Category The First Men on the Moon

NEIL ARMSTRONG

Stephen Koenig Armstrong and Viola Louise Engel were married on 8 October 1929, and their son Neil Alden Armstrong was born on 5 August 1930 on his maternal

NEIL ARMSTRONG

Подпись: Neil ArmstrongOn 10 January 1969 Buzz Aldrin, Neil Armstrong and Mike Collins pose in front of a mockup of the LM at the Manned Spacecraft Center following their first press conference as the crew of Apollo 11.

grandmother’s farm, some 6 miles from the small town of Wapakoneta, Ohio. The Armstrong family hailed from the border country of Scotland, and the Engels from Germany. As an auditor, Stephen Armstrong was constantly travelling the state (it took about a year to audit the books for a county) setting up temporary home in a succession of small towns. June was born in 1932, and Dean 19 months later. Neil was a non-conformist, spending his time playing the piano and voraciously reading books. He developed an early passion for flying, and by 9 years of age he was building his own model aircraft. “They had become, I suppose, almost an obsession with me,’’ he later reflected. He read everything he could lay his hands on about aviation, filling notebooks with miscellany.

When Neil was 14, the family settled in Wapakoneta (although born nearby, he had not actually lived there). The money from out-of-school jobs, initially stocking shelves at 40 cents per hour in a hardware store, and later working at a pharmacy, helped to pay for flying lessons at $9 each. He gained his student pilot’s licence on his sixteenth birthday, but had not yet felt the need for a driver’s licence. It was apparent that he would need a technical education if he was to become a professional pilot, but the family did not have the resources to send him through college. Although he was not specifically interested in military aviation, the Navy offered scholarships for university in return for time in service afterwards. Neil applied, and in 1947 was accepted. On the advice of a high school teacher, he went to Purdue University in Indiana because it had a strong aeronautical engineering school. After he had been there 18 months, the Navy – as it was entitled to do – interrupted his studies and sent him to Pensacola in Florida for flight training. He opted for single-seat rather than multi-engine aircraft because he “didn’t want to be responsible for anyone else’’ by having a crew. The Korean War broke out on 25 June 1950 and he gained his ‘wings’ soon thereafter. In view of the situation, his return to college was deferred and he was sent to the West Coast for additional training. In mid-1951 he was sent to the USS Essex to fly F9F Panthers with Fighter Squadron 51, one of the early ‘all jet’ carrier squadrons. Although he had been trained for air combat, most of his missions were low-level strikes against bridges, trains and armour. On 3 September 1951 he flew so low that he struck a cable and damaged one wing, but was able to nurse his stricken aircraft back over friendly lines before ejecting. In all, he flew 78 combat missions.

In early 1952 he returned to the USA. Rather than attend a military academy in order to receive a commission, he resigned from the Navy and resumed his studies at Purdue, where he met fellow student Janet Elizabeth Shearon. He was then 22 and she was 18; her father was a physician in Welmette, Illinois, and Janet was the youngest of three sisters. On graduating in 1955 with a degree in aeronautical engineering, he was recruited as a research pilot at the High-Speed Flight Station operated by the National Advisory Committee for Aeronautics at Edwards Air Force Base in the high desert of the San Gabriel mountains of California. On his drive west, Neil detoured to Wisconsin, where Janet was working, to ask her to marry him; she agreed to think it over. They were married on 28 January 1956, and their first home was a small cabin with neither electricity nor running water, off base among the Joshua trees and rattlesnakes of the Juniper Hills. This was ‘‘the most fascinating time of my life,” Armstrong later reflected. “I had the opportunity to fly almost every kind of high-performance airplane, and at the same time to do research in aerodynamics.” The X-15 was a sleek black rocket-powered aircraft which, in a zooming climb following release from a B-52, was able to rise above the bulk of the atmosphere. Armstrong first flew the X-15 in I960, and in all he tested the aircraft seven times. His highest altitude was 207,000 feet, but this did not set a record. However, “above 200,000 feet, you have essentially the same view you’d have from a spacecraft when you are above the atmosphere. You can’t help thinking, by George, this is the real thing. Fantastic!’’ Armstrong helped in the development of the advanced flight control system for the vehicle. Like many at Edwards Air Force Base, he felt that the route into space would be by ever faster aircraft. When a NASA recruiter arrived at Edwards seeking Project Mercury ‘astronauts’ to ride in a ‘capsule’ that would parachute into the ocean, Armstrong was not interested. ‘‘We reckoned we were more involved in space flight research than the Mercury people, but after John Glenn orbited Earth three times in a little less than 5 hours on 22 February 1962, we began to look at things a bit differently.” In April 1962 NASA sought its second intake of astronauts. The first group had all been military test pilots. Although test pilot experience was still a requirement, civilians were now allowed to apply. Candidates had to have a college degree in an engineering subject, be no taller than 6 feet, and not exceed 35 years of age at the time of selection. Armstrong was blond, blue eyed, 165 pounds, 5 feet 11 inches tall, and had a few years to spare. He submitted his application. Of all the civilian applicants, he had by far the greatest experience. On 17 September he was announced as one of nine new astronauts. By the end of the year, the Armstrongs had relocated to El Lago, a housing development near the Manned Spacecraft Center at Clear Lake, which, being neither a lake nor clear, was an alluvial mud flat on Galveston bay about 30 miles from Houston.

Although about the same age as his group, Armstrong looked much younger. He did not match the popular image of an astronaut as a hard-drinking, adrenaline – primed partier. In fact, he was notable for not jogging or doing pushups (which the others did eagerly in pursuit of physical fitness) and his social life was spent with his family.

Each astronaut ‘tracked’ some aspect of the space program to ensure that the astronauts’ points of view were represented, and to report back in order to enable the astronaut office to be aware of everything that was going on. While a civilian research test pilot at Edwards, Armstrong had been involved in the development of new flight simulators, whereas military test pilots merely used them. It was logical, therefore, that he should be assigned to monitor the development of trainers and simulators.

Deke Slayton opted to fly the military pilots of the second group ahead of the civilians. After jointly backing up Gemini 5 Armstrong and Elliot See were given separate assignments, with Armstrong commanding Gemini 8 and See commanding Gemini 9. On 16 March 1966 Armstrong and Dave Scott were launched into orbit and, after a perfect rendezvous with an Agena target vehicle, they achieved the first docking between vehicles in space. Unfortunately, several minutes later, and now in

The Apollo 11 crew

On 9 April 1959 NASA announced the recruitment of its first group of astronauts: (left to right, seated) Leroy Gordon Cooper Jr, Virgil Ivan ‘Gus’ Grissom, Malcolm Scott Carpenter, Walter Marty Schirra Jr, John Herschel Glenn Jr, Alan Bartlett Shepard Jr and Donald Kent ‘Deke’ Slayton.

On 17 September 1962 the second group was announced: (left to right, standing) Edward Higgins White II, James Alton McDivitt, John Watts Young, Elliot McKay See Jr, Charles ‘Pete’ Conrad Jr, Frank Frederick Borman II, Neil Alden Armstrong, Thomas Patten Stafford and James Arthur Lovell Jr.

On 17 October 1963 NASA announced its third group of astronauts: (left to right, standing) Michael Collins, Ronnie Walter Cunningham, Donn Fulton Eisele, Theodore Cordy Freeman, Richard Francis Gordon Jr, Russell Louis ‘Rusty’ Schweickart, David Randolph Scott and Clifton Curtis Williams; (seated) Edwin Eugene ‘Buzz’ Aldrin Jr, William Alison Anders, Charles Arthur Bassett II, Alan LeVern Bean, Eugene Andrew Cernan and Roger Bruce Chaffee.

Buzz Aldrin 9

darkness, the docked combination became unstable. Thinking that the fault must be associated with the Agena they undocked, only to find themselves in an accelerating spin owing to the fact that one of their thrusters was continuously firing. By the time the rate of spin had reached one rotation per second, ‘tunnel vision’ had set in and a black-out was imminent, but Armstrong was able to regain control by shutting off the primary attitude control system and switching to the thrusters designed for use during atmospheric re-entry, which in turn necessitated an emergency return, which was carried out successfully.

At the time of Apollo 11, the Armstrong family comprised Neil and Jan, and sons Ricky, aged 12, and Mark, 6.

LUNAR SURFACE ACTIVITY

Because the astronauts who landed on the Moon would be required to act as field geologists, a series of lectures and laboratory exercises were given in 1964 by the US Geological Survey (USGS) in a ramshackle shed of Second World War vintage at Ellington Air Force Base, which served as the airport for the Manned Spacecraft Center. On being introduced to the vocabulary of geology and basic mineralogy, the astronauts were taught how to describe rocks and to characterise a geological setting in terms of the granularity and bearing strength of its surface. Some of the astronauts – mainly those of the first group who were still active,[10] but also some of the second group – argued that there was no requirement for such training because the rocks they returned would be studied by the scientists. But other members of the second group and most of the third group, aware that they were unlikely to be assigned the first landing, looked ahead to the later missions on which science was certain to be a significant factor and reasoned that by taking the subject seriously they would improve their chances of a flight assignment.

The first geology field trip was to the Grand Canyon, incised into the Arizona Plateau by the Colorado River to a depth of some 6,000 feet. Viewing the strata exposed in the canyon wall was undoubtedly awe inspiring, but most of it was sedimentary and (the nomenclature for the lunar features notwithstanding) there were no rivers on the Moon. Later trips included Meteor Crater in Arizona, which seemed more relevant because the Moon was pocked by craters. Since there was at that time no consensus as to whether lunar craters were formed by impacts or by volcanism, trips were also made to a wide variety of volcanic features across the American southwest. Jack Schmitt, who joined NASA in 1965 as one of the first group of scientist-astronauts, and had a doctorate in geology from Harvard, was assigned to assist in geological training. He encouraged Armstrong and Aldrin to find time to make field trips. At a volcanic field near Cinder Lake in Arizona, the Astrogeology Branch of the USGS blasted a simulated lunar landscape based on a picture of a potential landing site taken by a Lunar Orbiter. Geologists then made ‘traverses’ wearing training space suits to evaluate procedures, test the tools that the astronauts were to employ, and determine what could reasonably be done in the time

Using a mockup of the LM hatch, porch and upper ladder. Buzz Aldrin undergoes one-sixth gravity training in a KC-135 on 10 July 1969Г

available to the first moonwalk. A crude LM was constructed as a perch from which to make visual observations. On his Mercury mission, Wally Schirra had been given an off-the-shelf Hasselblad 500C camera manufactured by the Victor Hasselblad Company in Sweden. NASA later asked the company to supply it with a modified version. The mechanism had to be capable of 5,000 ‘working cycles’ in Earth’s atmosphere, in pure oxygen, and in a vacuum; accommodate a magazine with a capacity of 160 exposures of 70-millimetre ‘thin’ film; and incorporate an electric motor to advance the film.[11] This camera was introduced on Gemini, and carried over to Apollo. The geologists conducted tests using a Hasselblad 500EL Data Camera configured for use by a suited astronaut, notably with its view sight deleted. The results were studied to determine how much of what was known of the terrain could be inferred from just the visual observations and photographs. The trials, conducted early in 1968, were led by Arnold Brokaw, chief of the surface planetary exploration section of the Astrogeology Branch. The conclusions were fed to Houston by Eugene M. Shoemaker, the branch chief, who was seconded to NASA. Shortly prior to the mission, Brokaw visited Armstrong to emphasise the value of photographing rocks, irrespective of whether these were sampled: ‘‘ft is important to us how a rock got where it is, how and where it lay, how it relates to other things in the area; we can determine a lot about its mineralogy simply from photographs.” Aldrin was inspired by geology, because it ‘‘opened my eyes to the immensity of time’’. Collins was not, ‘‘f hate geology – maybe that’s why they won’t let me get out on the Moon.’’ Armstrong, displaying an impishness worthy of Pete Conrad, later admitted that he had been ‘‘very tempted to sneak a piece of limestone up’’ and place it into a rock box as a sample, to see what the scientists would make of it.

The training for lunar surface activities was undertaken in Building 9 of the Manned Spacecraft Center campus, where there was a mockup LM. The astronauts suited up and donned all the extravehicular paraphernalia and, while attended by technicians from the crew systems division and the suppliers of the miscellaneous apparatus, they tested egress and ingress procedures, surface sampling tools, and the deployment of the scientific packages. The scientific community wanted the maximum work from Armstrong and Aldrin while they were on the lunar surface. Each task was timed during training, and integrated into the overall time line. A significant milestone was attained on 18 June 1969 by a full ‘walk through’ which included deploying the EASEP instruments. However, while the technical fidelity was high, this training was done in full Earth gravity. To familiarise themselves with lunar gravity – which is one-sixth that of Earth – the astronauts flew in a KC-135 aircraft (the military version of the Boeing 707) with its cabin deck cleared and padded. This aircraft would fly a precise arc, zooming, cresting and falling in order to simulate the desired gravitational load. During the climb the suited astronaut was held in position by technicians, and when the desired gravity was reached he had to

Neil Armstrong and Buzz Aldrin rehearse ‘documented’ (photographed) sampling using a scoop, a gnomon and individual sample bags.

Buzz Aldrin, having deployed the SWC.

Neil Armstrong starts to deploy the LRRR.

Buzz Aldrin documents the site with a panoramic sequence around the horizon.

The simulation over, Neil Armstrong prepares to ascend the ladder.

set up, conduct the test and then be restrained once more against the load of three gravities as the aircraft pulled out of its dive. The cabin was voluminous, but with technicians, film crew and Air Force supervisors lending assistance it soon became crowded. The aircraft would make several dozen arcs over a period of hours, flying a roller-coaster path through the sky. Inevitably someone would vomit.3 While this training was valuable, the fact that it simulated lunar gravity for no more than 30 seconds per time meant that it was possible only to test specific tasks, such as using a pair of tongs to lift a rock and pop it into a bag. To rehearse long sequences of tasks, systems using cables and pulleys were built – in some cases with the astronaut operating at an angle against a tilted surface. As Armstrong observed of these ‘Peter Pan’ rigs: ‘‘You had the feeling of being able to jump very high – a very light feeling. You also had the feeling that things were happening slowly, which indeed they were. It was a sort of floating sensation.’’ On the other hand, he was confident, ‘‘The lunar setting will become a very easy place to work, I think.’’

ORBIT REFINEMENT

Collins terminated the orbital rate and adopted an inertial attitude to undertake the P52 platform alignment in preparation for the forthcoming LOI-2 manoeuvre. As a contingency against a total loss of communications, McCandless read up the data for two transearth injection manoeuvres: one in case the LOI-2 burn failed to occur, and the other in case it succeeded and contact was then lost. In both eventualities, the LM would be ditched prior to leaving orbit.

Meanwhile, it had been found that the anomalous decrease in the pressure in the nitrogen tank of Bank-B during the LOI-1 burn had occurred only while the system was active, which prompted the speculation that it was merely a thermal effect that made the orifice of the solenoid valve open wider on Bank-B than on Bank-A, thereby increasing the nitrogen flow rate (in other words, there was no external leak). The engine could be operated in single-bank mode; the dual-bank mode was to provide redundancy against one bank failing and shutting down the SPS. As the pressure of the nitrogen tank in Bank-B was now stable and was well above the ‘red line’ value of 400 psi (below which it would be incapable of holding the propellant feed valves open), it was decided to conserve this tank in order to retain redundancy against the total loss of Bank-A. McCandless relayed the decision to make the LOI-2 burn in single-bank mode using Bank-A, then as they approached the limb he gave the formal go-ahead to attempt the burn. The attitude of the spacecraft placed them ‘heads down’ in order to point the sextant towards space, and once they were on the far side Collins took a star sighting on Denebola to confirm their attitude.

When Apollo 8 and Apollo 10 had executed LOI-2, they had entered more or less circular orbits at 60 nautical miles. However, when the time came to perform the transearth injection manoeuvre, the gravitational perturbations of the mascons had transformed their paths into ellipses ranging between 54 and 66 nautical miles. Although this did not compromise Apollo 8’s objectives, if a landing had been tried on Apollo 10, the ground track would have been displaced several miles from that intended. In the case of Apollo 11, however, it was essential for Eagle to fly on course and, for the rendezvous, for Columbia to be waiting in as circular an orbit as possible. On the previous missions, the longitude of perilune induced by the perturbations had been about 100°E. The flight dynamics team had calculated that if the post-LOI-2 orbit were to have a given ellipticity and a perilune at 85°W, the mascons would tend to circularise the orbit. The option of having Columbia fire its engine to recircularise its orbit shortly prior to rendezvous was dismissed as a waste of propellant. Furthermore, it was arranged that as the Moon slowly rotated on its axis, the plane of the spacecraft’s orbit would drift such that when Eagle made its descent its ground track would intersect the landing site. At the time of the LOI-2 manoeuvre the combined mass of the vehicles was 71,622 pounds. The 17-second burn was to start at 080:11:36, and achieve a retrograde delta-V of 159.2 feet per second for a spacecraft velocity of 5,364 feet per second in order to revise the orbit to 53.7 by 65.7 nautical miles.

As they waited, they entered sunlight, and Collins noticed lots of little bright spots on the LM reflecting the light. ‘‘The poor old LM’s contaminated – it’s got urine particles all over it! By the way the light’s shining, they look yellow. You know, I guess everything else has boiled off and it’s left a little solid deposit.’’

‘‘Wait until the ‘forward contamination’ people hear about that!’’ said Aldrin. ‘‘There will be no more urine dumps on the way to the Moon; those fellows will have to store it all in a nice little bag.’’

Ignition was precisely on time. Collins was timing it using a stopwatch, and if the engine did not shut down on time they would intervene. Even a 2-second over run would slow them sufficiently to cause their trajectory to dip dangerously close to the surface during the near-side pass, but cutoff was as planned. Armstrong asked the computer for the new orbital parameters. “66.1 by 54.4 – you can’t beat that!”

“That’s about as close as you’re going to get,’’ Collins agreed.

With the spacecraft in a 2-hour orbit, Mission Control would receive telemetry for about 75 minutes. This was more than 50 per cent of the orbital period because, at an altitude of about 60 nautical miles, the vehicle was in line of sight for several minutes beyond the 90-degree angle as measured from the centre of the lunar disk.

As before, Armstrong initiated a 180-degree roll, as a preliminary to resuming a pitched-down attitude.

“While this thing’s rolling over, I’m going to take a pee,’’ Collins announced. On venting the urine to space, he pondered how long it would take before its orbit decayed and it struck the surface – more contamination of the lunar environment! As Armstrong began the pitch manoeuvre, Collins noted that they had missed out on a long-lens picture of Earthrise the first time around, and had been too busy the second time. “Gee, it’s too bad that we can’t stop right here and observe the Earth come up.’’

“We probably can do it, if we stop it right here,’’ Armstrong noted. “That is, if you want to spend the gas.’’

“That’s the only trouble,’’ Collins mused, “the doggone gas.’’

“Why don’t we stop it?’’ prompted Aldrin.

“Okay!’’ said Collins.

Armstrong decided to adopt an inertial attitude that would put Earthrise in one of the windows and also enable the high-gain antenna to lock on. In commanding the manoeuvre, he selected the wrong direction. “Oh, son of a gun!’’ he chuckled. “We are going backwards. Oh, well.’’

“Dummkopf!’’ said Aldrin.

“Neil, pitch down,” encouraged Collins.

“Prior planning prevents poor performance,’’ recited Aldrin.

“Is that right, Buzz?’’ asked Armstrong.

“Where’d you ever hear that one, Buzz?’’ Collins demanded.

“I can’t think,’’ said Aldrin.

A few minutes later, Collins exclaimed, “Here’s the Earth. Hey, I’ve got the view over here.’’

John McLeaish, who had taken over as the Public Affairs Officer, informed the waiting world that both Goldstone and Hawaii had acquired Apollo 11 on time, an indication that the burn had gone to plan. During the far-side passage, the shift had changed in Mission Control. Although Milton Windler’s Maroon Team had taken the White Team’s slot in the daily cycle to give Kranz’s controllers a 32-hour rest prior to tackling the powered descent, Charlie Duke had opted to work the coming shift. Armstrong reported that the LOI-2 burn had been nominal. It was all strictly business. For most of this near-side pass there was little communication with the spacecraft. “This pass is fairly quiet,’’ noted McLeaish almost apologetically. “No doubt the crew is occupied with preparations to enter the LM, which we expect to occur over the far side of the Moon.’’ Aldrin was to spend 2.5 hours transferring items into the LM, and methodically configuring the switches in preparation for the next day’s operations.

About 50 minutes into the pass, Duke prompted for a progress report. “We’re wondering if you’ve started into the LM yet?’’

“We have the CSM hatch out, the drogue and probe removed and stowed, and are just about ready to open the LM hatch now,’’ replied Armstrong. And then, a few minutes later, “Okay, Charlie. We’re in the LM.’’

McLeaish observed, “They appear to be a little ahead on their time line.’’

After making the post-manoeuvre P52 platform check, Collins also decided to get ahead by adopting the attitude for the P22 landmark tracking that he was to do on revolution 4 of Alfa 1, the small bright crater on the Foaming Sea, with the objective of measuring its elevation relative to the intended landing site.

During the far-side pass, Armstrong shaved using cream and a razor.

“I see Earth,’’ said Aldrin, as the spacecraft rounded the limb on revolution 4, “but it’s a lousy picture.’’

Goldstone and Hawaii both acquired Apollo 11, and Duke put in a call. Collins told him that he was set up for the P22 landmark tracking. “Ho-hum, ho-hum. I only got set up for this thing about an hour early,’’ he chastised himself, provoking laughter on board. As they flew overhead, Collins made five sightings of Alfa 1 at timed intervals. On completion, he quipped to Armstrong, “Well, that’s one P22 out of the way. Ho, ho, ho!’’ When the sightings were processed, it was calculated that the landmark was 500 feet above the landing site – knowledge that would assist Armstrong and Aldrin to monitor their approach to the point at which they were to initiate the powered descent.

While in the landmark tracking attitude, the spacecraft had been unable to point its high-gain antenna at Earth, and the downlink using one of the omnidirectional antennas was noisy. However, this had no impact because, as McLeaish observed, “So far on this pass we’ve had just one contact with Apollo 11, and that was Mike Collins at AOS.’’

Duke called, “You can proceed to sleep-attitude now.’’

“Let’s hold this attitude a bit,’’ Aldrin prompted Collins, “I want to look at the PDI approach. Man, this is really something. To see our approach into the landing site, you’ve got to watch it through the LM’s window.’’

“Houston,’’ Collins replied, “we’re holding inertial for a little while to study the approach to the landing zone.’’ On looking out for himself, he said to Armstrong, “There go Sidewinder and Diamondback – God, if you ever saw check points in your life, those are it.’’

“But we don’t get to see them,’’ Armstrong noted.

“You don’t?’’

“No, we’re yawed face-up.’’

Since their previous inspection, the terminator line had migrated westward sufficiently to reveal their landing site. “I think I can see it,’’ Aldrin called with delight. “Yes, I can! I’ve got the whole landing site.’’ He depressed his Push-to – Talk, “Houston, this is Eagle. I can see the entire landing area.’’ While this was the first use of the call sign, the communication was via his umbilical to Columbia’s system.

“Roger, Buzz,’’ replied Duke matter-of-factly.

With the Sun barely above the horizon at the landing site, the lengthy shadows were highlighting the topography sufficiently to make the mildest of surface relief appear very rough. “Boy, that sure is eerie looking,” Aldrin mused.

“Isn’t that something?” said Armstrong, viewing from the command module. This was a significant moment in the mission.

“f missed taking a picture of it!’’ exclaimed Aldrin. ft did not matter, he would be able to take one later.

“Shall we manoeuvre to the sleep attitude?’’ Collins asked.

“All right,’’ Armstrong agreed.

Although the LM’s power margin was narrow, the flight plan included a test of its VHF and S-Band radio systems. “Houston, Apollo 11 – Eagle – over,’’ called Aldrin directly.

“Roger, Eagle,’’ replied Duke.

“f’ll go ahead with the sequence camera checkout,’’ said Aldrin. “f’m still on low voltage taps, and f assume there’s no problem doing that.’’

“That’s affirmative,’’ Duke confirmed.

Twenty minutes later, having tested the Maurer 16-millimetre camera, Aldrin announced, “Eagle is powering down. Out.’’

Just after Apollo 11 passed ‘over the hill’ Aldrin rejoined his colleagues, and Collins suggested that they need not reinstall the probe and drogue overnight.

‘‘ft’s okay with me,’’ agreed Armstrong.

‘‘How’s that going to affect sleeping?’’ Aldrin wondered.

‘‘f’d rather sleep with the probe and drogue than have to dick about with them in the morning,’’ Collins insisted. As long as they could squeeze their legs around the hardware stowed under the couches, there ought to be room to sleep. With the decision made, he installed the command module hatch over the tunnel.

‘‘ft’s amazing how quickly you adapt,’’ said Collins. ‘‘ft doesn’t seem weird at all to me to look out there and see the Moon going by, you know?’’ This prompted general laughter.

While Apollo 11 was behind the Moon, Owen Garriott took over as CapCom from Duke for the remainder of the Maroon Team’s shift. On the near-side pass, Collins undertook miscellaneous chores, then prepared their suppers. Over the far side once again, Aldrin, who had stood ‘watch’ the previous night, offered to do so again, ‘‘Why don’t you guys sleep underneath tonight? f’ll sleep top-deck.’’

‘‘Unless you’d rather sleep up top, Buzz,’’ Collins said, ‘‘but you guys should get a good night’s sleep before going in that damn LM. Which would you prefer? fs that probe and drogue going to be in your way over there?’’

Aldrin took a look. ‘‘No, f don’t think so.’’

ft was decided to follow the flight plan, and have Armstrong and Aldrin sleep in the hammocks. ‘‘Well,’’ said Collins, ‘‘f think today went pretty well. ff tomorrow and the next day are like today, we’ll be safe.’’

‘‘We’re ready to go to bed,’’ announced Garriott when the spacecraft appeared around the trailing limb on revolution 6.

‘‘We’re about to join you,’’ Collins replied.

With that, communications ceased. However, prior to retiring, Armstrong and

Aldrin, seeking to ‘get ahead’, prepared the clothing and equipment they would need the next day. Collins had the satisfaction of seeing his crewmen fall asleep before he himself settled down in the left couch.

In Houston, Glynn Lunney’s Black Team took over for the ‘graveyard’ shift, and his flight dynamics team analysed the tracking by the Manned Space Flight Network in order to verify that the spacecraft’s orbit was evolving in the manner designed to counteract the mascon perturbations. On the evening of Saturday, 19 July, Gene Kranz attended a Mass ‘‘to pray for wise judgement and courage, and pray also for my team and the crew’’. The astronauts’ wives endeavoured to find solitude in which to contemplate what Armstrong and Aldrin were to attempt the next day.

TOURING

On Tuesday, 12 August, Armstrong, Aldrin and Collins presented a 2-hour press conference in the packed Auditorium of the Manned Spacecraft Centre. In addition to answering questions from reporters, they provided spontaneous commentary as photographs were projected and the 16-millimetre movies were played.

At 5 am the next day the three families, together with a flock of Public Affairs people, boarded an aircraft of the Presidential Fleet at Ellington Air Force Base. The first stop was New York, landing at La Guardia, where they were greeted by Mayor John Lindsay and flown by helicopter to the city for a motorcade. The astronauts rode in one open limosine, their wives in a second, and their children in a third. Thousands of people lined the streets. Others waved from windows. Flags were ubiquitous, and ticker tape rained down from the skyscrapers. The cheering in the canyons between the buildings was incredible. At City Hall, Lindsay formally welcomed his guests, and then each astronaut delivered what was to be the first of many speeches to enthralled audiences around the world. After keys to the city had been presented, there was a short drive to the United Nations building and another round of speeches, followed by a helicopter flight back to the airport. When their aircraft landed in Chicago they were received by Mayor Richard Daley, were given an even more rapturous motorcade, accepted more keys and returned to the airport

Aldrin’s core temperature would remain elevated for several months, apparently unrelated to the mission.

to fly on to Los Angeles where, after being welcomed to the City of Angels by Mayor Sam Yorty, they took a helicopter to the Century Plaza Hotel, where they were to spend the night. Having freshened up, the astronauts and wives (minus their children) were taken to the Presidential Suite, where they were received by Richard Nixon, his wife Patricia and their daughters Julie and Tricia. After this private welcome, Nixon led them all into a ballroom for a State Banquet arranged in their honour. The tables appeared to stretch as far as the eye could see. There were thousands of guests and, of course, the US television networks. Catching the astronauts unaware, Vice President Spiro T. Agnew presented each man with the Presidential Medal of Freedom, the nation’s highest civilian honour. Also present were Gene Kranz and his wife Marta, and Steve Bales of the White Team. Bales accepted a Medal of Freedom on behalf of all the flight controllers. After dinner, the astronauts’ families accompanied Nixon’s party to a private room for a round of picture taking. Finally, after a very long day, they were shown to their rooms for some well-deserved sleep.

Houston welcomed the Apollo 11 crew home on Saturday, 16 August, with a parade and a star-studded night of entertainment at the Astrodome that featured a performance by Frank Sinatra, who sang Fly Me To The Moon.

On Saturday, 6 September, it was time for ‘home town’ visits. For Armstrong, this was Wapakoneta, Ohio, and for Aldrin it was Montclair, New Jersey. Although Collins’s parents had purchased a house in Alexandria on the Potomac while he was a teenager, he did not consider this to be his home. Instead, he opted for New Orleans, Louisiana, the home of the congressman who had nominated him for West Point. On Monday, 15 September, they visited the US Post Office in Washington, DC, where they returned an envelope that bore a stamp drawn up to commemorate the mission, which they had ‘cancelled’ during the transearth coast. The next day, Tuesday, 16 September, they attended a joint session of Congress, where first Armstrong, Aldrin, and finally Collins read an address, each receiving a rousing ovation.

Planning for the Giant Step Apollo 11 Goodwill Tour began in early September and involved NASA, the White House and the State Department. Armstrong, Aldrin and Collins were advised by Frank Borman, the astronaut with the most experience of touring. An aircraft of the Presidential Fleet left Andrews Air Force Base near Washington on the morning of Monday, 29 September, flew to Ellington Air Force Base to pick up the astronauts, their wives, and their many support staff, and then set off on a hectic schedule, each stop of which involved an official welcome, a motorcade, a press conference, an official dinner or two, and the giving and receiving of gifts.

Italian coverage of the mission had celebrated the fact that Collins was born in Rome. When the tour reached Italy, Collins was summoned to his place of birth, where he unveiled a 3-foot marble plaque that bore an inscription which began: ‘‘In this house on 31 October 1930 was born Michael Collins, intrepid astronaut of the Apollo 11 mission’’, which was all very well, but then, unfortunately, continued with ‘‘first man on the moon’’. The special treat for his wife, a Catholic, was the audience with Pope Paul VI in the Vatican.

Chicago welcomes the Apollo 11 crew.

Table: Giant Step Apollo 11 Goodwill Tour

Date of visit

Place

29-30 September 1969

Mexico City, Mexico

30 September-1 October

Bogota, Columbia

1 October

Brasilia, Brazil

1-2 October

Buenos Aires, Argentina

2-4 October

Rio de Janeiro, Brazil

4-6 October

Las Palmas, Canary Islands

6-8 October

Madrid, Spain

8-9 October

Paris, France

9 October

Amsterdam, Holland

9-10 October

Brussels, Belgium

10-12 October

Oslo, Norway

12-14 October

Cologne, Bonn and Berlin, West Germany

14-15 October

London, United Kingdom

15-18 October

Rome, Italy

18-20 October

Belgrade, Yugoslavia

20-22 October

Ankara, Turkey

22-24 October

Kinshasha, Zaire

24-26 October

Tehran, Iran

26-27 October

Bombay, India

27-28 October

Dacca, East Pakistan

28-31 October

Bangkok, Thailand

31 October

Perth, Australia

31 October-2 November

Sydney, Australia

2-3 November

Agana, Guam

3-4 November

Seoul, South Korea

4-5 November

Tokyo, Japan

5 November

Elmendorf, Alaska

2-3 December 1969

Ottawa and Montreal, Canada

On 20 July 1970, to mark the first anniversary of the lunar landing, Armstrong, Aldrin and Collins flew to Jefferson City, Missouri, where Columbia was on show during its tour of the USA. By now the three men were growing apart, they were no longer a crew, just three amiable strangers who had made a brief, but momentous, journey together.14

Columbia is now a permanent exhibit at the National Air and Space Museum in Washington, DC.