Category The First Men on the Moon

SIGHTSEEING

As Apollo 11 started across the near side of the Moon, essentially in the equatorial plane and going east to west,[21] Armstrong called, ‘‘Apollo 11 is getting its first view of the landing approach. We’re going over the Taruntius crater.’’ This crater, some 30 nautical miles in diameter, was in the northwestern part of the Sea of Fertility. It had a flat floor and a complex of several low peaks at its centre. ‘‘The pictures and maps brought back by Apollos 8 and 10 have given us a very good preview of what to look at here – it looks very much like the pictures, but like the difference between watching a real football game and watching it on television.’’ The clarity of viewing by eye-ball far exceeded that of the pictures. ‘‘There’s no substitute for actually being here.’’

‘‘We’re going over the Messier series of craters now, looking vertically down on them,’’ announced Aldrin, ‘‘and we can see good-sized blocks in the bottom of

Messier-A.” This was a pair of craters, each about 6 nautical miles across. They had originally been known as Messier and Pickering, after French and American astronomers, but Pickering had been renamed Messier-A. The craters were notable for having produced a pair of divergent bright streaks that ran westward across the dark plain of the Sea of Fertility for a distance of about 60 nautical miles.

“And there’s Secchi,” added Armstrong. Named after an Italian astronomer, it was 14 nautical miles in diameter.

Having crossed the Sea of Fertility, they started across the Sea of Tranquility, where they were to land. “We’re going over Mount Marilyn at the present time,’’ said Aldrin. “That’s the ignition point.’’

“Jim’s smiling,’’ pointed out McCandless. Jim Lovell had named the peak after his wife.

Tom Stafford, who had reconnoitred this route on Apollo 10, explained to Jan Armstrong how the astronauts had assigned names they would readily remember to various features that they intended to use as landmarks. However, such names were unofficial. In 1961 the International Astronomical Union had specified how features were to be named: the flat plains would be named in Latin after states of mind, using the traditional (if inaccurate) terms oceanus (ocean), mare (sea), sinus (bay), lacus (lake) and palus (marsh); mountain ranges were to be named after their terrestrial counterparts; and craters were to be named after deceased scientists. In 1967 the IAU had met to discuss the assignment of specific names, but decided to defer naming until the next meeting in 1970. Meanwhile, of course, the crews of Apollo 8 and Apollo 10 had named some features. As the Moon was progressively transformed from an object studied by astronomers using telescopes into a world that was being explored by astronauts, it was inevitable the astronomers would lose ‘ownership’ over it.

As soon as the spacecraft appeared around the limb, the Manned Space Flight Network had begun to track it, to determine its orbit independently of the onboard navigation. ‘‘Our preliminary tracking data for the first few minutes shows you in a 61.6 by 169.5 orbit,’’ McCandless announced. At this time, the spacecraft was at an altitude of 127 nautical miles, and climbing towards apolune. The period of the elliptical orbit was 2 hours 8 minutes 37 seconds.

Armstrong called out landmarks on the line of approach. ‘‘We’re going over Maskelyne, Boot Hill, Duke Island, Maskelyne-W – our yaw-around checkpoint – and Sidewinder.’’ Boot Hill, Duke Island and Sidewinder were unofficial names. The crater Maskelyne, named after an Astronomer Royal, was 13 nautical miles in diameter. Maskelyne-W followed the IAU convention that small craters close to a ‘named’ crater were identified by a letter postfix. The astronauts had dubbed it the Wash Basin. ‘‘Now we’re coming up to the terminator. The landing site is well into the dark.’’ By design, they had arrived prior to sunrise at the landing site. The landing was 26 hours away, and with the Sun rising at 12 degrees per day, it would be some 10 degrees elevation at the time of landing. On the question of the colour of the surface, Armstrong noted that it had appeared tan in the vicinity of the subsolar point, where the Sun shone straight down, and had then faded to grey until, at the terminator, it was ashen.

While the spacecraft had been behind the Moon, its telemetry was taped and, on AOS, was downloaded to Earth. The flight controller responsible for the CSM promptly studied the performance of the SPS during the burn, and noticed that the tank pressure for the nitrogen used to drive the propellant feed valves of Bank-B was anomalously low, although it was holding steady now. Bank-A appeared nominal. McCandless sought clarification. “When you have a free moment, could you give us an onboard readout of nitrogen tank Bravo.”

“We’re showing the pressure in tank Bravo to be 1,960 psi, something like that,” replied Aldrin, “and Alfa is about 2,250 psi.’’ These matched the telemetry, which showed corresponding values of 1,946 and 2,249. Now able to eliminate a telemetry problem, the flight controller delved deeper into the record to further characterise the problem, with a sense of urgency because the SPS engine would soon be called upon to perform the second burn of the lunar orbit insertion sequence.

As the spacecraft passed over the Ocean of Storms on the darkened part of the near side, McCandless made an unscheduled request. “We’ve got an observation you might make – if you’ve time. There’s been a lunar ‘transient event’ reported in the vicinity of Aristarchus.” An astronomer had suggested that the astronauts take a look at the 22-nautical-mile-wide crater Aristarchus which, although far to the north of the ground track, should be on the near side of the horizon at their current altitude of 167 nautical miles. For many years, astronomers had been actively watching for transient lunar phenomena such as glows in the night. Of course, the sightings were disputed. The best evidence was by the Russian astronomer Nikolai A. Kozyrev of the Crimean Astrophysical Observatory on 3 November 1958, when he secured a spectrogram of a ‘red glow’ that persisted for almost an hour near the central peak of the large crater Alphonsus, but even this was disputed. The Ranger 9 probe was sent diving into this crater in 1965 to investigate the possibility that the peak was a volcano. In fact, the origin of lunar craters was disputed: the traditional theory was they were volcanic calderas, but there was mounting evidence that they were made by large impacts.

‘‘With Earthshine, the visibility is pretty fair,’’ Aldrin pointed out.

‘‘Take a look, and see if you see anything worth noting up there,’’ McCandless said.

‘‘You might give us the time that we’ll cross 45°W,’’ called Aldrin, ‘‘and then we’ll know when to start searching for Aristarchus.”

McCandless had the times at hand, ‘‘Aristarchus should become visible over your horizon at 077:04, and the point of closest approach will be at 077:12.’’

As they passed due south of the crater, Collins reported, ‘‘I’m looking north up toward Aristarchus now, and there’s an area that is considerably more illuminated than the surrounding area.’’

‘‘It does seem to be reflecting some of the Earthshine,’’ Aldrin said. In fact, as Aristarchus has a high albedo (it is one of the brightest features on the near side) it was visible to telescopic observers. ‘‘There is one wall of the crater that seems to be more illuminated and – if we are lining up with Earth correctly – that does seem to place it near to the ‘zero phase’.’’ He suspected that the ‘bright patch’ was merely selective reflection of Earthshine.

“Is that the inner or the outer wall?” McCandless asked. “And can you discern any difference in colour of the illumination.”

“That’s an inner wall of the crater,” Aldrin confirmed. “There doesn’t appear to be any colour.’’

“Have you used the monocular on this?’’ McCandless persisted.

“We’ll give it a try if we have the opportunity next time around,’’ Armstrong promised. “We’re in the middle of lunch.’’

“We’ve about 6 minutes remaining until LOS,’’ McCandless called 15 minutes later, “and to enable us to configure our ground lines, we’d like to know if you’re still planning to have the television up at the start of the next pass.’’

“It never was our plan to do so,’’ noted Armstrong, recalling a debate during mission planning, “but it’s in the flight plan and so I guess we’ll do it.’’ A telecast was to begin as soon as communication was re-established following the far-side passage.

Passing behind the Moon for the second time, the astronauts connected up the television camera. “Which window are we going to use,’’ Aldrin asked, “so that I can figure out how to put the monitor on?’’

“I suppose the best one would be the centre window,’’ Armstrong said. “Don’t you think?’’

“Probably,’’ Aldrin said.

Armstrong, being practical, decided, “Let’s get into attitude, and see what we think.’’

“We’re not going to have much of a television show unless we get high-gain,’’ pointed out Aldrin. Once they were in attitude, he steered the antenna to point at where Earth should rise over the lunar horizon.

“We’ve had AOS by Goldstone,’’ announced Riley publicly. “Television is now on.’’

“We have a good clear television picture,’’ reported McCandless. “We can see the horizon against the blackness of space, and without getting into the question of greys and browns, it looks, at least on our monitor, sort of a brownish-grey.’’

“That’s a good, reasonable way of describing it,’’ agreed Aldrin. “I’d say we’re about 95°E, coming up on Smyth’s Sea.’’

“For your information, your altitude is about 92 nautical miles,’’ McCandless advised.

“We’ll try and pick up some of the landmarks that we’ll be seeing during our approach to the powered descent,’’ Aldrin explained.

“Smyth’s Sea doesn’t look much like a sea,’’ observed Collins. “The area that is devoid of craters, of which there’s not very much, is sort of hilly looking.’’

“We’re now at about 83°E, which is equivalent to 13 minutes before ignition,’’ said Armstrong.

“Of course, you’ll be considerably lower at the initiation of powered descent,’’ McCandless pointed out.

“We’re coming up on the Foaming Sea,’’ said Collins.

The main wall display in the Mission Operations Control Room showed a map of the spacecraft’s ground track across the Moon, with a moving symbol showing its progress. “We show you coming up on landmark Alfa 1 shortly,’’ McCandless noted.

“Alfa 1 isn’t large,” Collins pointed out, “but it’s extremely bright.” The small bright-rayed crater designated A-1/11 was one of four craters in a featureless part of the small dark plain known as the Foaming Sea. If provided sextant sightings on landmarks of known positions, program P22 would calculate the parameters of the spacecraft’s orbit and, if so instructed, update the state vector. Alternatively, with knowledge of the orbit, it could process the sightings to calculate the positions and elevations of the terrain. Collins was to track this crater as practice for supporting the subsequent powered descent by Eagle.

“We show you over the Sea of Fertility now,’’ McCandless prompted.

“The crater that’s in the centre of the screen now is Webb,’’ explained Aldrin. “We will be looking straight down into it about 6 minutes before the powered descent.’’ This crater, named after a British astronomer, was 11 nautical miles in diameter and was located on the eastern part of the Sea of Fertility. Aldrin moved the camera to a side window to show an oblique view to the south of their ground track.

“We’re getting a beautiful picture of Langrenus, with its rather conspicuous central peak,’’ noted McCandless.

“The Sea of Fertility doesn’t look very fertile to me,’’ mused Collins. “I don’t know who named it.’’

Armstrong speculated, “It may have been named by the gentleman this crater was named after – Langrenus – who was a cartographer to the King of Spain and made one of the early reasonably accurate maps of the Moon.’’ On Earth, his wife at home exclaimed, “So that’s what he was doing with the World Book in his study!’’ In 1645 Michel Florent Van Langren (Langrenus in Latin) issued the first map of the Moon to include names, although his successors rejected most of his names. The crater later named in his honour was 74 nautical miles across. In fact, the Sea of Fertility was named by the Jesuit priest Giovanni Battista Riccioli, who, working with Francesco Grimaldi in Italy, published a map of the Moon in 1651. They had their own craters near the western limb.

Aldrin changed window again in order to view straight down, and announced, “Crater Secchi.’’

“We’re getting a good view of the track leading into the landing site now,’’ said McCandless.

“This is very close to the ignition point for the powered descent,’’ Aldrin noted. “We’re passing Mount Marilyn, that triangular-shaped mountain in the centre of the screen at the present time, with crater Secchi-Theta on its far northern edge.’’ And then, as another crater came into view, “The bright, sharp-rimmed crater at the right edge of the screen is Censorinus-T. We’re now at the 1-minute point in the powered descent.’’ Continuing west, they passed from the Sea of Fertility onto the Sea of Tranquility.

“For your information, your altitude is 148 nautical miles,’’ said McCandless.

“I’m unable to determine altitude at all by looking out the window,’’ Collins remarked.

“I bet you could tell if you were down at 50,000 feet,’’ quipped McCandless.

“There’s a good picture of Boot Hill,’’ said Aldrin. “That’ll be 3 minutes 15 seconds into the descent.’’ Then, “That’s Duke Island to the left. The biggest of the

craters near the centre of the picture right now is Maskelyne-W. It’ll be a position check in the descent at about 3 minutes 39 seconds; it’ll be our downrange position check and crossrange position check prior to the yaw-around to acquire the landing radar. Past this point, we’ll be unable to see the surface until very near the landing area.’’ Nearing the terminator, the illumination highlighted the shallow undulations on the Sea of Tranquility, in particular a pair of sinuous rilles whose snake-like appearance had prompted their names of Sidewinder and Diamondback. “The landing point is just barely in the darkness.’’ The crater Moltke was named after the nineteenth-century Prussian strategist Count H. K.B. von Moltke, who arranged for the publication in 1874 of a map of the Moon prepared by J. F.J. Schmidt. The crater was 3.5 nautical miles in diameter, and situated about 28 nautical miles southeast of where Apollo 11 hoped to land. The eastern crest of its raised rim was catching the Sun’s rays, but the rest of it was still in darkness.

Collins, who was doing the ‘flying’, had observed that after he set the docked vehicles into a given attitude, the main axis tended to drift (despite counteracting thruster firings) towards vertical with the LM on the bottom, and he thought this instability might be a gravity-gradient effect produced by the mascons. ‘‘It looks like that LM just wants to head down towards the surface.’’

‘‘That’s what the LM was built for!’’ McCandless retorted.

Now in darkness, Aldrin switched off the television, and communication with the spacecraft lapsed as the crew prepared for the second manoeuvre of the lunar orbit insertion sequence, which was to occur on the far side of the Moon at the end of the current revolution.

Meanwhile, at home

It was an excellent telecast, lasting over 30 minutes. Joan Aldrin had returned from the hairdresser in time to watch it. She had been accompanied by Jeannie Bassett who, driving, had tried in vain to evade the photographers. As the lunar landscape passed by, Joan lost interest. When they crossed the terminator into darkness, she said, ‘‘Well, now I just have to get through the next 24 hours.’’ Lurton Scott had taken the Collins children to the cinema while Pat Collins and Clare Schweickart reviewed newspaper coverage of the mission; they broke off to watch the telecast. After watching, Jan Armstrong spread a large-scale map on the floor and reviewed the features on the approach route and in the immediate vicinity of the landing site.

ENTRY AND SPLASHDOWN

As the Green Team concluded its last shift of the mission, McCandless wished the astronauts “Godspeed”. The White Team was to work a long shift, during the latter part of which the crew would sleep, until the Maroon Team arrived for the re-entry phase. Duke pointed out that owing to thunderstorms in the recovery zone, the aim point would be relocated eastward to where conditions were better. The main risk in the original recovery zone was air turbulence. Just as aircraft avoid such ‘air’, so too must a returning capsule. The command module’s aerodynamic lift was to be used to extend the entry 215 nautical miles farther downrange towards Hawaii. The forecast for the new recovery zone was for scattered cloud, 16-to-24-knot winds, 2-to-4-foot waves and a 5-to-7-foot swell, excellent visibility, and, most importantly, little or no turbulence.

‘‘I’ll wish you good night from the White Team for the last time,’’ announced Duke when it was time for the crew to retire for their final sleep period. ‘‘It has been a pleasure working with you guys. It was a beautiful show from all three of you. We appreciate it very much, and we’ll see you when you get out of the LRL.’’ At that time, Apollo 11 was 74,906 nautical miles from Earth and approaching at 6,954 feet per second. As soon as the telemetry indicated that the astronauts were asleep, the flight controllers teased Duke by projecting onto one of the Eidophor screens a cartoon about his misidentification of the Moon for Earth on the previous day’s telecast. It showed the spacecraft midway between the Moon and Earth with the words, ‘Neil, I just spotted a continent on the Moon’ and ‘Charlie, the camera’s on Earth now’.

To start flight day 9, Thursday, 24 July, Kranz handed over to Windler, who was to handle the final phase of the historic mission. It was decided to allow the crew an extra hour’s sleep, but at 189:30, almost 8 am in Houston, Armstrong called to ask whether they would require to make midcourse correction 7 and was told that their trajectory was satisfactory. Apollo 11 was now 40,961 nautical miles from Earth, had accelerated to 9,671 feet per second, and was less than 6 hours from atmospheric entry.

“While you’re eating your breakfast there,” Evans called, “I have the Maroon Bugle with the morning news. President Nixon surprised your wives with a phone call from San Francisco just before he boarded a plane to fly out to USS Hornet to meet you. They were very touched by your television broadcast yesterday; Jan and Pat watched from Mission Control here. Wally Schirra has been elected to a 5-year term on the board of trustees of the Detroit Institute of Technology. He’ll serve on the Institute’s development committee. Air Canada says it has taken over 2,300 reservations for flights to the Moon in the last 5 days. It might be noted that more than 100 were by men for their mothers in law! And finally, it appears that rather than killing romantic songs about the Moon, you’ve inspired hundreds of song writers. Nashville, Tennessee, which probably houses the largest collection of recording companies and song publishers in the country, reports being flooded by Moon songs. Some will make it. The song at the top of the best sellers list this week is, ‘In the year 2525’.’’

“Thank you, very much, Ron,’’ Armstrong acknowledged.

Meanwhile, in the Aldrin home, Joan’s father, Michael Archer, was preparing the champagne for the splashdown party – although the best vintage had been put aside for when the astronauts emerged from quarantine. The shooting of fireworks was illegal in Texas other than on the Fourth of July, Christmas and New Year, but the local fire department had issued a waiver to permit a display in the back yard after splashdown.

With about 3 hours to go, Deke Slayton and the backup crew of Lovell, Anders and Haise joined Evans at the CapCom console.

‘‘This is Jim, Mike,’’ called Lovell. ‘‘The backup crew is still standing by. I just want to remind you that the most difficult part of your mission is going to be after recovery.’’ He was referring to the quarantine.

‘‘Well, we’re looking forward to all parts of it,’’ Collins replied.

‘‘Please don’t sneeze,’’ Lovell implored. If, after having been away for so long, they were to show any symptoms at all upon their return, then this would cause the ever-worrying medics to presume immediately that they had contracted ‘lunar flu’.

‘‘Keep the mice healthy,’’ Collins said. There were hundreds of white mice in the Lunar Receiving Laboratory, and if even one of them were to show an unusual symptom on being exposed to lunar material, it would surely result in calls for the quarantine to be extended.

As Earth’s gravity continued to draw them in, the planet loomed with amazing rapidity. ‘‘The Earth is really getting bigger up here and, of course, we see it as a crescent. We’ve been taking pictures. We have four exposures left and then we’ll pack the camera,’’ Collins pointed out.

Finally ready, Collins strapped into the left couch, Armstrong in the centre and Aldrin on the right. They were to fly re-entry in ‘shirt sleeves’, their pressure suits having been stowed under their couches.

‘‘This is your friendly backup CMP,’’ Anders called. ‘‘Have a good trip, and do remember to come in BEF.’’ The acronym BEF stood for ‘blunt end forward’ – he was reminding them to enter the atmosphere with the heat shield on the base of the capsule facing the direction of travel.

“You better believe it,” Collins replied. They were triple-checking every step of the checklist. In preparing to jettison the service module, he mused, “That old service module has taken good care of us; it’s been a champ.” He made a visual check of the horizon, “The horizon check passes; it’s right on the money.’’ As the spacecraft entered Earth’s shadow, he noted the time, “The Sun’s going down on schedule.’’ In view of the predicted surface winds and prevailing sea state, each astronaut took an anti-motion-sickness pill. At 3,000 nautical miles from Earth, Apollo 11 was travelling at 26,685 feet per second. Over the ensuing 20 minutes it would be accelerated by almost 10,000 feet per second. As on departing Earth, its trajectory and speed now enabled it to pass through the van Allen belts without significant exposure to radiation. Because the trajectory was west-to-east, the final treat for the Carnarvon station of the Manned Space Flight Network was to monitor the approach. The service module was jettisoned at an altitude of 1,288 nautical miles and a speed of 31,232 feet per second. Its trajectory would cause it to burn up like a meteor, with perhaps just a few small fragments falling into the ocean. Collins used the command module’s own thrusters to face its heat shield in the direction of travel. At launch, Columbia had weighed 65,000 pounds, but most of that had been propellant. Alone now, the mass of the command module was just 11,000 pounds.

A plot of altitude versus range to splashdown for the nominal entry profile.

“You’re looking mighty fine from here. You’re cleared for landing,” Evans confirmed

“Roger,” Collins acknowledged. “Gear’s down and locked.’’

Continuing the aviation theme, Windler advised the Recovery officer, “We’re on final for the carrier.’’

With 7 minutes to go to atmospheric entry, the spacecraft was at an altitude of 800 nautical miles and had accelerated to 33,000 feet per second. Early in the development of the Apollo program, it was decided to use a ‘double dip’ profile for atmospheric entry on a high-speed return from cislunar space so as to minimise the heating effects. After the entry interface at 400,000 feet, the capsule was to make a shallow penetration of the atmosphere to shed a significant fraction of its energy, then utilise its limited aerodynamic lift to climb back to pursue a ‘skip’ prior to descent and landing. The nominal entry corridor for the approach was inclined 6.5 degrees below horizontal. If the capsule were to come in significantly shallower, it would bounce off the atmosphere like a stone skimming on a pond, and the astronauts would die when their consumables ran out some hours later. If the entry was centred in this corridor, the peak deceleration would be 6.5 g, increasing with the angle. If they were to enter too steeply the capsule would burn up. As a result of the midcourse correction on the transearth coast the angle was -6.48 degrees. The speed at the entry interface was 36,237 feet per second; for a spacecraft returning from low orbit it would have been only 25,000 feet per second. The computer navigated the ‘extended’ 1,500-nautical-mile profile by adjusting the exit angle from the ‘dip’ in order to lengthen the ‘skip’, with Collins monitoring, ready to intervene in the event of a problem.

‘‘You’ll be going over the hill shortly. You’re looking mighty fine to us,’’ said Evans.

‘‘See you later,’’ Armstrong replied. If things were to go seriously pear-shaped as a result of the failure of part of the entry system, this would be the last thing heard from the crew.

First contact with the atmosphere occurred over the Solomon Islands, east of Australia. The 0.05-g light illuminated at about 300,000 feet to indicate that air drag was beginning to decelerate the capsule. Aldrin had placed the 16-millimetre Maurer camera in his window to document their luminescent ‘wake’, which initially was an inner core of orange/yellow, surrounded by patches of violet, blue and green, beyond which was the black of space.

As the capsule compressed the tenuous upper atmosphere, it formed a shock wave that rapidly raised the temperature of the heat shield to 2,870°C. An Air Force Airborne Lightweight Optical Tracker System KC-135 was on station to photograph the re-entry. Free electrons in the ionised gas prevented radio communications, but a tape was recording telemetry and crew comments. The black-out was expected to last no more than 3 minutes. As the wake intensified, the glow illuminated the cabin like daylight, even though the re-entry was in Earth’s shadow. Having been weightless, the deceleration was punishing, but it did not last long. The black out ended on time. Collins was relieved when their velocity fell below orbital, because it meant that they were guaranteed to come down

MAIN

CHUTES
(REEFED)

SPLASH DOWN VELOCITIES:

3 CHUTES – 31 FT/SEC 2 CHUTES – 36 FT7 SEC

MAIN CHUTES RELEASED

AFTER TOUCHDOWN

The Apollo spacecraft’s Earth Landing System.

somewhere. The recovery force was at the nominal aiming point of 169°W, 13°N, some 850 nautical miles southwest of Honolulu.

At 24,000 feet the forward heat shield was jettisoned to expose the apparatus of the Earth landing system. There was a jolt as mortars deployed the two reefed 16.5- foot-diameter drogue parachutes. Houston made no attempt to communicate, preferring to leave the ‘air’ clear for the recovery forces. An aircraft reported that it had S-Band contact. Once the drogues had stabilised and decelerated the capsule to a rate of descent at which it was safe to deploy the main parachutes, the drogues were jettisoned and mortars deployed three pilot chutes which, in turn, pulled out the 83- foot-diameter main chutes that were reefed to produce a gradual inflation in three stages, reaching full inflation as the capsule descended through 10,500 feet; only two chutes were necessary for a water landing, the third represented redundancy.

Leading the nine-ship recovery force was the 30,000-ton aircraft carrier USS Hornet. It had been commissioned in 1943, served in the Pacific, was modified after the war, and then served off Korea and Vietnam. On Wednesday President Nixon had flown Air Force One from San Francisco to Hawaii, and then on to Johnston Island, where he flew by helicopter to the communications ship, USS Arlington, which sailed overnight to join the recovery force, finally transferring to Hornet an hour before Apollo 11 was due to arrive.

‘‘Apollo 11. This is Hornet,” called the ship just after hearing a sonic boom.

‘‘Hello, Hornet,” replied Armstrong. ‘‘This is Apollo 11 reading you loud and clear.’’

One of the Sea King helicopters reported, ‘‘Swim One has a visual dead ahead, about a mile.’’

‘‘300 feet,’’ announced Armstrong, reporting the altimeter reading.

‘‘Roger. You’re looking real good,’’ replied Swim One.

The capsule struck the water at 30 feet per second. The couches were mounted together on a frame set on shock absorbers in order to cushion the impact, but the three men grunted at the sudden deceleration.

‘‘Splashdown!’’ announced Swim One.

The capsule was 15 nautical miles from Hornet. The ‘extended’ entry profile put it 40 seconds behind the flight plan. It was 7.51 am in the local (Hawaiian) time zone. As sunrise was 10 minutes away, the illumination was poor for television.

The capsule was a truncated cone about 10 feet tall and 13 feet in diameter across its base. Its centre of gravity in water meant that it would readily flip over into an apex-down orientation. In view of the 18-knot winds, immediately after splash Aldrin was to insert a circuit breaker alongside his right elbow, and Collins was then to throw a switch to jettison the parachutes to preclude their dragging the capsule over. Armstrong had bet Collins a glass of beer that he would not make it. The shock of impact forced Aldrin’s poised hand away from the panel, and by the time he had relocated and pushed in the breaker the wind had caught the parachutes and had flipped the capsule over, leaving the crew hanging in their straps. With a distinct sense of ‘up’, but one with dark green water in the windows, the cabin suddenly became a very unfamiliar place! The waves were just 3 to 6 feet, but to the astronauts the sea state felt much rougher, and they endeavoured to resist the onset of sea

If the CM becomes inverted after splashdown, its offset centre of mass combined with strategic flooding and the inflation of flotation bags enables it to be righted.

sickness while a trio of air bags distributed around the apex inflated to right the capsule – a process that took 8 minutes. As soon as they could, each man took a second anti-motion-sickness pill. As soon as the capsule had flipped upright and exposed its antennas, Armstrong reported to the Air Boss, circling in one of the helicopters, “Everyone inside is okay. Our checklist is complete. Awaiting the swimmers.”

QUARANTINE

In July 1964 a conference organised by the Space Science Board of the National Academy of Sciences highlighted the potential hazard of ‘back contamination’ to Earth from lunar missions, and urged the development of preventative measures. On 8 December NASA asked the Board to submit recommendations. On 23 May 1965 the Life Sciences Committee said that astronauts returning from the Moon must be quarantined for at least three weeks; this period being chosen because it exceeded the incubation of most terrestrial germs. On 14 June Robert R. Gilruth, Director of the Manned Spacecraft Center, set up a committee chaired by Edwin Samfield to oversee the design of the Lunar Sample Receiving Laboratory, and on 1 November formed the Lunar Sample Receiving Laboratory Office as an interim organisational unit. On 13 May 1966 George E. Mueller, Director of the Office of Manned Space Flight, renamed the facility the Lunar Receiving Laboratory (LRL). On 28 July, Gilruth was authorised to issue the contract for its construction. The three-storey building was to have a suite of offices, a vault to store lunar material in vacuum conditions, a laboratory to process samples in isolation chambers, and a human quarantine facility. On 1 August Persa R. Bell was appointed as director. The installation and testing of the internal systems continued through 1968. A review in November 1968 prompted some changes, as did a 30-day simulation in March 1969, but on 5 June the LRL was declared operational. Although Bell saw the likelihood of anything harmful being returned from the Moon as ‘‘probably one in one-hundred-billion’’,
the consequences of an unfortunate outcome might be dire. Michael Crichton’s novel The Andromeda Strain, published in 1969 and a Book Club recommendation for June, served only to heighten public awareness.6 On the basis that any bugs that could survive on the Moon would thrive on Earth, a 21-day quarantine starting the day of the moonwalk was a compromise between those who thought quarantine was unnecessary and those who argued for many months.

However, a chain is only as strong as its weakest link and for quarantine this was the opening of the spacecraft hatch after splashdown. An option would have been for the crew to remain in the capsule until it was hoisted onto a recovery ship which carried the requisite isolation facilities, but as there was no guarantee that the capsule would splash down in proximity to a such a ship, and it was impracticable for the crew to remain in the capsule for a lengthy period awaiting its arrival, it was decided to develop a Biological Isolation Garment, known as a BIG, to be worn during the normal recovery procedure.

After a member of Underwater Demolition Team 11 jumped from Sea King tail number 64, call sign ‘Swim Two’, and attached a sea anchor to prevent the capsule from drifting, three more members of the team attached a flotation collar to stabilise it against the swell, emplaced two large rafts that were tied to the collar, and then inflated another raft, boarded it and moved off upwind of the capsule. At this point, 25-year-old Lieutenant Clancey Hatleberg from Chippewa Falls, Wisconsin, jumped into the water with four BIGs, one for each of the astronauts and one for himself. Joseph P. Kerwin, a physician recruited as a scientist-astronaut in 1965, had assisted in the design of the grey-green rubberised suit. It had a zipper running diagonally from lower left to upper right, and a hood incorporating a mask with an air filtration system projecting from the chin. Once in the raft located immediately in front of the hatch, Hatleberg put on his suit. Having written his checklist inside his face mask using a grease pencil (‘VENTS TAPE INFLATE’) he reached up to the apex of the capsule to confirm that the air vent valves were closed – otherwise the biological isolation would be compromised. He then removed the tape from the filters of the garments intended for the crew. Finally, he inflated the attached life preservers. Since the hatch was capable of being opened regardless of pressure differential, the internal pressure had been set lower than ambient in order to ensure that when (some 30 minutes after splash) Hatleberg opened the hatch to pass in the suits the airflow would be inwards to limit the scope for ‘bugs’ to escape. He immediately closed the hatch and washed it down with a disinfectant. While Aldrin donned his suit on the right couch, first Armstrong and then Collins did so in the lower equipment bay, and despite the capsule being stabilised by the flotation collar they were distinctly wobbly on their feet. Hatleberg communicated with them by way of hand-signals through the hatch window. When they were ready, the crew scrambled out as rapidly as possible, first Armstrong, then Collins and finally Aldrin, and Hatleberg closed the hatch and again disinfected it. As the suit had no facility for communication, no

The widely acclaimed film of Crichton’s novel was not released until 1971.

words were spoken, but the entire procedure had been rehearsed many times in training. Furthermore, because the suits had no provision for ventilation, the men soon overheated and their face masks misted over, reducing their already limited visibility.[46] All four men wiped each other using cloths saturated with chemicals that were presumed to be lethal to lunar bugs. The disinfecting kit was then weighted and tossed into the sea. Despite the suits having been designed for isolation, in-seeping water made the rubber sticky and uncomfortable. The astronauts moved to the adjacent raft to await retrieval. With the Sun having risen and Hornet now less than 1 mile away, the television coverage of the recovery operation was excellent. Sea King tail number 66, call sign ‘Recovery One’, hoisted the astronauts on board one at a time (the order of their doing so being unclear, since the suits were identical). Earlier in the space program a simple ‘horse collar’ harness through which an astronaut slipped his arms had been employed, but this device had been superseded by a Billy Pugh net. Named after its inventor, this was a plastic and metal basket, open at one side, into which a man could climb for the hoist to the helicopter. Once the astronauts were clear, the swimmers returned in their raft, disinfected themselves, sank the decontamination raft, and prepared the capsule to be hoisted onto the ship.

The astronauts were greeted in the helicopter by flight surgeon Bill Carpentier, who deflated their life preservers. To reacclimatise to Earth gravity, Collins did a series of deep knee bends. Aldrin joined him. Armstrong did not. The flight to the Hornet lasted about 10 minutes. Watching from the island structure were President Nixon, Secretary of State William Rogers, NASA Administrator Thomas O. Paine and Frank Borman. As it landed, the ship’s band was playing on deck. Unlike their predecessors, the Apollo 11 crew remained in the helicopter and rode the elevator down to the hangar deck. They detached the mission patches from their BIGs and gave them to the aircraft crew as souvenirs. When the door was opened, Armstrong led the way out, holding onto the rail of the steps for stability. Despite their misted face masks, they were able to see sufficiently well to make their way unaided the short distance to the Mobile Quarantine Facility (MQF), on the way waving to the dimly perceived crowd. By this time, the Mission Operations Control Room was all flags and cigars, many of the VIPs having left the viewing gallery in order to join the celebrations on the main floor, which was standing-room only. While the telecast from Hornet was shown on one Eidophor, another screen displayed an Apollo 11

patch and ‘Task Accomplished….. July 1969’. The MQF was a 9-foot-wide 35-foot-

long gleaming aluminium commercial travel trailer, minus its wheels, that had been modified for NASA by Airstream and American Standard to provide biological containment. One end was hinged to provide the main door. John K. Hirasaki, the engineer in charge of the facility, welcomed the astronauts and Carpentier on board, then joined them. After the astronauts had doffed their rubber suits, Carpentier

The astronauts walk from the recovery helicopter to the MQF.

‘Task Accomplished’ is displayed in the Mission Operations Control Room.

checked their blood pressure, temperature, respiration and heart rate. Having taken turns to shower in the utility compartment at the opposite end of the trailer, they donned blue flight suits bearing an Apollo 11 mission patch, a NASA ‘meat ball’ insignia, and a white pin-on-badge proclaiming ‘HORNET PLUS THREE’. They then gathered at the door and drew back the curtain of the full-width window, above which was mounted a sign with ‘HORNET + 3’.

As Nixon made his appearance the band struck up Ruffles and Flourishes. At the microphone in front of the MQF door, with television cameras running, Nixon, welcomed the crew home – his reputation for cold aloofness yielding to genuine delight. After the initial banter, he said, ‘‘I was thinking as you came down and we knew it was a success, it’s only been eight days – just a week, a long week – but this is the greatest week in the history of the world since the Creation because, as a result of what has happened this week, the world is bigger infinitely, the world has never been closer together before. And we just thank you for that. And I only hope that all of us in government, all of us in America – that as a result of what you’ve done – we can do our jobs a little better. We can reach for the stars, just as you have reached so far for the stars.’’8 The astronauts, somewhat bewildered, could only say ‘Yessir’ at the appropriate times.

The welcome over, the astronauts drew their curtain and were given additional medical tests, including riding an ergometer for 18 minutes each while hooked up to monitoring equipment and breathing through a tube to analyse their exhalation, in order to check their physical condition; this program was to be repeated every 24 hours to monitor their recovery. By the time the medicals were over, Nixon’s party had left Hornet by helicopter. Later, the capsule was retrieved and installed alongside the MQF. When a plastic tunnel had been strung from Columbia’s hatch to the MQF, Hirasaki retrieved the rock boxes, film and other essential items and passed them out through a decontamination airlock for air-freight to Houston. The US Navy was ‘dry’, but when Carpentier pointed out that by their watches (set on Houston time) it was drinking time, they broke out bottles of scotch, bourbon and gin. The trailer had a galley, and a lounge with six comfortable seats and a table. Hirasaki cooked steak with baked potato. Everyone then retired to the two-level bunks on each side of the main compartment, slept for 9 hours, and awoke late. Meanwhile, the rock boxes, the film, and the blood samples drawn immediately upon the astronauts’ arrival were divided into two packages and flown to Hawaii by separate helicopters, just in case one was forced to ditch in transit. A Customs official cleared them for immediate entry to US territory. They were then loaded onto separate Air Force C-141 Starlifter transports for passage to the mainland. Paine accompanied the first consignment.

Meanwhile, the astronauts watched recorded Apollo 11 television coverage. On seeing the crowds of people clustered to watch the moonwalk, Aldrin observed to his

In saying the Apollo 11 mission had been ‘‘the greatest week since the Creation’’, Nixon drew criticism in the press for neglecting the significance of Jesus Christ!

commander, “Neil, we missed the whole thing!” To help to ‘wind down’, Armstrong and Collins undertook a marathon game of gin rummy. On their second evening, Collins visited the capsule and used a pencil to inscribe on the wall above the sextant: ‘‘Spacecraft 107 – alias Apollo 11 – alias Columbia. The best ship to come down the line. God Bless Her. Michael Collins, CMP.’’

On the morning of the third day, Saturday, 26 July, 55 hours after splashdown, Hornet steamed into Pearl Harbor, near Honolulu, Hawaii. During a private visit to the MQF, Admiral John Sidney McCain Jr, the Commander in Chief of the Pacific Fleet, told the astronauts they were ‘‘lucky sons of bitches’’. ‘‘I would have given anything to go [to the Moon] with you.’’ The ship’s crane hoisted the MQF onto a flat-bed truck. With what seemed to be half the population of Honolulu lining the route, the truck took over an hour to drive the 10 miles to Hickham Field, where the MQF was loaded on board a C-141 for a non-stop 6-hour flight to Ellington Air Force Base. On the way, the astronauts signed a stack of pictures that were to be given to people they thought would appreciate a memento, and then they napped. On landing at Ellington just after local midnight there was an hour’s delay before the MQF was able to be offloaded – it took three attempts, prompting Carpentier to observe wryly, ‘‘They can send men safely to the Moon and back, but they can’t get ’em off the damned airplane!’’ There were welcoming speeches by Louie Welch (the Mayor of Houston) and Robert Gilruth, and an opportunity for their wives to speak over an intercom – all of which was televised, of course. At 2.30 am, after a 1-hour drive, the truck delivered the MQF to the ‘garage’ of the Lunar Receiving Laboratory, and once this was sealed the astronauts were finally able to leave the utilitarian trailer and take up residence in the living quarters of the quarantine area, which included a kitchen, a dining room, a recreation room, separate bedrooms for each of the astronauts, and a dormitory for everyone else. Ten people were already in quarantine, including two cooks (also described as a chief steward and steward), a doctor serving as a laboratory specialist, a Public Affairs Officer and a NASA photographer. The astronauts’ quarantine had actually begun at the moment Eagle landed on the Moon, so they would require to spend only the next 14 days in the LRL. The people who were to be confined with them had already spent 21 days in isolation to enable any bugs they might be carrying to be identified, and thereby preclude these spreading and being mistaken for lunar infections.

The film was to be subjected to 48 hours’ decontamination in an autoclave. Because a test of this device several days previously had ruined a film, the first Apollo 11 film to be processed was one taken in space, rather than on the lunar surface. If this were to be ruined in processing, the other film would be retained for the full quarantine period and then processed in the normal manner. But all was well. When Life magazine got its copy of the Hasselblad film of the moonwalk, its editors set out to find the best photograph of Armstrong to put on the cover of a ‘special issue’, and were astonished to find that there was not even one.[47] Thus, although

Armstrong entered the history books as the first man to set foot on the lunar surface, the iconic image of the mission was of Aldrin.

The main technical task for the astronauts in quarantine was a debriefing, in which they methodically relived the various phases of the mission. In addition to taped and filmed interviews through a window with colleagues in a room beyond the quarantine area, each man wrote detailed reports. When it was transcribed, the oral debriefing ran to some 500 single-spaced pages. To jog their memories, they had their annotated flight plans, and were able to view the pictures and movies. Some of the debriefing was conducted by men assigned to future missions, seeking tips about landing, such as how visibility in the hovering phase was impaired by the dust displaced by the engine plume. On 29 July, Armstrong and Aldrin were told where Eagle had actually landed: the 16-millimetre movie taken by the camera mounted in Aldrin’s window enabled Tranquility Base to be located at 0°4T15"N, 23°25’45"E – almost precisely where the geologists had placed it.[48] [49] Although the debriefing was time-consuming, time was the one commodity that the astronauts had in abundance. Armstrong welcomed the seclusion, but his crewmates found it tedious. They were able to receive visits from their families, but only through the glass partition, and on 5 August Armstrong celebrated his birthday in quarantine. ft came as no surprise to be informed that, on orders from the White House, they were to spend the next several months undertaking national and international ‘goodwill’ tours.

Deke Slayton visited one day and suggested that they give some consideration to whether they wished to remain in the ‘rotation’ for future missions. Although at this point NASA hoped to fly missions through to Apollo 20, to rotate through backup to prime would be tedious, and besides there were other pilots eager for missions.11 Armstrong, however, was in the same ‘trap’ as John Glenn, who, on the suggestion of the White House, had been grounded after his Mercury mission on the basis that, as a national icon, he was too valuable to risk on another flight. During a T-38 flight from Houston to the Cape in May, Collins had said to Duke that if Apollo 11 was successful he intended to retire. On telling his wife Pat, she had urged him to refrain from making this official until after the mission, just in case he should have a change of heart. fn fact, several days before launch Slayton had asked Collins if he would like to rotate through Apollo 14 backup for the prospect of commanding Apollo 17, but he replied that he would end with Apollo 11. Having walked on the Moon, there was little chance of Aldrin being allowed to go again. ff he wished to fly again this would have to be to visit the Skylab space station, which was scheduled for launch no earlier than 1972.[50] Thus, by the end of quarantine all three were ready to stand

down. They were not alone. Of the Apollo 8 crew, only Jim Lovell was still active, and having backed up Apollo 11 he was in line to command Apollo 14. Of the Apollo 9 crew, Dave Scott was backing up Apollo 12 in the expectation of commanding Apollo 15. Of the Apollo 10 crew, both John Young and Gene Cernan were in the rotation and hoping for their own commands.

As soon as the lunar material arrived in the LRL, samples were pulverised and ‘fed’ to germ-free mice, birds, fish, insects and plants in an effort to induce some sort of a reaction. As Collins had joked prior to the mission when this procedure was explained to the crew, ‘‘Let’s hope none of those mice die!’’ The merest hint of an infection would have caused the quarantine period to be extended, potentially in an open-ended manner. Indeed, on observing that Aldrin’s core temperature was now consistently several degrees higher than normal, some of the medics suggested that he should remain in isolation until it could be explained, but Carpentier rejected this, and Berry concurred.13 As none of the mice developed any symptoms, at 9 pm on Sunday, 10 August, Armstrong, Aldrin and Collins were released and driven away in NASA staff cars, each chased by a television truck, and on arriving home were met by reporters. The solitude of quarantine was over, and they were public property again.

NEIL ARMSTRONG

Stephen Koenig Armstrong and Viola Louise Engel were married on 8 October 1929, and their son Neil Alden Armstrong was born on 5 August 1930 on his maternal

NEIL ARMSTRONG

Подпись: Neil ArmstrongOn 10 January 1969 Buzz Aldrin, Neil Armstrong and Mike Collins pose in front of a mockup of the LM at the Manned Spacecraft Center following their first press conference as the crew of Apollo 11.

grandmother’s farm, some 6 miles from the small town of Wapakoneta, Ohio. The Armstrong family hailed from the border country of Scotland, and the Engels from Germany. As an auditor, Stephen Armstrong was constantly travelling the state (it took about a year to audit the books for a county) setting up temporary home in a succession of small towns. June was born in 1932, and Dean 19 months later. Neil was a non-conformist, spending his time playing the piano and voraciously reading books. He developed an early passion for flying, and by 9 years of age he was building his own model aircraft. “They had become, I suppose, almost an obsession with me,’’ he later reflected. He read everything he could lay his hands on about aviation, filling notebooks with miscellany.

When Neil was 14, the family settled in Wapakoneta (although born nearby, he had not actually lived there). The money from out-of-school jobs, initially stocking shelves at 40 cents per hour in a hardware store, and later working at a pharmacy, helped to pay for flying lessons at $9 each. He gained his student pilot’s licence on his sixteenth birthday, but had not yet felt the need for a driver’s licence. It was apparent that he would need a technical education if he was to become a professional pilot, but the family did not have the resources to send him through college. Although he was not specifically interested in military aviation, the Navy offered scholarships for university in return for time in service afterwards. Neil applied, and in 1947 was accepted. On the advice of a high school teacher, he went to Purdue University in Indiana because it had a strong aeronautical engineering school. After he had been there 18 months, the Navy – as it was entitled to do – interrupted his studies and sent him to Pensacola in Florida for flight training. He opted for single-seat rather than multi-engine aircraft because he “didn’t want to be responsible for anyone else’’ by having a crew. The Korean War broke out on 25 June 1950 and he gained his ‘wings’ soon thereafter. In view of the situation, his return to college was deferred and he was sent to the West Coast for additional training. In mid-1951 he was sent to the USS Essex to fly F9F Panthers with Fighter Squadron 51, one of the early ‘all jet’ carrier squadrons. Although he had been trained for air combat, most of his missions were low-level strikes against bridges, trains and armour. On 3 September 1951 he flew so low that he struck a cable and damaged one wing, but was able to nurse his stricken aircraft back over friendly lines before ejecting. In all, he flew 78 combat missions.

In early 1952 he returned to the USA. Rather than attend a military academy in order to receive a commission, he resigned from the Navy and resumed his studies at Purdue, where he met fellow student Janet Elizabeth Shearon. He was then 22 and she was 18; her father was a physician in Welmette, Illinois, and Janet was the youngest of three sisters. On graduating in 1955 with a degree in aeronautical engineering, he was recruited as a research pilot at the High-Speed Flight Station operated by the National Advisory Committee for Aeronautics at Edwards Air Force Base in the high desert of the San Gabriel mountains of California. On his drive west, Neil detoured to Wisconsin, where Janet was working, to ask her to marry him; she agreed to think it over. They were married on 28 January 1956, and their first home was a small cabin with neither electricity nor running water, off base among the Joshua trees and rattlesnakes of the Juniper Hills. This was ‘‘the most fascinating time of my life,” Armstrong later reflected. “I had the opportunity to fly almost every kind of high-performance airplane, and at the same time to do research in aerodynamics.” The X-15 was a sleek black rocket-powered aircraft which, in a zooming climb following release from a B-52, was able to rise above the bulk of the atmosphere. Armstrong first flew the X-15 in I960, and in all he tested the aircraft seven times. His highest altitude was 207,000 feet, but this did not set a record. However, “above 200,000 feet, you have essentially the same view you’d have from a spacecraft when you are above the atmosphere. You can’t help thinking, by George, this is the real thing. Fantastic!’’ Armstrong helped in the development of the advanced flight control system for the vehicle. Like many at Edwards Air Force Base, he felt that the route into space would be by ever faster aircraft. When a NASA recruiter arrived at Edwards seeking Project Mercury ‘astronauts’ to ride in a ‘capsule’ that would parachute into the ocean, Armstrong was not interested. ‘‘We reckoned we were more involved in space flight research than the Mercury people, but after John Glenn orbited Earth three times in a little less than 5 hours on 22 February 1962, we began to look at things a bit differently.” In April 1962 NASA sought its second intake of astronauts. The first group had all been military test pilots. Although test pilot experience was still a requirement, civilians were now allowed to apply. Candidates had to have a college degree in an engineering subject, be no taller than 6 feet, and not exceed 35 years of age at the time of selection. Armstrong was blond, blue eyed, 165 pounds, 5 feet 11 inches tall, and had a few years to spare. He submitted his application. Of all the civilian applicants, he had by far the greatest experience. On 17 September he was announced as one of nine new astronauts. By the end of the year, the Armstrongs had relocated to El Lago, a housing development near the Manned Spacecraft Center at Clear Lake, which, being neither a lake nor clear, was an alluvial mud flat on Galveston bay about 30 miles from Houston.

Although about the same age as his group, Armstrong looked much younger. He did not match the popular image of an astronaut as a hard-drinking, adrenaline – primed partier. In fact, he was notable for not jogging or doing pushups (which the others did eagerly in pursuit of physical fitness) and his social life was spent with his family.

Each astronaut ‘tracked’ some aspect of the space program to ensure that the astronauts’ points of view were represented, and to report back in order to enable the astronaut office to be aware of everything that was going on. While a civilian research test pilot at Edwards, Armstrong had been involved in the development of new flight simulators, whereas military test pilots merely used them. It was logical, therefore, that he should be assigned to monitor the development of trainers and simulators.

Deke Slayton opted to fly the military pilots of the second group ahead of the civilians. After jointly backing up Gemini 5 Armstrong and Elliot See were given separate assignments, with Armstrong commanding Gemini 8 and See commanding Gemini 9. On 16 March 1966 Armstrong and Dave Scott were launched into orbit and, after a perfect rendezvous with an Agena target vehicle, they achieved the first docking between vehicles in space. Unfortunately, several minutes later, and now in

The Apollo 11 crew

On 9 April 1959 NASA announced the recruitment of its first group of astronauts: (left to right, seated) Leroy Gordon Cooper Jr, Virgil Ivan ‘Gus’ Grissom, Malcolm Scott Carpenter, Walter Marty Schirra Jr, John Herschel Glenn Jr, Alan Bartlett Shepard Jr and Donald Kent ‘Deke’ Slayton.

On 17 September 1962 the second group was announced: (left to right, standing) Edward Higgins White II, James Alton McDivitt, John Watts Young, Elliot McKay See Jr, Charles ‘Pete’ Conrad Jr, Frank Frederick Borman II, Neil Alden Armstrong, Thomas Patten Stafford and James Arthur Lovell Jr.

On 17 October 1963 NASA announced its third group of astronauts: (left to right, standing) Michael Collins, Ronnie Walter Cunningham, Donn Fulton Eisele, Theodore Cordy Freeman, Richard Francis Gordon Jr, Russell Louis ‘Rusty’ Schweickart, David Randolph Scott and Clifton Curtis Williams; (seated) Edwin Eugene ‘Buzz’ Aldrin Jr, William Alison Anders, Charles Arthur Bassett II, Alan LeVern Bean, Eugene Andrew Cernan and Roger Bruce Chaffee.

Buzz Aldrin 9

darkness, the docked combination became unstable. Thinking that the fault must be associated with the Agena they undocked, only to find themselves in an accelerating spin owing to the fact that one of their thrusters was continuously firing. By the time the rate of spin had reached one rotation per second, ‘tunnel vision’ had set in and a black-out was imminent, but Armstrong was able to regain control by shutting off the primary attitude control system and switching to the thrusters designed for use during atmospheric re-entry, which in turn necessitated an emergency return, which was carried out successfully.

At the time of Apollo 11, the Armstrong family comprised Neil and Jan, and sons Ricky, aged 12, and Mark, 6.

LUNAR SURFACE ACTIVITY

Because the astronauts who landed on the Moon would be required to act as field geologists, a series of lectures and laboratory exercises were given in 1964 by the US Geological Survey (USGS) in a ramshackle shed of Second World War vintage at Ellington Air Force Base, which served as the airport for the Manned Spacecraft Center. On being introduced to the vocabulary of geology and basic mineralogy, the astronauts were taught how to describe rocks and to characterise a geological setting in terms of the granularity and bearing strength of its surface. Some of the astronauts – mainly those of the first group who were still active,[10] but also some of the second group – argued that there was no requirement for such training because the rocks they returned would be studied by the scientists. But other members of the second group and most of the third group, aware that they were unlikely to be assigned the first landing, looked ahead to the later missions on which science was certain to be a significant factor and reasoned that by taking the subject seriously they would improve their chances of a flight assignment.

The first geology field trip was to the Grand Canyon, incised into the Arizona Plateau by the Colorado River to a depth of some 6,000 feet. Viewing the strata exposed in the canyon wall was undoubtedly awe inspiring, but most of it was sedimentary and (the nomenclature for the lunar features notwithstanding) there were no rivers on the Moon. Later trips included Meteor Crater in Arizona, which seemed more relevant because the Moon was pocked by craters. Since there was at that time no consensus as to whether lunar craters were formed by impacts or by volcanism, trips were also made to a wide variety of volcanic features across the American southwest. Jack Schmitt, who joined NASA in 1965 as one of the first group of scientist-astronauts, and had a doctorate in geology from Harvard, was assigned to assist in geological training. He encouraged Armstrong and Aldrin to find time to make field trips. At a volcanic field near Cinder Lake in Arizona, the Astrogeology Branch of the USGS blasted a simulated lunar landscape based on a picture of a potential landing site taken by a Lunar Orbiter. Geologists then made ‘traverses’ wearing training space suits to evaluate procedures, test the tools that the astronauts were to employ, and determine what could reasonably be done in the time

Using a mockup of the LM hatch, porch and upper ladder. Buzz Aldrin undergoes one-sixth gravity training in a KC-135 on 10 July 1969Г

available to the first moonwalk. A crude LM was constructed as a perch from which to make visual observations. On his Mercury mission, Wally Schirra had been given an off-the-shelf Hasselblad 500C camera manufactured by the Victor Hasselblad Company in Sweden. NASA later asked the company to supply it with a modified version. The mechanism had to be capable of 5,000 ‘working cycles’ in Earth’s atmosphere, in pure oxygen, and in a vacuum; accommodate a magazine with a capacity of 160 exposures of 70-millimetre ‘thin’ film; and incorporate an electric motor to advance the film.[11] This camera was introduced on Gemini, and carried over to Apollo. The geologists conducted tests using a Hasselblad 500EL Data Camera configured for use by a suited astronaut, notably with its view sight deleted. The results were studied to determine how much of what was known of the terrain could be inferred from just the visual observations and photographs. The trials, conducted early in 1968, were led by Arnold Brokaw, chief of the surface planetary exploration section of the Astrogeology Branch. The conclusions were fed to Houston by Eugene M. Shoemaker, the branch chief, who was seconded to NASA. Shortly prior to the mission, Brokaw visited Armstrong to emphasise the value of photographing rocks, irrespective of whether these were sampled: ‘‘ft is important to us how a rock got where it is, how and where it lay, how it relates to other things in the area; we can determine a lot about its mineralogy simply from photographs.” Aldrin was inspired by geology, because it ‘‘opened my eyes to the immensity of time’’. Collins was not, ‘‘f hate geology – maybe that’s why they won’t let me get out on the Moon.’’ Armstrong, displaying an impishness worthy of Pete Conrad, later admitted that he had been ‘‘very tempted to sneak a piece of limestone up’’ and place it into a rock box as a sample, to see what the scientists would make of it.

The training for lunar surface activities was undertaken in Building 9 of the Manned Spacecraft Center campus, where there was a mockup LM. The astronauts suited up and donned all the extravehicular paraphernalia and, while attended by technicians from the crew systems division and the suppliers of the miscellaneous apparatus, they tested egress and ingress procedures, surface sampling tools, and the deployment of the scientific packages. The scientific community wanted the maximum work from Armstrong and Aldrin while they were on the lunar surface. Each task was timed during training, and integrated into the overall time line. A significant milestone was attained on 18 June 1969 by a full ‘walk through’ which included deploying the EASEP instruments. However, while the technical fidelity was high, this training was done in full Earth gravity. To familiarise themselves with lunar gravity – which is one-sixth that of Earth – the astronauts flew in a KC-135 aircraft (the military version of the Boeing 707) with its cabin deck cleared and padded. This aircraft would fly a precise arc, zooming, cresting and falling in order to simulate the desired gravitational load. During the climb the suited astronaut was held in position by technicians, and when the desired gravity was reached he had to

Neil Armstrong and Buzz Aldrin rehearse ‘documented’ (photographed) sampling using a scoop, a gnomon and individual sample bags.

Buzz Aldrin, having deployed the SWC.

Neil Armstrong starts to deploy the LRRR.

Buzz Aldrin documents the site with a panoramic sequence around the horizon.

The simulation over, Neil Armstrong prepares to ascend the ladder.

set up, conduct the test and then be restrained once more against the load of three gravities as the aircraft pulled out of its dive. The cabin was voluminous, but with technicians, film crew and Air Force supervisors lending assistance it soon became crowded. The aircraft would make several dozen arcs over a period of hours, flying a roller-coaster path through the sky. Inevitably someone would vomit.3 While this training was valuable, the fact that it simulated lunar gravity for no more than 30 seconds per time meant that it was possible only to test specific tasks, such as using a pair of tongs to lift a rock and pop it into a bag. To rehearse long sequences of tasks, systems using cables and pulleys were built – in some cases with the astronaut operating at an angle against a tilted surface. As Armstrong observed of these ‘Peter Pan’ rigs: ‘‘You had the feeling of being able to jump very high – a very light feeling. You also had the feeling that things were happening slowly, which indeed they were. It was a sort of floating sensation.’’ On the other hand, he was confident, ‘‘The lunar setting will become a very easy place to work, I think.’’

ORBIT REFINEMENT

Collins terminated the orbital rate and adopted an inertial attitude to undertake the P52 platform alignment in preparation for the forthcoming LOI-2 manoeuvre. As a contingency against a total loss of communications, McCandless read up the data for two transearth injection manoeuvres: one in case the LOI-2 burn failed to occur, and the other in case it succeeded and contact was then lost. In both eventualities, the LM would be ditched prior to leaving orbit.

Meanwhile, it had been found that the anomalous decrease in the pressure in the nitrogen tank of Bank-B during the LOI-1 burn had occurred only while the system was active, which prompted the speculation that it was merely a thermal effect that made the orifice of the solenoid valve open wider on Bank-B than on Bank-A, thereby increasing the nitrogen flow rate (in other words, there was no external leak). The engine could be operated in single-bank mode; the dual-bank mode was to provide redundancy against one bank failing and shutting down the SPS. As the pressure of the nitrogen tank in Bank-B was now stable and was well above the ‘red line’ value of 400 psi (below which it would be incapable of holding the propellant feed valves open), it was decided to conserve this tank in order to retain redundancy against the total loss of Bank-A. McCandless relayed the decision to make the LOI-2 burn in single-bank mode using Bank-A, then as they approached the limb he gave the formal go-ahead to attempt the burn. The attitude of the spacecraft placed them ‘heads down’ in order to point the sextant towards space, and once they were on the far side Collins took a star sighting on Denebola to confirm their attitude.

When Apollo 8 and Apollo 10 had executed LOI-2, they had entered more or less circular orbits at 60 nautical miles. However, when the time came to perform the transearth injection manoeuvre, the gravitational perturbations of the mascons had transformed their paths into ellipses ranging between 54 and 66 nautical miles. Although this did not compromise Apollo 8’s objectives, if a landing had been tried on Apollo 10, the ground track would have been displaced several miles from that intended. In the case of Apollo 11, however, it was essential for Eagle to fly on course and, for the rendezvous, for Columbia to be waiting in as circular an orbit as possible. On the previous missions, the longitude of perilune induced by the perturbations had been about 100°E. The flight dynamics team had calculated that if the post-LOI-2 orbit were to have a given ellipticity and a perilune at 85°W, the mascons would tend to circularise the orbit. The option of having Columbia fire its engine to recircularise its orbit shortly prior to rendezvous was dismissed as a waste of propellant. Furthermore, it was arranged that as the Moon slowly rotated on its axis, the plane of the spacecraft’s orbit would drift such that when Eagle made its descent its ground track would intersect the landing site. At the time of the LOI-2 manoeuvre the combined mass of the vehicles was 71,622 pounds. The 17-second burn was to start at 080:11:36, and achieve a retrograde delta-V of 159.2 feet per second for a spacecraft velocity of 5,364 feet per second in order to revise the orbit to 53.7 by 65.7 nautical miles.

As they waited, they entered sunlight, and Collins noticed lots of little bright spots on the LM reflecting the light. ‘‘The poor old LM’s contaminated – it’s got urine particles all over it! By the way the light’s shining, they look yellow. You know, I guess everything else has boiled off and it’s left a little solid deposit.’’

‘‘Wait until the ‘forward contamination’ people hear about that!’’ said Aldrin. ‘‘There will be no more urine dumps on the way to the Moon; those fellows will have to store it all in a nice little bag.’’

Ignition was precisely on time. Collins was timing it using a stopwatch, and if the engine did not shut down on time they would intervene. Even a 2-second over run would slow them sufficiently to cause their trajectory to dip dangerously close to the surface during the near-side pass, but cutoff was as planned. Armstrong asked the computer for the new orbital parameters. “66.1 by 54.4 – you can’t beat that!”

“That’s about as close as you’re going to get,’’ Collins agreed.

With the spacecraft in a 2-hour orbit, Mission Control would receive telemetry for about 75 minutes. This was more than 50 per cent of the orbital period because, at an altitude of about 60 nautical miles, the vehicle was in line of sight for several minutes beyond the 90-degree angle as measured from the centre of the lunar disk.

As before, Armstrong initiated a 180-degree roll, as a preliminary to resuming a pitched-down attitude.

“While this thing’s rolling over, I’m going to take a pee,’’ Collins announced. On venting the urine to space, he pondered how long it would take before its orbit decayed and it struck the surface – more contamination of the lunar environment! As Armstrong began the pitch manoeuvre, Collins noted that they had missed out on a long-lens picture of Earthrise the first time around, and had been too busy the second time. “Gee, it’s too bad that we can’t stop right here and observe the Earth come up.’’

“We probably can do it, if we stop it right here,’’ Armstrong noted. “That is, if you want to spend the gas.’’

“That’s the only trouble,’’ Collins mused, “the doggone gas.’’

“Why don’t we stop it?’’ prompted Aldrin.

“Okay!’’ said Collins.

Armstrong decided to adopt an inertial attitude that would put Earthrise in one of the windows and also enable the high-gain antenna to lock on. In commanding the manoeuvre, he selected the wrong direction. “Oh, son of a gun!’’ he chuckled. “We are going backwards. Oh, well.’’

“Dummkopf!’’ said Aldrin.

“Neil, pitch down,” encouraged Collins.

“Prior planning prevents poor performance,’’ recited Aldrin.

“Is that right, Buzz?’’ asked Armstrong.

“Where’d you ever hear that one, Buzz?’’ Collins demanded.

“I can’t think,’’ said Aldrin.

A few minutes later, Collins exclaimed, “Here’s the Earth. Hey, I’ve got the view over here.’’

John McLeaish, who had taken over as the Public Affairs Officer, informed the waiting world that both Goldstone and Hawaii had acquired Apollo 11 on time, an indication that the burn had gone to plan. During the far-side passage, the shift had changed in Mission Control. Although Milton Windler’s Maroon Team had taken the White Team’s slot in the daily cycle to give Kranz’s controllers a 32-hour rest prior to tackling the powered descent, Charlie Duke had opted to work the coming shift. Armstrong reported that the LOI-2 burn had been nominal. It was all strictly business. For most of this near-side pass there was little communication with the spacecraft. “This pass is fairly quiet,’’ noted McLeaish almost apologetically. “No doubt the crew is occupied with preparations to enter the LM, which we expect to occur over the far side of the Moon.’’ Aldrin was to spend 2.5 hours transferring items into the LM, and methodically configuring the switches in preparation for the next day’s operations.

About 50 minutes into the pass, Duke prompted for a progress report. “We’re wondering if you’ve started into the LM yet?’’

“We have the CSM hatch out, the drogue and probe removed and stowed, and are just about ready to open the LM hatch now,’’ replied Armstrong. And then, a few minutes later, “Okay, Charlie. We’re in the LM.’’

McLeaish observed, “They appear to be a little ahead on their time line.’’

After making the post-manoeuvre P52 platform check, Collins also decided to get ahead by adopting the attitude for the P22 landmark tracking that he was to do on revolution 4 of Alfa 1, the small bright crater on the Foaming Sea, with the objective of measuring its elevation relative to the intended landing site.

During the far-side pass, Armstrong shaved using cream and a razor.

“I see Earth,’’ said Aldrin, as the spacecraft rounded the limb on revolution 4, “but it’s a lousy picture.’’

Goldstone and Hawaii both acquired Apollo 11, and Duke put in a call. Collins told him that he was set up for the P22 landmark tracking. “Ho-hum, ho-hum. I only got set up for this thing about an hour early,’’ he chastised himself, provoking laughter on board. As they flew overhead, Collins made five sightings of Alfa 1 at timed intervals. On completion, he quipped to Armstrong, “Well, that’s one P22 out of the way. Ho, ho, ho!’’ When the sightings were processed, it was calculated that the landmark was 500 feet above the landing site – knowledge that would assist Armstrong and Aldrin to monitor their approach to the point at which they were to initiate the powered descent.

While in the landmark tracking attitude, the spacecraft had been unable to point its high-gain antenna at Earth, and the downlink using one of the omnidirectional antennas was noisy. However, this had no impact because, as McLeaish observed, “So far on this pass we’ve had just one contact with Apollo 11, and that was Mike Collins at AOS.’’

Duke called, “You can proceed to sleep-attitude now.’’

“Let’s hold this attitude a bit,’’ Aldrin prompted Collins, “I want to look at the PDI approach. Man, this is really something. To see our approach into the landing site, you’ve got to watch it through the LM’s window.’’

“Houston,’’ Collins replied, “we’re holding inertial for a little while to study the approach to the landing zone.’’ On looking out for himself, he said to Armstrong, “There go Sidewinder and Diamondback – God, if you ever saw check points in your life, those are it.’’

“But we don’t get to see them,’’ Armstrong noted.

“You don’t?’’

“No, we’re yawed face-up.’’

Since their previous inspection, the terminator line had migrated westward sufficiently to reveal their landing site. “I think I can see it,’’ Aldrin called with delight. “Yes, I can! I’ve got the whole landing site.’’ He depressed his Push-to – Talk, “Houston, this is Eagle. I can see the entire landing area.’’ While this was the first use of the call sign, the communication was via his umbilical to Columbia’s system.

“Roger, Buzz,’’ replied Duke matter-of-factly.

With the Sun barely above the horizon at the landing site, the lengthy shadows were highlighting the topography sufficiently to make the mildest of surface relief appear very rough. “Boy, that sure is eerie looking,” Aldrin mused.

“Isn’t that something?” said Armstrong, viewing from the command module. This was a significant moment in the mission.

“f missed taking a picture of it!’’ exclaimed Aldrin. ft did not matter, he would be able to take one later.

“Shall we manoeuvre to the sleep attitude?’’ Collins asked.

“All right,’’ Armstrong agreed.

Although the LM’s power margin was narrow, the flight plan included a test of its VHF and S-Band radio systems. “Houston, Apollo 11 – Eagle – over,’’ called Aldrin directly.

“Roger, Eagle,’’ replied Duke.

“f’ll go ahead with the sequence camera checkout,’’ said Aldrin. “f’m still on low voltage taps, and f assume there’s no problem doing that.’’

“That’s affirmative,’’ Duke confirmed.

Twenty minutes later, having tested the Maurer 16-millimetre camera, Aldrin announced, “Eagle is powering down. Out.’’

Just after Apollo 11 passed ‘over the hill’ Aldrin rejoined his colleagues, and Collins suggested that they need not reinstall the probe and drogue overnight.

‘‘ft’s okay with me,’’ agreed Armstrong.

‘‘How’s that going to affect sleeping?’’ Aldrin wondered.

‘‘f’d rather sleep with the probe and drogue than have to dick about with them in the morning,’’ Collins insisted. As long as they could squeeze their legs around the hardware stowed under the couches, there ought to be room to sleep. With the decision made, he installed the command module hatch over the tunnel.

‘‘ft’s amazing how quickly you adapt,’’ said Collins. ‘‘ft doesn’t seem weird at all to me to look out there and see the Moon going by, you know?’’ This prompted general laughter.

While Apollo 11 was behind the Moon, Owen Garriott took over as CapCom from Duke for the remainder of the Maroon Team’s shift. On the near-side pass, Collins undertook miscellaneous chores, then prepared their suppers. Over the far side once again, Aldrin, who had stood ‘watch’ the previous night, offered to do so again, ‘‘Why don’t you guys sleep underneath tonight? f’ll sleep top-deck.’’

‘‘Unless you’d rather sleep up top, Buzz,’’ Collins said, ‘‘but you guys should get a good night’s sleep before going in that damn LM. Which would you prefer? fs that probe and drogue going to be in your way over there?’’

Aldrin took a look. ‘‘No, f don’t think so.’’

ft was decided to follow the flight plan, and have Armstrong and Aldrin sleep in the hammocks. ‘‘Well,’’ said Collins, ‘‘f think today went pretty well. ff tomorrow and the next day are like today, we’ll be safe.’’

‘‘We’re ready to go to bed,’’ announced Garriott when the spacecraft appeared around the trailing limb on revolution 6.

‘‘We’re about to join you,’’ Collins replied.

With that, communications ceased. However, prior to retiring, Armstrong and

Aldrin, seeking to ‘get ahead’, prepared the clothing and equipment they would need the next day. Collins had the satisfaction of seeing his crewmen fall asleep before he himself settled down in the left couch.

In Houston, Glynn Lunney’s Black Team took over for the ‘graveyard’ shift, and his flight dynamics team analysed the tracking by the Manned Space Flight Network in order to verify that the spacecraft’s orbit was evolving in the manner designed to counteract the mascon perturbations. On the evening of Saturday, 19 July, Gene Kranz attended a Mass ‘‘to pray for wise judgement and courage, and pray also for my team and the crew’’. The astronauts’ wives endeavoured to find solitude in which to contemplate what Armstrong and Aldrin were to attempt the next day.

TOURING

On Tuesday, 12 August, Armstrong, Aldrin and Collins presented a 2-hour press conference in the packed Auditorium of the Manned Spacecraft Centre. In addition to answering questions from reporters, they provided spontaneous commentary as photographs were projected and the 16-millimetre movies were played.

At 5 am the next day the three families, together with a flock of Public Affairs people, boarded an aircraft of the Presidential Fleet at Ellington Air Force Base. The first stop was New York, landing at La Guardia, where they were greeted by Mayor John Lindsay and flown by helicopter to the city for a motorcade. The astronauts rode in one open limosine, their wives in a second, and their children in a third. Thousands of people lined the streets. Others waved from windows. Flags were ubiquitous, and ticker tape rained down from the skyscrapers. The cheering in the canyons between the buildings was incredible. At City Hall, Lindsay formally welcomed his guests, and then each astronaut delivered what was to be the first of many speeches to enthralled audiences around the world. After keys to the city had been presented, there was a short drive to the United Nations building and another round of speeches, followed by a helicopter flight back to the airport. When their aircraft landed in Chicago they were received by Mayor Richard Daley, were given an even more rapturous motorcade, accepted more keys and returned to the airport

Aldrin’s core temperature would remain elevated for several months, apparently unrelated to the mission.

to fly on to Los Angeles where, after being welcomed to the City of Angels by Mayor Sam Yorty, they took a helicopter to the Century Plaza Hotel, where they were to spend the night. Having freshened up, the astronauts and wives (minus their children) were taken to the Presidential Suite, where they were received by Richard Nixon, his wife Patricia and their daughters Julie and Tricia. After this private welcome, Nixon led them all into a ballroom for a State Banquet arranged in their honour. The tables appeared to stretch as far as the eye could see. There were thousands of guests and, of course, the US television networks. Catching the astronauts unaware, Vice President Spiro T. Agnew presented each man with the Presidential Medal of Freedom, the nation’s highest civilian honour. Also present were Gene Kranz and his wife Marta, and Steve Bales of the White Team. Bales accepted a Medal of Freedom on behalf of all the flight controllers. After dinner, the astronauts’ families accompanied Nixon’s party to a private room for a round of picture taking. Finally, after a very long day, they were shown to their rooms for some well-deserved sleep.

Houston welcomed the Apollo 11 crew home on Saturday, 16 August, with a parade and a star-studded night of entertainment at the Astrodome that featured a performance by Frank Sinatra, who sang Fly Me To The Moon.

On Saturday, 6 September, it was time for ‘home town’ visits. For Armstrong, this was Wapakoneta, Ohio, and for Aldrin it was Montclair, New Jersey. Although Collins’s parents had purchased a house in Alexandria on the Potomac while he was a teenager, he did not consider this to be his home. Instead, he opted for New Orleans, Louisiana, the home of the congressman who had nominated him for West Point. On Monday, 15 September, they visited the US Post Office in Washington, DC, where they returned an envelope that bore a stamp drawn up to commemorate the mission, which they had ‘cancelled’ during the transearth coast. The next day, Tuesday, 16 September, they attended a joint session of Congress, where first Armstrong, Aldrin, and finally Collins read an address, each receiving a rousing ovation.

Planning for the Giant Step Apollo 11 Goodwill Tour began in early September and involved NASA, the White House and the State Department. Armstrong, Aldrin and Collins were advised by Frank Borman, the astronaut with the most experience of touring. An aircraft of the Presidential Fleet left Andrews Air Force Base near Washington on the morning of Monday, 29 September, flew to Ellington Air Force Base to pick up the astronauts, their wives, and their many support staff, and then set off on a hectic schedule, each stop of which involved an official welcome, a motorcade, a press conference, an official dinner or two, and the giving and receiving of gifts.

Italian coverage of the mission had celebrated the fact that Collins was born in Rome. When the tour reached Italy, Collins was summoned to his place of birth, where he unveiled a 3-foot marble plaque that bore an inscription which began: ‘‘In this house on 31 October 1930 was born Michael Collins, intrepid astronaut of the Apollo 11 mission’’, which was all very well, but then, unfortunately, continued with ‘‘first man on the moon’’. The special treat for his wife, a Catholic, was the audience with Pope Paul VI in the Vatican.

Chicago welcomes the Apollo 11 crew.

Table: Giant Step Apollo 11 Goodwill Tour

Date of visit

Place

29-30 September 1969

Mexico City, Mexico

30 September-1 October

Bogota, Columbia

1 October

Brasilia, Brazil

1-2 October

Buenos Aires, Argentina

2-4 October

Rio de Janeiro, Brazil

4-6 October

Las Palmas, Canary Islands

6-8 October

Madrid, Spain

8-9 October

Paris, France

9 October

Amsterdam, Holland

9-10 October

Brussels, Belgium

10-12 October

Oslo, Norway

12-14 October

Cologne, Bonn and Berlin, West Germany

14-15 October

London, United Kingdom

15-18 October

Rome, Italy

18-20 October

Belgrade, Yugoslavia

20-22 October

Ankara, Turkey

22-24 October

Kinshasha, Zaire

24-26 October

Tehran, Iran

26-27 October

Bombay, India

27-28 October

Dacca, East Pakistan

28-31 October

Bangkok, Thailand

31 October

Perth, Australia

31 October-2 November

Sydney, Australia

2-3 November

Agana, Guam

3-4 November

Seoul, South Korea

4-5 November

Tokyo, Japan

5 November

Elmendorf, Alaska

2-3 December 1969

Ottawa and Montreal, Canada

On 20 July 1970, to mark the first anniversary of the lunar landing, Armstrong, Aldrin and Collins flew to Jefferson City, Missouri, where Columbia was on show during its tour of the USA. By now the three men were growing apart, they were no longer a crew, just three amiable strangers who had made a brief, but momentous, journey together.14

Columbia is now a permanent exhibit at the National Air and Space Museum in Washington, DC.

BUZZ ALDRIN

Edwin Eugene Aldrin was born in Worchester, Massachusetts, in 1896, not long after his parents, brother, and two sisters had immigrated to the USA from Sweden. After World War One he became a friend of Orville Wright. Later, while serving in the Philippines, he married Marion Gaddys Moon, the daughter of an Army chaplain. On his return to the USA in 1928 Aldrin left the Army to become a stockbroker. Three months prior to the financial crash of August 1929 he sold his stocks, bought a large house in Montclair, New Jersey, and joined Standard Oil to expand the market for petroleum by promoting commercial aviation. In 1938 he left Standard Oil to become an aviation consultant, and in World War Two joined the Army as a colonel in the Air Force.

Edwin Eugene Aldrin Jr was born on 20 January 1930 – a new brother for 3- year-old Madeline and 1-year-old Fay Ann. As Fay Ann pronounced ‘brother’ as ‘buzzer’, he gained the nickname ‘Buzz’. He had his first ride in an aeroplane at 2 years of age, when his father flew to Florida, but was sick for most of the journey. At school his priority was sports, at which he was extremely competitive, with his father cheering him on – as long as he excelled, his father was content. On leaving high school in 1947 Buzz accepted his father’s case for attending a military school, but dismissed his father’s recommendation of the Naval Academy at Annapolis, Maryland, opting instead for the Military Academy at West Point, New York. Instead of going to summer camp as he usually did, he attended a 6-week school in order to prepare for the entrance examinations, in which he scored sufficiently well to be accepted. The first-year curriculum gave more or less equal time to scholastics and athletics. One-third of the course work was in mathematics, at which he excelled, with the result that he was rated first in both scholastics and athletics. At his graduation in 1951, at the age of 21, he was rated third in his class of 435 students.

In his final year at West Point, Buzz and his father agreed that he should join the Air Force, but while his father favoured multi-engine school because it would inevitably lead to command of a crew, Buzz wished to be a fighter pilot. After 6 months of basic flight training, 3 months of fighter pilot training, and 3 months at Nellis Air Force Base, Nevada, learning to fly the F-86 fighter-interceptor, he was

posted to the 51st Fighter Wing, arriving in Seoul, South Korea, on 26 December 1951. Although the war was less intense by the time he was ready for his first operational mission in February 1952, on 14 May he shot down a MiG during a patrol over North Korea (his gun camera film of the pilot ejecting was featured in Life magazine a week later) and on 7 June shot down a second. By the ceasefire on 1 July 1952 he had clocked up a total of 66 missions. He returned to Montclair in December. Prior to his Korean deployment he had accompanied his parents to a cocktail party where one of his father’s acquaintances, Mrs Evelyn Archer, invited him to dinner to meet her daughter, Joan, who had just gained her degree from Columbia and was hoping to make a career as a television actress. Michael Archer, her father, was an oil executive. Although Buzz and Joan had not corresponded while he was in Korea, he phoned her on his return and asked her to accompany him to a New Year’s Eve party, which she did. They met twice more before he returned to Nellis as a gunnery instructor (he had gained two ‘combat kills’, after all), and they kept in touch. Some time later, Buzz invited Joan for a week’s sightseeing in Las Vegas, which, although nearby for him, represented a major trip for her. As her mother had been killed in an air crash while Buzz was in Korea, Joan asked her father to accompany her. On the penultimate day Buzz proposed marriage, to which Joan agreed with her father’s consent. When Buzz’s parents were informed, they were delighted. Buzz and Joan were married on 29 December 1954, and two days later they left for Maxwell Field, Alabama, where Buzz was to spend 4 months in squadron officer school. He was then assigned as aide to the Dean of the Air Force Academy in Colorado, and as a flight instructor six months later. In August 1956 he went to Bitburg in West Germany to fly the F – 100 with the 36th Fighter Wing. In June 1959 they returned to the USA to enable Buzz to gain a postgraduate degree at the Massachusetts Institute of Technology to advance his military career. One option was a masters degree as a preliminary to attending Experimental Test Pilot School. If he took a doctorate, he would, on graduating, have exceeded the age limit for Experimental Test Pilot School. He opted therefore for a doctorate in astronautics – a new subject that was clearly going to become important to the Air Force. In May 1961, when John F. Kennedy initiated the ‘Moon race’, Aldrin was 30 years old and well into his doctorate. In December 1962, with a thesis entitled Line of Sight Guidance Techniques for Manned Orbital Rendezvous in draft, he was sent to the Air Force’s Space Systems Division in Los Angeles. When NASA invited applications for its third intake of astronauts in June 1963, he noted that the requirement for test pilot experience had been relaxed; now 1,000 hours of jet time was sufficient. He applied, and on 17 October was announced as one of 14 new astronauts. The family set up home in Nassau Bay, one of many new housing developments near the Manned Spacecraft Center.

In view of his background, Aldrin’s assigned specialism was mission planning, working with the Trajectories and Orbits group led by Howard W. ‘Bill’ Tindall, which studied every contingency involving the computer that would process either radar tracking or sextant sightings to compute a sequence of manoeuvres designed to make a rendezvous in space – the primary objective of the Gemini program was to demonstrate rendezvous techniques for Apollo. He tutored Wally Schirra and Tom Stafford for Gemini 6, which was to attempt the first rendezvous. As Aldrin noted, “It was essential for the pilot to understand what the computer was doing, and to make sure it made no errors that went unnoticed – i. e. the pilot must know how to guide the computer to the correct conclusion.” When Aldrin was assigned as backup pilot for Gemini 10, the frustration was that the system of ‘rotation’ introduced by Slayton – although not rigidly followed, by which, after serving in a backup capacity, a crew would skip two missions and fly the next – would in this case lead nowhere since the program was to finish with Gemini 12. Nevertheless, Aldrin was delighted to get a crew assignment because, having served in a backup capacity for Gemini he would rank ahead of the total ‘rookies’ when it came to selecting the early Apollo crews. Fate intervened, however. On 28 February 1966 Elliot See and his partner for Gemini 9, Charles Bassett, died in an air crash. In reshuffling the crews, Slayton advanced Lovell and Aldrin from backing up Gemini 10 to backing up Gemini 9, which put them in line to fly Gemini 12. When the radar on that mission failed, Aldrin completed the rendezvous by computing the manoeuvres manually, and later, during a record three spacewalks, he demonstrated a mastery of the art of working in weightlessness that paved the way for such activities to be included on Apollo missions. Although Aldrin had not been as involved in the development of the LM as some of his peers, his expertise made him well suited to accompany Armstrong on the first lunar landing attempt.

At the time of Apollo 11, the Aldrin family comprised Buzz and Joan, sons Michael, aged 13, and Andrew, 11, and daughter Janice, 11.

LUNAR LANDING

When John F. Kennedy challenged his nation to land a man on the Moon before the decade was out, Hubert M. ‘Jake’ Drake at Edwards Air Force Base, who in the 1950s participated in the initial planning for the X-15 rocket plane, concluded that to provide realistic training for flying a lunar module it would be necessary to build a free-flying craft that accurately reproduced the stability and control issues involved in ‘flying’ in a vacuum and a reduced gravitational field. Drake set up a study group to design such a machine and enrolled Neil Armstrong as one of the team’s members. After reviewing 1950s research into vertical takeoff and landing (VTOL) aircraft, it was decided to mount a jet engine in a gimbal to provide vertical thrust. Its throttle would operate in two modes: in ‘terrestrial mode’ the jet would run conventionally in order to lift off vertically and climb to the altitude needed to simulate the lunar landing, and then be throttled back into ‘lunar mode’ in order to offset five-sixths of the craft’s weight. The rate of descent would be controlled by a pair of throttleable thrusters affixed to the airframe. The attitude control system was based on that developed for the X-15 at the top of its ballistic arc, where aerodynamic control surfaces are useless. It was decided to use 16 thrusters, arranged in pairs, to control roll, pitch and yaw. The project attracted interest precisely because aerodynamics played no part in the craft’s operation. To translate, it would have to tilt, and use the angled component of the thrust from the ‘descent engines’ to impart lateral motion, then tilt back to cancel this motion. By a remarkable coincidence, Bell Aerosystems in Buffalo, New York – which had built the X-1 rocket plane in which Charles E. Yeager had ‘broken the sound barrier’ on 14 October 1947, and was the only US

It was for this reason that the KC-135 aircraft used for such training was nicknamed the Vomit Comet.

aircraft manufacturer with experience of using jet engines for VTOL – independently submitted to NASA a proposal to develop a vehicle to be used to investigate the issues of making a landing on the Moon. When NASA sent Bell out to Edwards, Drake realised that the company was better placed to develop the vehicle and, as a result, on 18 January 1963 NASA issued Bell with a contract to supply two Lunar Landing Research Vehicle (LLRV) aircraft.

On 15 April 1964 the two LLRVs were shipped to Edwards Air Force Base in crates, because Drake’s team wished to do the assembly and install the instruments themselves. Each vehicle stood 10 feet tall on four legs spanning some 13 feet, and weighed 3,700 pounds. The General Electric CF-700-2V turbofan jet delivered a maximum of 4,200 pounds of thrust. The descent engines for ‘lunar mode’ were non­combustion rocket thrusters using pure hydrogen peroxide propellant, each of which could be throttled between 100 and 500 pounds of thrust in order to control the rate of descent and horizontal translations.[12] The pilot sat on a platform that projected forward between the front legs. In view of the fact that if a vehicle were to get into trouble it would be close to the ground, probably be falling, and certainly be within seconds of crashing, it was fitted with a lightweight ejection seat developed by Weber Aircraft that was not only capable of lifting its user clear of an aircraft on the ground but also from an aircraft that was at low level and falling at 30 feet per second. On 30 October 1964 NASA test pilot Joseph S. Walker, a former X-15 pilot, made three vertical ‘hops’ in LLRV-1, remaining within 10 feet of the ground for a total duration of 60 seconds to exercise the hydrogen peroxide attitude control thrusters, the steam from which nearly obscured the view of the spectators. Armstrong was no longer at Edwards, but having been assigned the task of overseeing the development of trainers and simulators he closely monitored the test program.

In 1963 NASA began to train astronauts to fly helicopters in the hope that this would enable them to gain a feel for the issues of making a landing on the Moon. However, while a helicopter could duplicate the trajectory of the final phase of a lunar landing, the basic aerodynamic requirements of helicopter flight meant that the controls could not simulate those of a spacecraft. In contrast, the ми-aerodynamic LLRV did accurately simulate control over the rate of descent, attitude, and lateral movement. On 26 January 1965, Warren J. North, who was in charge of training, ordered that astronauts must have 200 hours of helicopter training prior to trying to fly the LLRV. In October that year NASA drew up the preliminary specifications for a Lunar Landing Training Vehicle (LLTV). Based on the LLRV, this new vehicle was to have an upgraded jet and larger tanks of peroxide for longer endurance in ‘lunar mode’, a cabin with a similar field of view to that envisaged for the LM, a 3- axis hand controller (instead of the stick and pedals of the LLRV), instruments laid out as in the LM, and as much as possible of the LM’s built-in flight control logic in order to enhance its fidelity as a trainer. In August 1966 Armstrong and Joseph S. Algranti, chief of aircraft operations at the Manned Spacecraft Center, worked with Bell to implement these upgrades. To augment helicopter training, a cratered surface based on the highest resolution pictures from the Ranger probes was mocked up, and on climbing to 500 feet the astronauts would cut the throttle and land at various angles and rates of descent and in a variety of lighting conditions to familiarise themselves with visually gauging their height and sink rate over the alien landscape. Meanwhile, it had been decided that once Edwards completed its LLRV tests these vehicles should be sent to Ellington. When LLRV-1 arrived on 12 December 1966, Armstrong was present to watch Algranti perform the formal acceptance trial. LLRV-2 followed in mid-January 1967. In a rationalisation, the two LLRVs were redesignated LLTV A1 and A2, and the three new vehicles were to be B1, B2 and B3. Before being permitted to fly, an astronaut was required to undertake a 3-week helicopter refresher, 1 week of familiarisation with the Lunar Landing Research Facility at Langley,[13] spend 15 hours in a ground simulator and then be cleared by Algranti.

Armstrong made his first flight in LLTV A1 on 27 March 1967, but did not fly again until starting an intensive program of lunar landing rehearsals in early 1968. A typical flight involved using the jet at maximum thrust to lift off vertically and climb to 500 feet altitude, throttling back to balance five-sixths of the weight, and then, as when using the helicopter, flying a profile that would match the trajectory of a LM at that altitude, except that now the rate of descent and lateral manoeuvres were actively controlled employing the ‘descent engines’. As Armstrong reflected of his experience:[14]

‘‘The thing that surprises people on their initial flights in ‘lunar mode’ is the tendency of the vehicle to float far beyond where you think it is going to go. It takes practice to anticipate the distance required to slow down – you must start to brake much earlier, if you are to stop where you want to stop. Similarly, if you are in a hover, and change your mind, it takes a lot of effort to get moving again. The vehicle is sluggish in its translating ability, so it takes a long time, and big angles, to gain a little speed and translate 50 feet. We hope to have one – and-a-half to two minutes of fuel essentially in hover when we’re landing on the

Moon, but you can use that up really fast if you change your mind frequently about where you want to go.”

On 6 May 1968 LLTV A1 went out of control during a descent and he had to eject.

“I lifted the vehicle off the ground and climbed to an altitude of 500 feet in preparation for making the landing profile. I had been airborne for about 5 minutes, and was down to about 200 feet when the trouble began. The first indication was a decreasing ability to control the vehicle. It began to tilt sharply. There was less and less response. The trouble developed rather rapidly, but wasn’t an abrupt stop. It was a decay in attitude control. Without attitude control there is no way to remain upright. The vehicle does have two separate systems for doing this, but in this case both systems failed at their common point – the high-pressure helium to pressurise the propellant to the rockets. I was losing both systems simultaneously, and that’s where I had to give up and get off. I guess I ejected at 100 feet, plus or minus – we don’t have a way of measuring it accurately, even from photographs. How far the ejection throws you depends on your attitude at the time you leave, and also on your upward or downward velocity at the time. If you start from an upright attitude at a hover, it will take you up about 300 feet. The parachute ejector is automatic, although there is a manual override. I had always thought I might be able to match the automatic system, but when I was reaching for the D-ring the automatic system had already fired.’’

FLIGHT DAY 5

Early on the morning of Sunday, 20 July, Ron Evans made the wake-up call.

‘‘Good morning,’’ replied Collins half a minute later. ‘‘You guys sure do start early.’’

‘‘It looks like you were really sawing them away.’’ Evans said, having noted the telemetry indicating that all three astronauts had been sleeping soundly.

‘‘You’re right,’’ Collins agreed. ‘‘How are all the CSM systems looking?’’

‘‘It looks like the command module’s in good shape. The Black Team’s been watching it real closely for you.’’

‘‘We appreciate that, because I sure haven’t.’’

Moments later, the spacecraft passed ‘over the hill’. While on the far side, the crew tidied up and prepared the breakfast. On their reappearance on revolution 10, Evans, making the most of his opportunity to converse, announced, ‘‘The Black Bugle just arrived with some morning news briefs, if you’re ready.’’

‘‘Go ahead,’’ Armstrong replied.

‘‘Today church services around the globe will be mentioning Apollo 11 in their prayers. President Nixon’s worship service at the White House is also dedicated to the mission, and fellow astronaut Frank Borman is still in there pitching – he will read the passage from Genesis that was read out on Apollo 8 last Christmas. The Cabinet and members of Congress, with emphasis on the Senate and House space committees, have been invited, together with a number of other guests. Buzz, your son, Andy, got a tour of the Manned Spacecraft Center yesterday which included the Lunar Receiving Laboratory; he was accompanied by your uncle, Bob Moon.’’ ‘‘Thank you,’’ said Aldrin.

‘‘Among the headlines about Apollo this morning,’’ Evans continued, ‘‘there is one asking that you watch for a lovely girl with a big rabbit. An ancient legend says a beautiful Chinese girl called Chang-o has been living there for 4,000 years. It seems she was banished to the Moon because she stole the pill of immortality from her husband. You might also look for her companion, a large Chinese rabbit, who is easy to spot since he is always standing on his hind feet in the shade of a cinnamon tree; the name of the rabbit is not reported.’’

The astronauts promised that they would ‘‘keep a close eye out for the bunny girl’’.

Evans went on, “You residents of the spacecraft Columbia may be interested in knowing that today is Independence Day in the country of Colombia. Gloria Diaz of the Philippines was crowned Miss Universe last night, beating sixty other girls for the global beauty title. Miss Diaz is 18, has black hair and eyes, and measures thirty – four-and-a-half, twenty-three, thirty-four-and-a-half. The first runner up was Miss Australia, then Miss Israel and Miss Japan. When you are on your way back, Tuesday night, the American and National League All Stars will be playing ball in Washington. Mel Stottlemyre of the Yankees is expected to be the American League’s first pitcher. No one’s predicting who’ll be first pitcher for the National League yet; they have nine on the roster.’’ And then he rounded off with a funny: “Although research has certainly paid off in the space program, research doesn’t always pay off, it appears. Woodstream Corporation, the parent company of the Animal Trap Company of America that has made more than a billion wooden spring mousetraps, reported that it built a better mousetrap but the world didn’t beat a path to its door. As a matter of fact, it had to go back to the old-fashioned kind. They said, ‘We should have spent more time researching housewives, and less time researching mice’. And with that the Black Bugle is completed for this morning.’’

‘‘Thank you, very much,’’ acknowledged Armstrong.

A few minutes later, the spacecraft passed around the far side again.

Meanwhile, at home

On his arrival in Mission Control, Kranz was astonished to find Dick Koos absent; Koos had rolled his new Triumph TR3 driving in, but was uninjured and arrived in time for the powered descent. On reviewing Lunney’s console log, Kranz was pleased to discover that he had not inherited any problems – the spacecraft was in excellent condition. Chris Kraft arrived, patted Kranz on the shoulder and wished him ‘‘good luck’’, then took his seat on Management Row. When Kranz was made a flight director early in the Gemini program, his wife Marta had begun the tradition of making him a waistcoat specifically for each mission. For Apollo 11 she had made one of white brocade inlaid with very fine silver thread. At 095:41 Kranz took over the flight director’s console, and Lunney went to brief the press. During the far-side pass, the other members of the White Team settled in for what was to be a momentous shift – the landing was about 7 hours off. Man could land on the Moon for the first time only once. As the shift began, this task had not yet been attempted. Soon it would be. Once achieved, the moment of its attainment would become part of the historical record. On looking around into the viewing gallery, Kranz noticed Bill Tindall, and waved him down to sit alongside him at his console. Kranz would later write of Tindall, ‘‘he was the guy who put all the pieces together, and all we did was execute them.’’[22]

At 9.30 am Joan Aldrin, her children and Robert and Audrey Moon, attended

Webster Presbyterian Church, where her husband served as an elder. The church was packed, with folding chairs in place to accommodate the extra worshippers. As in Mission Control, the mood was tense. The Reverend Dean Woodruff began his sermon: “Today we witness the epitome of the creative ability of Man. And we, here in this place, are not only witnesses but also unique participants.” Everyone knew that by the day’s end Armstrong and Aldrin might well be dead. Pat Collins, her children and sister Ellie Golden, went to morning Mass at St Paul’s Roman Catholic Church. Jan Armstrong remained at home and impatiently watched the clock. At noon some of the churchwomen delivered a cold luncheon to the Aldrin home, together with a cake that had been frosted with the Stars and Stripes and the words ‘We came in peace for all mankind’. Woodruff arrived later, and remained for the powered descent.

The Moon revealed

SEA OF TRANQUILITY

The Air Force C-141 Starlifter carrying NASA Administrator Thomas O. Paine and the first rock box landed at Ellington Air Force Base on Friday, 25 July 1969. Awaiting it were Samuel C. Phillips, the Apollo Program Director, Robert R. Gilruth, Director of the Manned Spacecraft Center, and George M. Low, Manager of the Apollo Spacecraft Program Office in Houston. Gilruth and Low posed for photographs holding the box, before taking it to the Lunar Receiving Laboratory on the campus of the Manned Spacecraft Center. The second box arrived later that day. The next day, a member of the 50-strong Preliminary Examination Team used a vacuum chamber with a window and rubberised ‘arms’ to raise the lid of the first box, and found the interior so coated with black dust as to make it impractical to say anything definitive about the contents! When the boxes were emptied, there was found to be 48 pounds of lunar material in the form of 20 individual rocks and a pile of fragments and grains. One by one, the rocks were cleaned for inspection. At a press conference on 28 July, Persa R. Bell, Director of the Lunar Receiving Laboratory, opined that the rocks had been ‘‘beautifully selected’’. Elbert King, the curator, announced that the first rock to be examined under a microscope appeared to be a granular igneous rock. Gene Shoemaker of the US Geological Survey suggested that it represented a lava flow. But this was only a first impression. Once the material had been catalogued, small samples were issued to 150 principal investigators who had spent years developing the means to subject such material to almost every possible kind of analysis. The investigations proceeded at such a pace that on 15 September NASA was able to announce the preliminary findings and, to follow up, on 4 January 1970 the agency hosted the first of what was to become an annual Lunar Science Conference.1

To Harold C. Urey, who favoured the ‘cold’ Moon theory in which the interior was uniformly composed of ‘pristine’ material, the dark plains were the result of

These gatherings are now entitled the Lunar and Planetary Sciences Conferences.

George M. Low (left) and Robert R. Gilruth offload the first rock box from an aircraft at Ellington Air Force Base.

impact melting on a vast scale. While the astronauts were out on the surface, Urey had been concerned when Armstrong reported a vesicular rock, encouraged when Armstrong changed his mind, and dismissed Armstrong’s later report of a rock he was sure was vesicular. Most of all, Urey was encouraged that they did not report finding the ‘frothy vacuum lava’ predicted by his leading rival, Gerard P. Kuiper, who favoured the ‘hot’ Moon theory in which the interior was differentiated and the dark plains were the result of upwellings of lava through fractures in the floors of major impact basins. The rocks proved to be a form of basalt rich in magnesium and iron (and therefore described as being ‘mafic’) which isotopic dating revealed to have crystallised some 3.84 to 3.57 billion years ago. In terms of texture, it was strikingly similar to terrestrial basalt. It was not impact melt. This meant that the Moon had undergone a process of thermal differentiation in which lightweight aluminous minerals had migrated up to the surface and the heavier minerals had sunk into the interior. The fact that some of this denser material had later been erupted indicated

that the interior had remained ‘hot’ for a significant period. However, when compared to terrestrial basalt, the lunar variety was enriched in titanium. The titanium-bearing mineral, which was new to mineralogists, was named ‘armalcolite’, in honour of the astronauts.[51] The lack of oxidised iron meant that the lava was created in a reducing environment (i. e. one devoid of oxygen). The most striking fact was the total absence of hydrous minerals. The lunar basalt was also deficient in volatile metals such as sodium. The low-alkali (i. e. sodium-depleted) lava would have had an extremely low viscosity, which is why it flowed so readily, and why it left so few ‘positive-relief’ features. The Sea of Tranquility was evidently accumulated by episodic volcanism over a period of several hundred million years. The presence of two types of basalt implied either that there were separate reservoirs of magma or that the single source had undergone chemical evolution over time.

As Armstrong later reflected of the lunar surface, ‘‘My impression was that we were taking a ‘snapshot’ of a steady-state process in which rocks are being worn down on the surface of the Moon with time, and other rocks are being thrown out on top as a result of new events somewhere near or far away. In other words, no matter when you had visited this spot before – 1,000 years ago or 100 years ago, or if you come back to it 1,000,000 years from now – you’d see some different things each time but the scene would generally be the same.’’ This was insightful. On the airless Moon there was little chemical erosion. Large impacts simply excavated bedrock, and this was progressively worn down by smaller impacts to produce the regolith, the majority of which was pulverised basalt. There was little meteoritic material. Many of the discrete samples proved to be regolith compacted by shock. When subjected to physical stress these ‘regolith breccias’ tended to fall apart. The ‘glassy material’ found in a small fresh-looking crater was regolith that had been heated and fused by a high-energy impact. This impact-driven weathering process was given the name ‘gardening’.

There was a small residue of the regolith that was very different in character. On the basis of his analysis of chemical data provided by Surveyor 7, which had landed near the crater Tycho in the southern highlands in 1968, Shoemaker had predicted that 4 per cent of the regolith at the Apollo 11 site would comprise minuscule fragments of light-coloured rock – and this proved to be the case. This light rock was plagioclase feldspar. Terrestrial plagioclase is rich in sodium, but the Moon is depleted in sodium and the lunar variant had calcium, making it calcic-plagioclase. Some of the fragments were sufficiently pure to justify being called anorthosite, this being the name for a rock comprising at least 90 per cent plagioclase, but most were diluted with mafic minerals and therefore were more properly called anorthositic gabbro; like the material Surveyor 7 had analysed. Shoemaker’s rationale for there being highland material in the regolith of the Sea of Tranquility was based on the manner in which the most recently formed highland craters splashed out ‘rays’ of material. Regarding the highlands, it could now be inferred that the primitive crust was composed of anorthositic rock. At the Lunar Science Conference, J. A. Wood noted that if the ‘exotic’ fragments in the Apollo 11 regolith were indeed highland rock, then their density of 2.9 grams per cubic centimetre (in comparison to the 3.4 average for the Moon) meant that the heat generated by giant impacts during the accretion of the Moon from planetesimals had created a ‘magma ocean’ which later solidified to form the crust. This was a significant insight into early lunar history.

What a difference one brief field trip had made; its ‘ground truth’ had scythed through the long-held theories without consideration for the professional standing of their proponents. Previously minor players found themselves in the limelight by virtue of having been proved right. For example, in a paper published a few weeks prior to Apollo 11, Anthony Turkevich reported a study of data from Surveyor 5, which landed in the Sea of Tranquility in 1967, near where Apollo 11 was to try to land, and he predicted the astronauts would return with titanium-enriched basalt.