had been stationed throughout Aurora 7’s flight at the capcom’s mike at the Muchea tracking site in Australia, which he described as ‘‘a good place to be, all things considered’’. Flight Director Chris Kraft and many other mission controllers were furious, accusing Carpenter of having recklessly endangered himself during a botched re-entry. Their anger was exacerbated when, aboard the recovery ship, the astronaut off-handedly remarked that ‘‘I didn’t know where I was… and they didn’t know where I was, either’’. Retrofire controller John Llewelyn is said to have retorted: ‘‘Bullshit! That son-of-a-bitch is damned lucky to be alive!’’

Kraft, apparently, was considerably more caustic. In his autobiography, he wrote of Carpenter’s ‘‘cavalier dismissal of a life-threatening problem’’ – the failure of the spacecraft’s navigational instruments – and troublesome re-entry and swore that the astronaut would never fly again. Carpenter was never assigned another mission, not even in a backup role. After a month-long tour in the Navy’s Sealab-II underwater habitat, off the coast of La Jolla, California, he would resign from NASA early in 1967. Some have seen Carpenter’s mistakes and omissions and his forgetting to do certain critical tasks as evidence that the early Mercury flights were simply too overloaded with experiments and manoeuvres and, further, that Mission Control was at least partly to blame for failing to identify the pitch horizon scanner malfunction for what it was. Tom Wolfe, for his part, later wrote that any speculation that Carpenter had panicked made no sense “in light of the telemetred data concerning his heart rate and his respiratory rate”.

Psychologist Bob Voas weighed in with his own judgement: “The astronaut’s eye on the horizon was the only adequate check of the automated gyro system,’’ he told Carpenter and Kris Stoever. “With its malfunctioning gyros, the spacecraft could not have maintained adequate control during retrofire. Mercury Control may have viewed the manually controlled re-entry as sloppy, but the spacecraft came back in one piece and the world accepted the flight for what it was: another success.’’

Aurora 7, though harrowing, was certainly viewed as a success by Carpenter’s family and hundreds of thousands of residents of his home state, Colorado. In Denver, a 300,000-strong crowd cheered the nation’s newest astronaut son in their own ticker-tape parade. The city of Boulder declared 29 May as ‘Scott Carpenter Day’, sponsored its biggest-ever celebration and the University of Colorado named the astronaut its most accomplished graduate. Years earlier, Carpenter’s own father, a research chemist, had achieved the same accolade from the same institution. In the case of the younger Carpenter, however, it also came with the formal conferring of his engineering degree, which he completed in 1949, save for a final examination in thermodynamics. The university granted the degree on the grounds that his “subsequent training as an astronaut has more than made up for the deficiency in the subject of heat transfer’’.

Carpenter’s flight brought Project Mercury to another crossroads. In August 1961, the question had been whether to eliminate further Redstone missions in favour of moving towards the Atlas. Now, nine months later, discussion within NASA centred on whether enough had been learned from the three-orbit flights of Friendship 7 and Aurora 7 to justify a still-longer venture. Speaking before the Exchange Club in Hampton, Virginia, NASA engineer Joe Dodson pointed out that the lessons derived from Glenn and Carpenter were pleasing and speculation arose that a day-long mission, to rival that of Gherman Titov in Vostok 2, could be attempted as early as 1963. Indeed, many congressional observers supported a flight to surpass Titov. The debate ended on 27 June, barely five weeks after Carpenter’s re-entry, when NASA Headquarters announced that Wally Schirra would fly Mercury-Atlas 8, possibly as early as September, and attempt up to six circuits of the globe.

Perhaps in reference to the same engineering influence with which Slayton’s Delta 7 had been named, Schirra chose to call his capsule ‘Sigma 7’. ‘‘Sigma, a Greek symbol for the sum of the element of an equation,’’ wrote Schirra in his 1988 autobiography, ‘‘stands for engineering excellence. That was my goal – engineering excellence. I would not settle for less.’’ Nor, indeed, would the ground team, who prepared Sigma 7 for launch with such tenacity and engineering precision. . . and even humorously placed a car key on the capsule’s control stick and stowed a carefully-wrapped steak sandwich in Schirra’s ditty bag. The astronaut sought to honour them, too, during his mission. ‘‘All these little things do really help to make you realise that there are a lot of other people interested in what you’re doing,” he said later. “We know this inherently, but these visible examples of it do mean a lot.’’ The mission would double the number of orbits achieved by Glenn and Carpenter, lasting around nine hours, and as a consequence the Sigma 7 capsule required 20 modifications to provide more consumables. “I think probably the best part of my Mercury mission,’’ Schirra wrote later, “was naming it Sigma 7. Naming it the sum of engineering effort, I wanted to prove that it was a team of people working together to make this vehicle go. That’s why I talk so wildly about knowing the engineers, how they were brothers and buddies… and all of them were! That’s what I saw as the ultimate on that mission, was that [it was] an engineering test flight, where we weren’t going to look around for fireflies. We weren’t going to look for the lights of Perth. We weren’t going to give prayers to the peasants below. We were going to make this thing work like a vehicle!’’