Category The Chinese Air Force

Buy, Build, or Steal

Countries whose overall level of economic development and relatively backward aviation industry limit their aircraft production capability have the three basic options of purchase (buy), indigenous development (build), or espionage (steal) in their efforts to develop a modern air force. For countries in this situation, all three options have significant limitations.

Buy

Buying imported aircraft allows a developing country to obtain more advanced fighters than its indigenous aviation industry can produce. Buying complete aircraft offers a developing country a relatively fast way to build its air force’s combat capability (although in practice it may take 4 to 5 years from the time a deal is signed until a unit equipped with a new fighter reaches ini­tial operational capability). Often a deal to purchase advanced fighters includes flight training, assistance with maintenance, and the acquisition of spare parts necessary to maintain operational readiness. This can not only speed the intro­duction of the aircraft into service, but also improve the acquiring air force’s human capital and overall capabilities. Because purchasers usually have the opportunity to “fly before they buy,” there is a clearer sense of what the capa­bilities of the aircraft will be and less risk of technological failure or inadequate performance.

The disadvantages of building a modern air force using imported air­craft include the relatively high cost, limited transfer of technology to the avia­tion sector, and continuing dependence on foreign suppliers. Buyers are also limited to the aircraft that supplying companies are willing to sell; advanced countries often restrict the type of aircraft or the sophistication of avionics and weapons systems that can be exported due to strategic concerns or to maintain a technological advantage for their own air force. A common approach is to export last generation systems or watered-down versions of the most advanced fighters. This enables the United States, Russia, and European powers to main­tain a long-term competitive advantage in military aviation technology and a measure of airpower dominance over their customers.

Purchases of complete aircraft do not produce jobs or technological spin-offs for the acquiring countries (though this may be partly overcome by the use of offsets in the contract that require the seller to accept payment in the form of goods produced by the buyer). Finally, the acquiring country will usu­ally have a limited capacity to produce spare parts for an imported aircraft or to modernize its systems, resulting in long-term dependence on the seller in order to keep the aircraft flying or to update an older aircraft’s systems. This can be problematic if the seller’s economy goes through a major transition (note, for example, India’s difficulty in acquiring spare parts for its Soviet air­craft following the breakup of the Soviet Union) or if changes in political rela­tions make the supplier unwilling to continue to provide spare parts and main­tenance (compare Iran’s U. S.-built McDonnell-Douglas F-4, Northrop F-5, and Grumman F-14 aircraft following the Iranian revolution in 1979). Varia­tions on the “buy” option such as coproduction are discussed later in this study.

Build

The pure “build” option requires planning, designing, and producing the desired fighter system utilizing only indigenous knowledge and production facilities. A developing country may invest significant resources in research and development (R&D) to build its domestic aviation technology production base. However, this requires a significant investment of both capital and human knowl­edge and presents large opportunity costs on both fronts. If a developing country seeks to push its aviation sector well beyond the technological development of its broader economy, this entails costly efforts with limited broader payoffs as scarce engineering talent and resources are focused on narrow military applications. If a developing country tries to push the overall technological capacity of the broader economy, this entails a much longer time period before improvements spill over and raise the technological level of the aviation industry.

The chief advantages of indigenous development are that a developing country can master the technologies required to design and build a fighter, limit its reliance on imported parts and technologies (and thus its potential vulnerability to a cutoff that might limit combat readiness), and diffuse some benefits of aircraft R&D and production into the broader economy (in the form of jobs and technology spin-offs). Over time, indigenous production can lay the foundation for a domestic aviation industry capable of designing, pro­ducing, and potentially exporting complete fighter aircraft.

The disadvantages are that a developing country’s aviation industry may only be able to produce low-quality aircraft with limited combat capability, that large technological hurdles and a high learning curve must be overcome to establish an advanced aviation industry, and that the long period required to learn to develop and produce a modern fighter may yield aircraft that are obsolete before they are fielded. There is also no guarantee that investments in aviation R&D and production capacity will pay off. Few defense projects his­torically have been more costly, slower, or more prone to unforeseen difficul­ties than those undertaken to produce new fighter aircraft.5 It is possible for a developing country pursuing the economic and technological spinoffs from indigenous design and production to spend much more than it would have cost to buy an advanced fighter from a foreign supplier, only to wind up with an inferior aircraft. Japan’s F-2 fighter provides a good illustration.

Steal

A developing country can use surreptitious means to steal design and technology information on aircraft and aircraft components that it lacks the knowledge to design and produce domestically. This can be accomplished using covert procurement (often through third countries), traditional espio­nage methods, or computer network intrusion methods to exfiltrate the desired information. Individuals with access to information on classified weapons sys­tems are prime targets of foreign intelligence organizations. Cyber espionage attacks against U. S. targets including military/government organizations and defense contractors have reportedly been successful in obtaining sensitive, though not classified, data.6 The “steal” option can be used to gain blueprints or examples of weapons to use in reverse engineering a subsystem or to develop countermeasures that make a threat aircraft less effective in combat.

The principal advantage of the “steal” option is the potential to acquire advanced systems or technologies that other countries are unwilling to sell. In some cases, espionage can allow a country to acquire advanced technol­ogy without spending funds on its own research and development. The dis­advantages include a developing country’s limited ability to absorb or repli­cate stolen systems and technologies without technological support from the manufacturer, the haphazard and potentially incomplete access to systems and technologies through clandestine or surreptitious means, and the potential for espionage to send a country’s aviation industry down a blind alley. In discussing the degree to which China has employed the “steal” option, we should differ­entiate its comprehensive efforts to collect and assimilate open source defense information (for example, through the China Defense Science and Technology Information Center) from its efforts to obtain restricted technologies covertly, by way of either traditional or cyber espionage. Exploiting the volumes of tech­nical open source information produced in developed countries is an effective, legitimate, and predictable way to acquire knowledge.7

Of these three main avenues to technology procurement, the “build” option is the only one with the potential to stimulate innovation and create a broad-based domestic aviation industry from a low initial starting point. The United States and Russia produce the world’s most complex fighter aircraft and, although they gained the ability in the midst of different economic and politi­cal circumstances, both were only able to reach this status through the ability to develop new technologies. Simply buying fighter aircraft from another coun­try, with no plans to reverse engineer or coproduce, does not help a develop­ing country move toward self-reliance. The steal option can have benefits if a developing country is able to obtain the information it needs without having to expend the necessary resources on R&D. However, simply possessing a blue­print does not guarantee success in reproducing the design, especially for a developing country with a limited aerospace production capacity.

Airfields and Runway Availability

Both the PRC and Taiwan possess numerous airfields and operating locations in the Taiwan Strait region, and the PRC also has extensive basing facilities farther inland that give it a measure of security that Taiwan, because of its island status, cannot possess. In the Nanjing Military Region alone, there are more than 40 airfields, all of whose runways are longer than 7,000 feet, easily capable of supporting fighter and strike aircraft operations. On Taiwan, there are 12 air bases, with more than 23 runways longer than 7,000 feet. There are five highway strips longer than 8,000 feet that can be used as emergency runways.22

Unmanned Aerial Systems

In recent years, the PRC has been actively scouting, purchasing, and devel­oping technologies to support its indigenous unmanned aerial systems (UAS) programs. The PRC’s unmanned aerial vehicles (e. g., W-50 pilotless aircraft) have already entered into active service with PLA units and have reportedly attained “combat effectiveness.”23

In 2007, Hsu Sho-hsuan of the Taipei Times reported that:

A large number of recently decommissioned fighter aircraft have been turned into pilotless drone planes to be used together with Harpy anti­radar unmanned aerial vehicles purchased from Israel. These could help PRC punch holes in Taiwan’s air defense systems and destroy key targets.24

As for Taiwan, its UAS aircraft are assigned to army aviation forces and to the Special Forces Command, and are used for intelligence, surveillance, and reconnaissance (ISR) purposes.

Assistant Chiefs of Staff

The post of assistant chief of staff serves as a stepping-stone for further promotion for most of the assistant chiefs. They are selected from promising young commanders at the deputy corps rank, either from combat units at cam­paign levels or specialized/technical departments in Fuxingmen. Oftentimes they are hand-picked by chiefs of staff personally and work closely with top commanders there. They usually enj oy good personal ties with the top AF brass and link the top command to the grass-roots forces. Currently the PLAAF has four assistant chiefs of staff, each with a unique background.

Major General Li Shaomin ($ШШ) joined the PLAAF in 1968 and now specializes in air force education. He was a top-grade jet pilot and regi­mental commander until 1996 when he was promoted to be deputy com­mandant of the 1st Flying Academy. From then on he served as commandant of the 3d Flying Academy (1999); deputy president of Air Force University of Engineering (2001); and president of PLAAF Aviation University in 2003. He has held his current position since 2008. He assists the chief of staff in over­seeing university education in the air force. Given his age, his career pros­pects seem to be limited, particularly as his current duty is not directly related to combat operations.

Major General Wang Weining (Пт) was recently promoted to the position from the directorship of the second department (intelligence) of the PLAAF. He assists the chief of staff in managing intelligence-related matters, public affairs, and foreign affairs.

Major General Lin Tao (#>#) has long served in air force units in north­west provinces such as Tibet. He was recently promoted to the major general rank (2009). In Fuxingmen, he assists the chief of staff in headquarters affairs and daily running of the staff department.

Major General Zheng Yuanlin (Й^#) is also a rising star in the PLAAF, as seen from his fast upward advancement in the last 3 years. In 2008 he was commander of the 13th Division (the PLA’s strategic transportation division). The next year he became commander of the PLAAF’s Wuhan Base at deputy corps rank. The following year he was appointed deputy chief of staff of the PLAAF Guangzhou MR. He was in Guangzhou for barely a year before being brought back to Beijing to be an assistant chief of staff of the Air Force.

Zheng has excelled both as a transport pilot and transport commander. He was selected as one of the best air force commanders in 2007, following his command of Il-76s deployed in the Sino-Russian Peace Mission 2007 exercise in Russia. During the catastrophic snow and ice storm in South China in Jan­uary 2008, he was placed in charge of the PLA’s air relief missions. In a week, the 13th Division’s Il-76s conducted 75 emergency sorties and carried about 800 tons of goods to 19 airports in eight provinces. In the Wenchuan earth­quake rescue operations, the 13th Division made a huge contribution.25 It was very difficult for large transports to take off and land in concentrated sorties, in tough weather conditions (e. g., visibility less than 100 meters), and on air­ports with only rudimentary facilities.26 Even so, operations were conducted with complete safety. Just days after he arrived in Beijing to take his current job, the Yushu earthquake struck; again the PLA entrusted him to command relief operations by both the 13th Division and the Chengkong Division.

Given that he is both in his early 50s and in the right place at the right time—on the verge of the forthcoming massive leadership reshuffle—it might be expected that his future is a bright one. But he faces a serious obstacle: in the entire PLAAF history of pilot cadre management, an airlift pilot has never risen very far in the leadership. As in other air forces, young and accomplished fighter pilots form the traditionally favored cadre. Within the PLAAF, the fighter divisions comprise over 55 percent of the total, attack aircraft divisions 30 percent, and bomber/transport divisions just 15 percent.27 Three transport divisions (the new division in the Chengdu AF Region, and the 13th and 34th Divisions) form a “minority” in the PLAAF structure. As a result, given the PLAAF’s past tradition, it will be interesting to see how far Zheng goes.

Hybrid Approaches: Reverse Engineering, Coproduction, and Codevelopment

Hybrid approaches blend elements of buy, build, and steal in different combinations. This section considers reverse engineering, coproduction, and codevelopment as means of developing and acquiring aviation technology and building an advanced military aviation industry.

Reverse Engineering

Reverse engineering is the process of acquiring an aircraft, weapons system, or component and then taking it apart to understand how it works and poten­tially how to replicate or defeat it. The initial acquisition may be done through legitimate purchase (buy) or covert procurement (steal). Successful reverse engi­neering requires a certain level of technological sophistication in a country’s avia­tion industry (for example, some degree of “build” experience and capacity).

Reverse engineering can serve several functions. Disassembling a mechanical or electronic device reveals its inner workings, yielding under­standing of how it functions, the specific technologies and components involved, and identifying successful design paths that can be emulated. It may be possible to replicate the system or component by producing an exact clone of an aircraft component or weapons system. The knowledge gathered from reverse engineering may be incorporated into a newly designed subsystem that bears some resemblance to the original but is not an exact copy. As in the case of the “steal” option, a developing country might use reverse engineering to gain understanding of an aircraft’s weapons systems or radars so that it can develop effective countermeasures.

Developing countries often assume that reverse engineering can help accelerate development in certain sectors of the economy.8 Examples of weap­ons reverse engineering do not validate this assumption in each case but rather suggest that success depends on a number of country-specific factors. Devel­oping countries sometimes attempt to purchase a small number of sophisti­cated fighters or advanced components from another country for the sole pur­pose of trying to reverse-engineer them in order to produce copies or gain knowledge about the component parts. (China was notorious for its efforts in the 1980s and early 1990s to purchase small quantities of advanced fighters and aviation components.) If a country is able to purchase small quantities and suc­cessfully reverse engineer them, the savings in development time (compared to completely independent development) and money (compared to a purchase of large quantities of aircraft or components) may be significant. However, this runs counter to the seller’s best interests. Advanced arms suppliers such as the United States or Russia have no motivation to sell a small number of fighter aircraft to a country with the industrial capacity to copy them. A more usual variant can occur when a developing country procures a large quantity of an aircraft and then attempts to reverse engineer parts and components to reduce its dependence on the original seller for spare parts. (Both India and China have often pursued this approach.) This option is often explicitly banned by the sales contract, but the buyer may have a limited capacity to enforce these provisions once the sale is complete.

A developing country may also use covert procurement through a third party in order to acquire access to small quantities of an aircraft or component. An ally with legitimate access to advanced fighters or aviation technology may act as a “cut out” and either sell or turn over a working example of the aircraft for reverse engineering purposes. One widely cited example is the assumption that Pakistan, which purchased F-16 fighters from the United States, may have provided China with access to F-16 fighters and components. It is impossible to definitively determine the extent of access China may have had to Pakistani F-16s in the 1980s, but sources claim that Chinese technical personnel visit­ing Pakistan in the early 1980s were allowed to examine the U. S.-made fighter.9 China may also have obtained some access to F-16 technology through its defense cooperation with Israel.10

In some cases, a country may be able to acquire an adversary’s military hardware as a result of serendipitous circumstances, such as cases where a pilot loses his way in bad weather or defects with his aircraft.11 For example, during the second Taiwan Strait crisis in fall 1958, the United States equipped Taiwan’s F-86F Sabres with the AIM-9 Sidewinder infrared (IR)-guided air-to-air mis­sile (AAM). On September 28, 1958, an F-86F fired and hit a PLAAF MiG-17 with a Sidewinder that lodged in the MiG’s fuselage without exploding. The Soviet Union convinced China to turn over the unexploded missile and suc­cessfully reverse engineered it as the K-13. Soviet engineer Gennady Sokolovs­kiy described acquisition of the Sidewinder as, “a university offering a course in missile construction technology which has upgraded our engineering edu­cation and updated our approach to production of future missiles.”12

The biggest benefit of reverse engineering is that a developing country can sidestep some of the R&D investment required to develop advanced weap­ons technologies. Unlike the pure “buy” option where a developing country merely operates the system it purchases, reverse engineering can lead to sig­nificant technical discoveries that propel a nation’s defense industry forward. (The Soviet effort to reverse engineer the AIM-9 Sidewinder AAM is one such instance.) This is not always the case, however. Reverse engineering might allow for better understanding of a complex piece of military hardware, but there is no guarantee that a country can produce an exact clone or functional equiva­lent. Individual components may incorporate materials or be produced using advanced production processes that cannot be easily replicated by a developing country’s aviation industry. (This was initially the case with composite materials and stealth aircraft designed using advanced computer systems, and remains the case for some materials used in high-performance jet engines.) Fighter aircraft present a particular reverse-engineering challenge because of the vast number of complex subsystems (for example, radars, avionics, and engines) that must be integrated into a functional whole. A developing country may obtain access to an advanced fighter, but lack the production capacity to reproduce it. A devel­oping country may be able to reverse engineer and replicate key components, but lack the design skills to integrate them into an existing aircraft.

Possible PRC Military Actions against Taiwan

According to Taiwan and U. S. Government documents, the possible PRC military actions against Taiwan can be categorized into five phases: mili­tary intimidation, blockade, surgical strikes, asymmetric warfare, and amphib­ious invasion.25 Air operations clearly figure prominently in all of these, con­sistent with Deng Xiaoping’s pronouncement that “No matter what, the Air Force is most important in all operations: Army, Navy and Air Force, the first is a strong Air Force.”26 A 2008 White Paper on national defense issued by the PRC stated that:27

The Air Force is a strategic service of the PLA, and the main force for car­rying out air operations. It is responsible for such tasks as safeguarding the country’s territorial air space and territorial sovereignty, and maintaining a stable air defense posture nationwide. It is mainly composed of aviation, ground air defense, airborne, signal, radar, ECM [electronic countermea­sures], technical reconnaissance and chemical defense sections.

Certainly, the PLAAF can be expected to join all the possible military actions against Taiwan. In this regard, the following discussion examines pos­sible PRC military actions against Taiwan, focusing on the role that airpower forces and air warfare would play in them.

Military Intimidation

In its 2009 Quadrennial Defense Review, the Taiwan government noted

that:28

The PLA may wage psychological warfare against Taiwan by means of escalation [of] the intensity of its military activities, adjusting force deploy­ments, including forward deployments, field training exercises, firepower demonstration, and use or combine media influences to exaggerate the seriousness of military situation over the Taiwan Strait, so as to stoke internal panic in Taiwan and undermine their will and morale.

From the PLAs perspective, air intimidation offers the prospect of flex­ible, wide-ranging action having strong political and military effect yet with low political and military risk.29 Airpower has the inherent ability to project power at high speed and over long distance without being hindered by the obstacles and difficulties afflicting surface power projection. The combination of airplane and missile make air intimidation a very real prospect. With regard to Taiwan, the PLAs joint-service missiles and aircraft, with their newer fight­ers like the Su-27, J—11, and Su-30, can project power across the entire Taiwan area. Indeed, already, Taiwan is “under” a missile-threat envelope of consid­erable depth and density. The coupling of this with precision navigation and sensing systems—like the various space-based navigation and cuing systems now on line (such as GPS and GLONASS)—make air intimidation more effec­tive and more likely by largely removing the threat of counterproductive col­lateral damage.

Missile intimidation is a core Second Artillery mission, and works to restrain the enemy’s strategic attempts or important risky military actions. The SRBMs of the Second Artillery offer long range, high accuracy, hypersonic speed, high-explosive effects, deep target penetration, and low risk of both interception and collateral damage, thus constituting a very important means of military intimidation. Air intimidation can be performed by means of air – power exercises, which not only demonstrate the threat and potentiality of air- power, but the national determination of the PRC as well. Further, routine air demonstration and intimidation can swiftly and readily transform into higher intensity military action against Taiwan, and, if done gradually and carefully, without necessarily alerting Taiwan’s air defenders.

The Commanders of PLAAF Military Regions

As this is written, the military region air force commanders are all tran­sitioning to retired status. The youngest commanders were born in 1949 and

the oldest in 1947. Jia Yongsheng of the Beijing MRAF and Liu Zhongxing are already over the retirement age.28 The CMC has applied a level of flexibility in service age to some special cases in recent years.29 The current MRAF com­manders will all retire before the end of 2011, unless some “historical acci­dents” happen, such as an outbreak of conflict.

Attention should therefore be focused on the younger and rising stars in the MRAFs, who are in their early 50s, have served in operational front­line posts, and have held senior commanding positions for a number of years. Most are chiefs of staff of MRAFs who proved themselves as the top-grade fighter pilots, commanders of the “fist units” and as staff officers in headquar­ters assignments. They are:

Major General Ma Zhenjun (ЙШ¥), deputy commander and chief of staff of the Beijing MRAF. Born in 1964, he is probably the only major general at the full corps rank in the air force who was born in the 1960s.30 This indi­cates that Ma has distinguished himself in the race to the apex of power. He is now in a unique position to succeed either Jia Yongsheng, his current superior, or to be transferred to another MRAF as commander. It is worth noting that by March 2010 the PLA had only eight post-1960s major generals at the corps level, the youngest being Yang Hui (ШЩ), director of the 2d Department of the GSD.31 Mao Xinyu (^ff^) (Mao Zedong’s grandson) is the only one born in the 1970s. So far, apart from Ma, no other post-1960s corps level officer is found in the PLAAF.

Ma earned his fast promotion after proving himself as a top-grade fighter pilot, an outstanding fighter division commander, and a keen proponent of training. Instead of emphasizing routine technical training, Ma emphasized tactical combat training. When he commanded the 2d Fighter Division, it was rated as having displayed the most proficiency in training for three successive years. He also won three PLA science and technology awards.32

In 2007 Ma was promoted from commander of the 2d Fighter Division to deputy chief of staff of the Guangzhou MRAF, when he was 43. Two years later, he was promoted to deputy commander of the Jinan MRAF (a full corps rank) and again within 1 year he was transferred to his current position. The frequent transfers clearly reflect the air force leadership’s confidence in Ma and their crafting a succession plan for him involving gaining intimate familiarity with various MRAFs and combat units.

Major General Ding Laihong (Т#Ю was born in 1957 and is the sec­ond youngest senior officer among the seven PLAAF MRs (at the full corps rank). He became regimental commander of Regiment 71 of Fighter Division 24 while in his early 30s. From the position of division deputy commander he moved to command of a training base in the Beijing MRAF, a divisional unit.

Like Ma, he emphasized combat-realistic “Red versus Blue” training. In 2001 he was swiftly promoted to chief of staff of the 8th Corps, deployed on the Tai­wan Front, reaching the deputy corps level at the age of 44. When the 8th Corps was reorganized down to the Fuzhou Forward Commanding Post in 2003, Ding remained its foundational head. In 2007 he was promoted to be presi­dent of the Air Force Command Academy. One year later he was transferred to the Chengdu MRAF as its chief of staff. Looking back, Ding has been at the corps-command level for almost a decade. In terms of seniority or in terms of the PLAAF’s demand for a large pool of candidates to complete the forthcom­ing reshuffle, Ding is certainly at the front in the queue.

Major General Zheng Qunliang (ЙЙЙ), born in 1954, is older than Ding, but is still a valid candidate to “catch the last train” to reach deputy MR rank. Previously he was a corps commander who would have had to retire at the age of 55 if he could not advance further; but now, his active service can be extended, perhaps to age 58.33 Zheng, as commander of the PLAAF’s elite 1st Fighter Division, was selected to participate in a PLA senior officers’ delegation to visit the United States in July 2000, a sign of the PLA having identified him as a future PLAAF leader.

After his trip, he wrote a widely distributed article recounting his expe­riences visiting various U. S. Air Force bases.34 For instance, he noticed it took only 15 minutes for an F-15 wing to change munitions, as compared with his division’s 3 hours. He was highly impressed that USAF F-15 Eagle fighter pilots took off in formation, even under heavy clouds below 200 meters (some­thing his own pilots could only do individually under the same conditions) and landed out of steep, descending turns.

At one base in California, he was particularly surprised to find Air Force male and female personnel working together and was impressed with the orderly and systematic airfield operations. He was surprised to find non­commissioned officers supervising flight operations (a task performed only by commanders in a PLAAF fighter division). Zheng concluded that if his com­manders could be freed from such duties, they could devote their attention to more important tasks. He concluded that the more the PLA understood the U. S. military, the more the PLA would know its own shortcomings and be motivated to catch up.

Zheng is a top-grade jet fighter pilot. When he reached the PLAAF’s compulsory nonflight age of 47, he had accumulated 2,200 flying hours. He became commander of Regiment 3 of the 1st Division in 1992, then divisional commander in 1997. In a transregional combat drill under no pre-set flying conditions, he led the division to a deployment at another air base, breaking PLA records for the largest number of aircraft moved on a single mission, traveling the longest distance, and the longest flying time under instrument – only (blind flying) flight conditions. In 1999 he was the in-flight commander for the Air Force National Day Military Parade. The review formation was 7 kilometers (4.34 miles) long, and passed the review stand at Tiananmen Square exactly on time, to the second. This exhibition won him high praise from PLAAF leaders.35 In 2002 he was promoted to commander of the Wuhan base and concurrently deputy commander and chief of staff of the Shenyang MRAF. Clearly, if age is not an obstacle for his advancement, he will receive a more senior post in the PLAAF’s leadership reshuffle.

Major General Zhuang Kezhu (ЙИЙ), chief of staff of the Lanzhou MRAF. He was born in 1955 and rose quickly in his early career. He was com­mander of the 33d Fighter Division, the top division in Southwest China and always the first combat unit to equip with new generation aircraft in that region. He was promoted to commander of the Kunming Forward Headquar­ters in 1999. In 2005 he was transferred to Beijing to serve as assistant chief of staff of the PLAAF, in charge of combat plans and training of air force units in the southwest. He has thus gained valuable access to the top AF leadership on the one hand and had rich commanding experience at the basic campaign units on the other. His future upward movement is certain.

Major General Xu Anxiang (1£Ш¥) is chief of staff of the Nanjing MRAF. In his early 50s, Xu has already acquired valuable experience in com­manding divisional and corps-level operations and training. In 2002 he was commander of the 14th Fighter Division, a unit on constant combat duty in the Nanjing War Zone. He was in charge of the MR’s air force units in the Wenchuan operation when he was deputy chief of the staff. He personally oversaw preparation of aircraft in the Special Rescue Regiment that received emergency mobilization orders at 10:30 p. m. on the night of the earthquake, departing 3 hours later with all necessary materials.36 In 2007 Xu was front­line commander for PLAAF fighters deployed to the Sino-Russian joint mili­tary exercise Peace Mission 2007. This was the first time that PLAAF aircraft had entered a foreign country for combat drills. Xu directed 24 sorties of eight Chinese J-7s and Il-76s within a short period of time. Xu’s division achieved its tactical objectives, even though in a strange location, against unfamiliar tar­gets, and under uncertain circumstances.37 Given the fact that the PLAAF top leadership always selects the most competent commanders to command trans­national military missions, Xu’s experience in the mission was a telling proof of how the PLAAF leadership regarded him. As a richly experienced commander in charge of operations and training in an important air force war zone, he held heavy responsibilities, a contributing factor likely to influence his promotion to higher command in future years.

Major General Sun Herong (ї’Мп®) is chief of staff of the Jinan MRAF (2009). He was deputy chief of staff of Shenyang MRAF (2003-2006) and com­mander of the Dalian Forward Headquarters (2007). His seniority is about the same as that of Ding, Zheng, and Xu, and he is a clear candidate for more important positions. In 2003 he coauthored with Yi Xiaoguang (Z, K^) a book entitled The Stealth Aircraft: A Difficult Adversary (ШШАЖ&М’&Ш-). This highly acclaimed work subsequently proved popular with the PLAAF, then in the midst of examining high-tech warfare.

Clearly, there are many promising commanders among this cluster of relatively young major generals at the MRAF level. A number of other officers are also potential candidates; however, due to limited space, they can only be briefly noted:

Major General Chang Baolin (^S#), deputy commander of the Nan­jing MRAF, was chief of staff of the 1st Corps in 2000 at the age of 44 and then the Guangzhou MRAF’s chief of staff and deputy commander (2005). He is a candidate for commander for one of the MRAFs.

Major General Yang Weidong (Й!^), commander of PLAAF Wuhan Base, was commander of the 31st Fighter Division and deputy chief of staff of the Jinan MRAF. He served briefly as assistant chief of staff of the PLAAF, which gave him close access to top PLAAF leaders. His current job is meant to increase his experience in regional command and campaign level units. He is poised to become chief of staff of one of the MRAFs.

Major General Wang Tieyi (И£Щ). Born in 1959, Wang is deputy chief of staff of the Shenyang MRAF. He was commander of the 9th Fighter Division, which is one of the top divisions in the air force, in 2000. He was selected to study at National Defense University in 2005 and was a deputy leader in the 54th Base of the Strategic Missile Force under the PLA senior officer exchange program of different services. In his capacity of deputy chief of staff of the Shenyang MRAF, Wang was the first-line commander of PLAAF units in the 2009 Sino-Russian Peace Mission joint exercise.

Major General Li Xiangmin (^ЙВД). Born in 1959, Li became com­mander of the PLAAF Nanning Forward Headquarters in 2004 at the age of 45, younger than Ding Laihang (Fuzhou) and Zheng Qunliang (Wuhan) who held the same rank at the same time.

Summary

This chapter’s research tentatively reveals a few commonalities in PLAAF leadership politics, especially in regard to the patterns of elite selection and promotion.

First, the leadership selection process is increasingly based upon meritoc­racy and even “expertocracy’ The candidates for top leadership are inevitably well-trained, learned, and internationally exposed. The level of professionalism is very high, both in terms of their careers as airmen and their experience as com­manders. Mediocre officers simply do not make it to the top, given the extremely tough competition among peers. The officers in the CMC and PLAAF cadre reserve lists have to go through several rounds of performance tests, through var­ious commanding posts and at different levels of command. In this regard, the PLAAF is much like professional air forces in other parts of the world.

Second, fighter pilots have dominated the PLAAF leadership from its formative years to the present day. Virtually all top service leaders and lead­ers at the region level are fighter pilots. Partly this is due to the PLAAF force structure that gives numerical advantages to fighter divisions and partly to a tradition dating to the earliest years of the service. Functionally, fighter jets undertake a proportionally higher responsibility for homeland air defense. It is interesting to watch how this tradition will evolve and change, as the air force increasingly emphasizes power projection missions away from home, which will require other types of aircraft to play a larger role. In terms of personal net­works, it is logical and commonplace for the incumbent fighter-pilots turned AF leaders to groom their subordinates into commanding positions. This situ­ation is unlikely to change much any time soon.

Third, the age of the PLAAF’s current leadership will soon force a mas­sive leadership reshuffle at the service and MRAF levels. The generational suc­cession can be expected to be orderly, as an array of candidates is already in place to take over key positions as they become available. This chapter lists a number of them, although it is not an exhaustive examination. If there is no substantial intervening surprise, they will become the next generation of air force leaders. They are younger, better educated, with more flying hours, and more capable of piloting various types of third-generation (fourth-generation in Western terminology) fighter aircraft.

Fourth, the PLA as a whole and the PLAAF in particular have developed a sophisticated, institutionalized, and comprehensive personnel selection and promotion system. It is multi-layered, with a CMC reserve list, a PLAAF list, an MRAF list, a corps list, and a divisional list. Each list normally has 1.5 times the number of personnel who can be promoted to the next level to guarantee that the best make it through the selection filter.38 Different tiers are mutually supportive, as a promising PLAAF candidate can enter the CMC list simultane­ously, to be groomed with a variety of opportunities, as takes place in the other services. As far as the air force is concerned, a pattern of upward mobility is thus clearly visible for those lucky enough to be screened as future top leaders.

They are identified early compared with those in other PLA services, thanks to the service age regulations for combat pilots, whose flying career ends at age 47. In their early 30s they become regimental commanders, get to the divisional rank in their mid to late 30s, and then to corps level posts before age 50. From there they are transferred frequently to gain familiarity with central affairs and different MRAFs, normally staying in one place no more than 2 years. A top air force leader is thus tempered with as much necessary experience as possible.

To stress yet again, meritocracy and expert knowledge of one’s profes­sional career field are now the core defining qualities for the deepening pro­fessionalization of the PLAAF’s top elites. This is seen by the following facts:

■ They are all top-grade pilots, typically rated in several kinds of high-per­formance aircraft (typically fighters), or other aerospace professionals.

■ By the time a commander is selected for a corps-level command, he has gone at least three times to advanced training in military acade­mies (for a deputy MR commander, at least four times).

■ PLAAF officers are given special missions to test their ability in the process of being selected and promoted, such as joint combat drills with foreign military services and large-scale military operations other than war (MOOTW) experience.

■ The selection of future leaders is increasingly open and competitive, using measures such as a satisfactory graduation thesis, peer opinion survey, and examination marks on technological tests (for instance, computer knowledge and skills). All these and others heavily impact subsequent personnel selection. Thus, the scope of arbitrary nomina­tion of favored candidates by individual leaders is markedly decreasing.

In conclusion, the PLAAF is capable of identifying potential leaders and giving them the experience and skills needed to undertake the complicated and tough transformation of turning the air force from a purely defensive force to one with reasonable long-range offensive and defensive power-projection capabilities. The next years will bring about a major reshaping of the PLAAF leadership as those born in the late 1940s and early 1950s give way to younger officers. This will take place in an orderly fashion, though some disruption is likely to occur, with gaps between the right people in the right posts being nar­rowed and bridged only in a gradual manner.

By December 2011 the reshuffle of the military region air force leader­ship had seen five new MRAF commanders: Jiang Jianzeng (>ІЙн), Beijing MR, transferred from the Nanjing MR; Zhang Jianping (ЖШТ), Guangzhou MR; Zhuang Kezhu (SWfi), Lanzhou MR; Yi Xiaoguang (Z, K^), Nanjing

MR; and Zheng Qunliang Jinan MR. Two other air force military

region commanders Fang Dianrong (^)^®),Chengdu MR and Zhou Laiqiang (Ml#®), Shenyang MR have not been changed.

Coproduction and Codevelopment

The terms coproduction and codevelopment are sometimes used inter­changeably. For the purposes of this paper, coproduction refers to a contract where the supplying country sells the purchaser the right to produce copies of a com­plete aircraft or key components. Coproduction deals can range from assembly of imported complete knock-down (CKD) kits with all necessary components to transfer of blueprints, machines, technical assistance, and relevant production technologies that give the purchaser an independent capability to build complete aircraft from scratch. Codevelopment refers to cooperation in the design stage of aircraft development where two or more countries work as partners.

Technology transfer and how expensive research and development costs are allocated are the principal issues in coproduction or codevelopment projects. The country with the more advanced industry has the motivation to withhold technical details from partners to protect its competitive advantage; the country with the less developed aviation industry typically has to agree to pay a premium price in order to gain access to relevant production (in the case of coproduction) or design/systems integration expertise (in the case of codevelopment).

Developing countries often seek coproduction arrangements as a means of starting an aviation industry or improving the technological capacity of their existing industry. The developing country typically seeks the maximum pos­sible transfer of design information and production technology to allow fully independent production. Unless suppliers have a strategic reason for wanting to build up the recipient country’s defense industry, they typically seek to retain control over key design information and production technology and prefer to supply components for assembly rather than give the purchasing country an independent production capability. The exact nature of the deal is often a func­tion of the relative bargaining power of the parties involved. Coproduction usually involves a licensing agreement stipulating the number of systems the producer country can build at an agreed upon cost.

As a technology procurement strategy, coproduction is basically a combi­nation of “buy” and “build.” The developing country typically assembles aircraft from imported parts (often in the form of a complete knockdown kit) rather than producing them from scratch, at least initially. Contracts sometimes allow replac­ing imported components with indigenously produced components as the pur­chasing country’s aviation industry gains the ability to successfully produce them.

Developing countries sometimes evade contractual restrictions by using knowl­edge gained in the production process to design compatible subsystems or com­ponents that can either be integrated into an existing aircraft or that can be part of an improved variant of an existing aircraft. Because the supplier often provides knowledge about how to assemble the aircraft rather than complete design infor­mation, the buyer country still has a fair amount of work to do if the goal is to reverse engineer an exact clone or to develop an improved variant incorporating indigenous subsystems.

The nature of defense cooperation between countries is a good indi­cator of the overall political relationship. Coproduction agreements imply a basic level of political trust between partner countries. A supplier country will not enter into an agreement to sell a developing country the rights to build a fighter aircraft if there is a fundamental divergence of strategic interests or if the purchasing country poses a significant security threat. Coproduction is less of a risk than codevelopment to the supplier country from a technology pro­curement perspective because it does not usually grant the purchaser access to state-of-the-art aircraft or subsystems. As the next section will detail, China relied on coproduction with the Soviet Union in the 1950s to launch its mili­tary aviation industry and on coproduction deals with Russia in the 1990s to improve its capability to build advanced fighter aircraft.

Codevelopment in aircraft design implies that both partners possess a relatively well developed aviation industry. The partners typically share the costs of R&D efforts; partners with less advanced aviation industries typically pay a premium price or commit to purchase significant quantities of the fin­ished aircraft in order to gain access to advanced technologies, design pro­cesses, and systems integration expertise. In some cases, codevelopment will produce new technologies and intellectual property that will be shared by the partners.

A good recent example of codevelopment involves the joint venture between Russia’s United Aircraft Corporation (UAC) and India’s Hindustan Aeronautics Limited (HAL) to develop a fifth-generation fighter.13 The work is split on a 75-25 percent basis, with Russia contributing the larger share.14 “Codevelopment” is also sometimes used to describe projects where parties contribute to development costs without participating in the actual work. From a technology procurement standpoint, this is much closer to the “buy” avenue than to coproduction or codevelopment.

The F-35 Joint Strike Fighter program is an example of an unequal codevelopment partnership where a number of countries contributed finan­cial support and committed to purchasing the aircraft without any involve­ment in development work.15 The United States and Britain have carried out the vast majority of technical development work, with Italy making minor con­tributions.16 The other six partners (Netherlands, Turkey, Australia, Canada, Denmark, and Norway) have bought into the project by contributing develop­ment funds and agreeing to purchase a specific number of F-35s. True code­velopment implies not just cost-sharing, but shared ownership of the intellec­tual property generated by the project.

The decision to codevelop a fighter aircraft can be motivated by differ­ent circumstances, but the logic in forming joint partnerships is the same: both countries benefit more through codevelopment than they would by working alone. Defense industries can share the substantial burden of R&D costs while bringing their technological comparative advantages to the fore. Perceived eco­nomic, political, and strategic benefits drive the decisionmaking process, with the relative importance of each depending on the relationship, political situa­tion, and threat perceptions of the partner countries.

The UAC/HAL joint venture between Russia and India illustrates the complex economic and geopolitical pressures that drive defense technology decisionmaking. India was an end user and coproducer of Soviet military aircraft since a cooperative defense relationship was established in the early 1960s.17 The relationship persisted throughout the Cold War, and after the Soviet Union dissolved, India helped Russia’s defense industry stay afloat in the 1990s.18 The plan to codevelop a fifth-generation fighter was hatched at a time (2000) when the dire Russian economic situation gave India a significant degree of bargaining power.19 If not for economic necessity, Russia might never have proposed a codevelopment deal given the major step forward it provides the Indian aerospace industry.20 Some Russian defense industry experts have been skeptical about the value India will bring to the project, citing Russia’s half century of experience designing award-winning fighter aircraft.21 Indian media reports have highlighted HAL’s potential contributions in aircraft body design through its work on composites gained during the design of its indig­enous Tejas Light Combat Aircraft (LCA).22 Russia has designed mostly metal aircraft and thus lacks experience with composites. HAL will also design the mission computer, navigation, and countermeasure dispensing systems, and critical software.

Blockade

Though traditionally thought of in naval terms, military blockade can take many forms. During World War II, for example, the U. S. Fifth Air Force effectively established an air blockade on New Guinea, routinely denying Jap­anese relief and supply forces from reaching the island. Taiwan’s Ministry of National Defense recognized this when it issued its Quadrennial Defense Review in 2009, noting:30

The PLA may use its Second Artillery, navy, and air force to conduct blockades against Taiwan’s ports, offshore islands, and routes connect­ing to outside world, and blockade or seize Taiwan’s offshore or remote islands, in order to shatter the will and morale of the populace, cripple the economic lifeline, depress the internal and external environment and force a peace negotiation on their terms.

In the event of a PRC blockade of Taiwan, it could be expected that the PLAs airpower forces will be employed to: establish and enforce a “no-fly zone” (NFZ); seize and maintain air dominance over the battlespace; establish defen­sive air caps and protect PLA forces from Taiwan air and missile strikes; prosecute electronic warfare and cyber warfare against Taiwan’s forces; support the PLAN’s sea blockade of Taiwan; support PLA littoral actions such as seizing the islands of Kinmen and Matsu; and, finally, conduct antiaccess operations against Taiwan’s forces and their potential allies or coalition partners.31 PLA airpower forces would prosecute these missions by attacking Taiwan’s airfields, air bases, and important installations; seizing air dominance via air-to-air combat; conducting aerial min­ing operations; providing routine combat air patrols and air reconnaissance over the battlespace; and conducting air defense operations in coastal areas.32

Education and Training in the PLAAF

Kevin Lanzit

Strengthened military education and training programs are fundamen­tal to Chinese People’s Liberation Army Air Force (PLAAF) efforts toward “air force building” and are essential to China’s efforts to construct a modern 21st century military.1 The PLAAF recognizes that its modernization goals cannot be fully realized merely through the acquisition of advanced weapons and revi­sion of military doctrine; it will also require the institutionalization of strong education and training programs capable of developing personnel with the requisite knowledge and skills to operate effectively in today’s increasingly complex operational environment.2 To that end, the PLAAF announced the following at the beginning of 2009:3

Taking into full account preparations for combat and its own transfor­mation and development, the Air Force is exploring training systems and methods tailored to the development of the latest generation of weaponry and equipment. It stresses technical and tactical training in complex environments, combined training of different arms and aircraft types, and joint training; conducts mission-oriented and confrontational training; and is increasing on-base, simulated and web-based training.

It is working to optimize the tripartite pilot training system composed of flying colleges, training bases and combat units, and intensifying the training of aviation units in counter-air operations, air-to-ground attacks and joint operations. It is deepening reforms and innovations in insti­tutional education by improving the system of discipline, and making innovations in teaching programs, means and methods. It is strengthen­ing on-the-job training, and exploring a new model of personnel devel­opment, namely the triad of institutional education, training in units and professional military education. For this purpose, the Air Force Military Professional University was established in July 2008.

The principal target of air force education and training programs is the officer corps (cadre), whose members serve as the primary warfighters; sec­ondarily, the focus is on the noncommissioned officer (NCO) corps, which is beginning to take on additional responsibilities in logistics and mission sup­port. Education provides the officers and NCOs with the intellectual founda­tion needed to master the typical entry-level jobs in today’s military and to advance to jobs of increasing complexity as technology evolves and they grow in rank and responsibility. Training provides technical knowledge and hands – on skills to achieve proficiency and perform consistently under the stress of uncertain and dynamic operational conditions. Together, education and train­ing underpin the disciplined and agile combat forces that China seeks to build.

To fully harness the potential of its new arsenal—including aircraft, sen­sors, munitions, and space-based systems—China’s air force must resolve long­term deficiencies in education and training that have stood in the path of its advancement. Over the years, PLAAF education and training programs have been influenced and molded by a variety of factors, including Marxist-Lenin – ist thinking and the influences of Mao Zedong, continuous comprehensive air force building and operational training experience, and the selective adop­tion of foreign operational practices. Although education and training pro­grams of the PLAAF remain highly influenced by their early course of devel­opment, today’s training structure has undergone a number of recent reforms and adjustments which are now reaching maturity and show signs of produc­ing solid results.

The ongoing modernization drive that encompasses the whole of the PLAAF education and training infrastructure is part of a much broader Peo­ple’s Liberation Army (PLA) effort to transform its legacy mechanized force into a force that will be capable of fighting and winning in modern, informa – tized conditions.4 Promoted by President Hu Jintao in his capacity as Chair­man of the Central Military Commission (CMC), this strategic policy direction provides the basis for the advancements and developments that are reshaping air force education and training programs. The PLAAF recognizes that this effort entails a long-term commitment and has established achievable goals for the path forward. This chapter will examine the historical development of PLAAF education and training programs, look at the features of current pro­grams, assess the effectiveness of these programs, and consider how the pro­grams are likely to evolve in the future. It will not attempt to assess sufficiency and quality of tactical or operational training. Rather, it will focus on the edu­cation and training structure and programs of the PLAAF.

PLAAF Technology Procurement Strategies: Past, Present, and Future

How have the pros and cons of the potential methods of building or acquiring military aircraft and aviation technology described above affected Chinese decisions about whether to “Buy, Build, or Steal”? This section briefly develops a concise model of a developing country’s decision calculus, and then applies that model to explain Chinese choices over the period from 1949 to the
present. We organize the analysis into five distinct periods defined by Chinese economic and technological capacity and the sources of foreign aircraft and aviation technology available to China at a given time.

The model we develop involves four factors. (See table 12-1.) The first is the level of development of the overall Chinese economy, which defines China’s general technological capability. The level of overall development constrains the indigenous technological capacity of China’s aviation industry and defines the potential for China to “spin on” technologies from the civilian sector to the military sector. The second factor is the technological capacity of the aviation sector. The level of development of the overall economy constrains the indig­enous capacity of the aviation sector, but it is possible to use foreign assistance and imported technology to build advanced capabilities in the aviation sector that surpass those in the broader civilian economy. To the extent that advanced fighter aircraft require technologies that do not have civilian applications (“sin­gle-use technologies”), the military aviation sector must be ahead of the over­all economy in some specific areas if indigenous production is to be an option.

Подпись:

Подпись: Development level of overall Chinese economy Подпись: Technological capacity of Chinese aviation sector Подпись: Chinese relative bargaining power vis-a-vis foreign suppliers

Table 12-1. Four Factors in Chinese Military Aviation Technology Procurement Calculus

The third factor is the willingness of foreign countries to sell advanced military aircraft, key components and armaments, and related production tech­nology. Who is willing to sell to China and what aircraft and aviation technolo­gies they are willing to sell define the available options in terms of purchasing (“buy”), coproduction, and codevelopment. The fourth and final factor is Chi­na’s bargaining power vis-a-vis potential sellers of aircraft and aviation tech­nology. This can be influenced by ideological and security factors (including the seller’s calculus about whether China represents a potential ally or a poten­tial threat), the health of the potential seller’s overall economy and defense sec­tor, and supply and demand within the broader military aviation market (for example, whether it is a “buyer’s market” or a “seller’s market”). Bargaining power influences whether potential sellers are willing to sell their most sophis­ticated fighters and whether they are willing to transfer production technol­ogy or consider coproduction or codevelopment deals. Sellers generally prefer to sell complete aircraft and spare parts (to maximize profits, maintain control
of the supply chain, and limit potential competition) while buyers often want technology transfer and coproduction arrangements which provide employ­ment opportunities and reduce their dependence on the seller.

We divide the time under examination into five periods. (See table 12-2.) The first, from 1950 to 1960, is the period of Sino-Soviet defense cooperation. The Soviet Union’s willingness to sell aircraft, designs, and production technol­ogy provided the foundation for Chinas modern defense aviation industry. At the same time, the United States and Western countries used a trade embargo and export controls to ban the sale of military aircraft and military technology. The second period is marked by the Sino-Soviet split and the withdrawal of Soviet advisors and technicians from China. With the Western embargo continuing, China was essentially cut off from legitimate access to military aircraft and related technology from 1960 to 1977. The third period, from 1977 to 1989, was marked by increasing Chinese access to Western commercial technology, including selected military systems, components, and technologies. Access to Eastern bloc technologies, which lagged behind Western systems but were more compatible with Chinas existing industrial base, remained very limited. China’s cooperation with Israel on fighter aircraft began during this time.23 The fourth period, from 1989 to 2004, is characterized by the U. S. and European ban on military sales to China following the Tiananmen incident in June 1989 and the gradual opening of the window for arms sales and technology transfers from the Soviet Union and its successor states. Western countries sought to limit the transfer of military and dual-use technologies to the Chinese defense industry, but the Chinese commer­cial sector gradually gained access to increasingly sophisticated civilian and dual­use technologies for commercial applications. Despite efforts to use end-use cer­tificates and inspections to monitor where dual-use technologies were employed, many of these technologies could eventually be “spun on” to defense production.

Table 12-2. Five Periods of Chinese Technological Development

1950-1960

1960-1977

1977-1989

1989-2004

2004-Present

Sino-Soviet defense cooperation

Chinese isolation

Window of access to Western technologies

West cuts access, Russia reopens; diversification of strategies

Russian reluctance; increased indige­nous capacity

The fifth period, from roughly 2004 to the present, is marked by Rus­sia’s growing reluctance to provide China access to its most advanced mil­itary fighters and production technology as Russian economic recovery increased Moscow’s bargaining power and control over the Russian defense industry. Despite China’s efforts to persuade the European Union to lift its arms embargo, access to Western military aircraft remained denied. How­ever, some European countries did sell China components and technologies that could be employed in military aircraft.24At this time, Israel, under heavy U. S. pressure, cancelled a deal to upgrade unmanned aerial vehicles (UAVs) it had previously sold to China (having cancelled an earlier project to upgrade Chinese airborne early warning aircraft in 2000).25 Although Chinese access to state-of – the-art military technology remains limited, the Chinese aviation industry made significant strides in absorbing foreign technology and dem­onstrated the ability to reverse engineer the Su-27 Flanker (as the J-11B) and to serially produce its own fourth-generation fighter (the J-10). It was also recently discovered that China is farther ahead in the development of its fifth – generation stealth fighter (the J-20) than many foreign sources anticipated.26 Overall, China’s level of economic development has advanced significantly, and its civilian industry has enjoyed significant access to state-of-the-art commer­cial (and sometimes dual-use) technology.

The Era of Sino-Soviet Defense Cooperation (1950-1960)

Table 12-3. The Era of Sino-Soviet Defense Cooperation (1950-1960)

Buy

MiG-15bis

(1951)

MiG-17 Fresco-As (early 1950s)

II-28 bomber (early 1950s)

Coproduce

4 Core Aviation En­terprises established with Soviet assistance (1952-1954)

Shenyang J-5: Chinese MiG-17F (1956)

J-6 rejected by PLAAF due to poor quality workmanship (1959-1960)

Build

JJ-1 trainer: first indigenously devel­oped military aircraft (1958)

CJ-6 fighter trainer (1960)

In the aftermath of the Communist takeover and the establishment of the People’s Republic of China (PRC) in 1949, the Chinese economy’s level of devel­opment was relatively backward. Some pockets of industry employed modern technologies, but China was still predominantly a rural economy with limited industrial capacity. Given its limited technological base, China essentially had no ability to indigenously produce military aircraft. The first armed air contin­gent (and precursor to the PLAAF), the Nanyuan Flying Group, operated an assorted collection of around forty aircraft captured from the Nationalist air force.27 There is no sourced record of the fighters operated by the short-lived Nanyuan Group, but they likely included U. S.-built Curtiss-Wright aircraft like the Hawk 75M, 75A-5, and CW-21, as well as the Soviet Polikarpov I—15bis and I-16, all operated by the Nationalist air force in the war against Japan. It is estimated that at the time the PLAAF was officially founded in late 1949, it had approximately 115 ex-Nationalist aircraft, though some sources place its strength approximately 40 percent higher.28 Several dozen of these were not obtained until near the end of the Chinese civil war, when the Nationalist air force began to experience frequent uprisings and pilots defected to the Com­munist side along with their aircraft.29 The Soviet Union soon augmented Chi­na’s air force with an additional 434 aircraft and sent 878 experts to seven flight schools that had recently been approved by the Central Military Commission (CMC) of the People’s Liberation Army.30 Chinese involvement in the Korean War led to the rapid expansion of the PLAAF in terms of both equipment and capable personnel. By 1953, the last year of the war, there were 13 air force schools which had trained nearly 6,000 flight crew members and 24,000 main­tenance personnel to service 28 PLAAF air divisions (around 3,000 aircraft).31

From the outset of Sino-Soviet defense cooperation, Moscow had con­siderable bargaining power vis-a-vis China, which had no alternative source for advanced military technology. Trade agreements that allowed for the transfer of technology boiled down to what Chinese Premier Zhou Enlai described as “sell­ing agricultural products to buy machines.”32 In a conversation with Indonesian President Sukarno, Mao Zedong gave a candid assessment of the Chinese econ­omy circa 1953 saying, “Frankly speaking, we haven’t got a lot of things to export apart from some apples, peanuts, pig bristles, soy beans.”33 Despite this imbalance, the Soviet perception of China as a fellow Communist state and natural ally led Moscow to view a Chinese capacity to produce military aircraft as an asset in the Cold War against the West. As a result, the Soviet Union did not fully employ its potential leverage and provided the PLA Air Force with its first jet fighters and the Chinese aviation industry with its first capacity to produce modern jet fighters. So keen, in fact, were the Soviets to bring China online that some Chinese arma­ment producing plants were turning out sophisticated weaponry before the Soviet defense industry itself could.34 The decision to allow China to coproduce sophis­ticated fighter aircraft was part of the larger effort to transform it quickly into a capable, self-sufficient defense partner.

Archives maintained by the Communist Party of the Soviet Union Cen­tral Committee (CPSU CC) assert that ten thousand “specialists” were sent to China in the 1950s, but there is no corresponding record of who these spe­cialists were, where they went, or how long they stayed.35 It is clear that from the early 1950s the Soviet Union committed a massive amount of resources to build up Chinese industrial enterprises, with special attention given to the defense industry. The initial agreement pertaining to military aviation, signed by Stalin and Chinese Premier Zhou Enlai in October 1951, laid out the terms under which the Union of Soviet Socialist Republics (USSR) would render technical and repair assistance as well as construct new factories for the man­ufacture of aircraft.36 This agreement was reached against the backdrop of the Korean War. In 1954, Moscow issued another memorandum to the People’s Republic of China outlining cooperation on 15 new defense enterprises.37 The Soviets agreed to perform design work, deliver equipment, and provide techni­cal support for the fledgling enterprises. It is no exaggeration to say the Soviets helped China build a military aviation industry essentially from the ground up.

After a protracted civil war, which resumed after 7 years of Japanese occupation, China was left with almost no means to produce military air­craft indigenously. Several years after the founding of the PRC, China’s nascent defense industry lacked the capability to produce advanced Western designs, or even to absorb Western technology into its Soviet-designed fighters, making the steal option impractical even if China could gain access to controlled West­ern designs and technologies. Initial purchases of Soviet fighters and aggres­sive pursuit of coproduction arrangements were logical responses to this set of constraints and opportunities, despite the implicit dependence on continu­ing access to Soviet designs, spare parts, and technical assistance. The mas­sive infusion of Soviet personnel and equipment enabled China to design and produce several prototypes of its own fighter trainer (based largely on Soviet designs) by 1960, and to coproduce Soviet fighters, bombers, and transport air­craft throughout the 1950s.

China’s leadership assessed the technical challenges implicit in licensed coproduction of Soviet aircraft and incorporated conclusions in the first five – year plan for the development of the aviation industry. The plan anticipated China’s heavy reliance on the USSR to get the core enterprises that would form the backbone of military aviation up and running, but the end goal was for China to independently manufacture advanced Soviet aircraft within 3 to 5 years of facilities coming online. Four main production plants were established in the early to mid 1950s: the Nanchang Aircraft Factory, Shenyang Aircraft Factory, Zhuzhou Aero Engine Factory, and the Shenyang Aero Engine Fac­tory.38 Once these core enterprises were established, the emphasis shifted to manufacturing components. Construction of the Xian Aircraft Accessory Fac­tory, Xinping Aviation Electronic and Wheel Brake Factory, and the Baoji Avi­ation Instrument Factory began in 1956. During the era of Sino-Soviet coop­eration, these seven enterprises formed the core of China’s military aviation industry. Though the degree of direct Soviet assistance varied by factory, the USSR was instrumental in the development of each.

Metallurgy in China prior to the 1950s was not suitably advanced for the production of advanced aero engine materials, which rely on the mastery of high temperature alloys including steel-titanium and aluminum-magnesium alloys. The PRC government made the development of high temperature alloys a priority for the Ministry of Metallurgical Industry.39 Joint efforts of the avia­tion and metallurgical industries led to development of China’s first high tem­perature alloy in 1956. A great deal of labor resources was devoted to this task, enabling the PRC to produce its first turbojet engine, the WP5.40 Conversion from the WP5 to the next generation WP6 turbojet proved difficult, first due to technical differences—the WP6 had 2,521 parts, 46 percent more than its predecessor41—making it impossible to use the same production lines, and sec­ond, due to the chaotic work conditions resulting from the Great Leap For­ward. Performance standards were not met when the WP6 underwent initial testing in 1958. It was not until 1963 that the engine was finally approved and paired with the J6.

China’s first indigenously produced military aircraft, the CJ-5 trainer manufactured at the Nanchang Aircraft Factory, made its first successful test flight on July 11, 1954. The CJ-5, which was built around the M-11 power – plant produced by the Zhuzhou Aero Engine Factory, was a nearly exact copy of the Soviet Yakovlev Yak-18 fighter trainer. Based on ambitions laid out by China’s military leadership to transition from repairing aircraft to manufac­turing complete designs in 3 to 5 years, domestic production of the CJ-5 was ahead of schedule. The Shenyang Aircraft Factory was also able to produce its copy of the MiG-17 ahead of schedule. Originally slated for completion at the end of 1957, the J-5 fighter, powered by the domestically produced WP5 engine, made a successful test flight on July 19, 1956.42 Coproduction of the J-5 went relatively smoothly, with the Soviet Union providing two MiG-17 pattern aircraft, manufacturing documentation, and 15 complete knock-down kits to the Shenyang Aircraft Factory. Over its 14-year production run from 1955 to 1969, the Chinese military aviation industry produced 767 J-5/J-5A fighters, first at the Shenyang Aircraft Factory (SAF) and later at Chengdu State Aircraft Factory No.132 (later Chengdu Aircraft Industry Group), which was established with the help of Soviet technicians in 1958. Around the time China successfully tested the J-5, preparations were underway for the first Chinese – designed and -produced fighter aircraft. This project culminated in the JJ-1 jet fighter trainer, which was test-flown in the summer of 1958. Although the JJ-1 met PLAAF inspection standards, it was not serially produced. Military plan­ners opted for an alternate Chinese-designed fighter trainer, the CJ-6, which was tested successfully in 1960 and serially produced up until the mid 1980s.43 Indigenous modifications made to the CJ-6 were meant to improve upon its predecessor, the CJ-5, itself a copy of the Yakovlev Yak-18 fighter trainer.

The J-6, based on the more sophisticated MiG-19P,44 was the first Chi­nese-produced supersonic fighter.45 Manufacturing rights for the MiG-19P were transferred in 1957, and in 1959 Moscow agreed to license coproduc­tion of the MiG-19PM and S. As the Great Leap Forward began to affect Chi­na’s industrial enterprises, the production quality of the J-6 rapidly declined. Rules and regulations adapted from the Soviet model were cast aside and “an unhealthy tendency of neglecting quality while pursuing quantity” appeared.46 Soviet assistance was still available during initial production of the J-6 but China chose to manufacture the necessary tooling and assemble the aircraft without outside help. The end result was a large number of J-6 fighters pro­duced in the period 1958-61 that were of such poor quality that they were not delivered to the PLAAF and PLA Navy Air Force. Performance appraisals of the J-6 that appear in the Chinese literature for this time period are unduly optimistic given SAF’s inconsistent production record.47 Although it had yet to master independent MiG-19 (J-6) production, China nevertheless sought access to more advanced Soviet fighters. In the last deal before the Sino-Soviet split ended all defense cooperation, Moscow licensed production of the MiG – 21F-13 to China in 1961.48 China received three pattern aircraft, as well as 20 kits, but did not take possession of all relevant technical information before defense cooperation ended in 1962. The MiG-21 served as the template for China’s long running J-7 fighter program which began in the early 1960s.

Moscow also provided the PLAAF with a fleet of modern bomber aircraft. China took delivery of the Ilyushin Il-28 tactical bomber beginning in the early 1950s. A repair shop to service the Il-28 was set up in Harbin, but China did not receive licensing rights to coproduce the bomber before Soviet advisors were withdrawn in July 1960. China later reverse engineered the Il-28 and produced it as the It-5.49 The Soviet Union licensed production of its state-of-the-art Tupolev Tu-16 Badger bomber in 1957, supplying China with two production aircraft, a semi knock-down kit, and a complete knock-down kit.50 Soviet technicians and engineers were on hand to set up serial production of the aircraft the Chinese des­ignated H-6 (or B-6) at factories in Harbin and Xian. The Xian factory was built specifically for production of the H-6 and was facilitated with help from over 1,500 skilled industry workers transferred from the Shenyang Aircraft Factory. H-5 repairs were already being made at the Harbin location, but serial produc­tion of the H-6 required a doubling of floor space and an expansion of the work force with experienced Shenyang workers.51 Although Moscow granted China access to the latest fighter and bomber technologies—even allowing Beijing to produce copies of the MiG-17’s Klimov VK-1F and Tumansky R-9BF-811 turbojet engines—the Soviets withheld the transfer of key technologies that would have allowed China to build a long – range strategic missile force.

While it had access to Soviet assistance, China’s military aviation indus­try made steady, quantifiable progress on almost every front. In addition to mastering production of several fighters and bombers, the PRC also began to form a research and development infrastructure meant to advance the end goal of self-reliance. In 1956, Mao Zedong called for a “march towards modern sci­ence,” which was embodied in a 12-year development plan directed by Zhou Enlai, Chen Yi, Li Fuchun, and Nie Rongzhen.52 Advancing military aviation technology, particularly fighter technology, was one of five objectives in the plan. To this end, Chinese technicians constructed a transonic wind tunnel for test­ing jet body designs based on the Soviet AT-1. The Shenyang Aircraft Factory began construction in September of 1958 and completed the tunnel in March 1960.53 Design and research institutes were established to build China’s knowl­edge base in aerodynamics, thermodynamics, and avionics development, with a total of 19 research and design departments employing approximately ten thou­sand employees operating at the end of 1960.54 Overall, military aviation in the 1950s was technologically advanced compared to most of the Chinese economy. Of the handful of countries able to produce modern fighters and bombers, China was the poorest and most backward in terms of other scientific development. This situation was indicative of the importance Mao placed on strengthening China’s defensive capabilities (at great cost to other areas of development) as well as Soviet willingness to transfer the necessary set of technologies and know-how.