Category The Secret of Apollo

The Cost Crisis of 1962-1964

In technical terms, NASA’s organization and procedures proved successful on Mercury and Gemini. Both programs boasted enviable flight records, com­pleting their objectives and successfully returning their astronauts on every flight. On the other hand, both programs featured large cost increases. Mc­Donnell’s Mercury capsule contract grew at an astounding rate, from an initial contract of $19,450,000 in 1959 to a total of $143,413,000 by the program’s end in 1963. Within months of its start, Gemini was headed for large cost increases as well. NASA funded the increases, although Congress began to ask questions in the fall of 1962.52

OMSF’s Holmes, overseeing the three manned space flight programs, saw the escalating cost trends as well as anyone. A hard-nosed project manager from Radio Corporation of America’s (RCA’s) Ballistic Missile Early Warn­ing System, Holmes realized that something had to be done if Apollo was to meet Kennedy’s 1969 deadline to land a man on the Moon. Holmes also rec­ognized that Kennedy had staked his reputation on the manned program and would go to great lengths to ensure its success. Based on this, he felt no par­ticular need to control costs and instead requested more funds from NASA Administrator Webb.53

Holmes first asked Webb to go back to Congress for a supplemental appro­priation. Despite Kennedy’s support, Webb recognized that Congress was be­coming uneasy about NASA’s burgeoning costs, and he refused. Holmes next demanded that Webb strip other NASA programs to support the manned pro­gram. When Webb again refused, Holmes went over his head, appealing di­rectly to President Kennedy. This infuriated Webb, now placed in the uncom­fortable position of justifying why he should not strip other NASA projects to fund Kennedy’s priority program. Although Kennedy was not sure that he ‘‘saw eye-to-eye’’ with Webb on this issue, he backed his chosen administrator. Webb replaced his insubordinate OMSF director with STL executive George Mueller (pronounced “Miller’’).54

Under the circumstances, further cost pressures were unwelcome. In March 1963, Gemini project manager James Chamberlin admitted that the project required another huge infusion of money. The unwelcome news led to his replacement by Charles Mathews. Mathews immediately set up a commit­tee to improve cost estimation at NASA and McDonnell. After another year of strained budgets and organizational crises — invariably related to novel portions of the project — Gemini’s budget stabilized, leading to an enviable record of flight success. However, cost estimates had risen from $531,000,000 to $1,354,000,000 between 1962 and 1964.55

With Congress increasingly concerned with costs, Webb instigated an in­ternal investigation of NASA projects in early 1964.56 Deputy Associate Ad­ministrator Earl Hilburn chaired the investigation to study NASA’s project scheduling and cost estimating methods. In confidential reports submitted in September and December of 1964, Hilburn described NASA’s abysmal record on cost and schedule control. Engine development showed by far the largest schedule slips, at 4.75 times the original estimate. Hilburn found significant slips in launch vehicles requiring new engines (3.09), manned spacecraft (2.86), ‘‘simple’’ scientific satellites (2.85), and astronomical observatories (2.83). Classified by field center, he found that the Jet Propulsion Laboratory (JPL) had the smallest schedule slips (1.6) and MSC the largest (3.06). The newest centers, MSC and Goddard, showed the largest slips, and the older centers (JPL, Langley) showed the smallest. Costs varied similarly.57

Hilburn noted that the DOD experience was also ‘‘one of over-runs and schedule slippages in the majority of cases.’’ He concluded that these results were behind recent changes in DOD procurement, ‘‘including program defi­nition, and incentive contracting.’’ Based on DOD precedents, NASA had al­ready begun converting contracts from cost-plus-fixed-fee contracts to incen­tive contracts that awarded firms a higher fee when they performed well and a lower fee when they did not. The Hilburn Report lent support to contract con­version at NASA, which NASA implemented from 1964 through 1966.58 NASA also adopted the DOD practice of phased planning, requiring contractors to better predict costs and schedules during a definition phase of development. The directive had little initial impact because of disagreements about imple­mentation, and more importantly, because few new projects started in 1966 and 1967.59

NASA’s manned space programs were among the worst offenders as NASA’s budget exploded between 1962 and 1964. Having grown accustomed to gener­ous, even extravagant budget increases without justification or congressional concern, NASA’s continued cost excesses were understandable, if not justifi­able. As in other organizations, the time came when its initial growth surge and justification had to slow and managers had to predict and hold to fund­ing profiles. At the highest levels, NASA could replace recalcitrant executives and implement new standards and processes, but to truly predict and control costs, NASA would have to implement rigorous procedures on its research and development (R&D) programs.

ESA, ‘Spacelab,’ and the Second Wave of American Imports

By 1972, European space programs were in the most severe of their many political crises. ELDO’s first Europa II launch had failed, and an international commission was investigating the organization’s many flaws. German and Italian leaders backed away from their commitments to ELDO. The United States offered the Europeans a part in the new shuttle program as a way to cut development costs and to discourage the European launcher program. In addition, the United States sent ambiguous signals to European governments on its willingness to launch European communications satellites. All Euro­pean governments agreed on the criticality of satellite telecommunications, but ESRO’s charter did not allow commercial applications, and the telecom­munications organization CETS had no satellite design capability. A sense of crisis pervaded negotiations among the European nations concerning their space programs.

Each of the member states of ELDO, ESRO, and CETS confronted the myriad problems and opportunities differently. The United Kingdom deci­sively turned its back on launch vehicles in favor of communications satel­lites. British leaders believed it wiser to use less expensive American launchers, so as to concentrate scarce resources on profitable communications satellites. Doubting that the United States would ever launch European satellites that would compete with the American satellite industry, French leaders insisted on developing a European launch vehicle. German leaders became disillu­sioned with launchers and were committed to cooperation with the United States. Because of their embarrassing failures on ELDO’s third stage, they wanted to acquire American managerial skills. Italy wanted to ensure a ‘‘just return’’ on its investments in the European programs by having a larger per­centage of contracts issued to Italian firms. For smaller countries to partici­pate in space programs, they needed a European program.

The result of these interests was the package deal of 1972 that created the ESA. Britain received its maritime communications satellite. France got its favorite program, a new launch vehicle called Ariane. Germany acquired its cooperative program with the United States, Spacelab, a scientific laboratory that fit in the shuttle orbiter payload bay. The Italians received a guarantee of higher returns on Italy’s investments. All member states had to fund the basic operations costs of the new ESA and participate in a mandatory science program. Beyond that, participation was voluntary, based upon an a-la-carte system where the countries could contribute as they saw fit on projects of their choice. European leaders liquidated ELDO and made ESRO the basis for

ESA, which came into official existence in 1975. ESTEC Director Roy Gibson became ESRO’s new director-general and would become the first leader of ESA.70

Two factors drove the further Americanization of European space efforts: the hard lessons of ELDO’s failure, and cooperation with NASA on Spacelab. By 1973, both ELDO and ESRO had adopted numerous American techniques, leading to a convergence of their management methods. On the Europa III program, ELDO finally used direct contracting through work package man­agement, augmented by phased planning to estimate costs. ESRO managers had done the same in the TD-1 program and in ESRO’s next major project, COS-B. ESRO’s two largest new projects, Ariane and Spacelab, inherited these lessons.

For Ariane, ESRO made CNES the prime contractor. CNES had responsi­bilities and authority that ELDO never had. ESRO required that CNES pro­vide a master plan with a work breakdown structure, monthly reports with PERT charts, expenditures, contract status, and technical reports. CNES would deliver a report each month to ESRO and would submit to an ESRO re­view each quarter. CNES could transfer program funds if necessary within the project but had to report these transfers to ESRO. ESRO kept quality assurance functions in-house to independently monitor the program. Reviewers from ESRO required that CNES further develop its initial Work Breakdown Struc­ture, which was ‘‘neither complete nor definitive,’’ and specify more clearly its interface responsibilities. The French took no chances after the disaster of ELDO and fully applied these techniques, as well as extending test pro­grams developed for ELDO and for French national programs such as Dia – mant. French managers and engineers led the Ariane European consortium to spectacular success by the early 1980s, capturing a large share of the com­mercial space launch market.71

While Ariane used some American management methods,72 Spacelab brought another wave of American organizational imports to Europe. This suited Spacelab’s German sponsors, who wanted to learn more about Ameri­can management. NASA required that the Europeans mimic its structure and methods. ESRO reorganized its headquarters structure to match that of NASA, with a Programme Directorate at ESRO headquarters, and a project office at ESTEC reporting to the center director. The NASA-ESRO agreement

required that ESRO provide a single contact person for the program and that this person be responsible for schedules, budgets, and technical efforts. Con­trary to its earlier practice, ESRO placed its Spacelab head of project coordi­nation with the technical divisions such as power systems, and guidance and control. ESRO used phased project planning, eventually selecting German company ERNO as prime contractor. ERNO contracted with American aero­space company McDonnell Douglas as systems engineering consultant, while NASA gave ESRO the results of earlier American design studies and described its experience with Skylab.73

To ensure that the program could be monitored, NASA imposed a full slate of reviews and working groups on ESRO and its Spacelab contractors. NASA held the Preliminary Requirements Review in November 1974, the Subsystems Requirements Review in June 1975, the Preliminary Design Review in 1976, the Critical Design Review in 1978, and the Final Acceptance Reviews in 1981 and 1982. Just as in the earlier ESRO-I and ESRO-II projects, NASA and ESRO instituted a Joint Spacelab Working Group that met every other month to work out interfaces and other technical issues. Spacelab managers and engi­neers organized working sessions with their NASA counterparts, including the Spacelab Operations Working Group, the Software Coordination Group, and the Avionics Ad Hoc Group. European scientists coordinated with the Americans through groups such as the NASA/ESRO Joint Planning Group. The two organizations instituted joint annual reviews by the NASA admin­istrator and the ESRO director-general and established liaison offices at each other’s facilities.74

ESRO did not easily adapt to NASA’s philosophy. From the American view­point, ESRO managers could not adequately observe contractors’ technical progress prior to hardware delivery, so NASA pressed ESRO to ‘‘penetrate the contractor.’’ NASA brought more than 100 people from the United States for some Spacelab reviews, whereas in the early years of Spacelab, ESRO’s entire team was 120 people. Heinz Stoewer, Spacelab’s first project manager, pressed negotiations all the way to the ESRO director-general to reduce NASA’s con­tingent. According to Stoewer, NASA’s presence was so overwhelming that ‘‘we could only survive those early years by having a close partnership be­tween ourselves and Industry.’’75

NASA engineers and managers strove to break this unstated partnership

and force ESA76 managers to adopt NASA’s approach. During 1975, NASA and ESA engineers worked on the interface specifications between Spacelab and the shuttle orbiter. During the first Spacelab preliminary design in June 1976, NASA engineers and managers criticized their ESA counterparts for their lack of penetrating questions. To emphasize the point, NASA rejected ERNO’s pre­liminary design. ESA finally placed representatives at ERNO to monitor and direct the contractor more forcefully.77

One of the major problems uncovered during the Preliminary Design Re­views was a large underestimate of effort and costs for software develop­ment. These problems bubbled up to the ESA Council, leading to a directive to improve software development and cost estimation. ESTEC engineers in­vestigated various software development processes and eventually decided to use the NASA Jet Propulsion Laboratory’s software standard as the basis for ESA software specifications. ESA arranged for twenty-one American software engineers and managers from TRW to assist. TRW programmers initially led the effort but gave responsibility to their European counterparts as they ac­quired the necessary skills. With this help, software became the first subsystem qualified for Spacelab.78

Another critical problem was Spacelab’s large backlog of changes, which resulted from a variety of causes. Organizational problems magnified the tech­nical complexity of the project, which the Europeans had underestimated. One major problem was that ESA allowed ERNO to execute ‘‘make-work’’ changes without ESA approval. ESA, whether or not it agreed with a change, had to repay the contractor. Another problem was the relationship between ESA and NASA. The agreement between the two organizations specified that each would pay for changes to its hardware, regardless of where the change originated. For example, if NASA decided to make a change to the shuttle that required a change to Spacelab, ESA had to pay for the Spacelab modifica­tion. This situation occurred frequently at the program’s beginning, leading to protests by ESA executives.79

Spacelab managers solved their change control problems through several methods. First, they altered their lenient contractor change policy; ESA ap­proval would be required for all modifications. Second, ESA management re­sisted NASA’s continuing changes. In negotiations by Director-General Roy Gibson, NASA executives finally realized the negative impact that changes to the shuttle had on Spacelab. As ESA’s costs mounted, NASA managers came to understand that they could not make casual changes that affected the European module. The sheer volume of changes to Spacelab reached the point where ERNO and ESA could not process individual changes quickly enough to meet the schedule. In a ‘‘commando-type operation,’’ ESA and ERNO negotiated an Omnibus Engineering Change Proposal that covered many of the changes in a single document. ERNO managers decided to begin engineering work on changes before they were approved, taking the risk that they might not recoup the costs through negotiations.80

Technical and managerial problems led also to personnel changes at ESA and ERNO. At ESA, Robert Pfeiffer replaced Heinz Stoewer as project man­ager in March 1977, while Michel Bignier took over as the program director in November 1976. At ERNO, Ants Kutzer replaced Hans Hoffman. Kutzer, who was Hoffman’s deputy at the time, was well known as the former ESRO – II project manager and a promoter of American management methods. After his stint at ESRO, Kutzer became manager of the German Azur and Helios spacecraft projects. For a time, ESA Director-General Roy Gibson acted as the de facto program manager because of Spacelab’s interactions with NASA, which required negotiations and communications at the highest level.81

ESA and ERNO eventually passed the second Preliminary Design Review in November 1976 by developing some 400 volumes of material. The pro­gram still had a number of hurdles to overcome, of which growing costs were the most difficult. Upon ESA’s creation, the British insisted that ESA, like ESRO, have strong cost controls. For a-la-carte programs such as Spacelab, when costs reached 120% of the originally agreement, contributing countries could withdraw from the project. Spacelab was the first program to pass the 120% threshold. After serious negotiations and severe cost cutting, the mem­ber states agreed to continue with a new cap of 140%. Eventually, ESA de­livered Spacelab to NASA and the module flew successfully on a number of shuttle missions in the 1980s.82

The transfer of American systems engineering and project management methods to ESA was effectively completed by 1979, with the creation of the Systems Engineering Division at ESTEC, headed by former Spacelab project manager Stoewer. According to Stoewer, one of the System Engineering Divi­sion’s main purposes was to ensure ‘‘more comprehensive technical support to mission feasibility and definition studies.’’ The Systems Engineering Division established an institutional home for systems analysis and systems engineer­ing, which along with the Project Control Division ensured that ESA would use systems management for years to come.83

Conclusion

ESRO began as an organization dedicated to the ideals of science and Euro­pean integration. The CERN model of an organization controlled by scien­tists, for scientists, greatly influenced early discussions about a new organiza­tion for space research. However, space was unlike high-energy physics in the diversity of its constituency, the greater involvement of the military and in­dustry, and the predominance of engineers in building satellites. Engineering, not science, became ESRO’s dominant force.

From the start, ESRO personnel looked to the United States for manage­ment models. Leaders of ESRO’s early projects asked for and received Ameri­can advice through joint NASA-ESRO working groups for ESRO-I and ESRO- II. The United States offered ESRO two free launches on its Scout rockets but would not allow the Europeans to launch until they met American concerns at working group meetings, project reviews, and a formal Flight Readiness Re­view. On HEOS, executives and engineers from the loose European industrial consortium led by Junkers traveled to California for advice, where Lockheed advised much closer cooperation, along with a detailed management section in its proposal. ESRO’s selection of the Junkers team by a large margin made other European companies take notice, leading to tightly knit industrial con­sortia that at least paid lip service to strong project management.

When ESRO’s member states refused to let ESRO carry forward its surplus in 1967, they immediately caused a financial crisis. Significant cost overruns on TD-1 and TD-2, along with strong pressure to develop telecommunications satellites by issuing a prime contract to industry, spurred ESRO to beef up its management methods. ESRO adopted from NASA models phased plan­ning, stronger configuration control, work package management, and an MIS at each ESRO facility.

American influence persisted through the 1970s. On Spacelab, NASA im­posed its full slate of methods onto ESA. Some, such as contractor penetra­tion, ESA initially resisted, before technical problems weakened the Euro­peans’ bargaining position. ESA managers and engineers eagerly adopted other methods, such as software engineering, once they realized the need for them. These became the standards for ESA projects thereafter.

Europeans created an international organization that developed a series of successful scientific and commercial satellites, captured the lion’s share of the world commercial space launch market, and pulled even with NASA in technical capability. To do so, they adapted NASA’s organizational methods to their own environment. In the process, ESRO changed from an organiza­tion to support scientists, into ESA, an engineering organization to support national governments and industries. ESA’s organizational foundation, like that of NASA and the air force, was systems management.

EIGHT

The Secret of Apollo

This book builds on historical research I carried out over the last seven years and also on my own history and values. I did not begin with the intention of studying systems management or systems engineering, subjects familiar to me from my background in the aerospace industry. In fact, I made some effort at the start not to do so, to avoid my own biases. Originally, I wanted to use my aerospace experience but also to separate myself somewhat from it so as to look at the history of the aerospace industry from a more detached stand­point. I eventually decided to investigate more closely the Spacelab program, a joint effort of the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA). This seemed a good choice because I knew something of space technology but little about manned laboratories or ESA.

Spacelab looked like a good case of technology transfer from the United States to Europe. Yet I found little novelty in Spacelab’s hardware technology, and neither did the Europeans. So why were they interested in this project? They wanted to learn howto manage the development of large, complex space systems — that is, the methods of ‘‘systems management.” Soon I encountered the “technology gap” and “management gap” literature, the pervasive rhe­toric about “systems,” and the belief in the Apollo program as a model for how to solve social as well as technical problems. This was a worthy topic, particularly because no other historian had investigated it.

Systems approaches emphasize integrative features and the elements of hu­man cooperation necessary to organize complex activities and technologies. Believing that humans are irrational, I find the creation of huge, orderly, ratio­nal technologies almost miraculous. I had never pondered the deeper impli­

cations of cooperative efforts amid irrationality and conflict, and this project has enabled me to do so.

I owe a debt of thanks to many. At the History Office at NASA headquar­ters, Roger Launius, Lee Saegesser, and Colin Fries were helpful in guiding me through the collections. Julie Reiz, Elizabeth Moorthy, and Michael Hooks provided excellent service at the Jet Propulsion Laboratory archives, declassi­fying numerous documents for my rather diffuse research. At the European Community archives at the European University Institute (EUI) in Florence, Italy, Gherardo Bonini located numerous documents and provided many rec­ords I would not have otherwise noticed, sending some to me later when I found that I needed more information. The Technical Information and Docu­mentation Center at the ESA’s European Space Technology Centre (ESTEC) opened its doors (literally) for me, allowing me to rummage through store­rooms full of documents, as well as its collection of historical materials. ESTEC’s Lilian Viviani, Lhorens Marie, Sarah Humphrey, and director Jean – Jacques Regnier were all extremely helpful. John Krige, who headed the Euro­pean Space History project, provided travel funding to visit the EUI and ESTEC archives. I am particularly grateful for his help and trust in me, be­cause he jump-started my research when it was in its very early stages.

In 1998 and 1999 I performed related research for the Air Force History Support Office, contract number F4964298P0148. This provided travel funds and support for my graduate student Phil Smith. I am grateful to Phil for doing much of the ‘‘legwork’’ to dig up archival materials in the Boston area and at Maxwell Air Force Base in Montgomery, Alabama. Chuck Wood in the Space Studies Department of the University of North Dakota encouraged me in this work, and I appreciate his understanding and support for this re­search among my other faculty duties. I thank Cargill Hall, Rich Davis, and Priscilla Jones for their efforts on my behalf in the History Support Office. Harry Waldron at the Space and Missile Center was extremely helpful in gath­ering further materials on ballistic missiles.

Also providing funding for my research was the University of Minnesota Research and Teaching Grant and Dissertation Fellowship program. The pro­fessors at the University of Minnesota with whom I studied from 1992 to 1997 taught me much of what it means to be a historian. David Good and George

Green introduced me to the literature of economic and business history. Ron Giere inspired me to consider philosophical and cognitive issues and to rec­ognize the value of theory, not just for philosophy, but for history as well. Ed Layton and Alan Shapiro stressed the importance of thorough research. Roger Stuewer’s kindness and concern brought me to Minnesota to begin with, and his courses in the history of nuclear physics were important for my under­standing of the European background of large-scale technology development. Robert Seidel helped me to write with more conciseness and clarity and to see several implicit assumptions that I had made. My adviser, Arthur Nor – berg, prodded me to keep moving and to maintain a steady focus on the core issues — the concerns that led me to this project. He kept bringing the ‘‘big picture’’ questions to my attention.

A few scholars significantly influenced my thinking. Joanne Yates’s ap­proach in Control Through Communication formed an important early model for my work. James Beniger, Ross Thomson, Theodore Porter, Tom Hughes, and Daniel Nelson all influenced this research as well. John Lonnquest and Glenn Bugos performed recent research on the air force and navy that directly links to mine.

A number of scholars have reviewed this manuscript, either as a whole or in articles derived from it, and given me significant feedback that has helped in various ways. These include Alex Roland, Harvey Sapolsky, John Krige, John Staudenmaier, Roger Launius, Tom Hughes, R. Cargill Hall, John Lonn­quest, my committee at the University of Minnesota, and the anonymous re­viewers with Technology and Culture, History and Technology, History of Tech­nology, Air Power History, the Air Force History Support Office, and the Johns Hopkins University Press. The anonymous Johns Hopkins University Press reviewer gave me excellent critiques. I owe to him or her the insight that con­currency is not really a management method but rather a strategy that re­quires a strong management method to succeed.

To the extent that this work succeeds, I owe all of these people who helped me along the way. Any flaws that remain are my own.

Finally, I must thank my wife, Diane, and my two sons, Casey and Travis, for being patient with me through this long and arduous process. Only as I look back now do I realize how difficult it has been.

I sincerely hope that this work helps others recognize that the ‘‘systems’’ in which we all take part are our own creations. They help or hinder us, depend­ing upon our individual and collective goals. Regardless of our feelings about them, they are among the pervasive bonds that hold our society together.

The Creation of Configuration Management

The Minuteman project was the critical turning point for air force ICBM pro­grams. First, its use of solid propellants instead of troublesome liquids greatly simplified and decreased the dangers of ICBM launch operations. Second, the Minuteman assembly and test contractor, Boeing, brought to the Inglewood complex a new management technique that would become the centerpiece of the air force’s R&D management process: configuration management. The combined effect of solid propellants and configuration management was a dramatic improvement in ICBM reliability and cost predictability.

By 1957, a solid-propellant alternative to troublesome liquid-fueled ballis­tic missiles such as Atlas and Titan became feasible. Col. Ed Hall, Schriever’s propulsion manager, had, along with R-W and a number of contractors, been studying solid propellant technology for some time and had evidence to show that it could be developed for large-scale ICBMs. Hall pointed out to Tech­nical Director Charles Terhune that solid-propelled rockets did not involve costly, time-consuming, and dangerous liquid-propellant loading procedures. Although liquid-propelled rockets had higher performance, it took several hours to prepare them for launch. Solids, on the other hand, could be launched within seconds; once loaded with propellants and placed in their launch configuration, they were ready to go with the push of a button. Hall now had evidence to show that solids, which heretofore could perform ade­quately with only a small size, could now be manufactured and perform ade­quately on a much larger scale, making solid-propellant ICBMs feasible.36 Solid propellants eliminated dangerous liquid-propellant loading operations that destroyed launch pads and killed workers. This in itself was a tremen­dous advantage. However, the use of solid propellants did nothing to fix subtle problems associated with unintended component interactions resulting from poor designs, or worse, resulting from flight hardware that did not match any­one’s design.

On Atlas and Titan test flights, engineers found that a number of test fail­ures resulted from mismatches between the missile’s design and the hardware configuration of the missile on the launch pad. In the rush to fix problems, the launch organization, contractors, or air force had made modifications to missiles without documenting those modifications. To fix this problem, STL personnel and air force officers developed a reporting procedure known as configuration control to track and connect missile design changes to missile hardware changes. Because these often involved manufacturing and launch processes, configuration control soon controlled process changes as well.37

While inspired by problems endemic to ballistic missiles, configuration control drew from the Boeing Company’s aircraft programs. The air force learned about configuration control through the Minuteman project, where Boeing was the assembly and test contractor. Boeing’s quality assurance pro­cedures used five control tools:

1. formal systems for recording technical requirements

2. a product numbering and nomenclature system for each deliverable contract item

3. a system of control documents with space for added data on quanti­ties, schedules, procedures, and so forth

4. a change-processing system

5. an integrated records system38

In addition, Boeing’s ‘‘change board’’ ensured that all affected departments reviewed any engineering or manufacturing change and committed appropri­ate resources to effect it. The air force soon saw the importance of this process innovation and made it into a critical new management process, with its own organization and staff.39

Boeing’s processes supplanted the concept of the ‘‘design freeze.’’ The de­sign freeze was an important milestone in aircraft development, the point when engineers stopped making design changes so that hardware could be built to that design. Once the design was frozen, engineers or operators could make design changes only by submitting a formal change request. Engineers then made sure that corresponding changes were made to the hardware and the production facilities.

Ballistic Missile Division (BMD, successor to the WDD) officers and STL engineers used configuration control to coordinate changes and ensure the compatibility of designs and hardware. The key to configuration control was the creation of a formal change board with representatives from all organi­zations, along with a formal system of paperwork that linked specifications, designs, hardware, and processes. Although initially linking design drawings to hardware, BMD officers and R-W engineers soon realized that by expand­ing configuration control to include specifications and procedures, they could control the entire development process.

Through configuration control, systems engineers linked specifications to designs, designs to hardware, and hardware to operational and testing pro­cedures. Engineers brought proposed changes to the configuration control board. Air force officers soon linked configuration control to contracts, tying engineering changes to contract changes. The air force established configura­tion control in the fall of 1959 on Minuteman; soon, configuration control had been extended to its other space and missile projects.40 Officers and managers vigorously promoted configuration control because of its utility in linking engineering, management, and contracts.

By the early 1960s, the coordinating role of STL and The Aerospace Cor­poration 41 had evolved into a procedure called systems requirements analysis, in which technology development was managed through the control of re­quirements. For example, at the highest level a requirement would be written to develop a ballistic missile system to deliver a one-megaton payload over 5,000 miles with an accuracy of 1 mile. Systems engineers divided this re­quirement into at least three statements at the next level. These three would then be broken down into numerous requirements to create hardware compo­nents, operating procedures, and so on. Major programs involved thousands of requirements, corresponding to thousands of components and procedures. Systems requirements analysis made the design traceable to requirements of increasing specificity.42

Detailed requirements analysis, and more importantly, configuration con­trol, found a powerful advocate in Col. Samuel C. Phillips, who in 1959 re­placed Col. Ed Hall as the manager of Minuteman.43 Phillips, who graduated in 1942 with a bachelor’s degree in electrical engineering from the University of Wyoming, had steadily worked his way up the air force’s hierarchy as a skilled technical manager. After serving as a pilot in Europe in World War II, he started in 1950 as a project engineer at Wright-Patterson Air Force Base. Through the 1950s, he held an assortment of positions, including electron­ics officer for atomic weapons tests at Eniwetok Atoll, chief of operations at the Armament Laboratory at Wright-Patterson, project officer for the B-52 bomber, chief of the bombardment aircraft division, chief of the fighter mis­siles and drones division, and eventually, logistics chief and materiel director of Strategic Air Command in England. Phillips was quiet, forceful, and tactful, and he brought the tools developed by Schriever’s team to Minuteman.44

In 1959, managers at Boeing, or possibly Phillips himself, realized that by a simple extension of configuration control, they could gain financial as well as technical control over the project.45 The idea was simple. All a project man­ager had to do was compel engineers to give cost and schedule estimates along with any technical change. If the engineer did not give the informa­tion, the project manager rejected the change. With this added information, the project manager could predict and revise the project’s cost profile, along with its schedule. This also allowed the manager to track the performance of each engineer or group of engineers — he could now hold them accountable to their own estimates. Managers tied the process to specific design configura­tions and eventually to the hardware itself. In addition, procurement officials and industry managers could write contracts against specific design configu­rations and negotiate cost changes based upon each approved change. Phillips and others transformed configuration control into “configuration manage – ment,” a critical managerial tool to control the entire development process. Others soon recognized its utility, leading in 1962 to the creation of general regulations and guidelines for configuration management.46

Through configuration management, and also because of its solid- propelled rocket design, Minuteman boasted an enviable development record, coming in on cost and on schedule. Because of Minuteman’s much better reli­ability and launch-on-demand capability, the air force soon phased out most liquid-propellant missiles as weapons. Higher performance made liquid – propellant missiles excellent satellite launchers, and they and their descen­dants performed well in this role. In their capacity as launchers, the Atlas, Titan, and Thor-Delta vehicles attained reliability exceeding 90% from the mid-1960s through the 1990s.47

Configuration management — along with further attention to quality through inspections, training, and associated documentation—became an organizational pillar of the air force’s management system. Its importance can hardly be overstated. Managers from the turn of the century through the 1950s had searched for ways to predict R&D costs and to control scientists and engineers. Configuration management achieved this control on develop­ment projects, as it allowed accountants and lawyers to tie technical modifica­tions to contract modifications, including costs. Configuration management enabled government to control industry. However, the government officials who wielded the authority had make clear distinctions between those doing the controlling and those being controlled. To do this, they would have to modify the anomalous position of R-W.

Systems Management, Air Force Style

The informal management methods that characterized the manned program’s first few years did not last. New OMSF chief George Mueller understood very well that he would have to implement rigorous cost prediction and control methods to address NASA’s unruly engineers and R&D projects. To do this, he would turn to the management methods with which he was familiar, those developed in the air force and at Thompson-Ramo-Wooldridge (TRW).

Mueller began his career in 1940 working on microwave experiments at Bell Telephone Laboratories. After the war he taught electrical engineering at Ohio State University, and in 1957 he joined Ramo-Wooldridge’s STL as the director of the Electronics Laboratories. He moved up quickly, becoming program manager of the Able space program, vice president of Space Systems Management, and then vice president for R&D. Mueller helped build the air force’s bureaucratic system to control large missile and space projects.60

Before Mueller started his NASA duties, he performed his own investi­gation of OMSF. His first impression of NASA was that ‘‘there wasn’t any management system in existence.’’ The many interface committees and panels worked reasonably well but did not penetrate ‘‘far enough to really be an effective tool in integrating the entire vehicle.” Most seriously, Mueller found no means to determine and control the hardware configuration, leaving no way to determine costs or schedules. Mueller concluded that he had to ‘‘teach people what was involved in doing program control.”61

In August 1963 Mueller invited each of the field center directors to visit him. He explained his proposed changes and how they would help solve NASA’s problems with the Bureau of the Budget and the President’s Science Advi­sory Committee. Mueller explained, ‘‘If we didn’t work together, we were sure going to be hung apart.’’ Mueller had little trouble convincing Apollo space­craft manager Joseph Shea at MSC that his changes were necessary, given Shea’s prior experience at TRW. However, he met resistance from MSFC lead­ers. When MSFC manager Eberhard Rees challenged Mueller’s proposals, Mueller retorted that ‘‘Marshall was going to have to change its whole mode of operation.’’ Two weeks later, at another MSFC meeting, von Braun gave Mueller ‘‘one of his impassioned speeches about how you can’t change the basic organization of Marshall.’’ Refusing to back down, Mueller told him that MSFC’s laboratories ‘‘were going to have to become a support to the pro­gram offices or else’’ they ‘‘weren’t going to get there from here.’’ Von Braun, in response, reorganized MSFC on September 1, 1963, to strengthen project organizations through the creation of the Industrial Operations branch.62

Webb strengthened Mueller’s position by making the directors and proj­ects at MSC, MSFC, and KSC report to OMSF. Mueller reduced attendance at the Manned Space Flight Management Council to himself and the center di­rectors to ensure coordinated responses to OMSF problems. Borrowing from the air force Minuteman program, Mueller also formed the Apollo Execu­tive Group, which consisted of Mueller and Apollo contractor presidents. The group members met periodically at NASA facilities, where Mueller pressured them to resolve problems.63

Facing the same dilemma Holmes faced—Apollo’s slipping schedules and cost overruns—Mueller concluded that the only way to achieve the lunar landing before 1970 within political and budget constraints was to reduce the number of flights. In his ‘‘all-up testing’’ concept, each flight used the full Apollo flight configuration. This approach, used on the Titan II and Minute – man programs, violated von Braun’s conservative engineering principles. Von Braun’s existing plan used a live Saturn first stage with dummy upper stages for the first test. The second test included a live second stage with a dummy third stage, and so on. By contrast, the all-up concept used all flight stages on the very first test. This reduced the number of test flights and eliminated different vehicle configurations, with their attendant differences in designs, ground equipment, and procedures.64

Saturn V program manager Arthur Rudolf cornered Associate Adminis­trator Robert Seamans at a meeting, showing him a model of the Saturn V dwarfing a Minuteman model, saying, ‘‘Now really, Bob!’’ Seamans got the hint — Mueller’s concept did not apply to the more complex Saturn V. En­couraged, Rudolph showed the same models to Mueller. Mueller replied, ‘‘So what?’’ The all-up concept prevailed.65

In November 1963, Mueller reorganized the Gemini and Apollo Program Offices, creating a ‘‘five-box’’ structure at headquarters and the field cen­ters. The new structure (see figure) ensured that the field centers replicated Mueller’s concept of systems management and provided Mueller with better program surveillance. Inside these ‘‘GEM boxes,’’66 managers and engineers communicated directly with their functional counterparts at headquarters and other field centers, bypassing the field centers’ normal chain of com­mand. As one NASA manager put it, ‘‘Anywhere you wanted to go within the organization there was a counterpart whether you knew him or not. Whether you had ever met the man, you knew that if you called that box, he had the same kind of responsibility and you could talk to him and get communication going.’’67

Mueller’s new organization initially wreaked havoc at NASA headquarters, because the change converted NASA engineers who monitored specific hard­ware projects into executive managers responsible for policy, administration, and finance. For several months after the change, headquarters was in turmoil as the staff learned to become executives.68

NASA’s organizational structure changed as a result of Mueller’s initiatives, but he could not always find personnel with the management skills he desired. Shortly after assuming office, Mueller wrote to Webb, stating that NASA could use military personnel trained in program control. Because of the air force’s interest in a ‘‘future military role in space,’’ Mueller believed that it would agree to place key personnel in NASA, where they would acquire experience in space program management and technology. NASA, in turn, would bene-

George Mueller’s ‘‘five box’’ structure replicated the headquarters OMSF organization through the OMSF field centers. Adapted from “Miscellaneous Viewgraphs,’’ circa January-February 1964, ‘‘Organization and Management,” folder LC/SPP-43:11.

fit from their contractual experience and program control methods. Mueller stated, ‘‘It is particularly worth noting that the Air Force, over a period of years, has developed the capability of managing and controlling the very con­tractors upon whom we have placed our primary dependence for the lunar program.’’ He proposed to place Minuteman program director Phillips in the position of program controller for OMSF and contacted AFSC chief Schriever regarding this assignment. Schriever agreed, but only on the condition that Phillips become Apollo program director. From this position, Phillips would transform NASA’s organization and would become known as Apollo’s Rock of Gibraltar.69

Phillips surmised, ‘‘NASA had developed to be a very, very professional technical organization, but they had almost no management capability nor experience in planning and managing large programs.’’70 Phillips turned to the air force for reinforcements and to his most valuable tool from Minute – man, configuration management.

In a January 1964 letter to Schriever, Phillips asked for further air force per-

Подпись: Image not available.

George Mueller (left) and Samuel Phillips (right) imposed air force management methods on Apollo by introducing new procedures and bringing dozens of air force officers into NASA’s manned space flight programs. Courtesy NASA.

sonnel to man OMSF’s program control positions. After AFSC assigned two officers to NASA, Phillips created a list of fifty-five positions that he wanted to fill with air force officers. Such a large request entailed formal negotiations between NASA and the air force for Phillips’s ‘‘Project 55.’’ Secretary of the Air Force Eugene Zuckert agreed to consider transfers if NASA better defined the position requirements, so that he could ensure that the positions would en­hance the officers’ careers. In September 1964, the joint NASA-air force com­mittee reported that ninety-four air force officers already worked in NASA and that forty-two of the fifty-five additional positions requested should be filled by further air force assignments. The air force reserved the right to select junior and midgrade officers for NASA tours of at least three years. Eventu­ally, Phillips requested and received assignments for 128 more junior officers, who were mainly assigned to Apollo operations in Houston.71

Mueller and Phillips placed officers in key managerial positions through-

out the Apollo and Gemini programs, particularly in project control and con­figuration management offices. Phillips also requested a few senior officers by name. By December 1964, NASA and the air force agreed to assign Phillips as Apollo program director. NASA assigned Brig. Gen. David Jones as deputy associate administrator for Manned Space Flight (Programs), Col. Edmund O’Connor as director of MSFC Industrial Operations, Col. Samuel Yarchin as deputy director of the Saturn V Project Office, and Col. Carroll Bolender as Apollo mission director.72

Phillips recognized that NASA’s engineers would resist his primary control technique, configuration management. To meet this issue head-on, he sched­uled a Configuration Management Workshop in February 1964 in Los Ange­les. Each NASA and contractor organization could invite two or three people, except MSFC, which could invite six. At the conference, Phillips stated, ‘‘Coming out of Minuteman and into Apollo, I think I’ve been identified as a procedures and methods man with a management manual all written that I intend to force on the Apollo program and down the throats of the exist­ing ‘good people’ base. So I ask myself, ‘WHY PROCEDURES AND METH­ODS?’’’ Phillips noted that good processes and methods made good people’s work even better and that they enabled the manager to communicate and control more effectively because they created a ‘‘high percentage of automatic action.’’ Because of Apollo’s rapid growth, the program needed better com­munications between NASA and contractor organizations, and all parties had to use consistent language. Phillips stated that good procedures had a high probability of preventing oversights or shortcuts that could lead to catastro­phe. He noted, ‘‘The outside world is critical, including the contractors, Con­gress and the GAO [General Accounting Office], and the press.’’73 Solid proce­dures would help to protect NASA from criticism, by preventing failures and by documenting problems as they were found.

Phillips explained his system of design reviews and change control, both of which would help managers control resources. He viewed the field cen­ters as Apollo prime contractors and considered configuration management a contractual mechanism to control industry. Phillips proposed strong project management along with a series ofreviews tied to configuration control. Con­sistent with military doctrine, Phillips believed that ‘‘diffused authority and responsibility’’ meant a ‘‘lack of program control,’’ so he assigned responsi-

bility for each task to a single individual and gave that person authority to accomplish the task.74

To aid his initiative, Phillips modified Apollo’s information system. In the existing headquarters program control and information system, data were collected from the field centers each month, and then headquarters managers reviewed the data for problem areas and inconsistencies, at which time they advised the centers of any problems. Instead, Phillips wanted daily analysis of program schedules and quick data exchange to resolve problems, with data placed in a central control room modeled on Minuteman. He immediately placed contracts for a central control room, which eventually contained data links with automated displays to Apollo field centers.75

At MSFC, Saturn managers already had a control room to track official program activities. Saturn V manager Arthur Rudolf assigned names to each chart on the control room wall, so that whenever he found a problem, he could immediately call someone who understood the chart’s details and im­plications. The charts varied over time, as new ones representing current problems and status appeared, replacing charts addressing problems that had been resolved.

This room, although useful, had its problems. Rudolf did not like PERT and reverted instead to ‘‘waterfall’’ charts (Gantt, or ‘‘bar,’’ charts arranged in a waterfall fashion over time). Project control personnel translated PERT charts into Rudolf’s waterfall charts, located in a small room across the hall. Because the control room displayed the ‘‘official’’ status of items, it did not always have the kind of information Rudolf wanted. A typical problem would be that a hardware item might be completed but the paperwork might still be incomplete. The control room information would not be updated until the paperwork was complete, and hence it did not reflect the true status of the hardware. By contrast, the ‘‘mini control room’’ across the hall had ‘‘grease – penciled’’ charts with more up-to-date information. With MSFC personnel calling contractors to get status updates, this mini control room buzzed with activity.76

Phillips devoted great effort to the promotion of configuration manage­ment. His headquarters group worked with the air force to develop the Apollo Configuration Management Manual. Issued in May 1964, this manual copied the air force’s manual, which AFSC officers were updating at the time. He wrote letters to the field center directors emphasizing the manual’s impor­tance and directed them to develop implementation plans. By fall 1964, the field centers were actively creating configuration control boards (CCBs), de­veloping the forms and procedures, and directing contractors to implement configuration management.77

Configuration management required that NASA have firm requirements and specifications for Apollo, which did not yet exist, despite three-year-old contracts between NASA and its contractors. Phillips ordered NASA head­quarters and systems contractor Bellcomm to develop definitive specifica­tions. Not wanting Bellcomm to take over this task, field center and contrac­tor personnel quickly became involved, resulting in firm specifications for all Apollo contracts.78

NAA recognized that with Phillips as Apollo program manager, failure to enhance configuration management ‘‘could well be a serious mistake,’’ so it led a study of the process. Under Phillips’s plan, NASA placed preliminary speci­fications under change control after the Preliminary Design Review, and the hardware under change control after the First Article Configuration Inspec­tion. NAA’s group discovered that after the Critical Design Review, NASA did not elevate the final design specifications to contractual status, which could lead to contractual disagreements over design specifications changes. NAA raised this to NASA’s attention, resulting in further enhancement of configu­ration management.79

Phillips soon encountered the resistance he expected. Some of it was passive. He tried to educate NASA personnel about systems management through air force project management and systems engineering courses at the Air Force Institute of Technology, where he occasionally lectured. Despite his enthusiasm, only a handful of NASA engineers and managers attended the one-week course.80

Other resistance was overt. At the June 1964 Apollo Executives Meeting, Phillips had his headquarters configuration control manager describe con­figuration management to the field center directors and industry executives. After the presentation, the NASA field center directors argued against Phil­lips’s plan.81 MSC Director Gilruth had heard that configuration manage­ment cost one additional person for every manufacturing team member. If this was true, then configuration management would be far too expensive.

Phillips’s team replied that based on Minuteman experience, configuration control required only one person per one hundred manufacturing team mem­bers. Air force configuration managers described how Douglas Aircraft took four months to confirm the S-IV stage configuration prior to testing and de­livery to NASA, whereas on the Gemini Titan II, a program with configuration management, it took two days.82

MSFC Director von Braun objected: ‘‘This whole thing has a tendency of moving the real decisions up, even from the contractor structure viewpoint, from the one guy who sits on the line to someone else.’’ Boeing President Bill Allen replied, ‘‘That’s a fundamental of good management.’’ After all, he said, ‘‘Who, around this table, makes important decisions without getting advice from the fellow who knows?’’ Von Braun retorted, ‘‘The more you take this into the stratosphere and take the decisions away from the working table — I think the object of this whole thing is to remove it from the drawing board.’’ Allen, whose company had originally created configuration management, re­plied that you merely had to move the ‘‘top engineering guy into the position of the Configuration Manager.’’83

Frustrated in this argument, von Braun retorted that because the mili­tary produced a thousand Minutemen, whereas there was only one or just a few Apollos, ‘‘We have to retain a little more flexibility.’’ Again, Boeing’s Allen disagreed: ‘‘Maybe I don’t understand, but in my simple mind, it doesn’t make any difference with respect to what has been outlined here, whether it’s R&D, Saturn, or whether you’re trying to produce a thousand letters.’’ Von Braun replied, ‘‘If you want to roll with the punches, then you have to main­tain a certain flexibility.’’ OMSF chief Mueller intervened; on the Titan III program, the first with configuration management from the start, Mueller noted, ‘‘Everything is on cost and schedule, even though it married solids and liquids.’’84 Mueller concluded, ‘‘Configuration management — doesn’t mean you can’t change it. It doesn’t mean you have to define the final configuration in the first instance before you know that the end item is going to work. That isn’t what it means. It means you define at each stage of the game what you think the design is going to be within your present ability. The difference is after you describe it, you let everybody know what it is when you change it. That’s about all this thing is trying to do.’’85

Mueller, who had the ultimate authority to force implementation, quelled executive objections, but resistance continued in other forms. MSC assigned only one person to configuration management by October 1964, slowing its adoption there and at MSC’s contractors. There was continued engineering resistance to change control, Phillips noted: ‘‘Engineers always know how to do it better once they’ve done it, and want to make their product better.’’ Yet ‘‘even engineers will admit that changes first of all must be justified,’’ he added.86

Contractors had one last chance to charge additional costs to the govern­ment before NASA could control them in detail using configuration man­agement. They used the opportunity, preventing full implementation into late 1965 by charging high rates to implement configuration control systems. NASA auditors found numerous deficiencies, including incomplete engineer­ing release systems, no configuration management of major subcontractors, uncontrolled test requirements and procedures, poor numbering systems, lack of documentation, and, in a few cases, no system at all.87

With continued exhortation and substantial pressure, Phillips established configuration management on Apollo by the end of 1966, with four different levels of change control and authority: contractor, stage and system manager, program manager, and program office. Contractors could authorize changes that did not affect any other contractors or specifications. Stage and system managers could authorize changes within their own systems. Only program manager offices at the field centers could authorize changes affecting inter­faces between stages, systems, or field centers. Phillips in the Program Office authorized changes to the master schedule, hardware quantities, or the over­all program specifications. The full system included six formal reviews, after which NASA approved or modified the specifications, designs, and hard-

ware.88

Because the Apollo program had been under way for three years before Phillips took control, many of the designs never underwent the initial reviews called for in the new system. NASA had awarded Apollo contracts without accurate specifications, revised the design after contract awards, and designed and even tested system components without specifications. Only one element, the Block II command module for the lunar orbit and landing missions, fol-

Phillips’s review processes for Apollo, which he used to ensure the success of the moon landings. Adapted from Robert C. Seamans Jr. and Frederick I. Ordway, ‘‘The Apollo Tradition: An Object Lesson for the Management of Large-Scale Technological Endeav­ors,” in Frank P. Davidson and C. Lawrence Meador, eds., Macro-Engineering and the Future: A Management Perspective (Boulder, Colo.: Westview Press, 1982), 20.

lowed Phillips’s process in its entirety.89 Other vehicle elements began their first design reviews at their state of maturity when Phillips levied his require­ments.

Phillips augmented configuration control with other information sources. He held daily and monthly meetings with program personnel. In turn, Muel­ler and Seamans reviewed Apollo each month, and Webb reviewed it annu­ally. The project developed a computer system to automate failure reports, cost data, and parts information. Apollo’s Reliability and Quality Assurance organization developed into an important management tool, supplying in­formation on reliability, test results, and part defects as well as current plans, status reports, schedules, funding, and manpower. It forwarded quarterly and weekly highlight reports on each major system element.90

The two years following the hiring of George Mueller in September 1963 marked Apollo’s transition from a loosely organized research team to a tightly run development organization. Mueller made important early decisions, in­cluding instituting his GEM box organization formalizing systems engineer­ing, reliability and quality assurance, and project control on the manned pro­grams. Mueller forced von Braun and Gilruth to adhere to his all-up decision, sharply reduced flight tests in favor of ground testing, and gave more respon­sibility to contractors. Finally, he started the importation of air force officers to implement program control, beginning with Minuteman director Phillips.

Phillips brought in air force officers to implement configuration manage­ment. Configuration management required precise knowledge of the system specifications and design, the baseline against which managers and systems engineers judged changes. This, in turn, required a series of design reviews and managerial checkpoints that progressively elevated specifications and de­signs to controlled status. Despite resistance, by 1966 Mueller and Phillips augmented NASA’s processes by firmly establishing air force methods within OMSF. The new management methods could not prevent all technical prob­lems or make up completely for the earlier lack of management control, nor did contractors uniformly enforce them. For most technical programs, the most difficult times involve testing problems that arise. Apollo would be no different.

Coordination and Control of. High-Tech Research and Development

When we mean to build, we first survey the plot, then draw the model; and when we see the figure of the house, then we must rate the cost of the erection: which if we find outweights ability, what do we then but draw anew the model in fewer offices, or at last desist to build at all?

— William Shakespeare, King Henry IV, Part 2, Act 1, Scene 3

Systems management was a typical product of the Cold War, consisting of organizational structures and processes reflecting the interests and expertise of the social groups that created it. Facing intense pressure to deliver state – of-the-art technologies on tight schedules, military officers, managers, scien­tists, and engineers contributed their respective types of expertise and vied for control of the development process. Competition and cooperation both flourished in the pressure cooker of the early Cold War, but ultimately these groups formed a coherent process for the development of large-scale tech­nologies.

A common thread was the emphasis on systems. To Bernard Schriever and other air force officers, the ‘‘systems approach’’ meant unifying the research and development (R&D) command structure, to unite in one organization what the air force had traditionally accomplished in separate organizations. To engineers at the Jet Propulsion Laboratory (JPL), the systems approach meant accounting for operations and logistics in a missile’s design. To RAND analysts, the systems approach meant applying mathematical techniques to a larger set of technologies and organizations than previously considered. In each case, ‘‘systems’’ implied an expansion of capabilities, authority, and con­cepts beyond what was traditional.

Each social group developed means of communication and control to en­hance its effectiveness and authority. Managers and military officers devel­oped communication procedures that funneled information to a central point and disseminated decisions and authority from that point. Less obviously, working groups of scientists and engineers also channeled information and authority, but in their case to their own working groups. Based upon the needs of the Cold War, each group used systems rhetoric to gain authority, then designed “procedural systems’’ to keep it.

Scientists and engineers first developed systems analysis and systems engi­neering to analyze and coordinate the development of large-scale technolo­gies. Organizing through ad hoc committees typical of academia, these tech­nically competent individuals maintained power through the informality of their communication, which seemed unique to each problem and project. Standardization did not seem possible, and technical experts wanted to keep it that way.

Those in control of the project funding and goals thought otherwise. Mili­tary officers and managers sought ways to control the seemingly uncontrol­lable R&D process and ultimately found a solution in configuration man­agement, which linked managerial hierarchies with technical committees. Through the configuration control board (CCB), managers used the ‘‘power of the purse,’’ requiring scientists and engineers to give cost and schedule esti­mates with each design change. This gave them a proxy measurement to assess technical progress and hence assess the scientists and engineers as well.

Changes were inevitable in complex ballistic missile and spacecraft designs. Their novelty meant that technical and managerial teams learned as they went. Much of this learning came through failure, when missiles exploded and spacecraft failed far from Earth. Because many, if not most, problems en­countered were interface problems traceable to communication problems, or manufacturing defects traceable to simple errors in repetitive processes, orga­nizational means were primary in eradicating these errors. Systems manage­ment significantly improved missile and spacecraft reliability.

The Cold War provided the context and motivation for military and civil­ian authorities to fund scientists and engineers to develop complex, hetero­geneous weapons systems. In short, scientists and engineers working on Cold

War military projects created technical coordination processes that managers and military officers appropriated and modified to control R&D. Just as scien­tific management enabled managers and engineers to coordinate and control factory workers in the first decades of the twentieth century, systems man­agement enabled military officers and civilian managers to coordinate and control scientists and engineers.

Management and the Control of Research and Development

Control. .. depends upon information and activities involving information: information processing, programming, decision, and communication.

— James Beniger, The Control Revolution, 1986

Since at least the Middle Ages, Western society’s fascination with sophisti­cated technology has demanded organizational solutions. By the middle of the nineteenth century, railroads in Europe and the United States required professional managers to run them.1 As the scale of operations increased, ex­ecutives developed “systematic management’’ to coordinate and control their midlevel personnel.2 At the beginning of the twentieth century, Frederick Winslow Taylor, publishing his major work in 1911, devised a means — by way of “scientific management’’ — of extending managerial influence to the fac­tory floors of increasingly large industrial enterprises.3 In both systematic and scientific management, information provided the levers that managers used to control their subordinates. Frequently working with engineers, managers gathered information from lower-level staff and then used that knowledge to reorganize work processes and control employees.4

Scientists and engineers eventually posed far more difficult challenges to managers. Universities trained these ‘‘knowledge workers,’’ as management consultant Peter Drucker referred to them in the late 1940s, to be dedicated to their careers and their specialties, not to their employers. They generated new ideas in an undefined process that no one could routinize, thus ruling out scientific management techniques. Their specialized knowledge placed them

beyond the competence of most managers. Even if technical personnel wanted to share their knowledge with managers (which they typically did not), they could not clearly describe their creative process. Only after the fact, it seemed, could managers control the products or the technologists who created them. Even so, managers seldom perceived research and development (R&D) man­agement as a critical issue.5 Drucker suggested a solution he called manage­ment by objectives. According to this approach, managers and professionals jointly negotiated the objectives for the agency or firm on the one hand and for the individuals on the other, each worker agreeing to the terms. Individu­als and agencies or firms would harmonize their respective goals.6

The management-by-objectives strategy worked reasonably well for man­agers overseeing individual knowledge workers, but it did little to coordi­nate the efforts of scientists and engineers on large projects, on which experts organized (or disagreed) along disciplinary lines and could form only tempo­rary committees for the exchange of information. Much like with the unique and short-lived Manhattan Project, the experience of complicated programs such as ballistic missiles demonstrated that traditional organizational schemes would not suffice. Scientists and engineers found that they needed some indi­viduals to coordinate the information flowing among working groups. These ‘‘systems engineers’’ created and maintained documents that reflected the current design, and they coordinated design changes with all those involved in the program. Perceptive managers and military officers realized that central design coordination allowed them to gain control of both the creative process and its lively if unruly knowledge workers.

This study examines how scientists and engineers created a process to coordinate large-scale technology development-systems management—and how managers and military officers modified and gained control of it. The story owes a debt to the insights of Max Weber, who noted long ago that modern organizations form standardized rules and procedures that create and sustain bureaucracies.7 Scholars since then have elaborated upon the develop­ment of these procedures as a process of ‘‘knowledge codification,’’ one that can be formally internal to individuals or informally contained in the com­munications between or among individuals.8 For organizations to learn, to adapt, and to sustain adaptations, they must have processes that are both flex­ible and durable. Recent scholarship on these so-called learning organizations has pursued and elaborated on this view, providing a perspective congenial to a historical analysis of management. By means of communication, feedback, and codification, organizations can be said to learn and retain knowledge.9

Systems management first developed in the air defense and ballistic missile programs of the 1950s, across many aerospace organizations. These programs, like any other large-scale technologies, came into being as a result of nego­tiations among various organizations, classes, and interest groups.10 Scientists typically created the core ideas behind new systems or the critical elements that made them possible or useful. Engineers developed the subsystems and integrated them into a complex vehicle. Military officers promoted these com­plex vehicles as a means of besting their Cold War foes. Managers controlled the resources required to produce the new systems. Systems management was embraced because it assigned each of these groups a standard role in the tech­nology development process. Systems management became the core process of aerospace R&D institutions, modeled largely on management techniques developed on army and air force ballistic missile programs. Methods devel­oped for air defense systems paralleled those for ballistic missiles, but in the bureaucratic battles of the early 1960s, ballistic missile officers and their meth­ods triumphed, forming the basis for the air force’s procurement regulations.11

This book thus traces a path through the literature on the history and poli­tics of aerospace development and weapons procurement.12 Instead of pro­viding another case study of a particular project or organization, it pieces together a story from elements that include military and civilian organizations in the United States and Europe. This approach has the distinct advantage of providing cross-organizational and cross-cultural perspectives on the sub­ject, as well as showing the dynamics of the transfer of management methods. NASA and the European programs encountered the same kinds of technical and social issues that the air force and the Jet Propulsion Laboratory (JPL) had previously come upon, and ultimately they looked outside of their orga­nizations to help resolve the problems. NASA looked to the air force (and to a lesser degree to JPL), and a few years later the Europeans gleaned their methods from NASA. The Apollo program became a highly visible icon of American managerial skill — the symbol of the difference between American technical prowess and European technical retardation in the 1960s and early 1970s.

European frustration reached its peak in 1969, when NASA put men on the Moon while the European Space Vehicle Launcher Development Organisation (ELDO) endured yet another failure of its launcher. ELDO only haphazardly adopted American management methods, and the lack of authority meant that those that ELDO did adopt could not be consistently implemented. The failures of ELDO ultimately proved to be the spur for the Europeans to over­come their historic hostilities and create a highly successful integrated space organization, the European Space Agency. This new agency and its predeces­sor, the European Space Research Organisation, borrowed extensively from NASA and its contractors. NASA’s management methods, when adapted to the European environment, became key ingredients in Europe’s subsequent successful space program. The air force, the army’s (and later NASA’s) JPL, NASA’s manned space programs, and the European integrated space pro­grams all learned that spending more to ensure success was less expensive than failure.

The modern aerospace industry is paradoxical. It is both innovative, as its various air and space products attest, and bureaucratic, as evidenced by the hundreds of engineers assigned to each project and the overpriced compo­nents used. How can these two characteristics coexist? The answer lies in the nature of aerospace products, which must be extraordinarily dependable and robust, and in the processes that the industry uses to ensure extraordinary dependability. Spacecraft that fail as they approach Mars cannot be repaired. Hundreds can lose their lives if an aircraft crashes. The media’s dramatization of aerospace failures is itself an indication that these failures are not the norm. In a hotly contested Cold War race for technical superiority, the extreme envi­ronment of space exacted its toll in numerous failures of extremely expensive systems. Those funding the race demanded results. In response, development organizations created what few expected and even fewer wanted—a bureau­cracy for innovation. To begin to understand this apparent contradiction in terms, we must first understand the exacting nature of space technologies and the concerns of those who create them.

ONE

The Formation of The Aerospace Corporation

From the beginning of the WDD, aircraft industry leaders complained bit­terly about R-W’s insider position. They believed that the ideal approach to weapons development was for the air force to let prime contracts to a single integration contractor, a position supported by the air force’s own regulations. These stated that the air force should hire a single prime contractor to de­velop, integrate, and test a weapon system, unless no company was qualified to perform the task. In this case, the air force itself could act as prime con­tractor. The latter position was Schriever’s justification for his approach to the ICBM program, with the important modification that the air force would in­stead hire a third party to direct technical coordination of the integration task. Industry leaders also pointed out that in R-W, the air force was creating a new, powerful competitor with close ties to air force planning and a concomitant edge in bidding.48

Normally, R-W should have been controlled by the air force in the way that any other contractor would have been. However, the air force had hired R-W to act as the air force’s technical assistant for ICBM development, in which position R-W personnel acted with virtually the same authority as the govern­ment. In 1954, Assistant Secretary of Defense for Research and Development Donald Quarles, formerly of Bell Labs, had insisted that R-W personnel be given “line” responsibility, with full authority to direct contractors, instead of “staff” status, where they would merely be advisers. This mirrored his experi­ence at Bell Labs, which acted as the technical direction authority to AT&T’s manufacturing arm, Western Electric. Bell Labs also performed this role with other contractors, sometimes on behalf of the government on high-priority military programs. This powerful position required that AT&T acquire sensi­tive data from other companies. As a regulated monopoly, AT&T could legiti­mately act in this capacity, as it essentially had no competitors.49

Caltech’s JPL and MIT’s Radiation Laboratory also acted as technical di­rection groups for the government, but these academic nonprofit institutions were little threat to industry. However, R-W was neither a nonprofit insti­tution nor a regulated monopoly, and in fact it competed for other projects against the same companies that it monitored on the ICBM program. Existing aircraft firms vigorously campaigned against the air force’s unusual relation­ship with the upstart company.

To protect his organization from criticism, Schriever enforced a hardware ban on R-W to keep it from acquiring lucrative hardware contracts on any programs in which it was the technical direction contractor. R-W ‘‘walled off’’ the technical direction work of STL from the rest of the company. Continuing concerns led R-W to establish a physically separate location for its headquar­ters — in Canoga Park, California. These measures did not satisfy industrial leaders, who continued to lobby against the company.50

Despite the clamor and the ICBM hardware ban, neither Ramo nor Wool­dridge believed that R-W could grow without manufacturing capabilities. They grasped every opportunity to expand manufacturing by aggressively pursuing hardware production products and contracts outside the ballistic missile program. These included process control computers, semiconductors, and a variety of aircraft and air-breathing missile components. Aggressive pursuit of hardware contracts paid off, as R-W received permission to build ballistic missile hardware to test ablative nose cones built by General Electric. Strongly backed by Schriever’s technical director, Col. Charles Terhune, STL then built the Able 1 lunar probe launched in August 1958 and the Pioneer 1 spacecraft launched by the National Aeronautics and Space Administration (NASA) in October 1958. These activities fomented even more severe indus­trial protests, as the hardware ban against R-W evaporated.51

Expansion on these and other ventures such as semiconductors stressed R-W’s finances. Ramo and Wooldridge leaned on their original investor, Thompson Products, for cash to expand facilities and capital equipment, and the ensuing negotiations led to an agreement that resulted in the merger of the two companies effective October 31,1958. The new combination, Thompson- Ramo-Wooldridge (TRW), became the aerospace giant that the older aircraft companies had feared.

TRW executives recognized the awkward position of STL in the new com­pany. STL handled TRW’s space business, including both the technical di­rection tasks for the air force and STL’s budding space manufacturing busi­nesses. Because of the air force connection, STL would always be vulnerable to charges of conflict of interest. To minimize this risk, TRW executives estab­lished STL as an independent subsidiary corporation with its own board of directors chaired by Jimmy Doolittle, a war hero with impeccable creden­tials and impressive ties to the air force and NASA. No TRW board member or senior manager sat on STL’s board. TRW executives recognized that they might have to divest STL, and through this reorganization they were prepared to do so.52

Although TRW was prepared to divest STL, neither Schriever nor TRW really wanted this to happen. TRW enjoyed significant profits from STL, and Schriever wanted STL’s experienced personnel directing the technical aspects of the air force’s ICBM and space programs. However, STL’s increasing in­volvement with space projects and hardware development fueled industry complaints, leading to congressional hearings in February and March 1959.

These hearings, chaired by Rep. Chet Holifield from California, featured vehement attacks against STL’s ‘‘intimate and privileged position’’ with the air force and equally strong defenses by Schriever and by TRW executives Simon Ramo and Louis Dunn. It became clear even to Schriever that as long as TRW acquired competition-sensitive technical information from other aerospace firms through STL, the clamor would continue. A plan to sell STL to pub­lic investors fell through when Air Force Secretary Douglas vetoed it on the grounds that STL would remain a problem as long as private owners used STL to make a profit. The Holifield Committee’s final report seconded this idea and urged that STL be converted into a nonprofit corporation like RAND and MITRE. Schriever reluctantly agreed, leading to the formation of The Aero­space Corporation on June 4,1960.53

At Schriever’s insistence, STL continued systems engineering and technical direction for the ballistic missile programs for the near future, but all others transferred to Aerospace. Dr. Ivan Getting became Aerospace’s first presi­dent, and a number of STL personnel transferred to the new corporation. This ended the controversy about TRW’s insider position with the air force, but as industry had feared, there was a powerful new competitor with which to contend. Aerospace became one of a growing breed of nonprofit corporations that served the air force and other military organizations.

Systems engineering, which required the coordination of all elements of the technical system, could be performed by a prime contractor for the sys­tem, by the air force itself, or by a nonprofit firm that had no interest in com­petition. The experience of R-W showed that a profit-making corporation could not act on behalf of the U. S. government to coordinate or control the efforts of its competitors. The function of systems engineering had to be con­tained within the government itself, a neutral third party hired by the gov­ernment such as Aerospace or MIT, or a prime contractor. With this contro­versy settled, the air force could now standardize systems management as its primary R&D method across all of its divisions.54

Standardizing Systems Management

By 1959, ongoing deliberations at air force headquarters were under way re­garding the applicability of Schriever’s ‘‘Inglewood model’’ to the rest of the air force’s development programs. A senior committee headed by the AMC commander, Gen. Samuel Anderson, agreed that the air force should adopt the methods used in Inglewood, with the planning and implementation of new projects on a systems, or ‘‘life cycle,’’ basis. Planning for the entire system would occur up front, and project offices would have the authority to man­age development, including funding authority. However, the committee split into three camps regarding the organization, advocating positions ranging from minor modifications to radical reorganization. In June 1960, the Air Staff selected the least ambitious plan, which did include installation of new regu­lations based on Schriever’s organizational processes, to be used on all the air force’s major development programs.55

The 375-series regulations for systems management originated with one of Schriever’s officers, Col. Ben Bellis, who headed an effort to document the procedures developed in Inglewood. After a series of reviews, the new regula­tions for systems management appeared on August 31,1960, and were applied to the air force’s major projects for missiles, space, aeronautics, and electron­ics. Subsequently revised and extended, these regulations became the institu­tional backbone of the new, Inglewood-inspired R&D system.56

Under the new regulations, the system program director gained significant authority. The air force required that the program director create and gain approval of a single document known as the System Package Program. Each System Package Program provided information on cost, schedule, manage­ment, logistics, operations, training, and security.57 The 375 regulations for­mally applied the ARDC-AMC project office concept across all air force major acquisition programs.

The more radical ‘‘Schriever Plan’’ to manage the air force’s R&D had been shelved by Anderson’s committee in 1959, but it gained new life in 1961 when Robert McNamara became secretary of defense. McNamara, trying to resolve the controversy over which service should gain the coveted military space mission, looked for evidence of managerial and organizational expertise to determine which service should lead space efforts. With several hints from the McNamara camp that the Schriever Plan would help the cause, Air Force Chief of Staff Thomas White approved it. Secretary of the Air Force Eugene Zuckert and McNamara signaled their pleasure by conferring all space research to the air force in March 1961.58

The Schriever Plan reallocated the procurement activities ofAMC to a new organization that also included the development functions of ARDC. ARDC was abolished, its place taken by Air Force Systems Command (AFSC), which came into being on April 1, 1961. Schriever, appointed the first commander of AFSC, now managed all of the air force’s major development programs in four divisions: the Ballistic Systems Division in San Bernardino, California; the Space Systems Division in El Segundo, California; the Aeronautical Systems Division in Dayton, Ohio; and the Electronics Systems Division in Lexington,

The air force’s Ballistic Systems Division and Thompson-Ramo-Wooldridge’s Space Technology Laboratory were in the center of a vast network of government and industry organizations, all of which learned aspects of systems management. ‘‘BSQ’’ represents the Ballistic Systems Division, and ‘‘SE/TD’’ stands for systems engineering and technical direction, the main function of STL. Courtesy Library of Congress.

Massachusetts. Ascending to command over all of the air force’s large acqui­sition programs, Schriever’s presence ensured the spread and enforcement of the 375 procedures.59

Standardization of R&D in AFSC went beyond the 375 regulations. By mid – 1961, Schriever’s organization molded status reporting into a highly sophisti­cated system, known as rainbow reporting because it presented each element of the system on pages of different colors in a small, brightly packaged book­let. Over the next few years, the rainbow reporting system evolved to include yearly and monthly milestone schedules, government and contractor finan­cial data, contractor manpower data, reliability data, procurement data, engi­neering qualification data, and the so-called PRESTO procedures for prob­lems needing immediate attention. They also specified acceptable formats and technologies for presentations to ensure commonality, helping the top-level managers to judge the programs on a consistent basis.60

With the establishment of AFSC, the Inglewood model of systems man­agement, including configuration management, became the dominant model for large-scale programs. In April 1961, Schriever’s authority and influence reached its apex, as he presided over all major development programs in the air force, using standardized methods of his own making.61 What Schriever and others did not foresee was that just as the air force could use systems man­agement to control contractors and its own officers, so too could the DOD use it to control the air force.

McNamara, Phased Planning, and Central Control

Within the DOD, the Office of the Secretary of Defense grew in power from 1947 to the mid-1960s. Over the years, the office progressively pulled critical decisions up the hierarchy, subordinating service interests and rivalries. Bene­fiting and exploiting this trend to the fullest was John F. Kennedy’s appointee to the office, Robert McNamara.62

McNamara trained at the University of California, Berkeley, and taught business courses for a short time at Harvard before World War II. During the war, he performed statistical analyses for army logistics, determining the quantities of replacement parts needed based upon statistical assessments of combat and operations. After the war, he joined Ford Motor Company, tagged as one of the mathematically trained ‘‘whiz kids’’ that reformed Ford’s dis­organized finances and helped turn the company around. He rose quickly, eventually becoming president.63

Famous for his faith in centralized control implemented through quantita­tive measurement, McNamara took advantage of the authority granted to the Office of the Secretary of Defense by the Defense Reorganization Act of 1958. This act gave the secretary of defense the authority to withhold funding from the services and transfer assignments between the services. Upon his appoint­ment to the office, in the spring of 1961 McNamara initiated a series of more than 100 studies known as McNamara’s 100 trombones, or the 92 labors of Sec­retary McNamara. The services readily complied with this request, expecting the novice secretary to get bogged down in conflicting piles of recommenda­tions.64

Without waiting for completion of the studies, McNamara also installed RAND chief economist Charles Hitch as the DOD comptroller. Given McNa­mara’s background as a Ford financial manager and Hitch’s qualifications as an economist, it was not surprising that they considered economic criteria to be foremost in making decisions for future weapon systems. Hitch’s Pro­gram Planning and Budgeting System required that life cycle cost estimates be performed before deciding whether to develop a new weapon system. This agreed with the result of one of McNamara’s studies — “Shortening Develop­ment Time and Reducing Development and Systems Cost’’—which claimed that ‘‘reducing lead time and cost’’ should be given the same priority as im­proving performance. It deemphasized the relentless push to higher technical performance and required that feasibility and effectiveness studies calculate technical risks and cost-to-effectiveness ratios.65

Following up on this study, in September 1961 McNamara assigned the task of improving R&D management to John Rubel, the deputy director of defense research and engineering. Rubel established model programs whose methods could then be copied throughout all of the services, starting with the air force Agena, TFX fighter, Titan III, and medium-range ballistic missile programs. Rubel required a ‘‘Phase I’’ effort to develop a preliminary design. This would ensure ‘‘that the cost estimates for the subsequent development effort’’ were ‘‘based on a solid foundation.’’66 The preliminary design effort would generate ‘‘a set of drawings and specifications and descriptive documents’’ to describe management methods, including schedules, milestones, tasks, objectives, and policies. Rubel had no reservations about forcing industrial contractors to organize and manage their projects in the way he wanted. If they wanted the job, they had to conform.67

He made clear in the request for proposals that go-ahead for Phase I did not constitute program approval. Previously, award of a preliminary design contract constituted de facto project approval for development and produc­tion. This was no longer true. Only the secretary of defense could approve a project, and he would not do so until completion of Phase I and a pro­gram review.68 According to Rubel, ‘‘The fact that improved definition is re­quired before larger-scale commitments are undertaken is neither surprising nor unique, although it is true that on most programs this definition phase has been less clearly identifiable because it has been stretched out in time and interwoven with other program activities such as development, model fabri­cation, testing and, in some cases, even production.’’ Rubel did not believe that a program definition phase would slow high-priority programs. ‘‘In fact,’’ he wrote, ‘‘our real progress should be accelerated as the result of obtaining a better focusing of our efforts.’’69

The phased approach brought several benefits to upper management. It promised better cost, schedule, and technical definition. If the contractor or agency did not provide appropriate information, management could cancel or modify the program. Organizations therefore made strenuous efforts to finalize a design and estimate program costs. The preliminary design phase provided management with a decision point before spending large sums of money, making projects easier to terminate and contractors easier to control.

By 1962, studies by Harvard and RAND economists had shown that DOD weapons projects had consistently large overruns and schedule slips, with missile programs having the worst record. The RAND study showed that for six missile projects, costs overran by more than a factor of four, with schedule slips greater than 50%. Other projects showed smaller slips, but all types aver­aged at least 70% cost overruns, and the average was more than 200% (triple the original cost estimates). The military was clearly vulnerable to criticism on cost issues, and McNamara efficiently exploited this weakness. His Program Planning and Budgeting System required that all of the services create five- year projections of programs and their costs, allocated not by specific services but rather across broad categories such as strategic offense or defense.70

Schriever sensed the change in national priorities and saw the impact of McNamara’s reforms. Replacing ‘‘concurrency,’’ ‘‘managerial reform’’ and ‘‘cost control’’ soon became the new watchwords. The immediate task facing Schriever in early 1962 was responding vigorously to the McNamara-Rubel initiatives, which he saw as cost control measures. In a February 1962 memo­randum, Schriever stated that cost overruns arose from ‘‘any one or a combi­nation of’’ factors, including deliberate underestimation, adherence to overly strict standards, too much optimism in estimating performance and sched­ules, vacillation or changes in program direction, and inadequate military or contractor management.71

One area that Schriever had to improve was cost estimation. His comp­troller’s office began by educating AFSC staff, instituting cost analysis training courses at the Air Force Institute of Technology in Dayton, Ohio. By Febru­ary 1962, the first class of 25 students graduated from this course. AFSC also developed the Program Planning Report, which allowed for improved analy­sis of cost data with respect to technical and schedule progress. He also had AFSC adopt and modify the navy’s new planning tool, PERT.72

Schriever developed other ways to improve AFSC’s management capabili­ties. He established a Management Improvement Board, ‘‘made up of Gen­eral Officers having the greatest experience in systems management matters ranging from funding, systems engineering, procurement and production, through research and development.’’ Schriever had board members exam­ine ‘‘the entire area of systems management methods to include those of the Industrial complex as well as those of the Air Force.’’ He also reinstated the Air Force Industry Advisory Group, a Board of Visitors to improve working relationships with industry, and a program of ‘‘systems management program surveys.’’ AFSC also collected ‘‘lessons learned’’ information from programs and broadcast this information through publications and industry symposia. Schriever also used this information to produce management goals for AFSC.73

AFSC also communicated systems management concepts through educa­tion. Examples included a system program management course at the Air Force Institute of Technology and the creation of a systems management newsletter within AFSC. The Air Force Institute of Technology course used case studies taught by experienced program managers such as Col. Samuel Phillips of the Minuteman program. These program managers taught about program planning and budgeting, the McNamara reforms, organizational roles in system development, systems engineering, configuration manage­ment and testing, system acquisition regulations, program management tech­niques, contracting approaches, and financial methods.74

By the mid-1960s, the combination of AFSC management initiatives and the McNamara reforms produced a mature form of systems management that is still used in the aerospace industry today. Earlier concepts and practices of

image1

Systems management phases.

concurrency contributed the detailed planning and systems engineering co­ordination necessary to rapidly develop large-scale technologies. When ICBM failures became the primary concern, engineers added change control, quality control, and reliability to the mix. Finally, the cost concerns of the early 1960s — driven by rising ICBM costs, the Vietnam War, and social issues such as the civil rights movement—contributed phased planning and configura­tion management. Both new methods provided mechanisms to better predict costs.

McNamara, duly impressed with the procedures and reforms in Schriever’s organization, used them — modified to include phased planning for central control—as the basis for the DOD’s new regulations for the development of large-scale weapon systems. In 1965, the DOD enshrined phased planning and the systems concept as the cornerstone of its R&D regulations. Having already spread to NASA, these processes moved throughout the aerospace industry. Even when the processes were not explicitly used, industry accepted the as­sumptions and ideas encompassed in these regulations.75

Smoke, Fire, and Recovery

Apollo’s troubles began in September 1965, when NAA’s second stage rup­tured during a structural test.91 Engineers pinpointed the fault, and in the process MSFC managers concluded that NAA’s management was to blame for shoddy workmanship. By October, the Industrial Operations manager, Brig. Gen. Edmund O’Connor, told von Braun, ‘‘The S-II program is out of con­trol.’’ He believed its management was to blame. O’Connor was equally blunt in a letter to Space and Information Systems Division (S&ID) President Har­rison Storms: ‘‘The continued inability or failure of S&ID to project with any reasonable accuracy their resource requirements, their inability to identify in a timely manner impending problems, and their inability to assess and re­late resource requirements and problem areas to schedule impact, can lead me to only one conclusion, that S&ID management does not have control of the Saturn S-II program.’’92

Phillips went immediately to NAA with a ‘‘tiger team’’ of nearly one hun­dred NASA personnel to ‘‘terrorize the contractor,’’93 reporting the team’s

Apollo with its major contractors identified. Apollo was perhaps the largest single R&D project of all time, integrating many contractors for its stages and requiring massive launch and operations facilities and organizations. Saturn V contractors not identified. Courtesy NASA.

findings in December 1965 in what later became known as the Phillips Re­port. While writing to NAA that ‘‘the right actions now’’ could improve the program, Phillips privately wrote Mueller that NAA’s president was too pas­sive. Storms, Phillips said, should ‘‘be removed as president of S&ID and be replaced by a man who will be able to quickly provide effective and unques­tionable leadership for the organization to bring the division out of trouble.’’94

NAA responded by placing Gen. Robert Greer, retired from the air force, in charge of the S-II program. Greer updated the management control cen­ter and ensured more rapid exchange and collection of information through Black Saturday meetings modeled after those in Bernard Schriever’s ballis­tic missile program. Greer also instituted forty-five-minute meetings every morning, eventually cutting back to twice a week. Greer’s reforms began to take hold but did not prevent the May 1966 loss of another test stage because of faulty procedures. NASA clamped down further, requiring NAA to develop better methods for managing and planning its work. In the summer of 1966, after two years of studies and preparation, NAA deployed work package man­agement for the S-II and Command and Service Module.95

Work package management extended project management to lower project levels and combined accounting and contracting procedures by creating a specific work package for each program task. The company assigned respon­sibility for each task to one person, a mini project manager for the task who accounted for performance, cost, and schedule in the same way and with the same tools as the overall project manager. Each work package was a ‘‘funda­mental building stone,’’ with specifications, plans, costs, and schedules to help managers in their monitoring. Prior to the development of work packages, ‘‘It was difficult to say what manager was responsible for a particular cost increase because there were 10 or 15 functional and subcontractor areas involved.’’96 In later versions, the work package numbering scheme matched that for cost accounting.

Grumman’s difficulties on the lunar module also attracted NASA attention. Troubles first appeared in schedule slips on its ground support equipment in the spring of 1966. Alarmed at Grumman’s growing costs, Phillips sent a management review team to Grumman that summer, prompting Grumman to sack the program manager, establish a program control office, and move Grumman’s vice president to the factory floor to monitor work. By fall, NASA pushed Grumman into adopting work package management.97 It did not im­mediately solve Grumman’s difficulties. The primary problem was a late start due to NASA’s delayed decision to use lunar orbit rendezvous. However, work package management and the new program control office found and resolved problems more quickly than before.

Despite these difficulties, Apollo moved briskly forward until its most se­vere crisis struck on January 27,1967. That day, astronauts and KSC personnel were performing tests in preparation for launch of the first manned Apollo mission. At 6:30 that evening, the three astronauts scheduled for that mis­sion, Virgil Grissom, Edward White, and Roger Chaffee, were in the spacecraft command module testing procedures. At 6:31, launch operators heard a cry from the astronauts over the radio, ‘‘There is a fire in here!’’ Those were their last words. All three astronauts died of asphyxiation before launch personnel reached them.98

KSC personnel immediately notified NASA headquarters. Administrator Webb hurriedly planned for the political fallout. He sent Seamans and Phillips to Florida, while he persuaded the president and Congress to let NASA per­form the investigation.99 NASA’s investigation concluded that the causes of the disaster were faulty wiring, a drastic underestimation of the dangers of an all-oxygen atmosphere, and a capsule design that precluded rapid escape. No one had realized how dangerous the combination was. NASA had used a pure oxygen atmosphere in all of its prior flights, as did air force pilots in their high-altitude flying. As Col. Frank Borman, one of NASA’s most experi­enced astronauts, put it during the Senate investigation, ‘‘Sir, I am certain that I can say now the spacecraft was extremely unsafe. I believe what the message I meant to imply was that at the time all the people associated and responsible for testing, flying, building, and piloting the spacecraft truly believed it was safe to undergo the test.’’100

Congress did not prove NASA to be negligent or incompetent. One of the investigation’s important results was a nonfinding. Despite searching long and hard, Congress did not find fault with Phillips’s management system. Phillips had already uncovered problems with NAA and had been working for some time to make improvements to its organization and performance. The management system used to organize the capsule design was NASA’s original

committee-based structure, upon which Phillips had superimposed configu­ration management. He and his management system came out unscathed.

Congressional investigations did uncover some of NASA’s dirty laundry, particularly problems with command module contractor NAA. Sen. Walter Mondale of Minnesota learned of the Stage II Phillips Report and confronted Webb about problems between NASA and NAA. Caught by surprise, Webb said he did not know of any such report, which at that moment he did not. After the hearing, he found out about it from Mueller and Phillips. Furious, Webb launched a ‘‘paper sweep’’ to search for more skeletons in the closet. The sweep uncovered a memo written by GE to Apollo spacecraft director Joseph Shea, warning Shea of the danger of fire in the command module. Shea had passed the memo on to his safety and quality assurance people, who re­sponded that no significant dangers existed. GE, already in a sensitive situa­tion because MSC considered it to be spying for headquarters, did not push it any further.101

Webb reacted angrily to these revelations. He believed OMSF had been far too independent and secretive. Webb told Seamans, ‘‘You have to penetrate the [OMSF] system, don’t let Mueller get away with bullshit.’’ The problem, according to Webb, was a lack of supervision by NASA’s executive manage­ment. Mueller had ‘‘followed the policy in Houston of obtaining the very best men they could for the senior positions, and had, as a part of the process of obtaining them, given assurances that they would have almost complete free­dom in carrying out their responsibilities.’’102

After Seamans left NASA in late 1967, Webb expressed shock at the poor management system.103 Webb probably did not realize how decentralized NASA’s management really was. Executive managers routinely delegated most decisions to lower levels. In the wake of the fire, this did not seem wise.

When NAA refused to make swift and comprehensive changes — and even expected to be paid a fee for the burned-out spacecraft—Webb called Boe­ing to see if it would take the job. Boeing said that although it did not want to take over the job, if pressed it would do so. Webb returned to NAA, de­manding that it remove S&ID head Storms, further centralize Apollo project management, eliminate any fee for the failed spacecraft, and pay for improve­ments. NAA did not take the chance that he was bluffing. NAA was extremely unhappy with the entire situation because from its viewpoint, NASA was at fault. Shortly after contract award, over NAA’s objections, NASA had directed a change from a nitrogen-oxygen atmosphere to an all-oxygen atmosphere.104

One problem uncovered during the investigation was GE’s unwillingness to contest NASA over safety issues with a pure oxygen atmosphere. At the heart of the problem was industry’s reluctance to confront NASA when indus­try was dependent on government funding. Despite his substantial political acumen, Webb appeared not to comprehend this. He had hired GE and Bell – comm to strengthen headquarters’ ability to monitor the field centers in 1962; after the fire, Webb repeated his mistake by expanding Boeing’s role from integrator of the Saturn V to integrator of the entire Apollo-Saturn system to ‘‘penetrate the OMSF system.’’ Phillips, who understood the political prob­lems inherent in the GE and Boeing integration efforts, revised the Boeing contract to avoid the negative consequences of Webb’s misconception.105 In essence, Webb wanted to use GE, Bellcomm, and Boeing as an arm of NASA headquarters to control MSC, MSFC, and KSC. This could not work because these contractors could not challenge NASA field center personnel for fear of losing their contracts.

Boeing, as part of its contract, further integrated the management system. The ‘‘teleservices network’’ connected NASA project control rooms with hard copy data transmittal, computer data transmission, and the capability to hold a teleconference involving MSC, MSFC, KSC, Michoud (where the Saturn I was manufactured), and Boeing’s facility near Seattle. Boeing copied MSFC’s program control center design at each facility.106

After the fire, NASA placed even more emphasis on achieving high quality and safety through procedural means. In September 1967, NASA set up safety offices at each field center, along with the first project safety plan. The next month, MSC established a Spacecraft Incident Investigation and Reporting Panel to look into anomalies. A month later, NAA created a Problem Assess­ment Room to report and track problems.

Phillips ordered an astounding array of program reviews to prepare for Apollo’s upcoming missions. He wrote to field center managers to ensure that they used the upcoming Design Certification Reviews to evaluate all potential single-point failures.107 In January 1968, he ordered a complete system safety review, analyzing the interaction of the mission with the hardware, astronauts, ground systems, and personnel. Other reviews included those for quality and metrology, launch vehicle and spacecraft schedules, the communications net­work, flight readiness, mission planning, subcontractors, site selection, the Lunar Receiving Laboratory, flight evaluations, anomalies, crew safety, inter­face management, software, and lunar surface activities.108

NAA’s procedures exemplified the upgraded problem reporting system. Engineers reported failures on a Problem Action Record form. Reliability engineers sent failed components to the appropriate organization, which re­sponded by filling out a Failure Analysis Report describing the physical cause of the failure and the corrective actions taken or recommended. If the orga­nization determined that an engineering change was necessary, it submitted a change request to the change boards. The program control center tracked report status, and a centralized reliability ‘‘data bank’’ recorded the problem and its resolution. Follow-up failure reports and dispositions closed all failure reports.109

Another change in the aftermath of the fire was a further strengthening of configuration management, primarily through changing CCB operating pro­cedures. An October 1967 rule disallowed nonmandatory changes for the first command and lunar modules and required the MSC Senior Board to rule on any and all changes to these spacecraft. A February 1968 ruling required man­agers to consider software changes and their ramifications in CCBs. In May 1968, Apollo Spacecraft Manager George Low specified that the MSC CCB had authority over all design and manufacturing processes.110

By 1968, tough CCB rules slowed the program as trivial changes came to the attention of top managers. Eventually, even Phillips realized that central­ization through configuration management could go too far. In September, MSC managers classified changes into two categories: Class I changes, which MSC would pass judgment upon, and Class II changes, which could be ap­proved by the contractors. Classification did not by itself help much, so in October 1968 Phillips gave Level II CCBs more authority, while higher levels ruled on schedule changes.111

The Apollo project met its technical and schedule objectives, landing men on the Moon in July 1969 and returning them safely to Earth. Anchored by configuration management, Phillips’s system weathered the storm of prob­lems uncovered through testing and Apollo’s most severe crisis, the 1967 death of the three astronauts and the ensuing investigations. Despite strenuous ef­forts, congressional critics did not find many flaws with Phillips’s manage­ment scheme and concurred with NASA that the fire resulted from a tragic underestimation of the danger.

Configuration management was Phillips’s most powerful tool. Whenever problems occurred, his almost invariable response was to strengthen configu­ration management. Having found that his favorite method could be over­used, by the end of 1968, Phillips gave lower-level CCBs more authority. Con­figuration management formed the heart ofApollo’s system and has remained at the core of NASA’s organization ever since.

Social Groups, Values, and Authority

Alliances between scientists and military officers had grown during World War II on the Manhattan Project, in the Radiation Laboratory, and in opera­tions research groups. The Cold War furthered this military-scientific partner­ship. Appealing to the imminent Soviet threat, military officers like Bernard Schriever promoted the systems approach in weapons development to quickly design and manufacture novel weapons such as ballistic missiles. Working with his scientific allies, Schriever built an organization initially run by mili­tary officers and scientists. Similarly, Army Ordnance officers allied them­selves with JPL’s research engineers to develop the Corporal missile. Both Army Ordnance and Schriever’s ‘‘Inglewood complex’’ spent immense sums of money in concurrent development, designing, testing, and manufacturing missiles as rapidly as possible. The result for Atlas and for Corporal was the same: a radically new, expensive, and unreliable weapon.

Prematurely exploding missiles created a spectacle not easily ignored. JPL’s engineering managers resolved to improve on their ad hoc methods and em­ployed the systems approach their next missile, the Sergeant. The air force’s next-generation missile was the Minuteman, on which Col. Samuel Phillips developed the system of configuration control to better manage costs and schedules. Both second-generation weapons were far more reliable than their predecessors, partly because of the switch to solid-propelled engines, and partly because of changes in organizational practices.

Over time, social measures of success changed. Initially, simply getting a rocket off the ground was a major accomplishment. Eventually, however, Congress expected that its large appropriations would buy technologies that worked reliably. Soon thereafter, congressional leaders wanted accurate cost predictions so they could weigh alternative uses for that money. Cost over­runs came to be seen as failures. This was particularly true in Europe, where leaders promoted space programs mainly to spur economic development.

The Ranger program and its aftermath illustrated the power of Congress to change organizations. Under William Pickering’s guidance, JPL used a loose matrix structure where most authority resided with the technical divisions. When Ranger’s failures exposed JPL’s organizational flaws, Congress required JPL to strengthen project management and implement more stringent pro­cedures. Pickering and JPL’s engineers resisted these changes, but Ranger’s failures weakened their credibility. When National Aeronautics and Space Administration (NASA) Administrator James Webb threatened to remove all future programs from JPL, Pickering had little choice. He gave in. Similar pressures influenced the air force in the early 1960s and the European Space Research Organisation (ESRO) in the late 1960s. Systems management was the end result in each case. The European Space Vehicle Launcher Development Organisation’s (ELDO’s) attempts to strengthen project management did not succeed, because of weaknesses inherent in its authorizing Convention and the uncooperative attitude of its member states.

The first figure illustrates the relationships between the four social groups. In the early Cold War, military officer-entrepreneurs and scientists provided the authority and methods. I distinguish here between those military officers such as Bernard Schriever who promoted new systems, and others, such as Samuel Phillips, who brought them to fruition. Schriever acted in an entre­preneurial fashion and Phillips as a classical manager. In the air force, this period lasted from roughly 1953 until 1959, the heyday of the Atlas missile, before its many test failures led to change. Schriever acted as a visionary entre­preneur, albeit in an unconventional blue uniform. JPL’s period of military entrepreneur-scientific control came from 1944 to 1952, when JPL’s research engineers developed Private and converted Corporal from research to produc­tion. In both cases, expensive, unreliable weapons led to a concentration on cost and dependability for the next missiles, leading to approaches based on engineering and managerial values. Jack James at JPL and Phillips of Minute- man typified the no-nonsense managers that demanded dependability. Un­like engineers focused on research, such as Caltech’s von Karman and Malina, most engineers focused on the design and development of technological sys-

Cold War social groups and alliances. At JPL from 1944 to 1952, and in the air force be­tween 1953 and 1959, entrepreneurial military officers and scientists (along with research engineers) formed a social alliance to promote novel weapons. After these periods, man­agers in the military and industry formed an alliance with design engineers to control costs and build dependable systems.

tems. For them, creating a product that worked was more important than creating one that was new.

NASA’s history differed somewhat from that of the air force, because in the early years of NASA, the scientists and engineers controlled their own projects and methods. At JPL, the research-based methods prevailed in the labora­tory’s early years, and again later when Pickering shifted the laboratory into the space program, and satellite launches (and failures) were frequent as JPL raced with the clock and the Soviets.1 JPL’s new projects reverted to ad hoc committees to get fast results. Similarly, former National Advisory Commit­tee for Aeronautics researcher Robert Gilruth of the Space Task Group ran the early manned programs with little interference from NASA Administra­tor Keith Glennan. Engineers and scientists made decisions locally in a highly decentralized organization. After the Ranger fiasco at JPL, and after the ar­rival of George Mueller and Samuel Phillips in the manned programs, NASA’s high-level managers and engineers quickly centralized authority. A similar story was unfolding at ESRO, originally conceived of as an engineering ser­vice organization for scientists. By 1967, commercial interests predominated and European governments changed ESRO into an engineering organization run by managers to ensure cost control.

It is more difficult to determine who, if anyone, ran ELDO. With an am­bassador as secretary-general and economic nationalism the primary driving force, ELDO did not have a single dominant group, one could argue. Neither engineers nor scientists controlled the organization. Nor could managers fos­ter the communication necessary to break national and industrial barriers. If ever there existed a purely political organization for technology development, ELDO was it.

Each social group promoted its characteristic methods. Military officers and industrial managers promoted project management to centralize author­ity and used contractor penetration to closely monitor industry. Both groups also used competition to keep contractors honest and developed cost predic­tion and control methods such as configuration management and work pack­age management. Scientists promoted analytic techniques such as statistical analysis of reliability, network mathematics, and game theory. Engineers used

Authority changes at NASA and ESRO. In early NASA and ESRO, scientists and research engineers were allied with de­sign engineers to build new technologies. After several years, both organizations shifted to more predictable development, with managers and engineers controlling events.

Systems management methods classified by the social groups that promoted them.

a variety of testing methods, inspection and statistical methods for quality assurance, and design freeze to stabilize designs.

Ultimately, systems management is a stable system because its methods and processes maintain roles for each of its constituent social groups. For sys­tems management to remain stable over many years and projects, it had to have mechanisms for its constituent social groups to effectively interact. In the end, the primary mechanism became configuration management.