VEHICLE PREPARATION

Apollo spacecraft CSM-107 was built by North American Rockwell at its plant at Downey, California. The conical command module was 11 feet 5 inches high, 12 feet 10 inches in diameter, and provided a habitable volume of 210 cubic feet. The cylindrical service module was 12 feet 10 inches in diameter and 24 feet 7 inches tall. Radial beams divided it into a central tunnel, which contained tanks of helium pressurant, and six outer compartments, four of which held propellant tanks, one contained the fuel cell system and the sixth was unused.9 The systems tests on the individual modules were completed on 12 October 1968, and the integrated tests on 6 December. The modules were flown to the Cape on 23 January 1969 by a ‘Super Guppy’ aircraft of Aerospace Lines. They were mated on 29 January, passed their combined systems testing on 17 February and altitude chamber tests on 24 March. At the Grumman Aircraft Engineering plant at Bethpage on Long Island, LM-5 completed its integrated test on 21 October 1968, and its factory acceptance test on 13 December. The ascent stage arrived at the Cape on 8 January 1969 and the descent stage on 12 January. After acceptance checks, the stages were mated on 14 February, passed their integrated systems tests on 17 February, and altitude chamber tests on 25 March. Overall, the vehicle stood 22 feet 11 inches tall. The descent stage was 10 feet 7 inches high and had a diagonal span of 31 feet across its foot pads. Two layers of parallel beams in a cruciform shape gave it a central cubic compartment (housing the descent engine), four cubic side compartments (each housing a propellant tank) and four triangular side compartments (carrying apparatus the astronauts would require during their moonwalk). The ascent stage comprised a pressurised crew compartment and midsection with a total volume of 235 cubic feet, and an unpressurised aft equipment bay.

The 138-foot-long, 33-foot-diameter S-IC first stage of the sixth launch vehicle in the Saturn V series was fabricated by Boeing at the Michoud Assembly Facility in Louisiana, and moved in a horizontal configuration by barge up the Intracoastal Waterway to the Mississippi Test Facility, arriving on 6 August 1968. It was then shipped around the southern tip of Florida, to the Kennedy Space Center. On arrival on 20 February 1969 the 24-wheeled trailer bearing the stage was offloaded by a

The fuel cell system had three fuel cells, two tanks of cryogenic oxygen and two tanks of cryogenic hydrogen, and provided 28 volts.

prime mover and driven into the ‘low bay’ annex of the Vehicle Assembly Building. The S-II second stage had the same diameter as the S-IC, but was only 81 feet 6 inches in length. After assembly at the North American Rockwell plant at Seal Beach in California, it was shipped via the Panama Canal to the Mississippi Test Facility, where it was tested on 3 October 1968. On arriving at the Cape on 6 February 1969, the S-II, complete with its 18-foot-tall aft interstage ‘skirt’, was driven on its 12­wheeled trailer to the low bay. After tests at the Douglas Aircraft Corporation facility in Sacramento, California, the S-IVB third stage was flown to the Cape by ‘Super Guppy’ on 19 January 1969. In all, some 12,000 companies across America participated in the production of the launch vehicle.

The principal structure of the Vehicle Assembly Building was 718 feet long, 517 feet wide and 525 feet tall. Its internal volume of almost 130 million cubic feet required a 10,000-ton air-conditioning system to prevent a ‘weather system’ with its own rainfall developing. The cavernous interior provided four ‘high bays’ for simultaneous assembly of Saturn V vehicles. Each pair of bays shared a bridge crane located 462 feet above the floor. The operator was in walkie-talkie contact with his colleagues at the work sites, and used a computer to move loads of up to 250 tons with a tolerance of 1/228th of an inch. Mobile Launch Platform 1 was a two-level steel structure 160 feet long, 135 feet wide and 25 feet high. At one end was the Launch Umbilical Tower, which rose 398 feet above the deck, and offset towards the other end of the platform was a 45-foot-square hole to allow launch vehicle exhaust to pass through. On 21 February the S-IC was hoisted, turned to vertical, and clamped to the supporting arms, one on each side of the hole. The S-II was added on 4 March. The next day the 260-inch-diameter S-IVB, now with its flared aft skirt fitted, was added, and the Instrument Unit containing the guidance system for the launch vehicle (which had arrived on 27 February) was placed on top. The 28-foot – long truncated-cone to house the LM and support the 154-inch-diameter CSM was fabricated at the North American Rockwell plant in Tulsa, Oklahoma, and delivered on 10 January. The integrated CSM, LM, adapter and launch escape system tower was referred to as the ‘spacecraft’ because it was the payload of the three-stage launch vehicle. Its addition on 14 April completed the ‘stack’. From the aperture of the F-1 engines of the first stage to the tip of the escape tower, the ‘space vehicle’, as the integrated launch vehicle and spacecraft was known, stood 363 feet tall. Nine hydraulically operated arms on the umbilical tower provided access to key sections of the vehicle.[17] The combined systems test of LM-5 was finished on 18 April. The integrated systems test of CSM-107 was completed on 22 April, and the spacecraft was electrically mated with the launch vehicle on 5 May. The overall test of the space vehicle was accomplished on 14 May.

The 6-million-pound transporter for the mobile launch system was 131 feet long,

VHF ANTENNA(2)

TRANSFcR TUNNEL AND OVERHEAD HATCH

EVA ANTENNA

AFT EQUIPMENT BAY

REPLACEABLE ELECTRONIC ASSEMBLY

FUEL TANK (REACTION CONTROL)

REACTION CONTROL

INGRESS/EGRESS HATCH

CREW COMPARTMENT

LAND NG

PAD (4)

LUNAR SURFACE SENSING PROBE

A cutaway diagram of the two LM stages.

Launch Escape System (LES)

ty, ‘ у Command module (CM)

Service module (SM)

Spacecraft/LM adapter (SLA)

Lunar Module (LM)

Instrument Unit (IU)

S-IVB

From the point of view of the Saturn V launch vehicle, the ‘spacecraft’ comprises the Launch Escape System, the CSM, and the LM contained within the adapter.

– –

CSM-107 is mated with the adapter of the Apollo 11 launch vehicle on 11 April 1969.

The space vehicle for Apollo 11 is ‘stacked’ in the Vehicle Assembly Building (clockwise from top left): a crane hoists the S-IC on 21 February; the S-II is added on 4 March; the S-IVB is added on 5 March; and the spacecraft is added on 14 April 1969.

On 20 May 1969 the Apollo 11 space vehicle starts up the incline to Pad 39A.

On 22 May 1969 the Mobile Service Structure is driven up to Pad 39A.

114 feet wide, and travelled on four independent double-tracked crawlers, each ‘shoe’ of which weighed about 1 ton. The access road was comparable in width to an 8-lane highway. It comprised three layers, averaging a total depth of 7 feet. The base was a 2-foot-6-inch-thick layer of hydraulic fill. Next was a 3-foot-thick layer of crushed rock. This was sealed by asphalt. On top was an 8-inch layer of river rock to reduce friction during steering. The vehicle was operated jointly by drivers in cabs located on opposite diagonals, who communicated by intercom. On 20 May the Apollo 11 space vehicle was driven to Pad A, the southernmost of the two launch sites of Launch Complex 39. Because the concrete pad was built above ground level to accommodate a 43-foot-tall flame deflector in the flame trench, the transporter had to climb a 5 per cent gradient while tilting the platform such that the tip of the launch escape system tower did not diverge more than 1 foot from the vertical alignment. Once in position, hydraulic jacks lowered the platform to emplace it on six 22-foot-high steel pedestals on the pad. In all, the ‘roll out’ lasted 6 hours. In its final orientation, the umbilical tower stood towards the north, with the axis of the central trench aligned north and south. After the transporter had withdrawn, the flame deflector was rolled in beneath the hole in the platform. On 22 May, the transporter collected the Mobile Service Structure from its parking place alongside the access road, and delivered it to the pad. The flight readiness test was completed on 6 June. The countdown demonstration test started on 27 June; the ‘wet’ phase was completed on 2 July, and the ‘dry’ phase on 3 July. As Kurt H. Debus, Director of the Kennedy Space Center, once said in jest, ‘‘When the weight of the paperwork equals the weight of the stack, it is time to launch!’’