Category The International Space Station

PROGRESS M-60

The Progress M-60 cargo vehicle was launched at 23: 25, May 11, 2007. After following a standard 2-day rendezvous, automated docking occurred at Zvezda’s wake at 01: 10, May 15. During the final approach the KURS antennae on the Progress were retracted earlier than on previous Progress flights, allowing the crew on ISS to confirm visually that it had indeed retracted. Following pressure checks, the hatches between the two vehicles were opened later that night, and the unpacking of the 2,561 kg of supplies took place over the next few weeks. On May 27, Williams was informed that she would now return to Earth on STS-117, then targeted for launch on June 8, 2007, rather than STS-118, planned for August 8, 2007, as originally planned. Clayton Anderson, her relief, had been moved forward one Shuttle flight after NASA managers had assured themselves that it would not impact any future operational goals. On receiving the news she replied, “All right, thanks very much. I might see you guys sooner than we all thought. That is pretty good.’’

Anderson later explained:

“I had an inkling that it was coming, but at first it was being evaluated… to make sure that there were no big showstoppers… [T]he answer came back essentially, “no.’’ … I tell Suni that I’m her knight in shining armour, I’m going to come up there and I’m going to rescue her from her potential nine-month duration on orbit and I also tell people that it’s a clever plot by Michael Lopez-Alegria to keep Suni from breaking his new long-duration endurance record… It’s a very hectic time for me. We had been scheduled to launch on STS-118 at the end of June, and then, when the hailstorm damage happened to 117’s External Tank, STS-118 had moved to August. So… we breathed a little sigh of relief and I thought, hey, a little extra time to maybe get all this together and relax a little bit. At that point they decided to move me to 117, which now launches earlier than my original date on 118, so, from the perspective of my family getting ready, my guests being ready to go to Florida to watch a launch, all that’s a little hectic but it’s going to work out.”

While commencing preparations for the end of her 6 months in space, Williams made repairs to some exercise equipment and rode the station’s stationary bicycle while doctors in Huntsville measured her oxygen intake. She also updated the software in the station’s laptop computers. Meanwhile, Yurchikhin and Kotov began preparations for their first EVA, planned for May 30. They checked out Pirs, their Orlan pressure suits, and gathered together and tested the tools that they would use. They also closed the hatch to Progress M-59, docked to Pirs’ nadir. On May 23, controllers in Korolev fired Progress M-60’s thrusters to place the station in the correct orbit to receive STS-117.

After dealing with an unexpected communications problem, Yurchikhin and Kotov left Pirs, 45 minutes late, at 15: 05, May 30, 2007. Having gathered their tools, they moved to the Strela-2 crane on the exterior of Pirs. There, they attached an extension to the Strela boom, to increase its length from 14m to 18.75m. Kotov then positioned himself on the end of the extension while Yurchikhin turned the handle to extend the crane until his partner was suspended above PMA-3 on Unity. Using Kotov’s verbal instructions, Yurchikhin manoeuvred the crane until its end-effector locked on to a grapple fixture on an adapter stowage rack attached to PMA-3. The rack carried 17 micro-meteoroid debris panels in three bundles, and was referred to by the cosmonauts as the “Christmas Tree’’. Yurchikhin then manoeuvred the Strela crane, holding Kotov and the “Christmas Tree’’ to Zvezda’s ram, before making his own way to the same location and helping secure the Strela to a grapple fixture. Their first task was nothing to do with the debris panels. It required them to make their way to Zvezda’s large conical section where they re-routed a cable for the Global Position­ing System which would be used in association with ESA’s ATV. With that task complete they returned to the “Christmas Tree’’, where they removed and opened a bundle of five debris panels each measuring 66 cm x 1m and installed the panels between Zvezda’s large and small diameter sections before returning to Pirs and sealing the hatch at 20: 30. The EVA had lasted 5 hours 25 minutes.

The cosmonauts followed the EVA with an easy day, drying their Orlan suits and recharging their batteries. Williams began packing for the end of her flight. May 4 and 5 were spent preparing for the next EVA.

Yurchikhin and Kotov began their second EVA from Pirs at 10: 23, June 6. Initially, they installed sample containers on the exterior of Pirs, for a Russian experiment called Biorisk, which was designed to look at the effect of the space environment on micro-organisms. Next, they deployed a length of Ethernet cable on the exterior of Zarya to complete a remote computer network that would allow the

PROGRESS M-60

Figure 87. Expedition-15: Oleg Kotov works with the Period Fitness Evaluation experiment keyboard.

Russian modules to be commanded from the US sector if required. As they worked to clamp the cable securely in place they noticed a 6 mm diameter hole in Zarya’s insulation. They reported, “This is a dent from a meteorite; it looks like a bullet hole.’’ The remainder of the EVA was taken up with deploying the remaining 12 micro-meteoroid debris panels on the centre section of Zarya. During this work Korolev requested that Yurchikhin return inside Pirs to confirm that the pressurised oxygen bottles were closed correctly: they were. While Yurchikhin returned outside to assist Kotov, Korolev identified that the unexpected reading they were receiving from Pirs was caused by a small amount of oxygen escaping from a fluid umbilical that had improperly sealed when it was disconnected from one of the cosmonauts’ Orlan suits. Controllers closed off the flow of oxygen to the hose in order to preserve oxygen. They commanded the flow back on once more, after the two men returned to Pirs; after 5 hours 37 minutes the hatch was closed to end the EVA at 16: 00.

SOYUZ TMA-7 DELIVERS THE EXPEDITION-12 CREW

Подпись: SOYUZ TMA-7 COMMANDER William McArthur FLIGHT ENGINEER Valeri Tokarev SPACEFLIGHT PARTICIPANT Gregory Olsen

Soyuz TMA-7 was launched from Baikonur at 23:55, September 30, 2005, while ISS was over the Pacific Ocean, off the coast of Chile. McArthur and Tokarev were the Expedition-12 crew, and planned to spend 6 months on the station, while American Gregory Olsen was a paying passenger making a 10-day flight under a commercial contract with the Russians. A medical condition had grounded the American businessman from a Soyuz flight in 2004, but he returned to the pro­gramme the following year. Olsen insisted that he would be doing good work on the station and to that end he would perform a number of experiments for Russia and ESA.

The spacecraft docked to Pirs nadir at 01: 27, on October 3. Following pressure and leak checks the hatches between the two vehicles were opened at 04: 36. As with all new crews aboard the station, the newcomers were treated to the traditional Russian greeting of bread and salt upon their entry into the station. The usual safety briefing and emergency evacuation exercise followed before the new crew were allowed to settle in and Olsen’s couch liner was transferred to Soyuz TMA-6. American ISS commander Bill McArthur had arrived on ISS by Soyuz, but at that time, there was a faint possibility that he might have to stay on the station until a Shuttle could return him to Earth. During his occupation Russia’s original contract to supply Soyuz spacecraft for ISS would come to an end. If America could not find a away around the Iran Non-proliferation Act then the Russians would be under no legal obligation to return McArthur to Earth, even in the event of an emergency evacuation of the station! NASA made it clear that they expected to find a solution to the problem and negotiations were underway to overcome the problem.

A week of joint hand-over activities followed, along with the performance of a number of short-term experiments carried to the station in the new Soyuz. Mean­while, Olsen completed his 8-day experiment programme. Krikalev and Olsen even filmed a television commercial for a Japanese company while on the station. On October 4, Phillips and McArthur reviewed the software for the SSRMS, before they performed several manoeuvres with the SSRMS itself the following day. The crew also took a message from Mikhail Fradkov, the Russian Prime Minister.

SOYUZ TMA-7 DELIVERS THE EXPEDITION-12 CREW

Figure 63. Expedition-12: Sergei Krikalev is on the right, with Expedition-12 crew member William McArthur in the centre and American spaceflight participant Gregory Olsen on the left. Olsen flew to the station in a Soyuz with the Expedition-12 crew and returned to Earth with the Expedition-11 crew.

Following the official hand-over and final farewells Krikalev, Phillips, and Olsen sealed themselves inside Soyuz TMA-6. Prior to undocking the crew discussed a pressure leak between the re-entry module and the orbital module with engineers in Korolev. Krikalev finally undocked the Soyuz under manual control, at 17:49, and backed it away from the station. Throughout the separation manoeuvre and de-orbit burn the pressure leak continued to cause concern until the orbital module was jettisoned, at which time it ceased. The re-entry module landed at 21:09, on target 85 km northeast of Arkalik. The Expedition-11 flight had lasted 179 days 23 minutes and Krikalev’s personal endurance record now stood at 803 days 9 hours 39 minutes. Phillips felt light-headed after being helped out of the spacecraft by the recovery forces, but could not remember afterwards if he actually blacked out. The long- duration crew were subjected to the usual 45-day medical rehabilitation. Olsen had been in flight for 9 days 21 hours 15 minutes. At a post-flight press conference he repeated his dislike of the term “space tourist’’, used by much of the media to describe commercial passengers on Soyuz taxi flights. He explained, “I dedicated 2 years of my life to this. It’s not a hop-on-and-go kind of thing.’’

Meanwhile, McArthur had described his hopes for the Expedition-12 increment before launching to the station, “Above all that we launch and land safely; that we conduct this mission in a safe manner. Having said that, I think for it to be considered a success my criteria is that we will complete meaningful science during our stay, and that we will leave the Station more capable than we found it.”

During October, the Russian government approved funding for the national space programme through 2015. It was supposed to include the joint development, with ESA, of the Kliper spacecraft and the development by Krunichev of the new Multi-purpose Science Module to be launched to the Russian sector of ISS.

NEW SCHEDULES AND NEW FUNDING

In 2004, NASA had announced that it intended to stop funding ISS in 2016, as the Administration turned its attention to the Orion spacecraft, the Ares-1 launch vehicle, and the ultimate return of human astronauts to the lunar surface. Three years later, in April 2007, NASA Administrator Michael Griffin announced that ISS

was to be included in NASA’s budget requests through 2020. Griffin stated: “The partners have been working for a decade and a half to put in place these four laboratories. I don’t think political leaders in 2016 will end their involvement. Assets like the ISS live a lot longer than anticipated. I doubt it will turn into a pumpkin in 2016.’’

In mid-2007, Roscosmos announced that they had no plans to co-operate with NASA on Project Constellation until at least 2015. The Russians said that their budget had been allocated so as to allow them to support NASA’s commitment to ISS until that time, during which they would re-commence lunar exploration with robotic probes while supporting India’s and China’s robotic lunar exploration programmes. After 2015 ,Russia would be free to reconsider their position regarding Project Constellation. Meanwhile, the Russians continued to talk about building science modules for the ISS, but no new modules had been completed, as yet.

On February 26, STS-117 had been delayed by damage to the ET caused by hailstones while it stood on the launchpad. The delay caused the Shuttle’s launch programme to be rescheduled yet again:

STS-117 Atlantis

July 8, 2007

S-3/S-4 Truss structure

STS-118 Endeavour

August 9, 2007

S-5 Truss structure

STS-120 Discovery

October 20, 2007

Harmony

STS-122 Atlantis

December 2007

Columbus

All subsequent flights were similarly delayed.

At the same time NASA announced that they would swap the orbiters assigned to three of those flights in order to ease the pressure in the schedule:

• STS-120 would now use Discovery rather than Atlantis.

• STS-122 would use Atlantis rather than Discovery.

• STS-124 would use Discovery rather than Atlantis.

The rescheduling meant that plans to retire Atlantis in 2008 and cannibalise it to provide spare parts for Discovery and Endeavour had been changed.

NASA also announced that it had added $719 million to its contract with Roscosmos to purchase additional Soyuz TMA flights for American astronauts, to deliver and recover Expedition crews, during the period between the last Shuttle flight in 2010 and the first flight of the Orion/Ares-1 combination to ISS, currently scheduled for 2015. Despite this schedule, continual failure to make the promised annual increase to NASA’s budget to support Project Constellation made that date seem highly unlikely.

Asked previously if the Shuttle would continue to fly beyond the announced 2010 deadline set by President Bush, NASA Administrator Michael Griffin had made a one word reply, “No!” That, added to the 2007 schedule delays, meant that NASA would have to concentrate the remaining Shuttle flights on delivering the primary ISS elements into orbit before the Shuttle stopped flying in 2010. Any planned Utility flights, to support ISS operations, might yet prove to be expendable.

STS-117 DELIVERS THE STARBOARD-3/4 ITS

STS-117

COMMANDER

Rick Sturckow

PILOT

Lee Archambault

MISSION SPECIALISTS

Patrick Forrester, Steven Swanson, John Olivas,

James Reilly

EXPEDITION-15/16 (up)

Clayton Anderson

EXPEDITION-14/15 (down)

Sunita Williams

A thunderstorm passed over KSC on February 26, and hailstones “the size of golf balls” struck the foam exposed at the top of STS-117’s ET, leaving visible damage. They also damaged approximately 25 tiles on the orbiter’s left wing. The Shuttle stack was rolled back to the VAB for inspection and repair. and the planned March 15 launch was cancelled and rescheduled for no earlier than May 11, 2007. That date slipped back to June as NASA and contractor engineers ensured that the ET was safe to use. Shuttle programme manager Wayne Hale told journalists:

“The speculation that a lot of people have engaged in is that the last flight of the Shuttle to the space station will get pushed out of 2010. That just will not happen due to this problem.’’

He further stated:

“There might be some small effect to a couple of the later flights, but by the time we roll around to the end of the year, I expect we would be fully able to catch up.’’

The Shuttle was rolled back to LC-39A on May 15, with lift-off scheduled for June 8. On that date, Atlantis lifted off into the twilight, at 19: 38, beginning the first of four Shuttle flights planned for 2007. In the payload bay was the S-3/S-4 ITS, which would be mounted on the S-1 ITS and deployed during a series of three EVAs. The second set of SAWs on the P-6 ITS would then be retracted into its storage box, in order to allow the S-3/S-4 SAWs to rotate as they tracked the Sun.

Mission Commander Rick Sturckow had previously reviewed the work of earlier crews that had worked with the ITS elements on ISS at a prelaunch press conference, saying, “We’re really fortunate that we have those guys to follow. Almost everything went great on those missions, and the things that didn’t go so well, we’re able to learn from.’’

To overcome any repeat of the difficulties experienced on STS-115, such as when a bolt locking the SARJ in its launch position had taken much longer than planned to remove Sturckow explained:

“We have a torque multiplier… that they didn’t have. So if we do encounter the same difficulty with high torques that they had, we’ll break out this tool. And we’ll apply whatever torque it takes to break the bolt or back it out at the higher torque settings. So I don’t have any doubt that we’ll be able to remove those launch restraints.’’ He added, “When you’re doing assembly operations, everything that you plan to do is contingent on the flight prior to you and the hardware that’s already in orbit.’’

The STS-117 ascent into orbit was flawless, with no obvious signs of foam falling away from the ET in video of the launch. However, while video of the jettisoned ET showed that repairs to the hail damage had remained in place, one piece of foam, approximately 15cm x 8cm was missing. Orbital insertion was followed by the deployment of the payload bay doors and the Ku-band antenna. On ISS, Yurchikhin, Kotov, and Williams watched the launch on a video uplink from Houston.

In the latter part of the day, Forrester and Swanson activated the RMS, to test its function. As they raised the arm from its cradle they noticed that an area of insulation blanket near the port OAMS pod pulled away from the adjacent thermal tiles. Video cameras on the RMS were used to relay views of the 10 cm by 7 cm area to Houston. Similar damage had been identified on Discovery during two earlier flights and both had returned to Earth without incident. Initial reviews of the images of the blanket suggested that the airflow over the OAMS pod during the early phases of the launch had lifted the edge of the blanket and caused it to fold back on itself. Other options included: bad installation of the blanket during processing, or impact damage during launch. The Shuttle crew began their sleep period at 01: 38, June 9.

Day 2 began with a wake-up call at 10: 10 that morning. Archambault, Forrester, and Swanson activated the RMS, mounted the OBSS in the end-effector, and com­pleted the first inspection of Atlantis’ TPS. Prior to placing the OBSS back along the door hingeline, the cameras were used to view the port OAMS pod, with the detached insulation blanket. John Shannon, of the Mission Management team told a press conference, “If we decide this is a problem, we have a lot of capabilities to go address it.’’ He made it clear that Atlantis carried the equipment necessary to repair the blanket, by folding it flat and pinning it in place. While the video inspection was underway, Olivas, Reilly, and Anderson inspected the EMUs that they would use during the flight’s three EVAs. During the day the crew also extended the docking ring and installed the centreline video camera that would allow Archambault to see PMA-2 during the final approach to docking.

Following a second sleep period, June 10 began at 09 : 08. During the morning Olivas used a 400 mm lens on a digital camera to record the lifted corner of the thermal blanket on the port OAMS pod through the flight deck aft windows. The photographs had been requested during the morning briefing given to the crew by controllers in Houston. The written daily briefing was sent up to the crew and

NEW SCHEDULES AND NEW FUNDING

Figure 88. STS-117 crew (L to R): Clayton C. Anderson, James F. Reilly, II, Steven R. Swanson, Frederick W. Sturckow, Lee J. Archambault, Patrick G. Forrester, John D. Olivas.

NEW SCHEDULES AND NEW FUNDING

Figure 89. STS-117 delivers the S-3/S-4 Integrated Truss Structure to ISS.

included the reassurance that, “Although this [damage] does not appear to be a big issue, the teams are discussing several options.” On the ground John Shannon told another press conference, “It’s not a great deal of concern right now, but there is a great deal of work to be done.’’ He added further detail saying, “There’s one option on the table where we just put an astronaut out there on a spacewalk, and they just tuck the fabric right back down. There are other options where they go and try to secure it down with something.’’ A third option was to have the crew use a pressure suit repair kit to sew the blanket back into place using an instrument with a rounded end that looked like a small darning needle.

Rendezvous manoeuvres began at 10:38. Following the r-bar pitch manoeuvre at 14: 37, Sturckow moved his spacecraft in for docking with PMA-2 at 15: 36. As usual, extensive pressure checks were made to ensure the seal between the two spacecraft before the hatches were opened, at 17: 04. Williams rang the station’s bell to welcome the new crew aboard ISS at 17: 20.

Following the initial greetings and safety briefing Williams transferred her Soyuz couch liner to Atlantis, while Anderson placed his couch liner in Soyuz TMA-10. Williams had been in orbit for 183 days, longer than any other female astronaut. She would now return to Earth in Atlantis, while Anderson began a four-month occupation as part of the Expedition-15 and Expedition-16 crews.

The first task for the STS-117 crew was for Archambault and Forrester to use the RMS to lift the S-3/S-4 ITS out of Atlantis’ payload bay and hand it over to the

NEW SCHEDULES AND NEW FUNDING

Figure 90. Expedition-15: Clay Anderson poses with an American Extravehicular Mobility Unit in the Quest airlock.

SSRMS, which was operated by Williams. The hand-over was completed at 20: 28, and the S-3/S-4 ITS was left on the SSRMS throughout the crew’s sleep period, allowing it to warm in the unfiltered sunlight. Reilly and Olivas spent the night camped out in Quest with the airlock’s pressure reduced to purge nitrogen from their bloodstream in advance of their first EVA, planned for the following day.

The crew were up and about at 09: 08, but Reilly and Olivas were allowed to sleep in for an extra 30 minutes. After breakfast, Archambault and Forrester used the SSRMS to move the S-3/S-4 ITS towards the exposed end of the S-l ITS and held it in place. The resulting asymmetry of the new ITS being moved around caused the CMGs in the Z-l Truss to become saturated and drop off-line and the station began to drift. This had been anticipated by controllers in Houston. Archambault, Forrester, and Kotov commanded the bolts holding the S-3/S-4 ITS in place to close. As a result of the CMG dropout, the EVA began at 16: 02, approximately one hour late. Reilly and Olivas made their way to the joint between the S-l and S-3/S-4 ITS. There, they connected power cables between the two ITS elements and released the launch restraints on the S-3/S-4 ITS SAW blanket boxes and opened them. They also released the launch restraints on the S-3/S-4 radiator, rigidised the four Alpha Joint Interface Structure struts, installed one Drive Lock Assembly, and released the launch locks on the SARJ. The EVA ended at 22: 17, after 6 hours 15 minutes. Meanwhile, controllers in Houston activated the two new power channels and deployed the new radiator. Elsewhere on ISS, Williams and Anderson continued their planned hand-over tasks.

During the evening, mission managers extended the flight by 2 days and added a possible fourth, impromptu EVA, to provide time to inspect and repair the lifted thermal blanket on the port OAMS pod. Meanwhile, engineers and astronauts on the ground were trying to establish the best way to make the repair. In the regular end-of – shift press conference at MCC-Houston, Shannon informed the press and media, “We do not want to re-enter until we have done this. I don’t want to take a risk of damaging flight hardware, when we have something that looks easy to do, so it’s a pretty easy decision to make.’’ On the ground, the various repair methods were being rehearsed and subjected to testing under simulated re-entry conditions. Shannon explained that Shuttle engineers did not think that the re-entry heating on the OAMS pod would be sufficient to burn through the graphite structure beneath the lifted blanket, causing an STS-107 style break-up, but it might cause sufficient damage to require a relatively major repair, thereby throwing the Shuttle launch schedule into total disarray. The 90-minute repair would be carried out by two astronauts riding the Shuttle’s RMS. Atlantis would now land on June 21, after a 13-day flight. In orbit the day had gone well, and the crew began their sleep period. Learning from past experience, Houston commanded the new SAWs to extend in a series of small lengths. The first segment was deployed by controllers in Houston while the astronauts slept.

On June 12, the astronauts’ day began at 08: 08. At 11: 43, Sturckow, Arch – ambault, Forrester, Swanson, Olivas, Reilly, and Williams took over the task of deploying the S-3/S-4 SAWs and observing that deployment from inside ISS and Shuttle. Each SAW was deployed separately and in small stages, with regular stops to let the Sun warm the array. The first SAW was fully deployed by 12: 29, and the second by 13:58. Reilly told Houston, “We see a good deploy.” The new arrays would provide sufficient electricity to power the European and Japanese laboratory modules when they are docked to Harmony.

After dinner the Shuttle crew were given some free time before commencing preparations for the following day’s EVA. Throughout the SAW deployment, the station’s attitude had been controlled by Atlantis. As the day drew to a close, the station’s attitude control was switched back to the station’s computers. At that time all three navigation computers and all three command and control computers failed in Zvezda. The computers were built by Daimler-Benz in Germany, under an ESA contract, and one of their tasks was to activate Zvezda’s thrusters if ISS attitude manoeuvres were beyond the capabilities of the CMG. Controllers elected to let the CMGs continue to manage the station’s attitude, but Atlantis’ thrusters would be used for large manoeuvres, rather than Zvezda’s thrusters. The day ended with the pre-positioning of the MBS on the ITS and that night Forrester and Swanson camped out in Quest; both were preparations for the EVA planned for the following day. While the astronauts slept, controllers in Houston began the retraction of the remaining SAW on the P-6 ITS. They succeeded in retracting 7.5 of the 31.5 panels of the array.

The day started at the usual time and the EVA began at 14:03. Forrester mounted the RMS end-effector and was lifted to the P-6 ITS, mounted on the Z-1 Truss, while Swanson made his own way to the location. Once in place, they oversaw and assisted with the retraction of a further 5.5 panels of the 2B SAW, as commanded from inside the station. Moving back to the S-3/S-4 ITS, they removed the remaining locks holding the SARJ. Although they had originally been planned to remove the launch restraints, they left them for the third EVA. When the restraints were finally removed the joint would be free to rotate, as the SAWs tracked the Sun. They also installed a second drive-lock assembly. and that was where their problems arose. Commands sent to the second drive-lock assembly were received by the unit installed during the first EVA. Controllers in Houston confirmed that the first unit was in the “safe” condition and had to confirm that the second unit was similarly configured. The SAW retraction would continue during the following day. The EVA ended at 20: 33, after 7 hours 16 minutes. Once again Anderson spent the day completing hand-over tasks in preparation for his 5-month stay on ISS, as well as assisting Expedition-15 crewmates Yurchikhin and Kotov to transfer supplies from Atlantis to ISS. During the day mission managers confirmed that at least part of the third EVA would be spent repairing the port OAMS pod thermal blanket.

On June 14, Houston awoke the crew officially at 08: 39. In fact, they had been woken up at 07: 23, when a fire alarm sounded in Zarya. It was a false alarm set off by the loss of three Russian command and control computers, affecting the life support system and causing power outages throughout the Russian sector of the station. During the day controllers in Korolev temporarily rebooted the navigation computer and then turned it off again to continue work on the original problem. By 11 : 38, Sturckow, Lee, Archambault, Swanson, Williams, and Anderson resumed the attempt to retract the P-6 SAW. Meanwhile, Forrester, Reilly, and Olivas reviewed the procedures for their third EVA. The three of them practised the plan to staple the

NEW SCHEDULES AND NEW FUNDING

Figure 91. STS-117: Patrick Forrester works removing launch restraints from the S-4 Solar Alpha Rotary Joint.

NEW SCHEDULES AND NEW FUNDING

Figure 92. STS-117: James Reilly and John Olivas work with the retracted P-6 Solar Array Wings.

two sections of thermal blanket on Atlantis together and pin it to an adjacent thermal tile. Sturckow told Houston, “When we first saw it, we were not too concerned. We’re still not. This is just the right thing to do, the conservative thing to do. We appreciate everyone taking a look to make sure we have the right configuration for re-entry.’’

In Moscow, Russian engineers continued to work with their American counter­parts on the computer problem throughout the day. The leading theory as to the cause of the computer problem was a bad electrical power feed between the American and Russian sectors of ISS, as the computers now drew their power from the ITS. NASA’s Mike Suffredini explained, “A power line has a certain magnetic field around it, and that can affect systems near it.’’ Plans included disconnecting power cables between the two sectors of the station, rebooting the computers, and then reconnecting the power cables. If the problem recurred, the computers in the Russian sector could receive electrical power from the photovoltaic arrays on the Russian modules. Sturckow was objective, “These challenges, they come up when you bring new pieces of hardware or when computers are improved. This is to be expected. Things aren’t always going to go well.’’ Meanwhile, NASA Associate Administrator for space operations Bill Gerstenmaier was positive, telling a press conference, “This is a complex station. This failure is not easy to understand. It’s some combination between Russian systems and our systems. It’s just going to take a little bit of time to get this worked out.’’ He added, “We’re still a long way from where we would have to de-man the station.’’

NASA was at pains to point out that the station had 2 months of oxygen supply if the Russian oxygen generator could not be brought to full operation. Also the American oxygen system was nearly completely installed. Carbon dioxide removal systems were also available in both the Russian and American sectors. In Russia, the difficulties led to discussions as to whether or not to advance the next Progress launch by two weeks, to July 23, and use that launch to deliver new computer parts to the station.

Before going to bed, Williams and Anderson checked power lines and circuits connected to the new S-3/S-4 ITS that supply electricity to the Russian modules with a number of diagnostic instruments, but found nothing that could account for the computer difficulties. Meanwhile, the STS-117 crew had been instructed to power down some of Atlantis’ systems, just in case the Shuttle mission needed to be extended by a further day, to continue supplying back-up attitude control. A NASA spokesman told the press, “I expect we will have the computers back in the next several days. It’s not an urgent situation, but we clearly need to get this resolved.’’ Asked if the station would be evacuated if the computer problem persisted NASA’s Mike Suffredini insisted, “The best thing we can do is keep the crew onboard to keep working this problem until we sort it out. That is what our plan is.’’ Meanwhile, John Shannon confirmed that Atlantis would remain docked to ISS until June 20. Reilly and Olivas spent the night camped out in Quest breathing oxygen at a lowered pressure in preparation for the crew’s third EVA.

As the new day started Russian controllers disconnected the Russian modules from the new electrical power supply, returning them to the supply provided by their own photovoltaic arrays. The STS-117 crew’s wake-up call came at 08: 41, June 15,

Reilly and Olivas began preparations for their EVA straight after breakfast. The EVA began at 13:38. After collecting their tools they prepared to repair Atlantis’ thermal blanket. Olivas mounted the Shuttle’s RMS and was manoeuvred to the port OAMS pod, where he pushed the folded thermal blanket back into the correct position. Using a stapler from the Shuttle’s medical kit he fixed the offending blanket to the blanket next to it. Finally, he drove a metal pin through the blanket, securing it to the adjacent thermal tiles. The repair took the full 2 hours that had been allocated for it. As he completed the task Olivas told controllers in Houston, “Hopefully it’s going to be good, good enough.’’ Sturckow, the Shuttle’s Commander added, “He’s done an absolutely wonderful job.’’

While Olivas repaired the thermal blanket, Reilly installed a hydrogen vent in the forward face of Destiny. The vent would be used by the new American oxygen generation system. The new system would separate water into oxygen as the Russian Elektron oxygen generator did, for the crew’s life support system, and hydrogen which would be vented overboard through the new vent. With the repair and the valve installation complete, both men moved to the P-6 ITS, where they assisted in the retraction of the last 15 bays of the 2B SAW. While the retraction was com­manded from inside the station, the two EVA astronauts assisted by helping to fold the SAW and ensuring that they were correctly stored in the blanket box. Finally, they secured the lid of the blanket box itself. The retraction was completed at 20:40. The EVA ended at 21: 36, after 7 hours 58 minutes.

While the Americans concentrated on their EVA, the Russians continued to work on the failed computers. All of the computers were taken off-line at 06: 00 and left off-line throughout the day. Yurchikhin and Kotov used a jumper cable to bypass a power switch, thus allowing them to get both C&C computers partially running. It was decided that the one processor in each computer that did not re-boot would be replaced using spares to be delivered by the next Progress. The computers, which only required one processor each to perform their role on ISS, were left running overnight. A telemetry downlink over a Russian ground station allowed controllers in Korolev to monitor the computers’ performance over the test period. NASA spokeswoman Lynette Madison told the press, “They’re up and operational and this is good news for all.’’ Mike Suffredini made a similar comment, “We feel like the computers are stable and back to normal.’’

Whilst the two crews were asleep, Sunita Williams became the most experienced female astronaut in history. At 01: 47, June 16, she passed the female endurance record of 188 days 4 hours set by her NASA colleague, Shannon Lucid. Later in the day Williams remarked:

“I feel like a lot of this was just sort of being in the right place at the right time. It just sort of happened. It’s just an honour to be up here. Even when the station has little problems, it’s just a beautiful, wonderful place to live. I’m just happy to be part of history that provides a steppingstone for the next generation of explorers and women to come up here and do that. To me, it’s no big deal.’’

Williams admitted:

“My biggest desire is to go for a walk on the beach. I grew up near the beach in New England, and I love going to the beach.”

Lucid, who had worked in MCC-Houston during Williams’ flight, told a press conference, “She’s done an absolutely wonderful job. I think it’s really great because it shows the space programme is getting more mature when you have more and more people stay in space for longer periods of time.’’ She added, “I said [to Williams], ‘Enjoy your last few days because all too soon you will be back to bills, dirty dishes and laundry’.’’

The Shuttle crew’s wake-up call came at 08:38, June 16. They spent the day transferring supplies from Atlantis to ISS and preparing for the flight’s fourth EVA. Yurchikhin and Kotov used a second external cable to redirect the power supply, allowing them to bring the final two computer processors on-line. With Zvezda’s computers performing well, controllers in Korolev began assigning them some of their usual control tasks. The computers were now talking to the equivalent C&C computers in the American sector of ISS, something they had not been doing for the past 3 days. By this time most people did not believe the S-3/S-4 power supply had caused the computer problem. Flight Director Holly Ridings stated, ‘‘In the last 24 hours, we’ve had a lot of successes.’’ ISS programme manager Mike Suffredini, summed up his feelings succinctly, ‘‘Spaceflight is a challenging business and these are the things you occasionally have to deal with. We can all go home and not do it, or we can choose to explore. We choose to explore.’’ He told the media, ‘‘We’re having a great day on orbit.’’ As the day continued NASA suggested that Atlantis would land on June 21. On hearing the news, Sturckow replied, ‘‘That’s great news.’’

June 17 began at 07: 38. Following breakfast everyone began preparations for the final EVA. Forrester and Swanson had spent the night camping out in Quest. Their EMUs were transferred to internal battery power, commencing the EVA at 12: 25. Kotov shadowed Reilly as intravehicular crew member, in preparation for his assum­ing that role during an up-coming Expedition-15 Stage EVA. Having collected their tools, Forrester and Swanson set to work. Their first task was to retrieve a camera and its stand from a mounting on the exterior of Quest and move it to the S-3 ITS. While on the S-3/S-4 ITS, they confirmed the Drive Lock Assembly-2 configuration and then removed the final six SARJ launch restraints, leaving the SAWs free to rotate and track the Sun as ISS orbited Earth. Reilly told them, ‘‘Great job, Guys,’’ Swanson replied, ‘‘That’s what we came here to do.’’

Still on the ITS, they moved the temporary stops installed on the MBS rails, leaving the MBS free to travel along its rails on the new length of ITS. They also removed additional equipment that had held the S-3/S-4 ITS in the Shuttle’s payload bay. The task was the final one scheduled for STS-117 and was completed by 16: 17. The remaining activities were ‘‘get-ahead’’ tasks. First they installed a computer network cable on the outside of Unity and then moved to open the newly installed hydrogen vent valve on Destiny. Finally, they tethered two debris shield panels on Zvezda. The EVA ended at 18: 54, after 6 hours 29 minutes. Inside, the Russian computers had been returned to controlling the station’s systems, and even the

Elektron oxygen generator was powered on, but not configured to produce oxygen. The computers remained stable.

During an evening press conference, Anderson was asked how he was adapting to life on ISS. He replied, “I think I’m hanging in there. It kind of reminds me of my first swimming lesson. I just got tossed in the water and told to survive.’’ Questioned on the subject of Zvezda’s computers, Yurchikhin remarked cautiously, “We’re slowly moving back toward a normal mode of operations.’’

While the two crews slept, American controllers in Houston activated the SARJ on the S-3/S-4 ITS and tested its rotation. At 20:00, the SARJ was placed in auto­track mode. The ISS now had a new symmetrical shape, with a pair of SAWs at either end of the ITS and the P-6 SAWs fully retracted, although the P-6 ITS was still attached to the Z-l Truss, with one of its huge radiators still deployed.

The final day of docked Shuttle operations began with the crew rising early, at 07: 08, June 18. The crew of Atlantis had the morning off after the hectic pace of the past few days. They completed the final transfer of equipment to Atlantis during the afternoon. At 10: 28, the Shuttle’s thrusters were used to manoeuvre the station into the correct position for a combined potable water and waste water dump and then manoeuvre it back to the original position. Once the combination was stable, after the second Shuttle manoeuvre, at 10: 34, attitude control was passed to the Russian terminal computer. The computer activated the thrusters on the Russian modules to maintain the station’s attitude. At 12: 09, attitude control was handed back to the American computers and the CMGs mounted in the Z-l Truss. The test was summed up by NASA’s Phil Engelhauf, “There was absolutely nothing anomalous out of the testing. Everything performed exactly as it should have.’’ Only after the test of the Russian computers was successfully completed did NASA managers confirm that Atlantis would undock at 10: 42, June 20.

After saying their goodbyes to the Expedition-15 crew, Sturckow led his crew back to Atlantis, securing the hatches between the two vehicles for the final time at 18: 51. Sunita Williams was included in that crew, returning to Earth after almost 6 months in space. Williams remarked, “It’s sad to say goodbye, but it means that progress is being made.’’ Yurchikhin told controllers, “We had a really great time with Suni up here.’’ Her place on the Expedition-15 crew had been taken by Clayton Anderson who remarked, “I hope I can carry on, and do half as well as she did.’’

Atlantis undocked at 10: 42, June 20, with Archambault at the controls. The Pilot manoeuvred the orbiter around the station so that the crew could complete a photographic and video survey, before performing the separation manoeuvre. Sturckow told the Expedition-15 crew, “Have a great rest of your mission.’’ Yurchikhin replied, “Godspeed, and thanks for everything.’’

Following the separation burn, the crew used the RMS-mounted OBSS to carry out further scans of the Shuttle’s nosecap and wing leading edges. The images were down-linked to Houston before the astronauts began their evening meal and sleep period. Following an early morning start, the crew spent what should have been their last full day in space carrying out all of the routine preparations for re-entry. These included a test of the aerodynamic surface and a test-firing of each of the Shuttle’s manoeuvring thrusters. While the crew prepared to come home, the weather over

NEW SCHEDULES AND NEW FUNDING

Figure 93. STS-117: image shows the protruding corner of a thermal blanket on the orbiter’s OAMS pod.

NEW SCHEDULES AND NEW FUNDING

Figure 94. STS-117 departs ISS. Note the station’s new symmetry and the retracted P-6 Solar Array Wings.

Florida threatened the plans for returning to that location. Sturckow told controllers in Houston, “Get us some good weather for Thursday, if you can. It doesn’t have to be good, just good enough.’’

On June 21, the final preparations were made. Following breakfast the Ku-band antenna was stowed, and the payload bay doors were closed at 10:05. Retrofire was planned for 12: 50. That attempt was cancelled due to bad weather. The day’s final landing opportunity demanded retrofire be completed at 14: 25, but that attempt was cancelled at 13:38, as the weather in Florida showed no signs of clearing. Sturckow was informed, “The rain showers and cloud ceilings will keep us from making it into Florida today. We are going to try again tomorrow.’’

Atlantis’ payload bay doors were re-opened and a manoeuvre was performed to adjust the orbit to support the five available landing attempts (two at KSC in Florida and three at Edwards Air Force Base in California) on June 22. The crew spent the extra day and night in orbit, before beginning re-entry preparations again.

On June 22, Sturckow was informed, “Our mindset is we’re going to land you somewhere safely today.’’ The payload bay doors were closed at 09: 32. The first attempt to land in Florida was cancelled. Landing finally occurred on the dry lakebed at Edwards Air Force Base, California, at 16: 49. The flight of STS-117 had lasted 13 days 20 hours 11 minutes. Williams had been in space for 195 days. At the post­landing press conference NASA Associate Administrator for space operations Bill Gerstenmaier told the media, “My hat’s off to the team that really pulled off an awesome mission.’’ Returning Atlantis to Florida on the back of a Boeing 747, NASA carrier aircraft would require a week’s work and cost $900,000.

In the weeks following Atlantis’ recovery, pressure suit engineers discovered a small cut in the outside layer of one of Curbeam’s EMU gloves. As a result, NASA introduced a new rule that required astronauts on an EVA to examine their gloves approximately every 60 minutes while they were in a vacuum.

EXPEDITION-12

After the standard weekend of light work McArthur and Tokarev began working full time on their experiment programme, as well as commencing their housekeeping, maintenance, and daily exercise regimes. They reviewed procedures for an emergency escape from the station, changed a battery in Zvezda, and rearranged the items stowed inside Unity. McArthur began work with the Pulmonary Function Facility in Destiny. Both men also began the first of a series of Renal Stone Experiment food logs and gave urine samples for the same experiment. By the second week of October the new crew were beginning preparations for their first Stage EVA, which would be made from Quest and would be the first to use American EMUs since 2003. The 5.5-hour EVA was planned for November 7. The Elektron oxygen generator in Zvezda shut down unexpectedly on October 13. The problem was a result of a partially filled source water tank being connected to the system, rather than a full tank.

Progress M-54’s engines were to be used to boost the station’s orbit on October 18. The engines began thrusting at the correct time but the procedure was aborted when a Russian navigation computer lost telemetry and shut them down. Trouble­shooting began at Korolev. On October 17 and 21 the station’s atmosphere was repressurised using oxygen from Progress M-55. Meanwhile, planning was underway at Korolev for another attempt to repair the Elektron unit. Tokarev purged the air bubbles from the Elektron oxygen generator’s systems during a 5-hour work session on October 22, thereby restoring the unit to use. During the same week, McArthur checked out the second Pulmonary Function Facility, developed by ESA for use inside their Columbus laboratory module and carried to ISS on STS-114, the unit had been installed in HRF-2 in Destiny.

On October 25, the two men carried out routine tests of the two EMUs that they would wear during their first EVA. The following day they reviewed the procedures for donning and operating the EMUs. On October 27, they donned the suits and rehearsed their EVA activities inside the station. Meanwhile, on October 26, Russian controllers had performed a test-firing of Progress M-55’s engines, using a different manifold to that used during the aborted re-boost firing. The engines operated normally and there was no loss of telemetry. Tokarev celebrated his birthday on October 29. The following day, both men worked to strip down and sample the airflow in the Trace Contaminant Control System. Engineers had noticed a reduction in the airflow and the astronauts’ work led to the conclusion that replacement parts might be required. Following re-assembly, the unit continued to work at a reduced

airflow rate. During the week they also replaced a faulty pump in a thermal control loop in Zvezda, and replaced smoke detectors, also in Zvezda.

McArthur and Tokarev marked the fifth anniversary of permanent human presence on ISS on November 2, 2005. They sent messages to everyone who had flown to the station and to the engineers and scientists from 16 nations who supported its activities.

At 10:32, November 7, McArthur and Tokarev began their first EVA as they placed their EMUs on to battery power and began depressurising Quest. During the preparations they had to repressurise the airlock and re-enter the inner chamber of the two-chamber module and reset a misaligned valve. They then had to seal them­selves back in the outer chamber and depressurise it for a second time. Exiting the airlock, they collected their tools and retrieved a stanchion for a television camera from a toolbox mounted on the exterior of Quest, before making their way to the outer limit of the Port-1 ITS, where they installed a television camera on a stanchion and installed this on the outer limit of the Port-1 ITS. When power was applied to the camera the first pictures were received just before 13: 00. The new camera would be used during future assembly tasks, when additional SAWs would be added to the port side of the ITS. The camera should have been installed as part of the final STS-114 EVA, but the installation was delayed to allow for the removal of the two gap fillers from the underside of the orbiter. Their next job was a “get-ahead” task. They removed a failed Rotary Joint Motor Controller (RJMC), a box of electronics. It had not yet been used, and was to be returned to Earth on the next Shuttle for evaluation of why it had failed.

Both men then used their hands to make their way to the top of the P-6 Truss, the “highest” point on the station. There, McArthur removed the now defunct Floating Potential Probe and pushed it away from the station. It would burn up when it re­entered Earth’s atmosphere, in approximately 100 days. It had been installed by the STS-97 crew in December 2000, to help define the electrical environment around the station’s SAWs. Images taken on STS-114 had shown it to be breaking up, so the decision was taken to remove it. With both of their primary tasks completed, the crew received permission to progress on to a second “get ahead’’ task. They removed a failed circuit breaker controlling redundant heating on the Mobile Transporter, and installed a new one. The two astronauts then returned to Quest after an EVA lasting 5 hours 22 minutes. In the days following the EVA both men spent time servicing the suits they had worn.

On November 10, Progress M-54’s thrusters were fired to boost the station’s orbit. The 33-minute, two-stage re-boost was the longest yet carried out using the engines of a Progress spacecraft, and was designed to place the station in the correct orbit for the arrival of Progress M-55, in December. During the week the station toilet control panel malfunctioned and Tokarev replaced it. The following week, McArthur spent several hours photographing the Binary Colloidal Alloy Test experiment that had been undisturbed in microgravity for over a year.

After configuring the station for automatic function the crew sealed themselves inside Soyuz TMA-7 on November 18. At 03: 46, Tokarev undocked the Soyuz from Pirs and manoeuvred along the station to dock at Zarya’s nadir, at 04: 05. McArthur and Tokarev returned to ISS just after 10:00. The newly installed Port-1 ITS television camera transmitted images of the manoeuvre, which cleared Pirs’ nadir for the crew’s second Stage EVA, during which they would wear Orlan suits. The EVA was originally planned for December 7, but was under review as the crew moved their spacecraft. Mission managers were considering delaying the EVA to early 2006, in order to give the crew more time to unload Progress M-54 and prepare it for undocking.

McArthur powered up the SSRMS on November 21, and put it through a series of engineering tests. He left it in a suitable position for its cameras to monitor the crew’s second EVA, which had been rescheduled to February 2, 2006 by that time. A possible third Stage EVA was cancelled, because the “get ahead’’ tasks had been achieved during their first EVA, in November. November 24 was a day off for the crew to celebrate the American Thanksgiving Holiday.

During the week ending December 2, McArthur worked with the HRF-2 experiment rack in Destiny. He set up a refrigerated centrifuge and worked with the BCAT-3 and InSPACE Magnetic Materials experiments. He also replaced fuses in a Trace Contaminant Monitor in Destiny. At the same time Tokarev used oxygen contained in Progress M-54 to repressurise the station. Propellant was also trans­ferred from Progress to Zarya. Tokarev also installed a muffled adjustable fan in the crew quarters to reduce noise in that region. Both men spent time collecting rubbish for disposal in Progress M-54. Oxygen from the spacecraft was pumped into the station’s atmosphere and the 221 kg of propellant that it carried was transferred to Zvezda’s tanks. McArthur replaced an air circulation fan in one of Destiny’s experiment racks and updated the software used by all five experiment racks in the laboratory module. Tokarov repaired air ducts in the American sector, thereby improving airflow in the modules. He also installed muffled fans in the sleeping quarters, thereby reducing the noise that the fans in that important area produced. As part of the preparation for Progress M-54’s undocking they removed the space­craft’s Kurs automatic docking system for return to Earth. Ultimately, plans to undock Progress M-54 on December 20 were cancelled in favour of keeping the craft docked to the station for several more months, thereby allowing the crew to continue to use its oxygen supply and to load it with additional rubbish. The second week of December was taken up with biomedical experiments and maintenance work. On December 16, one of two cables carrying power, command data, and video to and from the Mobile Transporter was severed, causing loss of data. Telemetry suggested that the cable had been deliberately cut by the disconnect actuator system, designed to cut the cable if it became snagged or tangled. This was a malfunction of the cutting system. The cable being severed resulted in one of two redundant electrical power circuit breakers being tripped. The second cable, on the other side of the ITS, remained undamaged.

As the year drew to a close, ESA announced that technical difficulties had led to the first Ariane-V/ATV flight being delayed by almost a whole year, to 2007. ESA had also transferred the launch of the European Robotic Arm from the American Shuttle to a Russian Proton launch vehicle. A third ESA announcement gave details of how the organisation had refused the requested $51 million to undertake a joint

EXPEDITION-12

Figure 64. Expedition-12 (L to R): Valeri Tokarev and William McArthur pose at the Zvezda mess table with Christmas tree, stockings, and a Russian doll.

Preparatory Design Study with Roscosmos of Russia’s proposed Kliper spacecraft. The vote went against the proposal because ESA would have no control over the programme and would receive only minor industrial contracts. NASA also had an announcement: with the redirection of the American human spaceflight programme towards the new Project Constellation, the Administration had already begun cancelling some experiment projects designed to be flown to ISS. On the positive side, Congress had approved the purchase of additional access to Russian Soyuz spacecraft, despite the wording of the Iran Non-proliferation Act. The new spacecraft would provide access to ISS and CRV responsibilities for American astronauts through 2012. It was accepted that some of the “taxi” flights would carry spaceflight participants in the third couch. At the same time, Russia agreed to double the production rate of Soyuz spacecraft from 2009, thereby allowing the ISS Expedition crew to be made up to six people, supported by two Soyuz CRVs docked to the station at all times. Seven Soyuz spacecraft would be flown in the period 2008-2011. Eight Progress spacecraft would fly in the same period.

PLANNING THE END

Even as STS-117 continued the construction of ISS, NASA was thinking about its end. Under the original plan for the present ISS configuration, as defined in the Memorandum of Agreement signed by all ISS partners, the station was intended to be operational until 2016, at which time it would be de-orbited in such a way that any items that survived re-entry would fall harmlessly into the Pacific Ocean. To achieve that end, NASA had originally planned to dock a Shuttle to the station and use its thrusters to fire the de-orbit burn. As the operational portion of the programme was continually delayed the possibility of operating ISS beyond 2016 came under discus­sion, but the 2016 end date remained as a NASA budget planning tool. Recently, NASA had been openly talking of funding and operating ISS beyond 2016 (which had always been a distinct possibility), but now the Shuttle was due to stop flying in 2010, so it would no longer be available to de-orbit the ISS at the end of its operational life.

In mid-2007, one possibility that NASA was considering to replace the Shuttle in the vital ISS de-orbiting role was the ESA ATV. In the plan NASA would purchase an ATV and its Ariane-V launch vehicle from ESA. When the final flight was required ESA would launch the ATV for NASA and fly it to a docking with Zvezda’s wake. The ATV’s thrusters would then be used to perform the de-orbit burn, bringing ISS down as planned, with any surviving debris falling in the Pacific Ocean.

ESA’s original contract was for six ATVs, but only five ATV launches were currently shown on the ISS launch manifest up to 2016. If the sixth vehicle was not built, ESA would suffer financial penalties. The NASA de-orbit plan, which offered a possible customer for the sixth ATV, was raised during discussions between NASA and ESA regarding ATV launch schedules which had been subject to numerous delays.

As the negotiations continued, the first ATV launch was due in January 2008. Jules Verne, the first ATV, was undergoing pre-flight review in Noordwijk, Holland, to clear it for shipping to the Ariane-V launch site in Kourou, French Guiana.

One major problem with the ATV de-orbit plan lay in the fact that NASA was now budgeting for America’s continued use of ISS, using the proposed Orion spacecraft, through 2020. ESA could not promise to fund the ATV and Ariane-V programmes, with their associated infrastructure through 2020, if the fifth and final ATV cargo delivery flight was scheduled for 2016. Meanwhile, ESA was reviewing the computers to be used on the ATV, which were the same as those that ESA had supplied for Zvezda.

PROGRESS М-55

Progress M-55 was launched from Baikonur, at 13:38, December 20, 2005 with 2,490 kg of cargo. The new spacecraft carried food, including 14 kg of fresh fruit and vegetables, water, oxygen, propellant, spare parts, and experiments for ISS. Progress docked to Pirs’ nadir automatically at 14:46, December 23. The crew began unloading the dry goods over the holiday week.

In the week running up to Christmas, McArthur and Tokarev performed experi­ments and recorded educational films. McArthur checked the hatch seals in the American modules of the station. The Christmas break represented the halfway point in their 6-month mission. On Christmas Day they were able to speak to their families, ate a traditional Russian meal, and opened the gifts that had been delivered on Progress M-55. They had a day off on December 26, and again on January 2, in keeping with standard American government employment rules that gave employees a day off in lieu when a national holiday falls on a Sunday. Meanwhile, Zvezda’s Elektron oxygen generator had been performing flawlessly since its last repair. It was deliberately shut down between December 28 and February 9, to allow the crew to burn Russian SFOG oxygen candles in order to re-certify that method of producing oxygen. On December 31, the last of the oxygen carried in Progress M-54 was used to re-supply ISS.

McArthur and Tokarev spent the first week of 2006 performing experiments, including the ground-commanded BCAT-3, placing the “phantom Torso’’ with its 370 radiation detectors in Pirs, and locating the EarthKam in one of the station’s windows in advance of the new school term. They also installed batteries in the American EMUs in Quest. January 9 was the final day of the Russian holiday and the crew had the day off. During the week, they installed the Recharge Oxygen Orifice Bypass Assembly (ROOBA), a method of allowing EVA astronauts to pre­breathe oxygen from the Shuttle’s supply rather than the station’s tanks in Quest. Two days later the Elektron oxygen generator was powered on. On January 12, McArthur manoeuvred the SSRMS to provide views of the Interface Umbilical Assembly (IUA) on the S-0 ITS, which held the cable cutter for the MT’s uncut power cable. The following day he manoeuvred the SSRMS to view the CBM at Unity’s nadir and ensure that it was clear of debris. The SSRMS was left in a position where its cameras could view the crew’s up-coming EVA.

On the ground, the Houston marathon was taking place on January 15. In orbit, McArthur ran a half-marathon on the treadmill while ISS circled Earth. Over January 17-18, they rehearsed the procedures to be followed in the event of a rapid pressure leak requiring evacuation of the module in question. The following day, programme managers delayed the next EVA from February 2 to February 3, in order to ease the astronauts’ preparation schedule. The remainder of the week was taken up with both men performing experiments for their national programmes.

In the week commencing January 23, both men began preparing for their EVA. On January 31 they prepared an old Orlan suit, mounting a radio and slow-scan television transmitter on the helmet. The system transmitted messages in six lan­guages that could be received by amateur radio operators. Now called “RadioScaf”, the suit had last been worn by Michael Foale in February 2004. It was filled with rubbish and would be jettisoned from ISS during the EVA. After preparing ISS for automated flight regime and shutting down the Elektron generator, the oxygen delivered in Progress M-55 was used to pressurise the ISS.

PROGRESS М-55

Figure 65. Expedition-12: A “past its sell-by date” Orlan pressure suit fitted with a radio transmitter was jettisoned to become a satellite in its own right. The experiment was named “RadioScaf”, but in their wisdom the media called it “Suitsat”.

McArthur and Tokarev left Pirs wearing Orlan suits at 17:44, February 3. Having prepared their tools, they removed RadioScaf from the airlock and mounted it on a ladder on the exterior of the module, before releasing the suit into orbit with the words, “Goodbye, Mr. Smith,” from Tokarov. They photographed the suit as it drifted away. It transmitted its greeting messages for two orbits before the transmitter stopped working.

Moving away from Pirs, the two men made their way to the exterior of Zarya, where they removed a grapple fixture adapter for the Russian Strela crane and moved it to PMA-3, mounted on Unity. The adapter was removed to prepare Zarya for the temporary stowage of debris shields, prior to their deployment on a later Shuttle flight. Command of the EVA passed from Korolev to Houston as the astronauts passed from the exterior of Zarya on to the exterior of Unity. Next, they moved to the S-0 ITS, where they attempted to drive home a safety bolt in the cutting device in the IUA that McArthur had filmed on January 13. Despite several attempts with a high – tech tool, the safety bolt could not be installed to prevent the blade from falling and cutting the cable. Instead, as a temporary measure, McArthur removed the cable from the cutting mechanism and tied it to a handrail with a piece of wire. The cut cable on the other side of the ITS would be repaired during an EVA by the crew of STS-121. After transferring control of the EVA back to Korolev, the final task for this EVA was to photograph the exterior of Zvezda before returning to Pirs, where Tokarev recovered the Biorisk-2 experiment. The airlock hatch was closed after an EVA lasting 5 hours 43 minutes.

Two days later NASA Administrator Michael Griffin made a speech from NASA Headquarters, Washington, in which he stated:

The greatest management challenge the agency faces over the next five years is the transition from retiring the Shuttle to bringing the Crew Exploration Vehicle on-line… We are delving more deeply into the strategic implications of using Shuttle-derived launch systems for the Crew Launch Vehicle and Heavy – Lift Launch Vehicle… Thus, we are applying some funds from the exploration budget profile between now and 2010 to the Shuttle’s budget line to ensure the Shuttle and Station programmes have the resources necessary to carry out the first steps of the Vision for Space Exploration. NASA has asked industry for proposals to bring the CEV on-line as close to 2010 as possible, and not later than 2012 …’’

Griffin had initiated studies inside NASA to replace the Delta-IV and Atlas-V launch vehicles proposed for the CEV with a launch vehicle derived from proven Shuttle technology. Those studies would lead to the new Ares class of launch vehicles.

In the days following the EVA the crew took part in the standard debriefings with experts on the ground. McArthur also conducted a video tour of the station. The crew also continued their experiments; McArthur participated in the LOOT experiment, and Tokarev performed two ESA experiments. Both men performed Russian biomedical experiments and monitored the numerous experiments that ran automatically. They also gave the treadmill its 6-monthly overhaul. The motors in Progress M-55 were used to boost the station’s orbit on Lebruary 11. This was the first time that a Progress docked to Pirs had been used for an orbital re-boost. Over Lebruary 16-17, McArthur worked to replace the spectrometer inside the Mass Constituent Analyser (MCA) in Destiny. This measured the composition of the station’s internal atmosphere. An attempt to power the device up on the second day failed and McArthur was requested to perform troubleshooting.

As a new week began plans for the crew to “camp out’’ in Quest for their Lebruary 23-24 sleep period were delayed until March. The experiment called for the two men to spend a single sleep period in the airlock with the hatches sealed and the pressure reduced. Although they would not be wearing their EVA suits, the camp – out was seen as a way of reducing the pre-breathing of pure oxygen required before an extravehicular activity, by having future EVA astronauts spend their sleep period prior to an EVA camping out in Quest, and remaining in the airlock when they wake up, in order to don their EMUs and prepare for the EVA. The camp-out procedure would be used for the first time by EVA astronauts on STS-115. The delay was called as a direct result of McArthur’s failure to repair the MCA and, pending its repair, the camp-out was rescheduled for March 23.

McArthur and Tokarev began preparations for the next Shuttle flight, STS-121, now planned for no earlier than July 2006. McArthur made space in Destiny’s experiment racks for the equipment that Discovery would deliver to ISS. Both men worked to load Progress M-54 with additional rubbish, in preparation for its undocking planned for March 3. Meanwhile, on Lebruary 21, Progress M-55 per­formed a second re-boost manoeuvre. Progress M-54 was finally undocked from

PROGRESS М-55

Figure 66. Expedition-12: William McArthur works within the rear of an experiment rack inside Destiny.

Zvezda’s wake at 06:06, March 3, 2006. Three hours later controllers in Korolev commanded it to re-enter the atmosphere, where it burned up over the Pacific Ocean. With the Progress gone, McArthur returned to his work on the MCA.

Meanwhile, on March 2, the programme managers from all of the ISS nations agreed a revised launch schedule to bring the station to “Core Complete’’, plus the International Partner modules before the Shuttle was grounded in 2010. The new schedule required 16 Shuttle flights, but almost as many Shuttle flights were wiped off the launch manifest. A number of Utility flights were removed, as were Russian plans to launch a smaller than originally planned MEM. The Americans would now supply additional electrical power to the Russian sector from the SAWs on the ITS, through 2015. The European and Japanese experiment modules were advanced, now launch­ing in late 2007 and early 2008. Russian, European, and Japanese robotic cargo vehicles would now deliver many of the items originally scheduled to be launched on the cancelled Shuttle flights. NASA administrator Michael Griffin told reporters at KSC:

“The main thing you are seeing here today is the decision to put together an

assembly sequence that allows us to have very high confidence we will finish the

space station by the time the Shuttle must be retired… It’s the same station.

The end product is very much as we envisioned it.’’

McArthur completed proficiency training on the SSRMS on March 8. Over the next two days Controllers in Houston moved the SSRMS to view the IUA that had malfunctioned in December, cutting the back-up cable to the MT. They also viewed a valve on Destiny, looking for contamination. The valve was used to vent carbon dioxide overboard and appeared to be clean. This was the first time the SSRMS had been operated from the ground in an operational, rather than an experimental capacity.

The decision to retain Progress M-54 meant that Progress M-55 had had to dock to Pirs. The crew now had to move Soyuz TMA-7 back to Zvezda’s wake, thus allowing the Expedition-13 crew to dock Soyuz TMA-8 at Zarya’s nadir, where it would remain for the duration of their occupation. In the final hours of March 19, the Expedition-12 crew configured ISS for un-crewed flight and sealed themselves in Soyuz TMA-7. At 02: 49, March 20, Tokarev undocked the Soyuz from Zarya’s nadir and manoeuvred it to dock with Zvezda’s wake, at 03: 11. Korolev congratu­lated them for being the first crew to dock at all three Soyuz docking ports on ISS. The transfer was followed by a day of light duties, before the crew began reconfiguring the station for full occupation.

In March, a problem arose when blisters were found on EVA handrails during production on the ground. The blisters led to a questioning of the strength of the handrails on ISS and an instruction to only attach EVA tethers to the base of the station’s handrails, rather than the rail itself. Meanwhile, the crew spent time locating lithium hydroxide canisters to fit the Orlan EVA suits on ISS. New canisters would be launched on Progress M-56. They spent the remainder of their time on ISS preparing for the end of the Expedition-12 occupation, and their return to Earth. They also performed their last experiments. On March 29, they observed and photographed the total solar eclipse.

SOYUZ TMA-8 DELIVERS THE EXPEDITION-13 CREW

SOYUZ TMA-8

COMMANDER

Pavel Vinogradov

FLIGHT ENGINEER

Jeff Williams

ENGINEER

Marcos Pontes (Brazil)

The Expedition-13 crew was launched in Soyuz TMA-8, at 21: 30, March 29, 2006. Korolev lost all telemetry links with the spacecraft for 10-15 minutes, shortly after it achieved orbit. The problem was caused by a communication outage with a Russian Molniya satellite. Onboard Soyuz TMA-8 all systems were performing as planned. The spacecraft docked to Zarya’s nadir at 23: 19, April 1. Following systems checks the hatches between the two vehicles were opened at 00: 59 the following day. Following the usual safety briefings Pontes transferred his couch liner from Soyuz TMA-8 to Soyuz TMA-7. He had trained for his flight as a temporary NASA astronaut, in return for an experiment rack to be mounted on the exterior of ISS. Budgetary difficulties prevented the Brazilians from producing the rack, but the flight of the Brazilian astronaut went ahead. In the next few days the two Expedition crews worked together to complete their hand-over while Pontes performed his own “Centenario” experiment programme. In all, Pontes completed 31 sessions with the 8 experiments, all in the Russian sector of the station.

Vinogradov was typically sincere in describing his duties as Commander of Expedition-13:

“[A]s the crew Commander, first and foremost I’m responsible for the safety of the crew, and my main task, the most important task is that we… return safe and sound back to Earth and have completed the flight program… The second thing is the state of the station. We understand that two or three of us are entrusted with the vehicle that’s valued at maybe hundreds of millions in dollars. It’s not even the question of its specific monetary value but tens of thousands of people worked on it and provided their labour and knowledge for its creation and we’re entrusted to control this complex setup. So that’s a responsibility that is quite significant for us, that we would not break anything or make it perform worse. So, that is quite a significant responsibility and that’s the second function of the crew Commander. The third important issue is our relationship as a crew, as a team. A small crew of two people creates a situation where even the smallest detail gains significant importance. Of course, spaceflight is different depending on its duration—during a short flight you can sort of do it as one feat, but a long spaceflight, you have to make sure that you pace yourself, that you distribute your strength evenly throughout the flight, and build the proper relationship with your crewmates. Even the smallest thing becomes quite important.”

He added:

“We will certainly be expecting the Shuttle and I’m hoping that it’s not going to be the only Shuttle that will visit us. Our task is to prepare the station to the maximum for the arrival of the Shuttle, and to be as effective as possible in terms of using the Shuttle flight… Those are our main tasks.’’

On April 3, McAthur and Williams “camped out’’ in the Quest airlock during their sleep period. Quest was isolated from ISS at 19: 45, and the pressure was lowered as planned. The two men began their sleep period, but 4 hours later they were woken by an error tone issued by software monitoring the atmospheric composition on ISS. Controllers in Houston decided to end the experiment at 01: 43, at which time the pressure was raised and the internal hatches opened.

The following day McArthur spoke to journalists during his preparations for return to Earth. He told them:

“By golly, it’s time to go home and spend some time with the family … It’s an absolute thrill and joy to live and work in space. But we miss the richness, the texture, the three-dimensional nature of living on our home planet. The coffee [on

PROGRESS М-55

Figure 67. Expedition-13: Pavel Vinogradov works on the lighting inside the Pirs airlock.

ISS] tastes good, but it’s all in bags, and I’m really looking forward to smelling my cup of coffee. The next thing is food that crunches, like a good chef salad, and the sensation you get when you bite down of crunching into nice fresh lettuce or a raw carrot.’’

Earlier in the week Tokarev had commented, “We are ready to go home… We accomplished all of our tasks. We are happy, and we feel good.’’

Williams completed a training session with the SSRMS on April 5. He also received a briefing from McAthur on payload operations in Destiny. Meanwhile, Tokarev stowed equipment in Soyuz TMA-7 and reviewed undocking and re-entry procedures.

After a week of joint operations, Tokarev, McArthur, and Pontes sealed them­selves in Soyuz TMA-7 for their return to Earth. Undocking occurred at 17: 28, April 8. TMA-7 landed in Kazakhstan at 20:48, after 189 days 18 hours 51 minutes in space. Pontes had been in flight for 9 days 21 hours 17 minutes. Following their recovery McArthur described re-entry for reporters, saying:

“It was wild ride, we loved it.’’

Talking about the end of his flight he added:

“I feel an overwhelming sense of satisfaction and maybe even closure… I have a little muscle and joint soreness, but I feel strong.’’

On his return to Houston, he told the crowd:

“There are a lot of people here I’ve known for a very, very long time. That is the thing I missed, family and close friends, and I look forward to spending time with all of them.’’

MORE COMPUTER TESTS

Yurchikhin described the activities following the undocking of a visiting Shuttle in the following terms:

“What happens after the Shuttle goes back? First of all, we are always sorry to see them go because we are used to working together by that time. But after the Shuttle goes back to Earth… we’re going to have a lot of cargo items left [on ISS]

… First of all, when they’re unloaded into the station, we place them in temporary stowage locations. After that we’re going to open all the containers, pull out all the equipment, and then place the equipment in the allocated stowage areas… Then the next stage will be to activate this equipment…’’

With Atlantis gone, Yurchikhin, Kotov, and Anderson turned their attention back to the computers in the Russian sector of ISS. Two computers in each set of three were working through a jumper cable, but one computer in each set was working in a back-up capacity. On June 21, Yurchikhin powered up the two back-up computers which were also using a jumper cable to bypass a secondary power switch. As the station passed over a Russian ground station, he turned off the computers, removed the jumper cable, and attempted to re-boot the computers.

They failed to re-boot and were left powered off, with the jumper cable removed while troubleshooting continued at Korolev. During the day the Elektron oxygen generator began to produce oxygen for the first time since the computer crash.

Meanwhile, Anderson began his experiment programme, and completed his first Saturday Morning Science presentation for younger television viewers. He explained how Newton’s laws of motion applied to sports activities. As the new week began he collected blood and urine samples for a nutrition experiment that also required him to record all of the food and drink that he consumed. Anderson and Kotov also participated in a medical emergency exercise while Yurchikhin replaced an antenna in the Russian Regul communication system.

During the week they all performed regular housekeeping, including an inspec­tion of the windows in the Russian modules. They also worked on a number of Russian experiments. Kotov spent further time working with Korolev in an attempt to finally overcome the problem with the Russian computers in Zvezda. Anderson wore an “acoustic dosimeter’’ to record noise levels as he moved around the station, and his attempts to locate a leak in the MSG were unsuccessful. On June 28, Yurchikhin and Kotov worked with the Russian Profilaktika experiment, studying the long-term effects of microgravity, and Yurchikhin also worked with the Matryoshka radiation detection experiment, while Kotov inventoried medical supplies on the station. Propellant and oxygen was transferred to the station from Progress M-59 on July 11. Two days later Elektron was deliberately shut down. Meanwhile, the American Oxygen Generation System in Destiny was tested over the period July 11-14. The installation of new software in the Russian computers led to a successful re-boot of all Zvezda’s major computers on July 16. The computers were used to command the firing of Progress M-60’s thrusters, to raise the station’s orbit on July 21.

As July had begun, Yurchikhin and Anderson prepared the EMUs and Quest for their first Stage EVA together, scheduled for July 23. Yurchikhin and Kotov also continued to work with Korolev in an attempt to finally overcome Zvezda’s computer problems. Their painstaking inspections of the electrical system supplying the computers showed that one relay on the secondary power system was showing a lower voltage than expected. Inspection of the power-monitoring box that had been bypassed revealed moisture, in the form of condensation, inside. One connector was also found to have some corrosion on it and a second was discoloured.

When the reports on the Zvezda computer failure were finally released they pinpointed this corrosion as the cause of the entire problem. In the event of a major electrical power spike the system had been designed to shut down to prevent that spike crippling the system. Water vapour from the dehumidifier above the power­monitoring box had led to a build-up of condensation in the box. The moisture in the power-monitoring box and the corrosion in the connector pins had caused a power line to fail and short-circuit. That short-circuit had tripped the safety system and shut down the entire computer control system in the Russian sector. When the box was replaced by a new unit, delivered from ESA, condensation and microbial growth was discovered on the module’s wall behind the original box. When the new unit was installed, an old book was placed between the box and the spacecraft wall, to act as an insulation layer. With the new hardware in place the jumper cables were removed and the Russian C&C computer system was back in place.

Software upgrades were also completed on the computers in the American sector of the station, thus allowing them to support the addition of Node-2, Harmony, Columbus, and Kibo, as the station was expanded in the coming year.

Prior to the Stage EVA, the station was yawed through 180° so that PMA-2, on what had been Destiny’s ram now became the station’s wake. This was to provide a wider space for the two large items that would be jettisoned towards the station’s wake during the EVA. The EVA itself began at 07: 25, July 23, when Yurchikhin and Anderson left Quest and prepared their tools. Removing the stanchion for a television camera from the storage pallet on the station’s exterior, they moved to the P-1 ITS and installed the stanchion on the nadir face. They then split up for their next tasks. Anderson reconfigured the power supply for an S-band antenna assembly before placing the foot restraint in the open end of the SSRMS and climbing on to it. Meanwhile, Yurchikhin replaced a Remote Power Controller Module (RPCM) to ensure a redundant supply of electrical power to the Mobile Transporter on the wake face of the ITS.

Working together once more, they removed a Flight Releasable Attachment Module and other equipment, which Anderson jettisoned from the end of the extended SSRMS, which was controlled by Kotov from within Destiny. Kotov was the first Russian cosmonaut to be qualified to operate the SSRMS. Yurchikhin then made his way to the Z-1 Truss, where he disconnected and stowed cabling connected to the EAS, mounted on the P-6 ITS. The EAS had been installed by the STS-105 crew in 2001 and had contained an emergency supply of ammonia for use in case of a leak in the station’s cooling system. With the station’s permanent cooling system now active, the EAS was no longer required and had to be removed before the P-6 ITS was relocated. No leak had ever developed and the emergency ammonia supply had not been used. With Anderson working from the end of the SSRMS and Yurchikhin now on the P-6 ITS, they worked together to sever the final connections and remove the EAS from the P-6 structure. Anderson then held the EAS while Kotov manoeuvred him until he was below the ITS, where he pushed the EAS away from his body towards the station’s wake. NASA expected the tank to orbit Earth for up to 11 months before burning up in Earth’s atmosphere. Their final scheduled task was to clean Unity’s nadir CBM in preparation for the temporary relocation of PMA-3 during the flight of STS-120, then scheduled for October 2007. Finding themselves ahead of their scheduled timeline the two men were also able to complete three “get-ahead” tasks. They relocated an auxiliary equipment bag from the P-6 ITS to the Z-1 Truss, removed a malfunctioning GPS antenna from the S-0 ITS, and released bolts on two fluid trays, also mounted on the S-0 ITS. In the future, the trays would be re-located to the exterior of Harmony, following its delivery on STS-120. Yurchikhin and Anderson returned to the airlock, ending the EVA at 15: 06, after 7 hours 41 minutes. Following the EVA, ISS was rotated through 180°, to return PMA-2 to the station’s ram. The thrusters on Progress M-60 were used to boost the station’s orbit and prepare for the arrival of Progress M-61 and STS-118 later that evening.

Following pressure checks, Progress M-59 undocked from Pirs at 11:07, August 1. The spacecraft did not perform a separation burn, and Yurchikhin had to use the TORU manual control system to fire the de-orbit burn at 14:42. The Progress was destroyed as it re-entered the atmosphere.

The ISS Management and Cost Evaluation Task Force

On October 16, 2001, a tearful Dan Goldin announced his resignation as NASA’s longest serving Administrator. His term of office had begun in March 1992 and lasted 8.5 years. Goldin had overseen the redesign of ISS to meet President Clinton’s demands. On his President’s instructions, it had been Goldin who invited the Russians to join the ISS programme. He had also overseen the initial privatisation of the Shuttle programme and the beginning of the ISS flight programme with its associated delays and massive budget overruns. In the end, it would be the budget overruns and the hardware cancellations that brought Goldin’s tenure to a close. In his retirement speech he told the audience proudly, “I had a lease on this programme. I am handing back that lease.’’

In July 2001, even as he prepared for his retirement, Goldin had established the International Space Station Management and Cost Evaluation Task Force (IMCE) under the leadership of Thomas Young. Predictably, it became known as the Young Committee. The Task Force was established to answer the criticism surrounding NASA’s management and funding of the ISS programme, with its huge overspend. The programme had overspent by $13 billion in just four years.

In setting up the Committee, Goldin told the media:

“In the last year we have successfully carried out all of the scheduled assembly missions to the International Space Station. We did so with unbelievable precision and execution, completing the second phase of Space Station construction. It’s an incredible management and engineering achievement, but we must ensure it is carried out in a more efficient and effective manner.

“Since April, we’ve been working to select a team of outstanding innovators in the fields of science, engineering, finance and business to advise NASA and the Administration how to maximise the scientific returns on the Station while living within the guidelines of the President’s budget… The financial management of the International Space Station needs an overhaul, but we’re going to do it in a

way that doesn’t sacrifice safety… This panel has been empowered to leave no stone unturned. We have experts in all fields that have the capacity to dig deep to help us restructure the business and financial approach to the programme.’’

Goldin’s resignation was effective from November 15, 2001 and the Final Report of the Young Committee was dated six days later. It read, in part:

ISS Management and Cost Evaluation Task Force Terms of Reference

These Terms of Reference establish the International Space Station (ISS) Manage­ment and Cost Evaluation (IMCE) Task Force of the NASA Advisory Council (NAC). The IMCE Task Force is chartered to perform an independent external review and assessment of cost and budget and provide recommendations on how to ensure that ISS can provide maximum benefit to the U. S. taxpayers and the International Partners within the Administration’s budget request.

In addition there are reviews of the ISS financial management tools being conducted by the IMCE Financial Management Team (FMT) to identify and recom­mend Agency-wide improvements in these tools. The report of the FMT will be integrated into the report of the IMCE Task Force…

The integrated final report is to focus specifically on the following items

• Assess the quality of the ISS cost estimates approved for the ISS Program, including identification of high-risk budget areas and potential risk mitigation strategies.

• Ensure that the program can remain within its available budget, assess program assumptions and requirements—specifically those that led to significant cost growth relative to FY 2001 budget estimates—and identify options for smaller growth and/or budget savings and efficiencies that offset any additional spending recommended by the Task Force and approximately $500 million in unfunded cost growth.

• Review the management reforms in the ISS Program Management Action Plan—particularly cost estimating and reporting issues, early warning of potential growth, and managing program reserves—and make recommendations for additional and/or refined management reforms. Integrate results from the FMT.

• Identify opportunities for maximizing capability to meet priority research program needs within the planned ISS budget and International Partner contributions.

• In addition, assess cost estimates for potential U. S.-funded enhancements to the core station (e. g. providing additional crew time for enhanced research) and recommend refinements as necessary to achieve high-confidence estimates.

SPECIAL FINDINGS

1. The ISS Program, while taking a conservative approach and making safety paramount, has achieved excellent progress in integration of diverse inter­national technologies.

2. NASA has not accomplished a rigorous ISS cost estimate. The program lacks the necessary skills and tools to perform the level of financial management needed for successful completion within budget.

3. The cost to achieve comparable expectations at assembly complete [original design complete with American Habitation Module and American CRV] has grown from an estimate of $17.4B to over $30B. Much of this cost growth is a consequence of underestimating cost and a schedule erosion of 4+ years.

4. A cost of $8.3B (FY02-06) is not credible for the core complete baseline [No American Habitation Module, no Node-3, and no American CRV] without radical reform.

5. The management focus is on technical excellence and crew safety with emphasis on near-term schedules, rather than total program costs.

6. The Program is being managed as an “institution” rather than as a program with specific purpose, focused goals and objectives, and defined milestones.

7. The financial focus is on fiscal year budget management rather than on total Program cost management.

8. Lack of a defined program baseline has created confusion and inefficiencies.

9. Current research support funding represents a 40-percent reduction in buying power from that originally planned.

10. The Office of Biological and Physical Research (OBPR) is not well coordinated with the Office of Space Flight (OSF) or the program office for policy and strategic planning. The scientific community representation is not at an effective level in the program office structure.

11. A centrifuge is mandatory to accomplish meaningful biological research. Availability as late as FY08 is unacceptable.

12. There are opportunities to maximize scientific research on the core station with modest cost impact.

13. Cost estimates for the U. S. funded enhancement options need further develop­ment to assess credibility.

PROGRESS M1-9

On September 6, 2002, the Russians announced a delay in the launch of Progress M1-9, from September 20 to September 25, caused by problems with the spacecraft’s computer and its KURS docking system antenna. The relevant hardware was returned to RCS Energia for repair on September 3.

Even as Progress M1-9 was being prepared for flight, officials at Energia released details of the company’s dire financial position. Valeri Ryumin announced that the company had ten Soyuz and Progress vehicles in manufacture but contractors were reluctant to release vitally needed parts to complete the spacecraft to a company that already owed millions of roubles to the bank and its contractors. He stated that the $79 million that Energia would receive from the Russian government for FY2003 would be only half that required to finance the company’s commitment to ISS for the year. This consisted of two Soyuz TMA spacecraft and four Progress Ml vehicles. Ryumin blamed the Russian government for not meeting its commitment to ISS and even went so far as to suggest that the station be powered down and left unmanned between Shuttle flights. American officials once again ignored their own unilateral disregard for the legal contract between the ISS partners and replied to the Russian news by saying that they expected Energia to meet their contractual commitments to ISS.

Progress Ml-9 was launched at 13: 37, June 26, 2002, and was station-keeping 1 km from ISS on September 28. At that time the spacecraft was used to test the two­way flow of data between the KURS automatic docking system in the two spacecraft. Progress docked automatically to Zvezda’s wake, at 13: 01, September 29. The internal hatches were opened that afternoon, but unloading did not begin until the following day.

STS-112 DELIVERS THE STARBOARD-1 ITS

STS-112

COMMANDER

Jeffrey Ashby

PILOT

Pamela Melroy

MISSION SPECIALISTS

David Wolf, Piers Sellers, Sandra Magnus,

Fyodor Yurchikhin

STS-112 Atlantis had originally been planned for launch on August 22, 2002, but this was cancelled when cracks were found in the cryogenic propellant duct liners in the SSMEs of each of the Shuttle orbiters, leading to the grounding of the entire Shuttle fleet. Following an engineering review of the cracks, the launch was set for not earlier than September 26. Over August 10-12 the cracks were repaired, by welding and polishing. By August 18, the three SSMEs had been installed in the rear of Atlantis.

On August 22, the launch was set for October 2, 2002, but during the final preparations for launch Hurricane Lilli threatened to make landfall and threaten Houston, the location of NASA’s MCC. As there was no way of telling how the hurricane might affect control of the flight, it was decided to delay for 24 hours. On October 2 that was extended for a further four days as the control centre in Houston was shut down and control of ISS handed over to the Russians for the duration of the storm. The hand-over meant a restriction in communications as the Russian network could not handle the station’s Ku-band and S-band channels. As Korolev was also unable to monitor the ability of the American P-6 ITS photo­voltaic arrays to track the Sun, the arrays were locked in position. Houston resumed control of ISS on October 4, and it was returned to full operation. The problems caused the Russians to cancel a test of Progress M1-9’s thrusters on October 4, and a station re-boost manoeuvre on October 5. The new STS-112 launch date was set for October 7.

On that date Atlantis lifted off at 15: 46, to deliver the Starboard-1 (S-1) truss to the station. Throughout the launch a small camera mounted on the ET showed the external view looking back past Atlantis. Similar videos captured on throw-away rockets had proved very popular with the public. As the Shuttle lifted off, ISS was over the Pacific Ocean and the Expedition-5 crew were on their 122nd day onboard and their 124th day in space.

Post-launch inspection showed that all ten back-up pyrotechnics in the SRB hold-down bolts had failed to ignite. Each bolt had a primary charge to sever the bolt at lift-off. The back-up charges were then fired a fraction of a second later, to ensure all of the bolts were separated. On this occasion no serious damage was sustained because all ten primary charges had fired. NASA engineers acknowledged that the problem was most likely in the transmission, or receipt of the firing signal for the secondary charges, an echo of the problems with the wiring in the Shuttle fleet, which had grounded the entire fleet in 2000.

Having achieved orbit, Atlantis followed the standard rendezvous pattern while her crew performed all of the usual activities in advance of docking with ISS. They also performed their own solo experiment programme. As Atlantis performed the rendezvous Korzun, Whitson, and Treschev were unloading Progress M1-9 and packing items for return to Earth on STS-112.

Ashby performed a manual docking with PMA-2 on Destiny’s ram at 11: 17, October 9. Following pressure checks Whitson asked Ashby if he had brought the salsa that she had asked for. When Ashby replied that he had, Whitson conceded, “OK, we’ll let you in.’’ The hatches between the two spacecraft were opened and the Shuttle’s crew left Atlantis and moved into Destiny, the first visitors to ISS in four

PROGRESS M1-9

Figure 23. STS-112 crew (L to Right) Sandra Magnus, David Wolf, Pamela Melroy, Jeffrey Ashby, Piers Sellers, Fyodor Yurchikhin.

PROGRESS M1-9

Figure 24. STS-112: Atlantis delivers the Starboard-1 Integrated Truss Structure.

months. The two crews immediately began work preparing for the installation of the S-l ITS, and the first of the three EVAs associated with it.

On October 10, Whitson and Magnus used the SSRMS to lift the l5-metre-long, 14-tonne S-l ITS out of Atlantis’ payload bay and manoeuvre it into a position where it could be soft-docked with the Starboard end of the S-0 ITS, which was mounted on Destiny’s zenith CBM. Once soft-docking had been achieved motorised bolts were driven into place to secure the two units together at 09:36.

Wolf and Sellers exited the Quest airlock at 11:21. Wolf rode a foot restraint mounted on the SSRMS while Sellers used his hands to move around. Wolf con­nected power, fluid, and data umbilicals between the 2 ITS elements while Sellers used a motorised tool to undo the 18 launch locks on the 3 space radiators mounted on S-1, allowing them to be oriented for maximum cooling when they were deployed. The two then worked together to deploy an S-band antenna on the S-1 ITS. Wolf placed the antenna in the end-effector of the SSRMS and it was then moved into place near the join between the S-1 and S-0 ITS elements. Sellers held the antenna in place while Wolf secured the bolts that would hold it there.

As they passed over the Pacific Ocean Sellers looked at Earth and asked, “Where am I? Wow, its too beautiful for words, unbelievable!” After a short break to take in the view he remarked, “That’s it, back to work.’’

They then worked together to release the bolts that held the Crew and Equipment Transition Aid (CETA) to the S-1 truss and configured its brakes. The CETA would

PROGRESS M1-9

Figure 25. STS-112: Piers Sellers wears an American Extravehicular Mobility Unit near the open hatch of the Quest airlock.

PROGRESS M1-9

Figure 26. STS-112: The S-l Integrated Truss Structure. The SSRMS is mounted on the MBS which runs along a track on the ram face of the Starboard-0 Integrated Truss.

be used to transport future EVA astronauts and their equipment along rails travelling the length of the ITS when it was complete. Their final task was to fix the S-l outboard nadir exterior camera in position. At that point the SSRMS suffered a mechanical failure and the two astronauts completed their tasks without it. This was the first of two cameras to be fixed on the S-l truss for use in future EVAs. The first STS-112 EVA ended at 18: 22, after 7 hours 1 minute. With the two astronauts back in the airlock Houston told them, “You guys did an awesome job. You saved us.” Both crews took time out to relax on October 11, before beginning the task of transferring equipment from Atlantis to Destiny. Wolf and Sellers prepared the equipment for their second EVA, planned for October 12. During the evening both crews answered questions from the Russian and American media. Questioned about their first EVA Wolf replied, “I tell you what, it’s pretty tough. We got plenty tired, and I believe our heart rates got up over 170 during that task.’’ On the subject of EVA-2 he added, “We’re ready to go again.’’

Sellers, who had been on his first EVA, described his first view through the open airlock hatch:

“I was completely knocked out of my socks, which were luckily in my suit. I could see a landscape with clouds and a river, and it was just huge. It was fantastic. So the first five minutes, I was pretty much non-functional. My little brain was overloaded.’’

The principal task of the second EVA had been identified by engineers working with the ITS elements on the ground. They found that in some of the older ISS plumbing pressure could build up, and the pipes might not twist and disconnect as planned, thereby leading to a destructive failure. After many hours of work, a work­around was designed for the problem: fit Spool Positioning Devices (SPDs) on the plumbing connection to release the pressure.

After breakfast and prior to the second EVA, Ashby and Melroy fired Atlantis’ thrusters to raise the station’s orbit. EVA-2 then began at 10:31, October 12. Following preparations, Wolf and Sellers worked to further prepare the CETA for use during future EVAs. They also installed 22 Spool Positioning Devices on fluid lines in an attempt to prevent pressure build-up in the pipes preventing the correct use of the quick-disconnect fittings if required in the future. When he fitted the first device Wolf reported that there had already been a pressure build-up in the pipe and he had released it when he fitted the SPD. As Wolf put it, “I heard it burp.’’ Two other SPDs could not be fitted because the fluid lines “were of a different configuration” from that on which the SPD was designed to fit. What the euphemism in the NASA STS-112 Status Report actually meant was that Wolf had discovered that the two pipes in question had been launched with certain parts not installed. That discovery came as a surprise to everyone. Some of the joints were in positions that were hard to reach, but Sellers achieved the task and was congratulated from inside ISS by Melroy, “It is quite possible you’re the only person in the astronaut office who could have done that task.’’ The two astronauts also connected the ammonia cooling system to the S-1 ITS radiators and fitted a camera on the exterior of Destiny. The EVA ended approximately 30 minutes early, at 16: 35, after 6 hours 4 minutes.

During the end-of-day press conference, mission planners explained why the SSRMS had failed during the first EVA. The SSRMS and the MBS both worked on separate software programmes, which have to work together. If they were not correctly synchronised, then the entire unit stopped working. To ensure that two software programmes were synchronised required both the SSRMS and the MBS to be powered off and then powered back on in order to reset them, like re-booting a computer. There had not been enough time to do that before EVA-2, but Houston expected the MBS/SSRMS combination to be available for use during EVA-3.

October 13 was spent on equipment transfers and repairs. The Expedition-5 crew made a temporary repair to the TVIS, which was returned to a usable condition, despite the fact that they found a broken cable associated with the gyroscope, which would require a new one to be delivered on a future Shuttle, or Progress. The radiators on the S-l ITS were rotated into position, but their deployment was cancelled after adjustments were required to the tolerance levels of protective circuits used to monitor the initial stages of deployment. The time required to make those adjustments meant that Houston could no longer watch the deployment live, so it was delayed until the following day. Wolf and Sellers made their preparations for EVA-3, scheduled for October 14. During the afternoon press conference Whitson told how she had shared the new salsa delivered by STS-112 with her Expedition-5 crewmates. She also explained how her taste for certain foods that she enjoyed eating on Earth had changed in space so that she no longer enjoyed them. It was a common complaint among long-duration crews that food tasted extremely bland in space. Therefore, strong-flavoured food, or sauces such as Whitson’s salsa, became popular among these individuals.

That day began with the de-orbiting of Progress M-46 at 04: 34. Ashby and Melroy also performed a second re-boost manoeuvre commencing at 07: 20. The two series of manoeuvres had placed the station in the correct orbit to receive Soyuz TMA-1 later in the month, but this second manoeuvre used sufficient propellant to prompt Houston to reduce the planned 360° post-docking fly-around of ISS to just 180°, before Melroy performed the standard separation manoeuvre.

Houston then commanded the middle of three radiator panels on the S-1 ITS to deploy. As it reached its full length the crew played a recording of Handel’s Hallelujah Chorus and Houston commented, “That’s very appropriate music.’’ The remaining two radiators were scheduled to be opened in 2003, at which time their heat-shedding function would be activated.

Wolf and Sellers began EVA-3 at 10: 11. Their first task was to remove the bolt that had prevented the cable cutter on the Mobile Transporter, mounted on the S-0 Truss, from activating at the end of the STS-111 flight. Next, they fitted ammonia lines between the S-0 and S-1 ITS elements and removed structural support clamps that had held the S-1 ITS in place during launch. At one point 46-year-old Wolf remarked, “We’re over the hill.’’ He quickly added, “I mean over the hill on the station.’’ Sellers, 47, replied, “No comment.’’ They also fitted two more SPDs to the pump motor assembly that circulated the ammonia throughout the cooling system. This was a “get-ahead’’ task, carried out because the two men had completed their primary tasks well ahead of schedule. As the EVA drew to a close Houston told them, “You guys are doing a great job. Our only concern is that you’re making it look too easy for us.’’ The EVA ended at 10: 11, after 6 hours 36 minutes.

Next day, both crews were given some free time to spend together before the STS-112 crew began preparing for their departure. While the final items were transferred between the two spacecraft, Ashby and Whitson worked together to replace a humidity separator in the Quest airlock. That evening the two crews said their farewells. Whitson and Magnus hugged each other as they said goodbye. When it came to saying goodbye to her good friend and remaining in orbit for a further month, Whitson commented, “I didn’t know it was going to be so hard.’’

PROGRESS M1-9

Figure 27. STS-112: As Atlantis departed the International Space Station, the Starboard-1 Integrated Truss Structure was clearly visible.

Melroy thanked Whitson and her colleagues for making the STS-112 crew welcome onboard the station and then concluded with, “You look wonderful. You look great. We miss you. Come home soon.” Ashby led his crew back to Atlantis and the hatches between the two vehicles were sealed. Both crews spent the night in their individual spacecraft. In Houston, mission manager Robert Castle told a press conference, “Overall, things are going very, very well, and I don’t think they could have done better.’’

As Atlantis passed over the Russia/Ukraine border Melroy told controllers, “We want to stay.’’ But they could not stay, and she undocked Atlantis from Destiny’s ram at 09: 13, October 16, and completed the reduced 180° fly-around manoeuvre to allow the other members of the crew to photograph ISS with the S-1 Truss in place. Melroy then performed the separation manoeuvre to allow the two spacecraft to drift apart under the influence of orbital mechanics.

October 17 was spent packing everything away in preparation for retrofire. Houston told the astronauts, “Just to make you jealous, it’s [the temperature] in the 50s here in Houston, and the weather is absolutely gorgeous, the air is dry.’’

As Atlantis continued to fall through the vacuum of space, Ashby replied, “It’s pretty dry up here too.’’ He added, “Sounds like a real good day to come home tomorrow.’’ Atlantis performed retrofire on October 18, and Ashby turned his space­craft for re-entry. As Atlantis fell out of the Florida sky it was struck by some of the strongest crosswinds experienced by any landing Shuttle. Ashby, the most experi­enced Naval aviator in the Astronaut Office flew his spacecraft to a perfect landing at KSC, touching down on the runway centreline at 11:44. His only comment at the time was “It’s great to be back in Florida.’’ Melroy commented on Ashby’s smooth landing after the flight saying, “We’re so proud of him we could burst our buttons.’’ Ashby saved his comments for the flight in general, commenting at the post-landing ceremony to welcome them home, “What an incredible adventure we’ve been on. As I stand here. I can’t help but think about all the people that helped us take the [S-1] Truss up there. It’s been an amazing team effort.’’ British-born Sellers, who had just completed his first flight in space, called ISS an “Island in the sky that is a completely different place that has different rules. It was an experience like nothing I’ve seen or even dreamed of before. Things float. You’re climbing underneath structures like a spider underneath a gutter. It’s a magical place.’’

At a post-flight press conference James Wetherbee, Commander of STS-113, which would fly a similar flight to ISS in November, commented, “It was great to see them pull off the mission so successfully. That makes us feel a lot better and we’re that much more prepared.’’

With Atlantis gone, the Expedition-5 crew had returned to their daily routines. On October 24, Whitson and Korzun put the SSRMS through the manoeuvres that would be required to install the P-1 ITS, which would be delivered by STS-113 in November. That flight would also carry the Expedition-6 crew to ISS. In the same week Whitson brought her experiment programme to an end, in preparation for the Expedition-5 crew’s return to Earth. During the same period flight controllers in Houston up-linked new software to the three systems computers housed in Destiny. This was the first major update to the software since the laboratory module had been docked to ISS in February 2001.

SOYUZ TMA-1, FIRST OF A NEW CLASS

SOYUZ TMA-1

COMMANDER

Sergei Zalyotin

FLIGHT ENGINEER

Frank de Winne (ESA, Belgium)

FLIGHT ENGINEER

Yuri Lonchakov

Soyuz TMA-1 was originally scheduled for launch on October 28, 2002, but it was not to be. On October 15, 2002, a new version of the Soyuz-U launch vehicle, carrying a “Foton” satellite, was launched out of Plesetsk. The launch failed and the vehicle fell in a nearby forest killing 1 soldier and injuring 20 other people. The failure was later identified as being caused by contamination in the hydrogen peroxide system. As a result of the failed satellite launch the Soyuz TMA-1 launch was delayed on October 18, and rescheduled for October 29.

Soyuz TMA-1 was the first of a new class of Soyuz spacecraft, with the new Descent Module interior arrangement to facilitate couch frames designed to be adjustable to allow them to carry taller and heavier, or shorter and lighter than average crew members. The new arrangement had been developed after NASA recognised that the restrictions demanded by the standard Soyuz TM spacecraft meant that many American astronauts would not be able to serve on ISS Expedition crews as they would not be able to squeeze into the Soyuz TM CRV in the event of an emergency return to Earth. The new Descent Module also had improved instrumentation and avionics.

The new spacecraft was launched from Baikonur at 22:11, October 29,2002. Ten minutes later Soyuz TMA-1 was in orbit with its antennae and photovoltaic arrays deployed. Unlike on previous occasions, the Expedition-5 crew did not transfer Soyuz TM-34 from Zarya’s nadir to Pirs’ nadir before the launch of the replacement Soyuz. After following the standard 2-day rendezvous, the Soyuz docked to Pirs at 00: 01, November 1. Docking took place over central Russia and was monitored by the Expedition-5 crew inside Zvezda. Whitson described the rendezvous:

“Although the timing for the Soyuz arrival and docking was based on lighting and communication] coverage, it seemed to be choreographed for aesthetic purposes. I was using our new camera at the end of the S-1 Truss to film the docking. I was trying to find a tiny speck of light (we were in eclipse) in the general direction of the approach. I saw a brighter than normal ‘star’ and zoomed the camera for maximal magnification… As the Soyuz capsule began to fill my video monitor, the sun began to peek around the edge of the planet, making that incredible royal blue curvilinear entrance. Alpha [ISS] and the new Soyuz capsule were soon bathed in brilliant white light from the sun. While the Earth below was still dark, the Soyuz made contact and became our new rescue vehicle. Valeri and Sergei had

PROGRESS M1-9

Figure 28. Expedition-5: The Expedition-5 and Soyuz TMA-1 crews pose together in Zvezda. (rear row) Peggy Whitson, Yuri Lonchakov, Sergei Treschev. (centre) Sergei Zalyotin, Frank De Winne. (front) Valeri Korzun.

a close-up view of the docking from the Service Module (SM). From the nadir windows in the SM it is possible to see the docking compartment, which extends below from the forward end of this module. In other words, the new Soyuz docked about 2 meters before their eyes.”

Following pressure checks the hatches between the two spacecraft were opened at 01: 26. After a safety briefing the three cosmonauts were welcomed aboard ISS. Over the next week, de Winne conducted his own experiment programme related to genetic engineering and the effects of microgravity on genes. The cosmonauts also performed protein crystal growth and materials processing experiments. Having swapped their couch liners with those of the Expedition-5 crew the Soyuz TMA-1 crew undocked Soyuz TM-34 Zarya’s nadir at 15:44, November 9, and manoeuvred clear of the station. Following retrofire Soyuz TM-34 landed in Kazakhstan at 07: 04, November 10. Soyuz TMA-1 was left docked to Pirs. It would serve as the ISS CRV for the next 6-months.

Whitson wrote:

“After the Soyuz undocked, we were able to watch as it re-entered the Earth’s atmosphere, about 2 orbits later. The ground control team had provided instruc­tions of where to look in order to see the spacecraft, and since it was during the eclipse, I shut off all the lights in the [Destiny] lab to watch from the window there. The thing I noticed first was what appeared to be a milky white contrail in the darkness. It brightened and the Soyuz became visible as it began to glow from the heat of re-entry. The Soyuz consists of three parts, the engine section, the ‘living compartment’, which is not any larger than a subcompact car volume, and the cramped descent module, sandwiched in between them. I was surprised to actually see ‘razdalenea’ (separation) of these three modules. The three glowing pieces separated, and the engine compartment and the living compartment trailed behind the descent module and began a fiery disintegration, looking much like a bright orange 4th of July sparkler. The central portion, the descent module, has a heat shield to protect the vehicle from the high temperatures (on the order of 3,000°F) generated during re-entry. We were able to see the descent module for a few minutes after separation, before it seemed to be swallowed up in the cloudy darkness below. About 4 hours after separation from the station, the taxi crew had landed in the cold desert of Kazakstan.’’

On November 10, the Expedition-5 crew waited in vain for the launch of STS-113. Following the cancellation of the launch attempt, Whitson pointed out to flight controllers in Houston that the crew had been rationing their drinks to make them last until Endeavour’s arrival at ISS. With the Shuttle’s launch delayed for one week she pointed out that the crew would run out of drinks before the Shuttle arrived. She asked for, and was given permission to take additional drinks from the equipment already delivered to the station for the Expedition-6 crew. She also sought permission to commence the Expedition-6 experiment programme, as the

Expedition-5 crew had completed their own science programme and packed away the equipment they had used.

A report entitled Assessment of Directions in Microgavity and Physical Sciences Research at NASA by the National Research Council’s (NRC) Space Study Board was made public on November 6. The report praised the advance in NASA’s micro­gravity research programme since its beginning during Project Skylab in the 1970s. It said that the present programme consisted of five areas

• biotechnology

• combustion

• fluid physics

• fundamental physics, and

• material sciences

all of which were threatened by the budgetary restrictions placed on ISS by mis­management and the Bush Administration’s restrictions, including the limiting of the Expedition crews to just three people. The report advised NASA to maximise microgravity research both on ISS and in laboratories on Earth.

On November 8, NASA announced plans to alter their FY2003 budget request to allow for the implementation of a new Integrated Space Transportation Plan (ISTP), including plans for the Orbital Space Plane CTV/CRV. In order to fund the ISTP NASA had entered an amendment to its $15 billion FY2003 budget. Of this $6.6 billion would be assigned to the “completion” (Core Complete) of the construction of ISS by 2006. Over the next four years, the OSP would consume $2.4 billion, with the first flight taking place in 2008, carrying up to ten crew members to ISS. A further $1.6 billion would be spent on Space Shuttle enhancements allowing it to continue flying through 2012 and possibly up to 2020. In order to bring ISS to Core Complete in 2006, NASA would spend $15.2 billion by adding a fifth Shuttle flight to the annual launch manifest.

As if to prove that there was an urgent requirement for the proposed OSP, Yuri Koptev, head of Rosaviakosmos, reported that the Russian space budget for FY2003 would not increase over that for FY2002, with no allowance for inflation. Koptev stated, “The problem is that our legislators wonder why they need to set aside the same amount or more for space if our partner countries have cut their ISS budgets.’’ The Russians asked the International Partners to assist with the funding for the new Soyuz TMA spacecraft, stating that production might be delayed, or even brought to an end if no assistance was forthcoming. One suggestion put forward by Rosaviakosmos was to stop flying Expedition crews to the station and evacuate ISS. NASA made it clear that they would not consider that option, saying that, even if Russia stopped flying cosmonauts to the station on Soyuz spacecraft, NASA would continue to fly Shuttle construction flights, involving occupation of the station for a few days at a time. (The original Space Station Freedom, without the Soviets/ Russians, would have been constructed with crews only visiting the station on construction flights and not permanently occupying it until the final element, the Habitation Module, had been installed.)

One anonymous Russian source even suggested that if Russia alone was to maintain its ISS budget at the original level, in order to keep its contractual agree­ments to supply Soyuz and Progress spacecraft, then control of the programme should be passed from America to Russia. This naive view overlooked the millions of US dollars that America had given Russia to keep them in the programme from the beginning and the vast sums that America paid to support ISS operations. The same Russian source also naively suggested that Japan’s delaying completion of the Kibo science module threatened that country’s political relations with America and the ESA member states.

Meanwhile, the Russian Channel-1 television station had paid an original $20 million to Rosaviokosmos to begin funding a competition to place a journalist on ISS during a Soyuz taxi flight in October 2003. International journalists meeting Rosaviokosmos’ strict health and fitness programme and passing the standard Space Flight Participant training programme would be applicable to take part in the com­petition. The entire selection and training competition would be filmed by Channel-1.

STS-113 INSTALLS THE PORT-1 ITS

STS-113

COMMANDER

James Wetherbee

PILOT

Paul Lockhart

MISSION SPECIALIST

Michael Lopez-Alegria, John Herrington

EXPEDITION-6 (up)

Ken Bowersox, Donald Pettit, Nikolai Budarin (Russia)

EXPEDITION-5 (down)

Valeri Korzun (Russia), Sergei Treschev (Russia), Peggy Whitson

The Pilot on STS-113 was originally to have been Christopher “Gus” Loria, but on August 14, 2002 Loria requested to be removed from the crew due to an un­specified injury at his home that had caused him to fall behind in training. NASA quoted their privacy rules as a reason for not giving further details at the time. Paul Lockhart, who had flown as Commander on STS-111, a similar flight involving ITS assembly work and an Expedition crew rotation took Loria’s position.

Likewise, the Expedition-6 crew had changed just 4 months before launch. It had originally consisted of Ken Bowersox, Nikolai Budarin, and Don Thomas. In June, Thomas was grounded because his combined radiation exposure over the long – duration Expedition-6 flight would take him beyond his allowed lifetime exposure limit. He was replaced by Donald Pettit, who would be making his first spaceflight. Pettit had been training as Thomas’ back-up since January 2001. Bowersox paid tribute to Thomas, “Thomas really, really wanted to fly long duration. We know this has been very, very hard for him. But he is a big part of our mission. Everywhere we go we see reminders of him.’’ Despite this compliment, Thomas did not contact the crew on launch day to wish them well.

STS-113 would continue the construction of the ITS with the delivery and installation of the Port-1 (P-1) ITS element to ISS. The P-1 ITS would be mounted on the opposite end of the S-0 ITS to the S-1 ITS, of which it was practically a mirror image. The flight would also deliver the CETA Cart-B, for mounting on the ITS in support of future EVA astronauts.

All preparations proceeded towards a launch on November 10, 2002. On that date, propellant loading had been completed when a problem arose with Endeavour’s oxygen system, which had allowed higher than acceptable amounts of oxygen to build up in the mid-body of the orbiter. The launch was cancelled and rescheduled for no earlier than November 18, 2002. De-tanking the propellants in the ET began the following morning and was completed before engineers entered Endeavour to rectify the oxygen system. That work required the payload bay doors to be opened while the STS-113 stack stood on LC-39. A leak was discovered in an oxygen hose located in Endeavour’s mid-section, where fatigue from normal use, coupled with a weak design had caused the problem. The affected section of hose was cut out and replaced. While engineers were carrying out that repair a work platform struck the RMS in its parked

PROGRESS M1-9

Figure 29. STS-113 crew (L to R): John Lockhart, Michael Lopez-Alegria, John Herrington, James Wetherbee. These four were joined by the Expedition-6 crew on launch and the Expedition-5 crew during recovery.

position, alongside the payload bay door hinge. The thermal cover was ripped and the RMS’ laminated protective cover was scratched. The RMS was subjected to X-ray and ultrasonic inspections, which revealed an area of de-lamination on the arm. Tests were carried out in Toronto to see if the de-lamination would affect the RMS’ performance. Two sets of repair plans were established:

• For a repair to be carried out in situ at LC-39, resulting in a new launch date of “no earlier than November 22’’.

• For a repair if the RMS needed to be removed from Endeavour, causing the launch to be delayed until December.

At the same time the nitrogen flex hose located in the mid-deck, next to the failed oxygen flex hose, was also replaced.

The Expedition-5 crew spent their extra time in space packing and labelling experiment racks and ran through the SSRMS manoeuvres required to fit the P-1 Truss when STS-113 finally arrived at the station.

STS-113 was finally launched at 1950, November 23, 2002, and successfully climbed into orbit. NASA Administrator Sean O’Keefe was in Florida for the launch. At the post-launch press conference he made the comment, “The maximum period of time [in space] we’ve hit as Americans is 196 days. That’s less than half the time needed for a one-way trip to Mars. And we believe in round trips at NASA.’’

PROGRESS M1-9

Figure 30. STS-113: Endeavour delivers the Port-1 Integrated Truss Structure.

After following the standard two-day rendezvous, Whitson told the approaching Shuttle crew, “You guys look pretty good out there.” As the Shuttle made a slow approach to ISS she told them, “You guys fly that like you stole it.” Wetherbee docked Endeavour to Destiny’s ram at 16:59, November 25. Following pressure checks the hatches between the two vehicles were opened at 18:31.

The Expedition-5 crew welcomed their visitors to ISS before Korzun gave them their safety briefing. Endeavour’s crew began transferring equipment immediately, including the Expedition-6 crew’s Soyuz seat liners and Sokol pressure suits. Bowersox, Pettit, and Budarin installed their seat liners in Soyuz TMA-1 and carried out pressure and leak tests on their suits before taking over command of ISS.

Asked to describe the crew exchange, Bowersox explained:

“Well, it just depends on who you talk to. On paper we’re supposed to go across, we’re supposed to put our seat liners in the Soyuz, we’re supposed to put on our Russian… Sokol entry suit, try them on, make sure that they’re leak-free, and then we’re supposed to do a test, all three of us together, to make sure that we’re ready to take over the Soyuz. Once we’ve done that, then officially we can be left on orbit. But if you talk to the guys who are there now, as soon as we show up, they’re going home… and our job is to figure out how we’re going to get back.’’

Korzun, Whitson, and Treschev ended their occupation as the Expedition-5 crew after 171 days 3 hours 33 minutes. They now became part of Endeavour’s STS-113 crew.

On November 26, Wetherbee secured Endeavour’s RMS to the P-1 ITS, secured in the Shuttle’s payload bay. At 10: 22, the bolts securing the truss in place were commanded to release and Wetherbee lifted the huge structure out of the payload bay and handed it over to the SSRMS operated by Bowersox and Whitson. The latter pair transferred the P-1 ITS up to the port side of the S-0 ITS and commanded the motorised bolts to secure it in place.

At 14:49, 30 minutes earlier than planned, Herrington and Lopez-Alegrla exited the Quest airlock to begin the first of three EVAs to connect the P-1 ITS to the S-0 ITS and the ISS systems. “How do you like the view?’’ asked Lopez-Alegrla, as they made their way outside. “The view is phenomenal, just fabulous. Life is good!’’ Herrington, the first Native American astronaut, replied.

Copying the procedures used to install the S-1 Truss in October, the two astro­nauts connected electrical cables and installed SPDs to allow for the quick disconnec­tion of pipes in the case of a future emergency. They also released the locks on the second CETA cart, before removing the two large metal rods, called drag links, that had supported the P-1 Truss during launch. The drag links were secured to the P-1 framework. Herrington then returned to Quest to top off his oxygen supply before rejoining Lopez-Alegrla to install the Wireless video system External Tranceiver Assembly (WETA) antenna on Unity. The WETA would allow the pictures from an EVA astronaut’s helmet cameras to be received in the control centre without the need for a Shuttle to be present with the necessary antennae. The EVA ended at 21:35, after 6 hours 45 minutes. Mission control told them, “Great work. You’ve got a happy control team down here.’’

The two Expedition Crews spent the remainder of the day conducting hand-over briefings. Bowersox had described what he expected these to be like:

“There’s a lot of things that we just can’t cover in training because the actual configuration of the station is too fluid and too complex to track on the ground and to reflect in our ground simulators. So there’s a lot that we’ll pick up during the docked time frame that will help us early in the mission. It’s things that we just can’t train for: where the cameras really are, where items are located, where cables have been arranged, where people are sleeping, a lot of small things that you just don’t have time to cover in training.’’

November 27 was Wetherbee’s 50th birthday. The STS-113 crew spent the day transferring equipment between Endeavour and ISS, while the hand-over briefings continued between the two Expedition crews. Wetherbee, Lockhart, Herrington, and Lopez-Alegria also spent time in the afternoon preparing for the second EVA, while Whitson and Bowersox worked together to clear debris from the vent lines on the Carbon Dioxide Removal system in Destiny. Wetherbee and Lockhart also performed the first of three orbital re-boost manoeuvres using Endeavour’s thrusters.

PROGRESS M1-9

Figure 31. STS-113: John Herrington and Michael Lopez-Alegria install the Port-1 Integrated Truss Structure.

November 28 was American Thanksgiving Day, but there was to be no holiday on ISS. NASA’s Bob Castle told a press conference, “It will be a very busy day for them. I suspect they will celebrate Thanksgiving some other day.’’

The second EVA began at 13:36, November 28, 45 minutes ahead of the time in the flight plan. Herrington and Lopez-Alegria connected two fluid jumpers to connect the P-1 ITS ammonia cooling system to the system in the S-0 ITS and the rest of ISS. Next they removed the starboard keel pin, a launch support. They used the CETA handcart to manoeuvre it to its permanent storage location on the P-1 ITS and secured it in place before installing a second WETA antenna on the P-1 ITS. Having removed and stowed the port keel pin they carried out the “get-ahead” task of releasing the launch locks on the P-1 radiator beams.

Herrington used a foot restraint mounted in the SSRMS to leave both hands free to allow him to pick up the P-1 CETA cart. Whitson and Pettit then swung the SSRMS so that Herrington moved across the front of ISS, passing across Endeavour’s payload bay, to secure the P-1 CETA cart on the S-1 ITS, next to the S-1 CETA cart. This cleared the P-1 CETA tracks for the SSRMS to move along them at a later date on its MT in order to extend that side of the ITS. Their final task was to reconnect a cable from the WETA mounted on Unity before stowing their equipment and returning to Quest. The EVA ended at 19: 46, after 6 hours 10 minutes. Space Station programme manager Bill Gerstenmaier told the media:

“It’s really been a textbook mission so far. It looks easy. It looks like it comes together without much trouble. That is totally counter to what really happens. It comes out so smoothly because of all the hard work we put in place.’’

During the end-of-day press conference Herrington described the EVAs, “The work is very difficult. Your hands get very tired. When the Sun goes down, you have this beautiful station illuminated in front of you. It gets incredibly dark, pitch-black, except the little spot your headlamp is aimed at. So you lose the perspective of what is around you.’’ He also admitted, “I was amazed at how massive the Earth is.’’

On the station, the hand-over briefings continued and the CDRA was working properly after Bowersox and Whitson’s repairs. The two crews shared a traditional holiday dinner courtesy of NASA’s unique home delivery service: Endeavour.

November 29 was a day of equipment transfers. Whitson transferred the PCG-STES Unit 7 to Endeavour while Bowersox transferred its replacement, the PCG-STES Unit 10, to Destiny. Lopez-Alegria and Pettit transferred the Plant Generic Bio-processing Apparatus (PGBA) from Endeavour to Destiny. The new equipment would allow researchers on the ground to observe plants being grown on ISS. During the morning Wetherbee and Lockhart used Endeavour’s thrusters to make a second boost to the station’s orbit. Whitson and Pettit also carried out troubleshooting tasks on the Microgravity Science Glovebox, following its failure on November 20.

During the afternoon Korzun, Whitson, and Treschev held a small ceremony to officially hand ISS over to Bowersox, Pettit, and Budarin. During the changeover

Korzun told the Expedition-6 crew, “We were so happy to live here, to work here… We will miss our space house.” He then told Bowersox, “I am ready to be relieved.” Bowersox replied, “And I relieve you.”

This was followed by a press conference, in which all ten astronauts took part. Bowersox told the conference that the Expedition-5 crew had set a very high standard of work that would be difficult to live up to. He added, “I only hope that my crew, Don, Nikolai, and I, will be able to work as well over the four, or however many months, we end up living on the station; hopefully more than four.”

Wetherbee, Commander of STS-113, told the new crew, “Expedition-6, it is your duty to sail on and disappear over the horizon, but return after discovering new land and make the world a better place.” It was a tall order.

Whitson admitted, “I do think I’m ready to go, but it’s been a kind of a gradual process. A month ago, when I started to pack, I was definitely not ready to go. My husband reminded me it’s much better to leave while you still want to stay, rather than the other way round. I’m happy to go, while I still wouldn’t mind staying here.’’ She explained how she had asked a NASA food specialist for a special meal on her return, “I asked if they would cook up a nice steak with a caesar salad with lots of garlic on it. I’m looking forward to getting some food that doesn’t come in a bag.’’ To go with her meal she wanted a cold drink, “We don’t have any carbonated drinks up here so I’m looking forward to that, and anything with ice in it would be nice as well.’’

Planning towards the third EVA began at 11:21, November 30, when Whitson and Bowersox prepared to command the SSRMS to attach its free end to the MT and then release its hold on the fixture on the exterior of Destiny. The transfer was delayed when the MT stopped 3 metres short of the intended transfer location. As a result, Herrington and Lopez-Alegria exited Quest at 14: 25 and began their EVA by searching for anything that may have caused the MT to stop. Harrington found a UHF communications antenna that had failed to deploy and had snagged one of the MT’s trailing umbilicals. He cleared the umbilical and deployed the antenna, which allowed the MT to continue on its journey, arriving at Work Point-7 (WP-7) at 17: 11. The MT was latched in place, and prepared to receive the SSRMS by 18: 00. The delay caused the astronaut’s EVA tasks to be re-prioritised and when they voiced the opinion that they could complete all of their tasks without using the SSRMS the walk-off from Destiny to the MT was cancelled. The two men completed all of their tasks, including the connecting of 33 SPDs at various locations around the exterior of the station. They also connected the Ammonia Tank Assembly umbilicals and reconfigured a circuit breaker on the Main Bus Switching Unit. Finally, they recon­figured the Squib Firing Unit on the P-1 radiator unit in preparation for their deployment in 2003. The EVA ended at 21 : 25 after exactly 7 hours.

December 1 was the final full day of joint operations. Herrington and Lopez – Alegria cleaned and stowed their EMUs and the tools they had used during their three EVAs. Wetherbee and Lockhart completed the third series of re-boost manoeuvres and the two Expedition Crews continued their hand-over briefings. With most of the two-way equipment transfers complete the two crews enjoyed some free time during the day to recover from their hectic earlier schedule.

PROGRESS M1-9

Figure 32. STS-113: As Endeavour departs the station, the Starboard-1 Integrated Truss Structure is mirrored by the Port-1 Integrated Truss Structure. Following the loss of the solo Shuttle flight STS-107 and the grounding of the Shuttle fleet, the station would remain in this configuration for three years.

Wetherbee led his crew back to Endeavour on December 2, with the hatches between the two spacecraft being closed at 12:57. Before that happened, the two Expedition crews embraced each other. Bowersox told the three people he was relieving, “This is a big moment for us.” Pettit added, “We promise to take good care of the Space Station.” Korzun, the outgoing Station Commander, assured them, “Each crew does better than the last.”

With bad weather threatening Florida and a delayed landing likely, the Shuttle crew were told not to leave any of their remaining food with the Expedition-6 crew, as most crews did. Endeavour undocked at 15: 05, the same day and made a 90° fly – around of the station before manoeuvring clear. The Expedition-5 crew had been in residence for 178 days. Two Defence Advanced Research Projects Agency (DARPA) mini-satellites were released from Endeavour’s payload bay. The two satellites were tethered together and designed to test micro-technologies and nano-technologies during their three days of free flight.

December 3 was spent preparing for landing the following day. That landing attempt was cancelled due to heavy, low cloud and stormy weather over the Kennedy Space Centre. Likewise, the landing attempts on December 5 and 6 were cancelled due to rain and windy conditions in Florida. Endeavour finally came home to KSC, landing under Wetherbee’s control at 14: 37, December 7, after a flight lasting 13 days 18 hours 25 seconds. As Endeavour came to wheel-stop Houston radioed, “Welcome home to Valeri, Peggy, and Sergei after your half-year off planet. Great job.’’

Peggy Whitson was just 3 days short of taking the world endurance record for a female astronaut from Shannon Lucid. Even so, she did hold the new endurance record for an American astronaut on a single flight into space. The American record for total flight time accumulated over a number of flights stood at 196 days and was held jointly by Bursch and Walz following the Expedition-5 occupation of ISS. The Expedition-5 crew, who had been in space for 185 days, underwent the usual 45-day long battery of medical and physical re-acclimatisation tests that awaited all returning Expedition crews.

No one knew it on December 7, but this would be the last ISS construction flight for the next three years.

PROGRESS Ml-11

In the immediate aftermath of the loss of STS-107 in February 2003, NASA had asked the Russians to launch an additional, fourth, Progress in 2003. Despite having requested the extra launch, NASA was unable to offer any payment in support of it, due to the terms of the Iran Non-Proliferation Act, which forbade American com­panies and government departments from spending their money in countries that supported Iran’s attempts to develop nuclear power and, through that programme, nuclear weapons. The launch of the extra Progress had been delayed from November 2003 to January 29, 2004.

On that date Progress M1-11 was launched at 06: 58, and followed a standard two-day rendezvous trajectory, before docking to Zvezda’s wake at 08: 13, January 31. The Expedition-8 crew spent the next week unpacking the new arrival. Following a test-firing of the Progress’ thrusters, the crew observed a small strip of material drifting away from the station, but noted that it did not appear to represent any danger to ISS. Two weeks later the object was identified as a bolt and washer used to hold the photovoltaic arrays on Progress M1-11 in their folded position during launch. They served no purpose after the spacecraft’s arrays had been deployed. During the week ending January 31, Foale also initiated the ESA PROMISS-3 cell culture growth experiment that had been carried into space on Progress M1-11. It would be run for 30 days and the results would be returned to Earth on Soyuz TMA-3.

February began with a period of silence to mark the first anniversary of the loss of STS-107, and the unloading of Progress M1-11. The crew also began a highly toxic Japanese experiment called the Granada Crystallisation Facility. Kaleri commenced the Russian Mimtec-K protein crystal growth experiment. He also deployed the Russian Brazdoz radiation detectors inside Zvezda. On February 4, Kaleri began repairs of the Elektron oxygen generator and the Vozdukh carbon dioxide remover. A fan in the latter had begun making a loud noise and would be replaced during the following week. The international experiment programme continued throughout the next week alongside routine maintenance and exercise. During the second week of the month the crew completed the ongoing regular collection of air and swab samples from surfaces inside ISS. Progress M1-11 had been emptied by February 11, and the crew began loading the spacecraft with unwanted items. Elektron failed during the day, but Kaleri had it working again within 24 hours. It failed once more on February 16, and it took 3 days of efforts by Kaleri, with Korolev’s assistance, to put it back in action. It failed again the following day and the station’s atmosphere was topped up using oxygen from Progress M1-11.

On February 16, Korolev released details of the problem with the Soyuz TMA-3 spacecraft. It was

“… a minute pressure decay in the two helium systems that pressurise the Soyuz propellant tanks and lines… The pressure decay was first noted on system-2 when the Soyuz arrived at the station in October, and was confirmed on system-1 during a routine thruster test… Flight directors have concluded that the decay poses no concern. The decay was extremely small and there are no plans to change normal entry and landing procedures.”

As they approached 4 months (February 18) in their occupation, Foale and Kaleri commenced early preparations for their only Stage EVA, planned for February 26. They shifted their sleep schedule to accommodate the start of the EVA. Foale also positioned the SSRMS so that its cameras and lights could offer maximum coverage of their external activities. The EVA would take place from Pirs, with both men wearing Orlan pressure suits. It would be the first EVA from ISS where all crew members were outside of the station, and no one was inside monitoring the station’s systems and choreographing the EVA against the flight plan, or operating the SSRMS to provide the best possible video coverage. Although NASA was originally unhappy about this arrangement, the Soviets/Russians had used it throughout their Salyut and Mir space station programmes.

The following week was spent preparing for the planned EVA. Both men unpacked their Orlan EVA suits and checked them over, working closely with controllers at Korolev. They also carried out another, successful, exercise that proved they could move between Pirs and Soyuz TMA-3 while wearing Orlan pressure suits, in the event that they had to abandon ISS as a result of an unexpected event occurring during the EVA, which prevented them re-entering the station.

After configuring the station for a period of non-occupation, Foale and Kaleri locked themselves inside Pirs. At 16: 17, February 26, they opened the hatch and made their way into open space, leaving ISS unoccupied. They collected their tools, secured their tethers, and made their way to the exterior of Zvezda. There, they replaced one of two cassettes of long-duration material exposure samples that were part of the Japanese Micro-Particle Capture and Space Environment Exposure Devices (MPAC/SEEDs) experiment that had been put in place, to measure micro­meteoroid impacts, in October 2001. Next they installed the Russian “Matryoshka” experiment on handrails on Zvezda’s exterior. The experiment housed simulated human tissue samples, which would be used to study radiation absorption. As they completed this work Kaleri reported water droplets forming on the inside of his visor and a rise in the temperature inside his suit. It was approximately 18: 00. A few minutes later, engineers at Korolev reported problems with the cooling system in Kaleri’s suit, leading to a build-up of condensation on the inside of his helmet.

Kaleri returned to Pirs, while Foale replaced one of two cassettes of long – duration exposure material samples on Zvezda’s wake airlock housing before joining his colleague in Pirs. The hatch was closed at 20: 12, after an EVA lasting 3 hours 55 minutes. After pressurising the airlock Foale climbed out of his suit, so that he could carry out an inspection of Kaleri’s suit. During the inspection he discovered a kink in a cooling water tube. When the kink was straightened out the water began flowing freely once more. The two men re-entered ISS, which had performed flaw­lessly in autonomous mode throughout the EVA. American fears of leaving the station unoccupied had proved groundless. The week following the EVA began with light duties, but the crew also worked on their experiments and routine housekeeping tasks.

Progress M1-11’s thrusters were used to raise the station’s altitude on March 2. During preparations for the burn a momentary spike was observed in the electrical current reaching CMG-3. After the spike all readings returned to normal and CMG-3 continued to operate as planned. Foale had prepared Destiny’s window for the replacement of the jumper hose that had been identified as the source of the pressure leak earlier in the month. The gaps between the various panes of glass in the window were vented over the weekend to disperse condensation that had built up. On Friday March 5, a vacuum was re-established between the panes of glass in the window in advance of replacing the jumper hose. Once installed the new jumper hose was fitted with a new cover, to prevent it being knocked accidentally.

The week ending March 12 began with a three-day weekend off, after which the crew spent three days working closely with Houston to disassemble their exercise treadmill and remove the gyroscope that had malfunctioned in November 2003. They then replaced a bearing within the gyroscope before replacing the gyroscope and reassembling the treadmill. Houston monitored the first few days of treadmill use with the Vibration Isolation System re-activated, to ensure it was functioning correctly. NASA reported:

“The crew heard noises coming from the treadmill in November, which engineers determined was a failed bearing in the gyroscope that stabilises movement in the roll direction. A repair kit was sent to the station in January [on Progress M1-11] … After this week’s repair work, Foale reported the noises had stopped.”

Kaleri continued to work on the Elektron oxygen generator in Zvezda. On March 12, he began a total review of the system, to identify what items needed replacing. Following a final replenishment of oxygen from Progress M1-11, two Russian SFOG oxygen candles were burned each day in Zvezda, commencing on March 13, to supplement the oxygen supply while the Elektron repairs continued. At the end of the week Foale performed further activities while wearing the FOOT experiment to record how he used his limbs in microgravity. He also used a computer training package to familiarise himself with the Advanced Diagnostic Ultrasound in Microgravity (ADUM) experiment. Later in the flight, Foale would use the experi­ment to make an ultrasound examination of Kaleri. On March 14, CMG-2 in the Z-1 Truss fell off-line for 2 minutes before the emergency system restored it to correct operation. Similar failures and recoveries would occur over the next several days.

The following week Foale and Kaleri spent two days replacing a liquids unit and a water flow system in the Elektron oxygen generator. Following earlier repairs, Russian engineers had decided that air bubbles in the liquids unit had repeatedly caused the Elektron unit to shut down after only a few minutes of operation. The work on Elektron necessitated the re-scheduling of other, lower priority tasks. Following the repair the Elektron unit was activated on Saturday March 20, and performed well. It was left running and the crew stopped burning SFOGs. NASA was at pains to point out that over 100 SFOG candles remained in storage on ISS, along with two tanks of high-pressure oxygen in the Quest airlock, which could supply the crew with breathable oxygen for several months if required. On March 22 and 23, both men participated in noise level measurements. The working week ended on March 26, when Foale carried out a regular inspection of one of the two American EMUs held on the station.

As March turned to April the Expedition-8 crew began their final month onboard ISS. They completed an initial maintenance of the two Russian Orlan suits delivered to the station on Progress M1-11 in January, to replace three older Orlan suits that had been used by earlier Expedition crews. Foale completed a final session of training on the SSRMS on April 2. He used the arm’s cameras to complete an external inspection of the station. He also noted that the noise that the crew had reported earlier in the flight was repeated each time he commanded Destiny’s external

camera to pan up and down. In Russia, controllers were considering having the crew replace the fan in the Soyuz TMA-3 descent module that had failed during the journey up to the station in October. The fan assisted in maintaining the humidity inside the cabin.

American controllers successfully completed tests of the software that would control the Thermal Rotary Radiator Joints on the ITS when its installation con­tinued, following the Shuttle’s Return to Flight. The software would be used to automatically position the cooling radiators mounted on the Truss once the station’s cooling system was activated, following the flight of STS-116.

Foale spent the last two weeks of his occupation completing the FOOT and PFMI experiments, and Kaleri changed a set of two ventilation and humidity fans in Soyuz TMA-3. They also began preparing the items that they would take back to Earth with them. During the week ending April 16, both men participated in a test of Soyuz TMA-3’s thrusters, during which controllers in Korolev noticed the same helium leak that had been monitored during the rendezvous with ISS. Korolev conducted additional tests of the helium system, which was used to pressurise the spacecraft’s propellant tanks, to time the leak rate. The crew also completed environ­mental sampling at various points inside ISS for return to Earth for investigation. Foale also set up the ESA HEAT experiment in the MSG in anticipation of the arrival of Soyuz TMA-4 with Dutch astronaut Andre Kuipers, who would use the experiment to see if a grooved heat pipe can be used to transfer heat from hot surfaces, such as electronics, to cold surfaces, such as radiators, in microgravity.

SOYUZ TMA-4 DELIVERS THE EXPEDITION-9 CREW

SOYUZ TMA-4

COMMANDER

Gennady Padalka

FLIGHT ENGINEER

Michael Fincke

ENGINEER

Andre Kuipers (Holland)

The Soyuz TMA-4/Expedition-9 crew was originally named as Commander Valeri Tokarev and Flight Engineer William McArthur. On January 12, 2004 NASA announced that McArthur had been removed from the crew for “unspecified medical reasons’’ and replaced by Leroy Chiao. Tokarev and Chiao subsequently proved incompatible as a crew, and in February 2004 they were replaced by the original Soyuz TMA-5 prime crew of Gennady Padalka and Michael Fincke, the original Expedition-10 crew. Andre Kuipers, a Dutch ESA astronaut, would continue to fly to ISS with the new crew. By the time the crew change was announced McArthur had already recovered his health, but he and Tokarev had lost too much time training, so they were named as the new Soyuz TMA-7/Expedition-12 crew.

Soyuz TMA-4 was launched at 23: 19, April 18, 2004. Docking with the nadir port on Zarya occurred at 01: 01, April 21, and following pressure checks the hatches were opened at 14:00. The three newcomers entered the station and were given a safety briefing. Padalka and Fincke would spend 6 months on the station as the Expedition-9 crew and make two Stage EVAs from Pirs. Kuipers, the second Dutch national to fly in space, would return to Earth with the Expedition-8 crew, after spending 9 days in flight. While the Expedition-9 crew began their familiarisation and hand-over period, the Expedition-8 crew exercised rigorously prior to their return to Earth. After his recovery, Kuipers would describe his feelings:

“It was amazing, better than I had ever expected. All the different colours of

Earth; such brilliance… Gliding past huge clouds, and vast expanses of water.

You see cities from above and lightning on top of clouds instead of underneath.

At times like that it hits you that you really are in space.”

Kuipers had begun his Dutch Expedition for Life Siences, Technology and Atmospheric Research (DELTA) experiment programme during the solo portion of Soyuz TMA-4’s flight, performing a package of 21 ESA experiments. He com­menced his programme on ISS almost as soon as the hatches were open between the two spacecraft. On April 21, two runs of the HEAT experiment in the MGS were terminated automatically when the upper temperature limit was reached, and a third

PROGRESS Ml-11

Figure 44. Expedition-9: ESA astronaut, Dutchman Andre Kuipers participated in every astronaut’s favourite off-duty pastime, watching the Earth turn outside the window, during his short stay on ISS. Arriving with the Expedition-9 crew, he returned to Earth with the Expedition-8 crew.

run of the experiment was cancelled. After troubleshooting of the experimental hardware the following day, a further four runs of shorter duration were completed before the experiment was stored in Zvezda. Kuipers suffered continual problems with some of his experiments’ hardware, including a centrifuge. Throughout the remainder of the week the Dutchman became a human subject for a number of microgravity and life science experiments. He also assisted Foale and Kaleri to prepare Soyuz TMA-3 for their return to Earth.

On April 21 the Expedition-9 crew were informed that CMG-2 had gone off-line at 16: 20, after the RPCM, a circuit breaker mounted on the S-0 ITS, had mal­functioned and cut power to the CMG. CMG-1 and CMG-2 continued to perform flawlessly and were sufficient to control the station’s attitude. Controllers in Houston began planning an unscheduled third Stage EVA, on June 10, to replace CMG-2 with a CMG held in storage on the station.

The official hand-over ceremony between the Expedition-8 and Expedition-9 crews took place in Destiny on April 26. On the same day Foale, Kaleri, and Kuipers spent several hours in Soyuz TMA-3, rehearsing their undocking and re-entry procedures. Two days later propellant was transferred from Progress M1-11 while the crew slept.

After a week-long hand-over, Foale, Kaleri, and Kuipers said farewell to Padalka and Fincke and sealed themselves in Soyuz TMA-3, preparing to return to Earth. Soyuz TMA-3 undocked at 16:52, April 28, retrofire occurred at 18: 20, with no difficulties, and the re-entry module landed at 20: 12 the same day. The Expedition-8 crew had spent 194 days 18 hours 35 minutes in space. They were just one day behind the Expedition-4 crew. Foale’s personal accumulative record stood at 374 days 11 hours 19 minutes, including his Shuttle flights and his stay on Mir. He was the first American astronaut to spend a total of over one year in space. All three men were in good health and excellent spirits following their landing. As usual, the returning Expedition crew members underwent a 45-day rehabilitation programme.

Meanwhile, NASA admitted that they would be unlikely to meet the March 6, 2005 target date for STS-114, the Return to Flight mission. One of the limiting factors remained the development of the OBSS. The OBSS would give access to most of the Shuttle’s TPS, but not all of it. It would also be strong enough to support an EVA astronaut if any repairs had to be made to a Shuttle’s damaged TPS. It was not even guaranteed that STS-114 would carry the OBSS. If it did not, then the TPS inspection would have to be made by astronauts on an EVA to inspect those areas of the orbiter that could not be seen from the flight deck windows, or with the cameras on the Shuttle’s standard RMS.