Preliminaries
LUNAR SURFACE EXPERIMENTS
During a meeting in the summer of 1964 at Woods Hole, Massachusetts, the Space Science Board of the National Academy of Sciences listed basic questions relating to the Moon that ought to be studied either by spacecraft placed into lunar orbit or by instruments emplaced on the lunar surface.
On 19 November 1964, after tests conducted on an aircraft providing one-sixth gravity established that astronauts would be able to offload scientific instruments from the descent stage of the LM onto the lunar surface, the Manned Spacecraft Center began to study how instruments might be powered. It was decided that the best source would be a radioisotope thermal generator (RTG) in which heat was converted by thermocouples into electricity. The Grumman Aircraft Engineering Corporation of Bethpage, New York, which was developing the LM, was asked to give some thought to how an RTG might be packaged and carried. Grumman was also asked to develop a prototype for a container in which to return to Earth samples of lunar material. This would require to be carried on the exterior of the vehicle, accessed while on the surface, loaded, hermetically sealed, transferred into the ascent stage, and later passed through the tunnel into the command module and stowed for the flight home.
In January 1965 NASA undertook a time-and-motion investigation in order to assess how best to use the limited time that would be available to the first Apollo crew to land on the Moon. In May, a preliminary list of surface experiments was drawn up, and George E. Mueller, Director of the Office of Manned Space Flight, initiated a two-phase procurement process: the definition phase was to be done in parallel by a number of companies, one of which would be selected to develop the hardware for flight. In June the Manned Spacecraft Center set up the Experiments Program Office within its Engineering Development Directorate to manage all experiments for manned spacecraft, and Robert O. Piland, formerly deputy manager of the Apollo Spacecraft Program Office, was selected to head it. On 7 June Mueller approved the procurement of the Lunar Surface Experiments Package (LSEP) and assigned responsibility for its development to the Experiments Program Office. It was to be an RTG-powered suite of instruments that had to be able to be deployed
by two men in 1 hour, and was to transmit data to Earth for 1 year. Overall, it was envisaged as a passive seismometer to monitor moonquakes; an active seismometer that would detonate calibrated explosive charges in order to seismically probe the shallow subsurface; a gravimeter to measure tidal effects that might shed light on the deep interior; an instrument to measure the heat flowing from the interior; radiation and meteoroid detectors; and an instrument to analyse the composition of any lunar atmosphere. The instruments would be electrically connected to a central station that would transmit to Earth. Mueller specified that the package should be available for the first landing mission. On 3 August NASA announced that Bendix Systems, TRW Systems and Space-General Corporation had each been given a 6-month contract worth $500,000 to propose designs. On 14 October NASA contracted the General Electric Company to supply the RTG under the supervision of the Atomic Energy Commission. An instrument to investigate any lunar magnetic field was added to the suite on 15 December. By early 1966 the instrument suite had been renamed the Apollo Lunar Surface Experiments Package (ALSEP). On 16 March NASA Administrator James E. Webb decided that, in view of the company’s experience in developing experiments for automated lunar spacecraft, Bendix of Ann Arbor, Michigan, would receive the contract to design, manufacture, test and supply four ALSEPs (three flight units and one in reserve), the first of which was to be delivered no later than 1 July 1967.
Homer E. Newell, Associate Administrator for Space Science and Applications, wrote to Mueller on 6 July 1966, “the highest scientific priority for the Apollo mission is the return to Earth of lunar surface material’’, with the position of each sample being carefully documented prior to sampling. Newell recommended that on the first moonwalk the astronauts start by collecting an assortment of readily accessible samples (a ‘grab bag’ in the vernacular of field geology), deploy the ALSEP, and end with a ‘traverse’ to collect a number of ‘documented samples’, utilising a range of tools, including core tubes.
By the autumn of 1966 the magnetometer was having serious developmental problems, and the central data-processor was in a critical state. At the end of the year, NASA headquarters suggested that an instrument on the second ALSEP be brought forward as a replacement for the magnetometer, but as the scientists said that the magnetometer would be required to properly interpret the data from the other instruments, it was decided to develop a simpler magnetometer as a stand-by. It was also necessary to consider the ‘fuel cask’ of plutonium-238 for the RTG. The cask gave structural support and thermal insulation to the fuel capsule: in the case of the SNAP-27 unit for the ALSEP this comprised 8.4 pounds of plutonium. On the Moon, an astronaut would require to remove the 500°C fuel capsule from the cask on the exterior of the LM and insert it into the thermocouple assembly. When simulations revealed flaws in this procedure, the design had to be modified, and after several launch failures unrelated to the Apollo program the cask had also to be ‘hardened’ to ensure that it would not spill its contents. The Manned Spacecraft Center established the Science and Applications Directorate in December, which took over the activities of the Experiments Program Office and, as Newell had long urged, put science on a par with engineering and operations. Wilmot N. Hess, formerly of the Goddard Space Flight Center, was appointed as Director of the Science and Applications Directorate, with Piland as his deputy.
On 4 January 1967 Christopher C. Kraft, Director of Flight Operations at the Manned Spacecraft Center, said that if a lunar landing was to involve two surface excursions, the first outing should facilitate lunar environment familiarisation, an inspection of the vehicle, photographic documentation and contingency sampling. The ALSEP should be deployed on the second outing, and be followed by a more systematic geological survey. Conversely, if only one excursion was planned, that mission should not be provided with an ALSEP since its deployment would use a disproportionate amount of the time. This rationale applied particularly to the first landing, when the mass saved by deleting the instruments would undoubtedly be able to be put to good use. It was also decided that the astronauts should be provided with a rough time line but be allowed to make real-time decisions; the surface operations must not be micro-managed by Mission Control, at least not on the first mission, when there would be so many unknowns and the people on the spot would be best positioned to make decisions. On 16 March NASA announced that 110 scientists, including 27 working in laboratories outside the USA, had been selected to receive lunar samples. In June, Apollo Program Director Samuel C. Phillips formed an ad hoc team to review the status of the magnetometer. It was concluded that while the technical problems were certain to be resolved, the instrument was unlikely to be ready for the first landing, which at that time was thought might occur in the latter part of 1968. Unfortunately, neither would the simpler magnetometer be ready for that date, so work on this was terminated. Leonard Reiffel, on Phillips’s science staff, recommended on 20 June that in view of the uncertainties concerning an astronaut’s ability to work in one-sixth gravity, “an uncrowded time line’’ would be “more contributory to the advance of science than attempting to do so much that we do none of it well’’.
By mid-September 1967, on the basis of the LM spending 22.5 hours on the lunar surface, the planners recommended that two excursions should be defined, but the second, to follow a sleep period, should not be listed as a primary objective. The decision on whether to conduct the second excursion – on which the ALSEP would be deployed – should be made on the basis of the astronauts’ performance during the first outing. However, one year later, on 6 September 1968, with the LM significantly overweight and the development of the RTG behind schedule, Robert R. Gilruth, Director of the Manned Spacecraft Center, recommended that the first landing should make a single excursion of 2.5 hours; the ALSEP should not be carried (as it could not function without the RTG); the high-gain antenna for the television should not be carried (instead, the 210-foot-diameter antenna at Goldstone in California could receive a transmission from a smaller antenna on the LM); and the geological activities be restricted to the ‘minimum lunar sample’. As Gilruth put it, “I’m sure all will agree that if we successfully land on the Moon, transmit television directly from the surface, and return with lunar samples and detailed photographic coverage, our achievement will have been tremendous by both scientific and technological standards.’’ However, Hess argued for a compromise in which, in view of the development problems of the ALSEP, a smaller package should be assigned to this
mission using instruments that would be easier to deploy, with the duration of the outing being open ended. On 9 October the Manned Space Flight Management Council, chaired by Mueller, agreed to the development of three lightweight experiments for the first landing mission – a solar-powered passive seismometer, an unpowered laser reflector, and a solar wind composition experiment that would be deployed and later retrieved for return to Earth. It was decided to carry the erectable antenna for the television transmission in case the time of the moonwalk did not coincide with a line-of-sight to Goldstone. The mass saved by not carrying the ALSEP would allow more fuel to be carried, and thereby increase the time available for the hovering phase of the descent. In effect, the first landing was to be an ‘operational pathfinder’ for its successors. On 5 November Bendix was told to make the three-instrument Early Apollo Surface Experiments Package (EASEP), which was to be shipped by mid-May 1969. On 6 December Phillips said that if the special tools under development for the geological investigation were ready, and if the astronauts had sufficient time to train in their use, they would be carried. One such item was a camera designed by Thomas Gold, an astronomer at Cornell University. In the early 1960s he had argued, on the basis of radar reflections, that the lunar surface was a thick blanket of extremely fine dust into which a spacecraft would sink without trace, and he maintained this position even after automated landers settled on firm ground. His camera was designed to take stereoscopic close-up pictures of the lunar dust.
FIRST MAN OUT
At the press conference in Houston on 10 January 1969 that introduced the crew of Apollo 11, a reporter enquired about which of them would be first to set foot on the Moon. Armstrong turned to Deke Slayton, Director of Flight Crew Operations, for guidance. Slayton said the matter had not yet been decided, but would be resolved by the training exercises. This ambiguity provoked much speculation in the media. The Gemini precedent was that a commander remained in the spacecraft while his copilot undertook extravehicular activity. In March, after the success of Apollo 9 increased the likelihood of Apollo 11 being assigned the first lunar landing, Kraft and George M. Low, Manager of the Apollo Spacecraft Program Office in Houston, had an informal discussion and both felt that since the first man to set foot on the Moon should be a Lindbergh-like figure, Armstrong would be preferable to Aldrin. On hearing a rumour that Armstrong had been chosen to egress first because (despite his being a former naval aviator) he was ‘‘a civilian’’, Aldrin discussed the issue with Armstrong, who said simply that since it was not their decision to make they must wait and see. Several days later, Aldrin went to Low and urged that a decision be made in order to facilitate training. This was a reasonable request, because one of Aldrin’s assignments in planning the mission was to refine procedural issues. Low and Kraft then met with Gilruth and Slayton, and they formally decided that the first man to exit the LM would be Armstrong, if only for the fact that the hatch was hinged to open towards the man on the right, meaning that the man on the left, the
Portable life-support system 17
commander, must exit first. When Slayton called the astronauts into his office, he cited the hinge on the hatch as the reason for Armstrong being first out and last in.1 On Monday, 14 April, Low announced to the press that if all went well, Armstrong would be the first man to set foot on the lunar surface.