Organizing ESRO’s Early Projects—with American Help

ESRO selected projects in consultation with scientific groups, a council rep­resenting the national governments, and its own scientists. Ad hoc groups recommended experiments to the Launching Programmes Advisory Commit­tee (LPAC), which in turn selected a few of them to form a satellite payload. The LPAC recommended payloads to the Scientific and Technical Committee and the Administrative and Financial Committee. These committees then pre­sented their assessments to the ESRO Council, which made the final decision. The Council passed its decision to ESRO headquarters, which then authorized ESTEC and the other ESRO organizations to begin work.9

Unlike ELDO’s, ESRO’s authority included contract placement and con­trol. The ESRO Convention required that ESRO ‘‘place orders for equipment and industrial contracts among the Member States as equitably as possible, taking into account scientific, technological, economic and geographical con­siderations.’’ To do so, ESRO created a register of member state suppliers. For items costing more than 10,000 French francs, ESRO’s financial rules required that ESRO request bids from industry, unless ESRO had ‘‘no alternative but to go directly with one supplier.’’ ESRO submitted all purchases of greater than 500,000 French francs to its Administrative and Finance Committee, along with any purchases outside of the member states.10

Although ESRO’s day-to-day affairs revolved around engineering, scien­tists heavily influenced the selection of projects and experiments. The short­term sounding rocket program consisted of seventy-one launches from Sar­dinia, Norway, Sweden, and Greece between 1964 and 1968. For the medium term, ESRO’s satellite program consisted of two spin-stabilized scientific spacecraft, known as ESRO-I and ESRO-II. Shortly thereafter, ESRO approved three more satellites: a polar orbiting satellite known as the Highly Eccen­tric Orbit Satellite (HEOS-A) and two complex attitude-stabilized spacecraft known as Thor-Delta 1 and Thor-Delta 2 (TD-1, TD-2).11

In 1963, scientists and administrators in ESRO’s Preparatory Commission initiated internal and contract feasibility studies for ESRO-I. Performed early in 1964, these contract studies contributed to the definition of the scientific payload. ESRO released its tender for ESRO-I in November 1964. After ESTEC engineers evaluated the resulting proposals, ESRO awarded several contracts in April 1965. The Laboratoire Central de Telecommunications of Paris re­ceived the contract for project management and satellite integration, and companies in Switzerland and Belgium received ‘‘associate’’ contracts.12 Each of these companies had subcontractors, including some American companies offering components not readily available in Europe, such as sun sensors, bat­teries, and test equipment.13

ESRO-II evolved at the same time — and with the same process. ESTEC scientists and engineers began internal design studies in July 1963 and awarded external design study contracts to a Belgian firm and a Swiss univer­sity.14 ESTEC engineers deliberately introduced variations in the designs that these institutions studied so as to assess different methods of attitude control.

After completion of these feasibility studies, ESTEC engineers wrote technical specifications used in the call for tenders in June 1964. In November, ESRO selected British firm Hawker Siddeley Dynamics as prime contractor, and Hawker Siddeley subcontracted to several British and French companies.15 ESTEC let separate contracts for the command, telemetry, and checkout sub­systems and also coordinated the ‘‘supply of sub-systems to the prime con­tractor.” Hawker Siddeley had responsibility for project management, speci­fications, interfaces, structures, and integration.16

The HEOS project started somewhat later and evolved similarly. In early 1964, a study group rejected a planetary mission because it would have re­quired the construction of large ground stations. Instead, the group recom­mended a spacecraft in a highly eccentric orbit around Earth. ESRO endorsed the project in July 1964, at which time ESTEC appointed a project manager. ESTEC conducted feasibility studies in late 1964 and issued calls for tender in June 1965. In November, ESTEC awarded the contract to a consortium led by Junkers Corporation.17 The Junkers team hired Lockheed Space Corporation from the United States to provide consulting and to supply high-reliability parts. Development began in January 1966. The HEOS project marked the first contract award to a consortium, a trend that would soon become the norm for European industry. Following American trends, it also marked the first use of an incentive contract instead of a cost-plus-fixed-fee contract.18

ESRO-I and ESRO-II took advantage of the National Aeronautics and Space Administration’s (NASA’s) offer to launch ESRO’s first two satellites free of charge. HEOS-A also used an American launcher, but ESRO had to pay for the service. NASA offered its junior partner technical assistance, including project training, reviewing test results, participating in joint reviews, conduct­ing launch operations, and supplying additional tracking and data acquisi­tion support. Goddard Space Flight Center (GSFC) managed NASA’s contri­butions. Through working groups and design reviews, GSFC space scientists and engineers guided ESRO personnel through their early projects.19

What did ESRO administrators, scientists, and engineers learn from GSFC personnel? GSFC managers began projects by issuing a project specification and a competitive tender. They expected the prime contractor to issue a space­craft handbook for experimenters and to attend monthly interface meetings with experimenters and other organizations. Cost-plus-fixed-fee contracts were the norm for development; administrators monitored them through monthly contractor reports. GSFC managers stressed the importance of change control, coordinating all design changes with contributing organiza­tions. The initiator of changes had to submit a written proposal to the project manager, who had final authority.20

GSFC and ESRO formed joint working groups for ESRO-I and ESRO-II so that ESRO personnel could learn from their NASA counterparts, so that NASA personnel could learn about European methods, and so that solutions for common problems and interfaces could be worked out. NASA provided representatives from its technical divisions, along with the project manager and representatives from Scout launch vehicle contractor Ling-Temco-Vought. The working groups covered topics such as mechanical and electrical inter­faces, launch and mission procedures, reliability and quality assurance, and testing and verification. The Europeans heeded American advice regarding interfaces, iteratively defining and reworking interfaces until they were con­sistent across subsystems and between the spacecraft and the launch vehicle.21

High-level ESRO administrators visited the United States in 1964. ESTEC’s technical director, chairman of the Scientific and Technical Committee, and Large Satellites Division chief visited NASA headquarters, GSFC, Princeton University, and Grumman Corporation to learn about the organizational and technical aspects of the Orbiting Astronomical Observatory project. In Feb­ruary 1965, the ESRO-I project manager and scientists visited Rice Univer­sity in Houston. After visiting Rice — and presumably NASA officials from the Manned Spacecraft Center—they visited renowned space scientist James van Allen of Iowa State University.22

With little spacecraft experience, European contractors also used American assistance when they could get it. ESRO-II prime contractor Hawker Siddeley had ‘‘a considerable amount of technical liaison’’ with Thompson-Ramo- Wooldridge (TRW). Junkers hired Lockheed as a technical and management consultant for HEOS and to procure high-reliability components. These sup­plemented other European-American industrial interactions at that time, which included Boeing’s one-third purchase of Bolkow, TRW’s establishment of Matrel Corporation with Engins Matra, North American’s cooperation with Societe d’Etudes de la Propulsion par Reaction, and Douglas Company’s co­operation with Sud Aviation.23

British organizations also assisted ESRO. A visit by ESRO administrators to the U. K. Ministry of Aviation focused on financial estimating and report­ing procedures and the use of the Program Evaluation and Review Technique (PERT). On its projects, the Ministry of Aviation placed contracts for the en­tire development and planned future expenditures by acquiring predicted fi­nancial profiles from its contractors. The ESRO visitors found that the min­istry and some of its contractors used PERT/TIME for schedule planning. Because PERT was available in Britain only through International Business Machines (IBM) computers and produced summaries intended for ‘‘PERT oriented managements which are even rarer in the U. K. than PERT oriented project teams,’’ the ministry recommended that PERT was not a good solution for scheduling and cost-estimating problems.24

ESRO’s inexperienced project personnel depended on contractors. Accord­ing to ESRO-II project manager Ants Kutzer, one important innovation was to have ESRO representatives attend all project meetings between its two major contractors, Hawker Siddeley and Engins Matra. He stated that ‘‘although un­usual … the most valuable aspect… was that the ESTEC project team gained detailed technical knowledge of the design as well as experience.’’25

Kutzer was an acute student of research and development (R&D) manage­ment, having read American studies of R&D contracting, including those by RAND and the Harvard Business School that documented American missile management methods. He followed the development of scheduling tools such as PERT as well as early systems engineering texts. To Kutzer, the lesson of these early studies and tools was that for complex projects, managers needed to deploy new methods that identified ‘‘all of the activities required to meet the end objective.’’ These methods should, Kutzer said, show complex inter­relationships and constraints, including interfaces; predict the time and cost outcome; optimize resource allocation; and be flexible enough to adapt to rapid change.26

Because of the great diversity in nationalities involved in the ESRO-II proj­ect, Kutzer believed that it needed new management techniques. He empha­sized close coordination and communications between ESRO, GSFC, and the contractors. He felt that ‘‘informal exchange of ideas and techniques’’ in the NASA-GSFC working group and numerous subgroups made ‘‘a major contri­bution to project success.’’ Kutzer discussed formal specifications and docu­ments at regular meetings and supplemented them with informal meetings. To minimize the effect of ‘‘rather exhaustive listening to a foreign language,’’ Kutzer systematized meeting agendas to standardize the vocabularies used in the meeting. So too did ESRO-I managers.27

The HEOS program borrowed extensively from American management models, resulting in thorough advanced planning, stronger project manage­ment and systems engineering, and the development of European consortia. Junkers led the winning industry team, drawing extensively on Lockheed for management ideas. Lockheed helped to bring together the Europeans’ diverse companies and traditions in the process of developing the proposal bid:

The firms had mutually coordinated their bid proposals in Europe and after­wards met in Sunnyvale to write the definitive bid text. In these weeks, very lively discussions with the experienced specialists of the American firm led to strong contact between the executives of the European firms, which became decisive for cooperation in the realization of the project. Furthermore, the par­ticipants learned to link the same ideas with the same words. . .

The consortium’s bid consisted of approximately 1,000 pages, around one-third of which concerned management and cost-estimating questions. Without the advice of the American firm, this part in particular would not have undergone such a deep treatment.28

The Junkers team bid far surpassed earlier and contemporary bids in the detail and attention given to management. Junkers won the HEOS contract by a considerable margin. Junkers team members believed that they won by such a wide margin primarily because ‘‘it could be assumed [by ESRO] with great certainty that the bidders had constructed quite realistic time and cost plans.’’29 For later ESRO projects, European teams adopted the Junkers ap­proach, including using American consultants, constructing detailed man­agement plans, and employing close-knit consortia to carry those plans out.

Both ESRO and its contractors experimented with PERT and other plan­ning techniques to determine their utility for spacecraft projects. Europeans learned of PERT through American papers and contacts and acquired it through the use of IBM computers. As an experiment, the ESRO-I prime contractor, the Laboratoire Central de Telecommunications (LCT), proposed

Подпись: Image not available.

HEOS spacecraft. On the HEOS project, European contractors formed their first consortium based on recommendations received from U. S. contractor Lockheed. Courtesy NASA.

using IBM PERT/Cost software. LCT management found the reports gener­ated very useful for analyzing completed and future activities and expenses. They delivered reports every three months to ESRO, including a cost plan, a bar chart for management, and a detailed cost report. Because ESTEC did not have PERT but wanted its own PERT plan for top-level project events, ESTEC managers updated their own network by hand from LCT’s PERT results. The ESTEC project team also generated weekly bar charts. Near the end of the program, as the spacecraft progressed in a serial fashion through testing, the project stopped using PERT, switching to simple bar charts.30

HEOS prime contractor Junkers developed sophisticated PERT networks, using a detailed monthly cycle for acquiring inputs and generating outputs. In part because Junkers’s incentive contract rewarded a launch in early 1969, Junkers emphasized the use of PERT to control schedules. It created an 800- event network for HEOS, backed by a system of Planning Change Notices that tied PERT to engineering and management changes. As LCT had done on ESRO-I, Junkers produced bar charts for managers and more detailed net­work listings for planners, and it also used PERT/Cost with generally favorable results.31

ESRO-II management also used PERT through prime contractor Hawker Siddeley but paid more attention to developing new techniques to measure project progress and to implement configuration control. Project manager Kutzer recognized that although configuration control as used by the U. S. Air Force was useful for ESRO-II systems engineering, he could not imple­ment it, because of the lack of experience and lack of detailed requirements for ESRO-II. Instead, ESTEC engineers established the requirements through the ‘‘unusual approach’’ of attending all technical and contractor meetings. They limited themselves to being ‘‘technically suspicious and taking nothing for granted,’’ and they tried to be “pessimistic about success and to find weak links,’’ to ensure strong testing, and ‘‘to support the contractors.’’32

Hawker Siddeley’s project manager developed a new process to assess progress during specification development. He created an empirical method whereby planners gave each proposed specification a ‘‘marks loading,’’ a nu­merical value that depended upon the amount of work expected. The engi­neer responsible for the specification could estimate the percentage of work completed against the specification. For example, a specification worth 50 marks loading and estimated at 60% complete would be given a current marks value of 30. By adding the total of all current marks values and dividing this sum by the total marks loading for the project, Hawker Siddeley acquired an estimate of the amount of work completed and the amount remaining.33

After completing the specifications and establishing a design baseline, Kut – zer and Hawker Siddeley’s managers implemented a configuration control process. They developed standardized forms that summarized subsystem status, including acceptance test status, reliability, defect reports, modifica­tions, and information and action items still required. When the subsystem successfully passed its tests and supplied the relevant paperwork, ESTEC issued a Design Acceptance Note that formally accepted the subsystem. After issuance of the Design Acceptance Note, engineers could modify the design only by submitting a Modification Proposal Authorization Form. It included the modification and the reasons for it; the estimated cost, schedule, and weight impact; and its effect on other subsystems, documentation, and firms.34

One European deficiency was the lack of environmental test facilities suit­able for satellite checkout. Europeans knew from American published papers and personal contacts that satellites had to be thoroughly tested on the ground, including vibration testing, charged particle radiation testing, and thermal vacuum testing. ESRO’s initial program included substantial invest­ments in facilities, including environmental test facilities. By 1966, ESTEC managers had two vacuum chambers and vibration systems under construc­tion. In 1966, ESTEC used its own vibration system and vacuum facilities to test the ESRO-I structural test and thermal models. Prior to completion of ESTEC’s facilities, ESRO and its contractors used British, French, and Ameri­can facilities.35

Largely because of their lack of environmental test facilities, European companies did not have parts that met the high standards typically associated with American satellites. All three of ESRO’s initial satellites procured high – reliability electronic components from the United States.36 When American companies could not deliver these scarce components on schedule, delays of several months ensued for ESRO-I and HEOS. Only the ESRO-II pro­gram avoided significant delays in procurement of high-reliability American parts.37

Each project acquired American expertise through direct consultation and interaction with GSFC personnel. During a design review by GSFC person­nel in October 1966, NASA experts stated that ESRO had not sufficiently ac­counted for the space thermal environment and needed to perform further analysis and testing. In response, ESRO created a complex thermal model and added a test in a French thermal vacuum chamber, both of which verified the adequacy of the original design. NASA reviewed ESRO-I launch operations plans in October 1966. After the Flight Readiness Review at ESTEC from Au­gust 12-16, 1968, ESRO managers and engineers waxed enthusiastic: ‘‘It was a great moment for the Project Team, when at the end of the Flight Readi­ness Review, the NASA experts declared ESRO-I flight ready.’’38 GSFC experts performed similar reviews for ESRO-II and HEOS between 1966 and 1968.39

After some initial problems, ESRO’s satellites operated successfully. ESRO – II launched in May 1967 but never made it into orbit, as NASA’s Scout launcher exploded during ascent. ESRO regrouped and successfully launched a second model in May 1968. ESRO-I successfully launched in October 1968, and HEOS in December.40

ESRO personnel began their first projects recognizing their own inexperi­ence and took advantage of NASA’s offer to help, both in launching their first two satellites for free and in training ESRO personnel in spacecraft de­sign and management. European managers, engineers, and scientists visited the United States to learn American methods, and their American counter­parts reciprocated by visiting ESTEC during working group meetings, de­sign reviews, and Flight Readiness Reviews for ESRO’s satellite projects. GSFC personnel gave substantial help to ESRO, as did American contractors TRW and Lockheed to ESRO’s prime contractors Hawker Siddeley and Junkers for ESRO-II and HEOS. ESRO and its contractors used American models for its testing programs, planning methods, configuration control, and reliability as­sessment. They also acquired and used PERT with the help of IBM computers. On HEOS, Lockheed advised European contractors to emphasize manage­ment issues, leading to a strong consortium that won the bid by a large mar­gin. The Junkers consortium’s successful bid was the model for contractor consortia on later bid opportunities. The technical success of the satellites ESRO launched in 1968 and 1969 showed the value of ESRO’s methods.