Category AIRCRAFT

McDonnell Douglas F-4 Phantom миш-гоіе combat aircraft

image146

The first upgraded Peace Icarus F-4E for Greece made its maiden flight on 28 April 1999. The bulk of the actual upgrade is being handled by HAI.

 

T

he McDonnell F-4 Phantom was originally designed as e shipboard interceptor for the USN and USMC. The prototype (XF4H-1) first flew on 27 May 1958. The first production version was The F-4B None of the naval versions remain in jse as fighters and even the handful operated by test agenc:es have now been_retired. saving only QF-4INI/S drones in service. I he USAF’s initial F-4C variant was followed by the F-4D optimised for air-to-ground operations. All US F-4C/Ds have been retired, but the model remains active n Iran end Sooth Korea.

The definitive F-4E for the USAF first flew in June 1967, and introduced a 20-miri cannon fitted under the nose. F-4Es remains in service with Egypt, Greece, Iran, Israel, South Korea and Turkey. The type has been withdrawn from US service and many have been converted to QF-4E target drones.

The F-4G ‘Wild Weasel’ anti-radar variant resulted from the conversion of 116 F-4E airframes. Deleting the integral cannon and adding an APFi-38 RHAWS. They were the last US Phantoms to see active service, in the 1991 Gulf War. The survivors have been converted to QF-4G drores.

Five irso’ Pnantom operators have upgraded their surviving aircraft, extending airframe ives and adding modern radar, improved avionics and self- defence systems. In the mid-1980s Israeli launched the Kurnass 2000 upgrade, which adds a completely new mission avionics package to ts
remaining F-4Es and RF-4E/RF-4E(S) Oref (raven) reconnaissance aircraft. Israel is now upgrading Turkish F-4Es to Phantom 2000 standard with EL/IV1-2032 multi-mode radars, a digita cockoit anc enhanced weapons capability.

The Luftwaffe’s F-4F ICE (Improved Combat Efficiency) upgrade added the APG-65 radar and AMRAAM capability to about 150 aircraft. DASA is also upgrading 39 Greek F-4Es to a similar level, under the Peace Icarus programme. Japan operates about 90 upgraded F-4EJ Kais, with APG-66 ‘adars, expanded weapons capability and updated avionics.

The reconnaissance-configured RF-4Cand RF-4E have a modified nose housing ootical cameras, e. ectronic equipment,. IR sensors and a mapping/ terrain avoidance radar. RF-4Es remain active with Greece, Iran, Turkey and Israel, while Spain operates modernised RF-4Cs. Israel’s armed RF-4Es are equipped with ndigenous reconnaissance and avionics equipment and have fixed refuelling probes. Japan operates 14 UQgraded RF-4EJ Kais with new radars and modernised recce systems.

Подпись:Specification: McDonnell Douglas F-4E Phantom II

Powerplant: two r9.82-klN (17,900-lb) General Electric J79-GET7A afterburning turbojets Dimensions: wing span 11.71 m (38 ft b n), length 19.70 n (03 ft); height 5.02 mfl6 ft 5/ in) Weights: basic empty 13757 kg I33.328 ib); combat take-off 18818 kg (41,487 lb): maximum take-off 28C30 kc (51,795 lb) Performance: maximum level speed 2393 kmh (1,485 mpn), maximum rate of climb a: sea level 18715 m (31,400 ft) per minute: service ceiling 18Э75 in [62,250 ft); area interception combat radius 1266 km (786 miles)

Armament: one V151 20-mrr cannon with 640 rounds, maximum ordnance 7253 <п 116.0DCI lb!

Boeing F-15E, F-151 Strike Eagle

image44

The F-15E is arguably the best all-round combat aircraft in the world today as it combines the fighter genes of the F-15C with a precision attack capability.

 

T

he F-15 was originally intended as dual-role air­craft, incorporating ат-to-ground capability and wired for the carriage of air-to-ground ordnance, This ground attack role was abandoned in 1975, but later resurrected in 19R2, when the second TF-15A was modified as the privately-developed ‘Strike Eagle’ It was conceived as a replacement for the F-111. Development of the the resulting F-15E began in February 1984 and the first production air­craft made its maiden flight on 11 Decemoer 1986, The F-15E’s primary mission is air-to-ground strike, for which it carries a wide range of weapons on two underwing pylons, underfuselage pylons and 12 bomb racks mounted directly on the CFTs. It introduces redesigned controls, a wide field of vision HUD, and three multi-purpose CRTs displaying navigation, weapons delivery and systems operations, The rear-cockpit WSO employs four multi-purpose CRT terminals for radar, weapon selection and monitoring of enemy tracking systems. The WSO also operates an AN/APG-70 synthetic aperture radar and LANTIRN navigation and targeting pods. The navigation pod incorporates its own TFR, which can be linked to the aircraft’s flight control system to allow automatic coupled terrain following flight. The targeting pod allows the aircraft to self-desig­
nate LGBs. The F-15E’s original F100-PW-220 turbofans were soon replaced by P&W’s F100-PW – 229 engine under the Improved Performance Engine competitive programme,

The F-15E has been exported to Israel as the F-151 Ra’am, and to Egypt as the F-15S Israel has acquired 25 F-15ls and the first two aircraft were delivered in January 1998. Israel’s F-15ls are identi­cal to USAF F-15Es, but the Saudi F-15S aircraft have been downgraded, with some air-to-air and air-to-ground capabilities deleted. The first of 72 F-15Ss made its maiden flight on 19 June 1995. Boeing has offered another version of the the F-15Er the F-15K, to South Korea.

The USAF took delivery of 209 F-15Fs between 1987 and 1994, A follow-o batch of 17 aircraft was delivered in 2000, bringing that total up to 226 aircraft. These F-15Es were equipped with new advanced data processors, a new digital mapping system, provisions for an upgraded Programmable Armament Control System, expanded smart weapons carriage capability (to include JDAM), and an embedded Global Positioning Sysiem/lnertial Navigation System for increased accuracy. The USAF plans to upgrade all its Strike Eagles to this standard.

Подпись: The F-15E is a long-range deep strike aircraft, with both conventional and nuclear weapons capability. This example is from the Lakenheath-based 43Ih FW. Specification: Boeing F-15E Eagle Powerplant: wo 129.45-kN (29.100-lb)

Pratt & Whitney F’OO-PW-229 turbofans Dimensions: wing span 13.05 m(42 ft 10 in); length 19.43 m (63 ft 9 in); height 5.63 m (18 ft 5.5 in)

Weights: operating empty 14379 kg (3′ ,700 lb); maximum take-off 36741 kg (81.000 lb) Performance: maximum evel speed ‘clean’ at high altitude more :han 2655 kmh (1.550 mph); maximum rate of climb at sea level more than 15240 m (50,000 ft) Der minute; combat radius 61270 km (790 miles)

Armament: one M61A1 20-mm cannon with 940 rounds; maximum ordnance load of 11113 kg (24.500 lb)

Eurocopter Puma, Super Puma, Cougar Transport helicopter

image102

The reliable and well-proven Puma HC. Mk 1 (built by Westland) is the mainstay of the RAF’s Support Helicopter Force.

 

T

he Aerospatiale (now Eurocopter} Puma is a medium-lift transport helicopter, designed to a French army specification, 2nd is in service with air arms around the globe, The basic Puma which first flew in April 1965 carries 15 fully-equipped troops or 2 tonnes of internal cargo (2.5 tonnes under­slung). Inftia military versions comprised; SA 330B for the ALAT (Aviation Legere de I’Armee de Terre), SA 330C for military export and SA 330E (RAF Puma HC. Mk 1) Availability of uprated Turmo IVC engines in 1974 better equipped the Puma for ‘hot – and-high’ operations and the French air force oought~37 of the resulting military SA 330H var ant as SA 330Bas. Glass-f’bre mtors became available n 1977, uprating the H to SA 330L standard.

In 1978 Aerospatiale introduced the SA 332 Super Puma, re-engined with pa r of more powerful Tumomeca Makila 1A turboshafts. The initial тііітагу version, the AS 332B. was no larger than the orig nal Purr, a, but n 1979 1he AS 332M (military) introduced a 76-cm (30-in) increase in cabin length.

In the ate 1980s, the basic military Super Puma was split along two lines, the AS 332 Ml Super Puma Mk I and the AS 332M2 Super Puma Mk II he M.< was an AS 332M (stretched AS 332B) fitted with the Makila 1A1 engines. The Mk II was stretched again, by a further 0.76 m (2 ft 6 in). In 1990, the military line was reorganised once more, as the AS 532 Cougar Versions included the AS 532UC (formerly AS 332B1), a short-fuse, age
transport; AS 532UL (formerly AS 332M11 basic Transport; AS 532AC, armed version of the AS 532UC; AS 532AL, armed version of the AS 532UL. A soecialised naval version of the long-fuselage AS 332F1 was CSveloped as the AS 532SC, with the Royal Saudi Navy as its launch customer. This version could be armed with Exocet anti-ship missiles. French Army Aviation has developed a version of the AS 532UL to carry its Horizon battlefield surveillance radar.

The AS 532U2 (formerly AS 322M2) was the stretched, up-engined military transport version, while the AS 532A2 Cougar Mk II was its armed derivative. The AS 532A2 s tne basic airfranve used for the French air force’s new RESCO Combat Search and Rescue helicopter,

The firal (basic) Cougar variant was developed in 1997. This was tne AS 532UB Cougar 100, a sim­plified ‘low cost’ basic transport version witnout the externa! sponsons, revised main undercarriage struts erd a new systems fit. An armed version was designated the AS 532AB

Подпись: The Royal Saudi Navy is a customer for the armed AS 532A2 Cougar Mk //, which is currently the ultimate evolution of the Puma family. Specification; Eurocopter AS 532A2 Cougar Powerplant two 1235-kW 11,657 hp) ТигЬотбоа Makila 1A2 turoosliafts Dimensions: main rotor diameter 16.20 m (53 ft 1У in); length overall, rotors turning ‘9.5 in (03 It V in) and fuselage ‘5.79 m (55 ft A in); height overall 4.97 n П 0 ft 4 in) Weights: empty 5П12 kg |11,05(1 lh); maximum take-off 11340 kg (25,Out) lb| Performance: тахітіїїт cruising speed 277 kmh (172 mph). maximum rate of climb at sea level 441 m (1,447 ft) ner minute; service cei ing 5’ 80 m {17,090 ft); hovering celling 2699 m (8.320 fll in ground effect and 1=00 n (B,24G ft| nut nf ground efffic:; mnge 926 km (575 mites)

McDonnell Douglas KC-10 Extender

image148

The KC-10A Extender is a more capable tanker/transport than the Boeing KC-135, but it is available in far fewer numbers.

 

T

he McDonnell Douglas KC-10A Extender strategic tanker/transport is based or tne DC-10 Series 3QCF commercial fre ghter/airliner and was developed to satisfy the USAF’s ATCA (Advancec Tanker Cargo Aircraft) requirement. An in tial oatch of 16 aircraft was first ordered in 1977 and procure­ment was later increased to 60 aircaft. The first Extender made its maiden flight on 12 July 1980 and deliveries to SAC took place between March 1981’and November 1988.

Changes from the commercial DC-10 standard include provision of an IFR receptacle above the cockpit, an improved cargo handling system and some military avionics. A McDonnell Douglas Advanced Aerial Refuelling Boom (AARB) is fitted beneath the aft fuselage. The digital FBW control boom can transfer fuel at a rate of 5678 litres (1,249 Imp gal) per minute. The KC-10 is also fitted with a hose and reel unit :n the starboard aft fuse­lage and can thus refuel Navy and USMC aircraft during the same mission. This is a unique capability and one that makes it much more versatile than the KC-135. More recently, wing-mounted HDU pods have been fitted to all KC-10s so that three receiver aircraft may be refuelled simultaneously with this very capable system.

The KC-10’s substantial fuei-off/oad and cargo­carrying ability makes it well suited to supporting fighter deployments over long distances.

The wring ano fuselage fuel cells contain approxr mate y 68610 itres (15,092 Imp gal) and are nter – connected with tne aircraft’s own basic fuel system. The KC-10 is aole to transfer 90/18 kg (200,000 lb) of fuel to a receiver 3540 km (2,200 miles) from its home base and return to base. For conventional strategic transport missions the KC-10 has a port-side cargo door and carries standard USAF pallets, bulk cargo or wheeled vehicles. Dual tanker/transport missions include accompanying deploying fighters.

Two ex-Martinair DC-10-30CFs were procured by the Netherlands for conversion by McDonnell Douglas to tanker configuration, and entered service with the KLU in 1995 as the KDC-10. Unlike the KC-10 refuelling operator who guides the refu­elling through an optical window, the KDC-10 ‘Boomer’ uses a Three camera TV system to give a ‘three dimensional’ view. The Dutch tankers have been used to support F-16 deployments to Red Flag’ and other exercises in the US

the USAF now has a fleet of 59 KC-10s after one was destroyed in an accident on the ground. All active aircraft are operated by Air Mobility Command, based principally at McGuire AFR (305th AMW) and Travis AFB (60th AMW).

image149

Specification: McDonnell Douglas KC-10A Extender

Powerplant; tiree 233.53-kN (52,50C-lh| General Electric CF6-50C2 turbofans Dimensions: wing span £7 34 m (155 It 4 in), length 55.35 m (181 ft 7 in); heigh: 17.70 m (58 ft 1 in)

Weights: operating empty 103331 kg 1240.065 lb): maximum take-off 267620 kg 1590,000 lb) maximum payload 73843 kg (163,403 lb) of cargo

Performance: maximum level speed 382 Sctnh (610 mph). maximum cruising speed 908 kmb (564 mph); maximum rate ol climb at sea level 884 m 12,900 ft) per minute: maximum range with maximum cargo 7032 km (4.370 miles)

 

Boeing F/A-18A, В, C, D Hornet

image46

This VFA-82 F/A-18C is carrying a toad of eight 1,000-lb Mk 83 general purpose bombs, plus two A/M-7 Sparrow and two АІМ-9 Sidewinder A AMs.

 

T

he Hornet was a more sophisticated navalised derivative of the Northrop YF-17, which was developed in its final form in partnership with McDonnell Douglas (now Boeing). The first of 11 pre-production aircraft made the Hornet’s maiden flight on 18 November 1978 and production followed of 371 F/A-18As. A two-seater Hornet version was initially designated TF-18A, before becoming the F/A-18B Basically identical to the F/A-18A, provision of a second seat m tandem was accomplished at a six per cent cut in fuel capacity.

The F/A-18 was revolutionary for introducing a genuinely multi-ro! e capability and the first truly modern fighter cockpit. The pilot has three multi­function displays and true HOTAS controls, which can switch easily from the air-to-ground role to air-to-air or defence suppression duties. The F/A-1 8’s dogfighting capability is remarkable, advanced wing design with large slotted LERXcs conferring excellent nigh-Alpha capability and turn performance Similarly, the multi-mode APG-65 radar is as effective at putting bombs with high accuracy on target as it is at detecting and engaging multiple aifborne targets.

The improved F/A-18C was first flown in September 1986 An expanded weapons capability introduced the AIM-120 AMRAAM, imaging IR AGM-65 missiles end other weapons. The F/A-18C also features an avionics upgrade with new AN/ALR-67 RHAWS, provision for the AN/ALQ-165
airborne self-pro:ection jammer (ASPJ) and improvements to mission computer equipment. After 137 baselfro F/A-18CS had beer delivered, production switched to a night-attack capable version, featuring compatibility with Cat’s Eyes PNVGs, a Hughes AN/AAR-50 TINS (Thermal Imaging Navigation Set) pod, externally-carried AN/AAS-38 targeting FLIP pod and colour MFDs.

The two-seat F/A-18D trainer is broadly similar to the single-seat F/A-18C. However, the US Marine Corps has deveioped a sophisticated two crew combat-capable version, the Night Attack F/A-18D (originally known as the F/A-18D + J. F/A-18D$ can also be fitted with the ATARS recon­naissance system, fitted in a redesigned nose.

F/A-18A/Bs were exported to Australia (57/18 AF-18A/BS), Canada (98/40 CF-188A/Bs) and Spain (60/12). F/A-18C/Ds have been sold to Finland (57/7), Kuwait (32/8) and Switzerland (26/8). The last of 1,479 first-generation Hornets was delivered in late 2000, and production has now moved on to the larger, more advanced F/A-18E/F Super Hornet,

A ‘aggressor’ camouflage scheme marks this Hornet as an aircraft from the Naval Strike and Air Warfare Center, the unit now responsible for ‘Topgun’.


image47Specification: Boeing F/A-18C Hornet Powerplant: two 73.73-kN (17.700-lbl General Electric MU’! GE-402 lurbofans Dimensions: wing span 12.Зі n |40 fl 5 in) with :ip-mcunted AAMs, lencth 17.07 m (55 ft): he ght 4.66 m (15 It Sin)

Weights: empty ‘CFfab kg (23,050 lb), normal ’.axe-oil 16652 kg (36.710 ib) fighter mission, or 23541 kg (51,900 lb) attack mission Performance: maximum level speed nrore than 191bkmh(1,’OOmph); maximum rate Ы climb at sea level 13715 m (45,000 ftl per minute, combat radius over 740 km (460 miles) Armament: one M61A1 20-mm cannon with 570 rounds, maximum ordnance load 7031 kg (15.5001b)

image48

Under current plans the F/A-18E will replace the US Navy’s early-nwdel Hornets, while the two-seat F/A-18E/F will replace the F-14 Tomcat.

 

Подпись: Specification: Boeing F/A-18E/F Super Hornet Powcrplant: two 97.9 kN (22,000-lb) General Electric F414GE-400 afterburning lurbofans Dimensions: wing span 13.62 m (44 ft 8/ inf with tip-mounted AAMs; length 18.31 m [SDft Min); height4.88m{16 ft) Weights: emery 13.197 kg (29,574 lb); normal take off 29927 kg (66.000 lb), attack mission Performance: maximum level speed Iv'ach 1.8; combat ceiling 15243 rr (50,000 III; maximum combat radius 760 km (477 miles) Armament: one №61 Ai 20-mm cannon with 570 rounds, maximum ordnance load 8051 kg (17,750 lb)
image49

When the US Navy was forced to cancel the General Dynamics A-12 long-range, stealthy attack aircraft, :t still faced with the problem of how to replace its A-6 Intruders end early-mode* F/A-18 Hornets. The chosen solution, was to develop an improved version of the Hornet, albeit one that would be suostanrially different to existing aircraft. This Super Hornet was first proposed in 1991 and the engineering and manufacturing development (EMD) contract was officially awarded to McDonnel Doug ss in Jjne 1992. Sir. cle-sear Super Hornets were given the designation F/A-18E, while the two-seat version became the F/A-18F

The Super Hornet is based on the basic F/A-18C airframe, but is longer and heaver with ncreasec wing a^es, larger tai surfaces and extended leading – edge extensions. Many elements, such as the eng ne intakes, have been redesigned to make the aircraft stealthier. The Super Hornet can carry more fuel than earlier Hornets, ard has a mucn higher landing weight limit. The final production standard will be fitted with the AESA radar and a very advanced mission computer fit and digital cockpit.

The Super Hornet EMD contract covered seven prototypes, five F/A-18Es and two F/A-18Fs. The first Super Hornet (an E) made its maiden flight on

The F/A-18E/F has a reprofiled, deeper wing with larger control surfaces than the F/A-18C/D, and a distinctive ‘dogtooth’ on the wing’s leading-edge.

29 November 1995. On H February 1996 the first aircraft arrived at the Naval Air Warfare Centre, Patuxent River, for a three-year test programme. The fifth, and final EMD prototype made its maiden flight or 11 October 1996. Carrier trials began in mid-1996 and low-rate in ifaI production was approved in March 1997 (the same year that Boeing took over tne programme from McDonnell Douglas). By 12 January 1999 the Super Hornet test fleet nac flown 4,000 hours.

Durirg flight tests the F/A-18E/F encountered a number of unexpected problems, and suffered much criticism for poor handling and a lack of performance. With the Joint Strike Fighter facing an uncertain future, the Super Hornet is the only next-generation fighter immediately availaole to the US Navy, and so the rectification of any prob­lems with the aircraft was of tne highest priority.

Ir November 1999 tne F/A-18E/F passed its critics Ooeratioral Evaluation and achieved its initial oper­ating capability in 2000. The first active squadron is VFA-122, which was establ shea at NAS Lem,00re, in January 1999. The JS Navy hopes to acquire /8b Super Hornets. Boeing is now offering a SEAD version of the F/A-18E/F to replace the EA-6B Prowler, dubbed the F/A-18C2W or the ‘Growler’.

Подпись: The T-45C is the latest version of the Goshawk. It is fitted with the ‘Cockpit 21' system, adding two new monochrome multi-function displays for each pilot.

At the beginning of the 1980s the US Navy launched its VTXTS requirement, to find a replacement for its TA-4J and T-2C carrier-capable trainers. In November 1981, a modified version of the British Aerospace (now BAE SYSTEMS) Hawk was chosen, ■following a fierce competition. This aircraft was selected by the US Navy as its T45TS (Training System), with McDonnell Douglas {now Boeing) becoming the prime contractor. The principal sub-contractor was British Aerospace, which built the wings, centre and rear fjselaae, fin, tailplane, windscreen, canopy and flying controls. As first proposed there were to be two vanants, a ‘wet’ T-45A fitted ‘or carr’er operations and a ‘dry’ T-45B restricted to lane-based training. Life extension of the T-2 and TA-4J led to a decision to acquire 300 T~45As only (later reduced to 187).

In order to tailor the basic Hawk airframe to meet stringent US Navy requirements ‘or carrier operations, the aircraft has a strengthened twin nosegear, compatible with its ship’s steam catapu ts. The main gear is redesigned, with longer stroke oleos. Fir neight and tailplane span are increased end a single ventral fin is added. The ventral airbrake is replaced by two fuselage side-mounted units. The T-45 has new full-span leading-edge sets and is fitted with an arrester hook, US Navy standard cockpit instrumentation and radios, Martin-Baker Mk 14 NACES ejection seats and a rev;sed fuel system.

The T-45A was given the name Goshawk and work on two prototypes began in February 1986. The first T-45 made its maiden flight on 16 April 1988 and an aircraft made its first carrier landing (aboard the USS John F. Kennedy! on 4 December 1991. The first squadron to be equioped with T-45As was VT-21, part of Training Wing 2, based at NAS Kingsville, Texas. This unit was declared ope’ational in October 1993, Full-rate T-45A produc­tion was authorised in 1995.

In 1994 a new advanced ‘glass’ cockpit fit, called ‘Cockpit 21’, was flown in a deve. opment aircraft ‘or the first time. This makes the T-45 more compatible with the curent generation of Navy combat aircraft and it s olanned to be refitted to al earlier aircraft. Beginning in 1997 the new digital cockpit systems were fitted to all new-built і-45s (from the 87th example onwards) and these upgraded aircraft have been designated T-45Cs.

-45Cs can be identified by the GPS antenna fitted to their spines. T-45C de iveries are scheduled to continue until 2005.

Подпись: Specification: Boeing T-45C Goshawk Powerplant: oie 26.00 kN (5.345 !t> St) Ra Is- ПоусеЯигЬотёсэ F405-RP.-4QI tutbofan Dimensions: wing span Э.ЗЭ in ІЗС ft 9K in!: lenglfi 11.95 m (39 It 4 in) including probe: height 4.26 m (14 ft I Weights: emoty 4450 kg 19,8.14 lh|; maximum take-off 6387 kg (14,081 lb) Performance: maximum level speed 'clean' at 2440 m (8.000 ft) 1006 kirn (G25 mph); maximum rate of cl:rb at sea level 2440 m (8,000 ft* per minute: service ceiling 12200rn |40,COO ft); take-ad distance to 15 m {50 ft) 1100 m ІЗ.бЮШ at maximum take-off weight; ferry range on internal luei 1532 km {952 miles)
image51

The T-45A is based on the Hawk Mk 60, but a number of important changes have been made for its demanding carrier training role,

image52
The US Joint Strike Fighter (JSF) programme is an ambitious effort to develop a replacement for an entire generation of USAF, US Navy and US Marine Corps aircraft using one common ‘stealthy’ airframe. The JSF is earmarked to replace the F-16, F/A-18, AV-8B and other types in the US ‘nventory, and will also be exportable to customers world wide. The JSF has its roots in a number of studies for advanced, affordable combat aircraft that were launched in the early 1990s. These were merged into the JAST (Joint Advanced Strike Technology) programme in 1995, which later became JSF.

Three contractors – Boeing, Lockheed Martin and McDonnell Douglas – were selected by the US DoD to submit JSF designs. In November 1996 Boeing and Lockheed Martin were selected to build two demonstrator aircraft, essentially JSF prototypes, to conduct a Concept Demonstration Program At the end of this period one single contractor would be chosen to build its winning JSF design. Boeing’s CDP aircraft was given the designation X-32.

While the JSF concept demands a common airframe, there will be different versions for the throe main US users, and two distinct variants of the basic design. The USAF and the US Navy are looking for a conventional take-off and landing
(CTOL) capability, though Navy aircraft will have io be modified for carrier operations. The Marines need aircraft with short take-off and vertical landing (STOVL) capability to replace the Harrier, so the USMC’s JSF variant will have to have a modified propulsion system for vertical lift. Britain’s Fleet Air Arm (Royal Navy) has also signed up to acquire the STOVL JSF to replace its Sea Harriers.

Boeing has built two different CDP aircraft. The CTOL X-32A and the STOVL X-32B The X-32A made its maiden flight on 18 September 2000, while the X-32B flew for the first time on 29 March 2001. Boeing’s JSF design is far more unconven­tional than its rival, the Lockheed Martin X-35. and features a one-piece blended wing, with twin all – moving vertical tails and inset rudders. The STOVL version has two directional, vemrai exhaust nozzles. The Х-32’s high wing layout was chosen to aid STOVL performance and the chin-mounted air intake ‘droops’ to allow a greater intake of engine air for STOVL flight and hovering.

Подпись: Specification: Boeing X-32A JSF (CDP) PowerplanU one Pratt & Whitney JSF119-614 turbofan, with two-dimensional cruising поггіе Dimensions: wing span 10.97 m (36 ft); length 13.65 m 1-ОЇ ft 8 in) excluding probe: height 400 m (13 fit in) Weights: maximum take-off 16692 kg 136,800 lb) Performance: maximum level speed over Mach 1.0; Armament; one internal Bk 27 27-mm cannon (Full specification not available)

A decision date on the winning JSF design has been pushed back several tirr. es, but is now planned before the end of 2001. The first operational aircraft are expected to be the Marines’ STOVL variants in 2008, followed by the CTOL aircraft in 2010.

Подпись: The first WAH-64D Longbow Apache was handed over to the UK Army Air Corps in March 2000 and deliveries will continue until 2003.
Hughes’ AH-64A Apache was developed to meet a US Army requirement for an advanced attack helicopter (AAH) suitable for the all-weather day/night anti-armour role. The AH-64 is a two-seat helicopter with armoured structure, advanced crew protection systems, avionics, electro-optics, and weapon-control systems, including the TADS/PNVS (Target Acquisition and Designation System/Pilot’s Wight Vision Sensor). Hughes was bought by McDonnell Douglas in 1984, which became McDonnell Douglas Helicopters 1985. In 1997 McDonnell Douglas was itself taken over by Boeing The YAH-64 prototype first flew on 30 September 1975, The production-standard AH-64A entered US Army Aviation service in April 1986 and the last of 821 AH-64As delivered to the Army was handed over on 30 April 1996. The first export cus­tomer for the AH-64A was Israel, in 1990. Subsequent customers included Saudi Arabia, the UAE, Egypt and Greece.

In January 1991 Army AH-64As flew the very first mission of Operation Desert Storm, attacking radar positions inside Iraq The lessons learned from Desert Storm fed directly into a new and substantially improved version of the AH-64, the AH-64D, This aircraft is designed to use the Longbow millimetre – wave radar, which significantly increases the Apache’s ability to detect, classify and identify targets at long ranges. AH-64Ds fitted with the Longbow radar (mounted above the main rotor) are known as

AH-64D Longbow Apaches, and are armed with a new version of the Hellfire anti-tank missile, the AGM-114L (or Longbow Hellfire). This radar-guided weapon can be fired from concealed positions and does away with the need to remain in line-of-sight contact demanded by the standard laser-guided Hellfire missile. The first of six AH-64D prototypes flew on 15 April 1992.

The US Army plans to remanufacture 501 AH-64As as Longbow Apaches, Work on the first batch of 232 aircraft began in 1995 and about 170 aircraft had been delivered by mid-2001. A second batch of 269 AH-64Ds will be delivered between 2002 and 2006. The AH-64D has been ordered by the Netherlands (30), Singapore (9) and the UK (67). The Dutch AH-64Ds will not be fitted with the Longbow radar. The UK’s Apaches are being assembled by Westland, as WAH-64Ds. Egypt and Israel are upgrading some of their existing AH-64As to AH 64D standard. The US Army also plans to replace the TADS/PNVS target sight with the next – generation Arrowhead system.

Greece was the first European customer for the Apache, and took delivery of its first AH-64As in June 1995. A total of 20 are now in service.


Boeing F/A-18A, В, C, D Hornet

Specification: Boeing AH-64D Apache Power plant: two 342-kW (1.800-hp) General Electric T700-GE-701C turboshafts Dimensions: main rotor diameter 14.63 m (48 ft); length overall, rotors turning 17.76 m (58 ft 3/ in) and fuselage 14.97 m (49 ft 1.5 in), height overall 4 63 m (15 ft 3.5 inj Weights: empty 5165 kg (11.387 lb), maximum take-off 9525 kg (21,000 lb)

Performance: maximum level speed clean 293 kmh (182 mph); maximum vertical rate of climb at sea level 762 m (2,500 ft) per minute; range 428 km. 300 miles) with internal fuel Armament: one M230 Chain Gun 30-mm cannon with 1.200 rounds, with 2841 – kg (6,263-lb) or ordnance

 

image55

United States Heavylift tactical transport helicopter

image56

The Royal Netherlands Air Force’s Chinooks are CH-47Ds that have been fitted with the ‘glass’ cockpit systems of the CH-47SD.

 

T

he Boeing CH-47 Chinook (originally Boeing Vertol) is the US Army’s standard medium-lift helicopter and utilises Vertol’s proven twin-rotor concept with externally-mounted engines. The first of 350 CH-47As was first flown on 21 September 1961 and the type entered service in August 1962. The subsequent CH-47B (108 built) had uprated engines and increased-diameter rotor blades. The CH-47C introduced greater improvements, including further uprated engines and additional fuel. A total of 270 was built, of which 182 were retrofitted with composite blades and crashworthy fuel systems. CH-47Cs were also sold to Argentina, Australia, Egypt, Greece, Iran, Libya, Morocco. Spain and the UK {RAF designation Chinook HC. Mk 1/1B)

The US Army standardised all its_earlier Chinooks as CH-47Ds, beginning in 1982. The CH-47D is a mix of conversions from all three former variants and some new-build machines. The full programme covers 403 aircraft for Army Aviation, re-engined with T55-L-712 turboshafts (with a greater emer­gency power reserve and greater battle damage resistance), a new NVG-compatible flight deck and triple cargo hooks. The CH-47D can carry up to 55 troops, or a wide variety of loads up to a maximum of 10341 kg (22,798 lb) externally or 6308 kg
(13,907 lb) internally The CH-47D International

Chinook (Model 414) is an export-optimised variant. US Army re-equipment with the CH-47D is now complete, the variant in service with active – duty. National Guard and Reserve units. Foreign operators include Australia, Greece, Korea, the Netherlands, Spain, Thailand, and the UK (Chinook HC. Mk 2/2A). In Japan Kawasaki has built CH-47Ds under licence as the CH-47J and has also developed the improved FLIR and radar-equipped CH-47JA The latest Boeing-built version of the Chinook is the ‘Super D’ or CH-47SD, fitted with a ‘glass’ EFIS cockpit, radar and enlarged fuel tanks {similar to those of the MH-47E). Customers include Singapore and Taiwan.

The US Army’s 25 MH-47E special operations aircraft are used for covert infil/exfil work. They have a fixed IFR probe, NVG-compatible advanced cockpit displays, jam-resistant communications, a terrain-following and mapping radar and AAQ-16 FLIR. Comprehensive defences include missile-, laser – and radar-warning receivers, jammers and chaff/flare dispensers. MH-47Es are armed with M-134 0.30-in mini-guns. The UK is planning to acquire eight similarly-modified versions (based on the CH-47SD) as the Chinook HC. Mk 3

Подпись: In 1990 the RAF decided to upgrade its Chinook HC.Mk 1s to HC.Mk 2 (CH-47D) standard. Following their overhaul by Boeing, deliveries began in 1993. Specification; Boeing CH-47D Chinook Powerplant: two 2237-kW (3,000-tip)

Textron Lycoming T55-L-712 turboshafts Dimensions: rotor diameter, each 18 29 m (SO ft); length, rotors turning 30.14 m (98 ft 1Q/I ml and fuselage 15.54 m [51 ft 0 in); height 5.77 m (18 ft 11 in) to lop of roar rotor head Weights: empty 10151 kg (22,379 lb]; maximum take-off 22579 kg (59.000 lb); maximum payload 10341 kg (22.798 lb) Performance: maximum cruising speed at optimum altitude 256 kmh (159 mph); maximum rate of climb at sea level Б69 m (2.195 ft) per minute; service ceiling 6735 m (22,100 ft); operational radius between 185 and 56 km (115 and 35 miles)

 

T

he civil AS 350B Ecureuil (Squirrel) led to the

militarised AS 350L which first Hew in March 1985. Powered by an Arriel ID turboshaft, the AS 350L later became the AS 350L1 when powered by the 732-shp (546-kW) Arriel 1D1 turooshaft. A military version of the twin-engined AS 355 Twin Squirrel, the AS 355M, was developed in 1988/89. France was the primary customer for this version with the air force acquiring 52 aircraft. An export version was dubbed AS 355M2

In January 1990 Aerospatiale (now Eurocopter) renamed The single-engined military variants as the AS 550 Fennec and twin-engined aircraft as the AS 555 Fennec Variants included the AS 550U2 transport, AS 550A2 cannon-armed version, AS 550C2 missile-armed version. AS 550C2 naval utility version, AS 550C2 armed naval version, AS 555UN utility transport; AS 555AN cannon­armed version, AS 555MIM naval utility version, and the AS 555SIM armed naval version. In French service the AS 355AN has been solely gun-armed, usually with the GIAT M621 20-mm cannon The naval version of the AS 555 can be fitted with an RDR-1500 search radar under the nose and a Magnetic Anomaly Detector under the tailboom. The AS 555 can be armed with Two torpedoes.

The single-engined AS 550A2 can be armed with a M621 20-mm cannon pod, and is equipped with the ESCO HeiiTOW sighting system above the roof.

In 1990 the Danish army acquired 12 combat – capaoie AS 550C2s, amred with the ESCO HeliTOW system, This comprises a roof-mounted sight and four TOW missiles in twin pods on each pylon. A similar system is in service in Singapore.

A specialist training version of the civil-standard AS 350B2, the AS 350BB, was developed for the UK’s Defence Helicopter Flying School. The School operates two versions of the aircraft, 26 Squirrel HT. Mk 1s and 12 NVG-capable Squirrel HT. Mk 2s

In Brazil Helibras has built over 300 Squirrels under licence as the Esquilo. The air force operates 16 CFI-50 transports (AS 550U2), 20 TH-50 trainers with a secondary fire-fighting role (AS 550U2), 11 armed CH-55s (AS 555U2) and two VIP-dedicated VH-55s (AS 355F2). The navy operates 16 UH-12s (AS 550BA) and nine UH-12Bs (AS 355F2), The Army flies a mix of 36 HA-ls (AS 550A2s). The Paraguayan air force and navy operate four AS 3508 Esquilos.

In 1996 China’s Change Aircraft Industries Corporation unveiled its Z-11 helicopter, which is clearly a direct copy of the AS 350B. The Z-11 is certified in civil and military versions, and is now in service with the People’s Liberation Army. Change claims that the Z-11 first flew in 1994 but few facts are known about its development.

image105Specification: Eurocopter AS 555 Fennec Powerplant: two 302-kW (406-hp) Turbomeca TM 319 Arrius 1A turboshafts Dimensions: main ^otor siameier 10.69 m (35ft Xin): fuselage length 10.93 m (35 ft Iff/ini; height overall 3.34 m (‘Oft У 7. in)

Weights: basic empty 1436 kg (3,166 ib);

: maximum take-off 2600 kg (5,732 lb) Performance: maximum cruising speed at optimum altitude 222 kmh (138 mph); service ceiling 3800 m 112.460 ft): maximum rate of climb at sea level more than 384 m (1.250 It) per minute: range 722 km (448 miles) Armament optional cannon, machine gun pods, one homing torpedo

MD Helicopters MD 500, MD900

image150

The MD530MG Defender is based on the civil MD530T model and is the latest in a long-line of military MD 500 variants.

 

H

ughes’ YH0-6 design was developed to moot s I960 US Army requirement for a light observation helicopter. The production OH-6A Cayuse entered service in 1965 and was widely used in Vietnam. The civilian Hughes 500 introduced an uprated engine, increased fuel and a revised interior, The first military variant was the Model 500M Defender The 50DM/ASW has a MAD ‘bird’ ana can carry torpedoes. The civilian 500D variant intro­duced a slow-turning five-bladed rotor and a T tail. It was built undei licence in Japan as the OH-6D The military Model 500MD Defender had armour protection and IR exhaust suppressors. Variants have been developed tor ASW, anti-tank and scout duties. The Model 500E introduced a revised, pointed nose, more spacious interior and an Allison 250 C20B engine. Dedicated military models are designated 500MG Defender. The up – engined 530MG Defender had options for a mast – mounted TOW sight, FUR, RHAW gear, IFF and a laser rangefinder, and can be armed with TOW 2 missiles, 2.75 in rockets and Stinger AAMs The US Army has developed a family of special- missions variants called the ‘Little Birds’, which are operated by the 160th Special Operations Aviation Regiment. Current service variants include the FLIR-equipped MH-6H special forces insertion aircraft, and the armed AH-6G Equivalent aircraft fitted with the NOTAR (NO ТАІІ Rotor) system are designated MH-6J and AH-6J

In the rr d-1990s South Korea developed the licence-built armeo MD520MK Black Tiger The

assembly work was undertaken by the engineering departmental Korean Air Lines.

Hughes helicopters was acquired by McDonnell Douglas in 1984. When Boeing merged with McDonnell Douglas in 1997, McDonnell Douglas Helicopters was sold off, and acquired by a Dutch company to become MD Helicopters. MD Helicopters continues to offer military variants of the MD 530MG model, but is also working on armed versions of the MD 900 Explorer

The Explorer, which first flew in December 1992, is much larger and more advanced than the Model 500/520 and uses the NOTAR anti-torque system instead of a conventional tail rotor A proposed combat-capable version was announced in 1995, designated the Combat Explorer, but in 2000 MD Helicopters developed a simplified gun/rocket package to equip the Explorers already in service with the Mexican navy. The Explorer was also evaluated by the US Coast Guard.

Подпись: Mexico became the fist customer for a militarised MD 900 Explorer and can arm its aircraft with 70-mm rockets and 0.50-in machine guns, Specification: MD Helicopters Model 500 Powerplanfcone 236-<W (317-hp) Allison 250-C18A turbnshafl

Dimensions: mail rotor diameter 8.03 m (26 fl 4 in); length overall, rotors turring 3.24 m (30 ft Ш in); height 7.48 tn (8 ft Un Weights: empty 493 kg (1,038 lb}: max тілі take-off 1361 kg (3.003 lb)

Performance: maximum level sueed 244 kmh (152 moh|; maximum rate of climb at sea level 518 m (700 ft) per minute; service ceiling 4390 m (14,400 ft), hovering ceiling 2500 m 18,200 ft) IGE. 1615 m 15,300 ft) 0GE: rarge 505 km 1307 miles)

Armament two external hardpoints for gun pods, rockets or TOW missiles

Soviet Union (Russia) Lightweight fighter

image152

This Russian MiG-21 is carrying the R-27 (AA-10 ‘Alamo’) and R-72 (AA-11 ‘Archer’) air-to-air missiles offered for the upgraded MiG-21-93.

 

T

he original MiG-21 was developed as a light.

high performance, short-range interceptor. Early MiG-21F-13 ‘Fishbed-Cs’ were armed with one NR-30 cannon, and two AA-2 ‘Atoll’ AAMs, while the MiG-2lP ‘Fishbed-D’ dispensed with the cannon armament altogether, but introduced R1L radar, The R-11 F2-300-engined MiG-21PF was similar, although late MiG-21PF ‘Fishbed-Es’ intro­duced a broader-chord fin_and provision for an external GP9 cannon pod. The R-1 lF-300-engmed MiG-21FL was for export, The MiG-21PFS and MiG-21PFM had two-piece canopies, blown SPS flaps and the R-11F2S-300 engine.

All later variants had blown flaps, two-piece canopies, broad-chord tailfins and four pylons. The MiG-21 PFM-based reconnaissance MiG-21R had an enlarged dorsal fairing and provision for centre­line reconnaissance pods. The MiG-21S was similar, with a centreline GP9. The R-13-300-engined MiG-21SM put the GSh-23L cannon in a fixed installation, instead of in the removeable GP9 gon­dola. The R-11F2S-300 engined export MiG-21 M was built under licence in India, while the MiG-2lMF introduced AAM capability on all four pylons. The MiG-21MT used the more powerful R-13F-300 engine, while the MiG-21SMT ‘Fishbed-K’ was fitted
with a further enlarged spine. Significant numbers of MiG-21 Rs, MiG-21 Ms and MiG-21 MFs remain in service. The multi-role R-25-300-powered MiG-21bis introduced improved avionics, AA-8 ‘Aphid’ AAMs, and improved Sapphire-21 radar.

The MiG-21U ‘Mongol-A’ tandem two-seat trainer could carry a centreline gun pod and had two underwing pylons, The MiG-21 US ‘Mongol-B’ had increased fin chord, improved ejection seats, a bigger spine, a retractable periscope and blown SPS flaps, while the MiG-21 UM was similar, with updated instruments and avionics.

The number of MiG-21 s in service has declined dramatically since the end of the Cold War, with force reductions and a growing trend for ex- Warsaw Pact nations to turn to the West for combat aircraft. Aerostar and Elbit are jointly upgrading 110 Romanian air force MiG-21 s to Lancer standards, with new radar, digital databus, cockpit, avionics and weapons. Romania’s Lancer Is are upgraded MiG-21 M/MFs, while the Lancer II is an upgraded MiG-21 UM/US. The Lancer III is aimed at the export market, and based on the MiG-21 bis

Mikoyan and the Sokol plant are upgrading 125 MiG-21 s to MiG-21-93 standard for the Indian Air Force, adding new radar, weapons and systems.

Подпись: Aerostar has upgraded 10 of the Romanian air force's two-seat MiG-21 trainers to Lancer II standard (service designation Lancer B). Specification: MiG-21 bis Fishbed-M’ Powerplant: ore Tumanskii R-25-330 Uirbcjct rated at 69.58 kN (15,650 Ibl Dimensions: wing spar 7,15m (23 ft 5Yi in): length 15.76 m (51 ft 8/ in) including probe, height A. 12 m (13 ft 6 2 in)

Weights: empty 5350 eg (11,705 lb): maximum takeoff 9661 <g (21,299 lb)

Performance: maximum level speed 2230 kmh |l,385 mpb); maximum rate of climb at sea level 7200 m (23,622 ft) per minute; service ceiling 19000 m (62,336 ft), typical combat radius 150-500 km (280-311 miles) Armament: one centreline twin-barrelled GSh-23 23-mm cannon, with 2000-kg (4,409 lb) of ordnance on four underwing hardpoints

image154

Libya was a typical customer for the down-graded export version of the MiG-23MF, the MiG-23MS. This aircraft is armed with AA-2 Atoll’ air-to-air missiles.

 

T

he MiG-23 was developed as a MiG-21 replace­ment, with greater range and firepower. It was ordered into production as the MiG-23S. The MiG-23M and export MiG-23MF ‘Flogger-B’ had ‘High Lark’ pulse-Doppler radar, an IRST, AA-7 ‘Apex’ missiles, and a shortened rear fuselage. Some remain in use with Bulgaria, Cuba, India, Romania and Syria. The down-graded MIG-23MS JFlogger-E’ was an export version with ‘Jay Bird’ radar, and no BVR missile, and remains in service with Algeria, Libya and perhaps Syria.

The lightweight MiG-23ML ‘Flogger-G’ intro­duced airframe, engine, radar and avionics improve­ments. Aircraft remain in service in Angola, Bulgaria, Cuba, Iraq, North Korea. Syria and Yemen. The MiG-23P was a dedicated PVO interceptor. The fina MiG-23MLD ‘Flogger-K’ fighter variant is still used by Belarus. Kazakhstan and Bulgaria.

The attack-dedicated MiG-23B/BN ‘Flogger-F’ had an upgraded nav/attack system and a derated R-29B-300 engine. The JFlogger-H’ introduced a new RWFL MiG-23BNs were exported to Algeria, Angola, Bulgaria, Cuba. Czechoslovakia, East Germany, Ethiopia, India. Iraq and Syria. The MiG-23UB ‘Flogger-C’ is a tandem two-seat trainer version delivered to all MiG-23/-27 operators.

The MiG-27 remedied the deficiencies and reduced the cost of the ground-attack. ‘Flogger’. It introduced simplified, fixed intakes, and an engine with a two-position afterburner nozzle. Fuel economy
is improved and weight mduced, at the expense of performance. A new GSh-6-30 30-mm cannon replaced the original 23-mm cannon, The MiG-27 ‘Flogger-D’ had the same avionics as the MiG – 23BN, with a Fone laser rangefinder and it first flew in prototype form in 1972.

The ‘straight’ MiG-27 was soon replaced by the MiG-27M ‘Flogger-J’, which was equipped with the PrNK-23M nav/attack system and a Klyon laser rangefinder, and which introduced fixed wing leading edge root extensions housing Beryoza RWR anten­nas. India was the only export customer for the MiG-27, and builds the type under licence.

The most advanced member of the family was the IVUG-27K ‘Flogger-J2’, deployed from 1977. This had a Kaira-24 laser designator in an under­nose fairing with a TV system in the enlarged, oval nose window, with a De! ta-2NG missile guidance transmitter antenna in a ‘pimple’ on the tip of the nose, re-located from its usual location on the glove pylons. The twin pitot probes were mounted low on the nose.

Подпись: This is a ‘Flogger-J2' the most advanced version of the ground-attack MiG-27. Unlike the MiG-23BN, the MiG-27 had fixed engine intake ramps. Specification: MiG 23ML ‘Flogger-G’ Powerplant: one 12/719 kN (28,66Q-lb| MNPK ‘Soyuz (Khachatourov) R-35-300 afterburning turbojet

Dimensions: wing spar – ■ 3.97 m|45 ft 10 in) spread ЕП" 7.78 m (25 ft 6/ in) swept, length 1670 nt (54 ft Ш in); heglrt 4,82 m Weights: empty 10200 kg (22.487 lb); maximum take-aff 17800 kg 139,242 lb) Performance: maximum leve: speed 2590 kmh (1.553 mph); maximum rate of climb at sea aval 14400 m (47.244 ft) per minute; service ceding 18500 m (50,695 ft); combat radius 1150 km (715 miles) with six AAMs Armament: one GSh-23 23-mm cannon; maximum ordnance 3000 kg (6.613 lb)

image156

T

he MiG-25 (NATO code-name ‘Foxbat’) was developed to counter the high-flying Mach 3 XB-70 strategic bomber. It featured advanced construct on techniques, us ng tempered steel for most of the airframe with titanium for the eading edges. The prototype Ye-155P-1 flew on 9 September 1964, powered by a pair of 100 kN {22.500-lb) Mikulin R-15B-300 turbojets.

Production of the refined MiG-25P ‘Foxbat-A’ fighter began in 1969, and it entered service in 1973. The definitive MiG-25PD ‘Foxbat-E’ featured a new RP-25 look-down/shoot-down radar, an IRST, more powerful R-15BD-300 turbojets and provision for з iarge 5300-litre (1,166-Imp gal) belly tank. About 370 surviving ‘Foxbat-As’ were brought up to PD standard, as the MiG-25PDS. Some MiG-25PDs were fitted with a 250-mm {10-ir) nose plug to allow installation of a retractable IFR probe, taking overall length to 24.07 m {78 ft 11.67 in). The MiG-25PU ’Foxbat-C’ conversion trainer lacks radar and has a new instructor’s cockpit stepped down in an elongated nose in front of the standard cockpit. MiG-25 fighters were exported to Algeria, Iraq, Libya and Syria, and also remain in small-scale service in Russia and a handful of former Soviet states.

The MiG-25 PU and MiG-25RU Foxbat-C’ trainers were largely identical, but the MiG-25RU ivas not fitted with the underwing pylons of the MiG-25PU


This Foxbat-B’ is a M1G-25RBT, fitted with the Tangazh Sigint system in its nose (note the grey di-electric antenna panel).

The MiG-25 was also develooed for use in the high-speed, high altitude reconnaissance role. The prototype Ye-155R-1 flew on 6 March 1964, six months before the prototype fighter and the pro­duction IVfiG-25R ‘Foxbat-B’ recce variant passed state acceptance tests in 1969. The MiG-25RB was a dual-role reconnaissance bomber able to drop stores from high altitudes at supersonic speeds. Sigint models were the MiG-25RBK ‘Foxbat-D’, with Kub Sigint equipment (subsequently upgraded as MiG-25RBFs with Shar-25), the MiG-25RBV with Virazh, and the MiG-25RBT with Tangazh. Radar recce versions included the MiG-25RBS with Sablya SLAR, most of which were upgraded to MiG-25RBSh with the improved Shompol radar. MiG-25RBs were exported to Algeria, Bulgaria, India, Iraq, Libya, Peru and Syria. The dedicated MiG-25RU recce trainer has no cameras, but like other reconnaissance aircraft has reduced wing span and a constant-sweep leading edge, instead of the fighter’s ’cranked’ leading edge.

The dedicated defence-suppression MiG-25BM ‘Foxbat-F’ was armed with *our underwing AS-11 ‘Kilter’ missiles. The prototype first flew in 1976, and limited deployment of the 100 or so built began in 1982 The type became operational in 1988.

image157

Specification: MiG-25PDS ‘Foxbat-E" Powerplant: two 109.83-kll {24.691 – ib) MhiPK Soyu2’ (Tumanskii) R-l 5B0-3OO turbojets Dimensions: wing spar 14 02 m 145 ft 112! in), length 23,8? m 178 ft 1K in); height 6.10 m (20 ft A in)

Weights: normal take-off 34920 kg 176,894. lb), maximum take-off 36720 kg (80,952 Ib) Performance: maximum level speed Mach 2.8 (3000 kmh,1,864 mph); climb to 2000D m (65.615 ft) in 8 minutes 54 seconds: service ceiling 70700 m {67,315 ft); range with internal fuel 1730 km (1.075 miles) subsonic Armament Four undenting hardpoints for four or six AAMs, with centreline hardpoint for drop-tank

 

Boeing/Sikorsky RAH-66 Comanche Advanced scout helicopter

image58

T

he US Army issued its LHX (Light Helicopter Experimental) requirement in 1982, initially calling tor 5,000 helicopters to replace UH-1, AH-1, OH-6 and OH-58 scout/attack/assault aircraft. By 1990 this number had been cut back to 1,292 aircraft tor the scout/attack role only. Boeing/Sikorsky’s ‘First Team’ was awarded the contract (over the Bell/ McDonnell Douglas ‘Super Team’) for three (later two) YRAH-66 dem/val aircraft on 5 April 1991

The RAH-66 Comanche has a five-bladed all – composite bearingless main rotor and an eight-bladcd tan-in-fin shrouded tail rotor Its largely composite airframe is designed for low observability, employing a degree of faceting and sunken-notch intakes for the two LHTEC T800 turboshafts. The undercarriage is retractable, and all weapons are housed internally, with missiles carried in bays on t. ne fuselage sides, directly attached to the bay doors which act as pylons when they are open, A chin turret will house a 20-mm cannon, and in the extreme nose is a sensor turret for a FLIR and a laser designator. The Longbow MMW radar of the AH-64D Apache will also be fitted in a radome above the main rotor.

The Army has specified maximum avionics com­monality with the USAF’s F-22 and the Comanche pilot (front) and WSO each have two flat screen MFDs for presentation of tactical situation, moving map and FLIR/TV information, The pilot also has a wide field-of-view helmet-mounted display system, allied to an electro-optical night navigation and


The Comanche is lighter but only slightly smaller than the AH-64, and will back up – but not replace – the Apache in the combat role.

targeting systems. Flight control is by a triplex fly-by-wire system, with sidestick cyclic-pitch controls. The RAH-66 also features a wide array of defensive equipment, including laser – IR – and radar-warning receivers, RF and IR jammers.

Work on the first prototype began in November 1993, and it flew on 4 January 1996. The early flight test programme was slowed by gearbox failures, but by August 1997 progress was being made once more. The second aircraft was rolled out in April 1998 and made its maiden flight on 30 March 1999. One 1 June 2000 the RAH-66 was approved to enter its engineering and manufacturing development (EMD) phase Boeing/Sikorsky will build 13 FMD RAH-66s, and the Army hopes to then acquire an interim batch of 12 aircraft between EMD and the launch of initial low-rate production, in 2006. The first EMD aircraft will fly in 2004. The US Army’s 2000 Aviation Force Modernization Plan still recom­mends the acquisition of 1,213 Comanches, valued at nearly 534 billion. I he first RAH-66s are scheduled to be operational in December 2006.

The Boeing/Sikorsky team has now rebuilt one RAH-66 with a revised empennage and tail and also added a radome for the Longbow radar.


Specification: Boeing/Sikorsky RAH-66 Comanche (provisional)

Powerplant: two 1068 TW (1/132 slip)

LHTEC T800-IHT-80Q turboshafc Dimensions: main rotor diameter 11.90 m |39 ftin); length overall, rotor turning 14.28 m |tS ft 10.25 n) and fuselage ‘3.20 in (43 ft ■/. ini excluding gun barre., height overall 3.39 m (11 ft 1.5 in) over stabiliser Weights: empty 3942 kg (8,690 lb); normal take-off 4807 kg (10,597 lb]

Performance: max level speed 3?4 kmh (201 mph), ferry range 2334 km (1,450 miles) Armament one General Dynamics three – barrelled 20-mm cannon with up to 500 rounds, with 2296 kg (5.052 lb) of ordnance

 

image59

United Kingdom

Eurocopter Tiger

image106

Pie-production aircraft PT4 was used to trial the French Tiger HAP configuration, with a roof – mounted sight and Mistral AAMs.

 

Подпись: Specification: Eurocopter PAH-2 Tiger Powerplant: two 873-kW (1.171-hp) MTU/ TurbomecH/RolIs-Royce MTR 390 lurboshafts Dimensions: main rotor diameter 13.00 m (42 ft ТА in); fuselage length 14.00 m (45 ft 11A in); height overall 4.32 m(14 ft 2 in) Weights; basic empty 3303 <g •!/.2/b lb): normal take-off 5600 kg (12,767 lb): maximum overload take-off 6000 kg (13,227 lb) Performance: maximum cruising speed at optimum altitude 230 kmh (174 mph); max rale of climb at sea level more than 600 m (1,969 ft) per minute; endurance over 3 hours Armament (НАС) primary armament of Mistral AAMs; (HAP) G1AT AM-30781 30-mm cannon and stub wings with up to lour pylons
image107

T

he Eurocoptei Model 665 Tiger/Tigre was

developed to meet a Franco-German requirement for a next-generation anti-tank helicopter (German PAH-2 ano French army НАС). Development began in 1984, and resumed in March 1987 (after reap­praisal) in a modified form to cover a common anti­tank version for the two armies, and an armeo escort version (HAP) for the French army. A devel­opment contract awarded to Eurocopter in November 1989 provides for construction of five prototypes including two in full anti-tank Tiger (GermanyVTigre (France) configuration and one as the escort Gerfaut.

The Tiger has a slender fuselage with two seats in tandem, stepped and offset to each side of the centreline. The structure makes extensive use of composite materials, and an advanced four-bladed composite semi-rigid main rotor is fitted. Other design features include Spheriflex tail rotor and fixed tricycle undercarriage with single wheels and high energy absorption.

The original German army PAH-2 Tiger was a dedicated anti-tank variant, but was redesigned as a more flexible multi-role aircraft under the designation UHT (originally UHU). with a mast-mounted FLIR night-vision system for the WSO, and з nose – mounted FLIR for the pilot. The aircraft is able to carry up to eight HOT 2 or Trigat anti-armour missiles, or four HOTs and four Stinger 2 AAMs for self-defence. Germany has a requirement for 212

UHTs, ar. d the first 80 have been ordered. The first 115 French army Tigers will be Tiger HAPs. Originally known as the Gerfaut, HAP is an escort and fire-support variant, with no mast-mounted sight, but with e roof-mounted TV, FUR, laser rangefinder and direct-optics sensors, and with an undernose 30-mm cannon turret – France will later receive 100 dedicated anti-tank Tiger HACs (renamed from the original ‘Tigre’l, with a UHT-type mast-mounted sight and other improvements.

The first Tiger prototype flew on 27 April 1991, at first with a mast-mounted sight, but later recon­figured with a roof-mounted sight in the Gerfaut configuration. It was once expected that the French army would receive Gerfauts in 1994 and Tigres in 1999, with the Bundeswehr receiving its first UHU Tigers in 1998. Service introduction is now scheduled for 2003. A joint French/German training centre has been established at Le Luc, in France. The Tiger was unsuccessfully offered to the British and Dutch armies. A HAP-based variant, the Aussie Tiger, is a contender in the Australian Air 87 competition.

The German Army Tiger UHT configuration has a mast-mounted sight. It has no undernose cannon though one may be added in the years to come.

Подпись: The name Eurofighter Typhoon has been adopted for export sales of the Eurofighter aircraft, outside the initial four customer nations.

The Eurofighter consortium was officially formed in June 1986 by Britain. Germany and Italy (soon joined by Spain) to produce an air superiority fighter for service from the late 1990s. This ‘ollowec the issue of an outline Air Staff Target by the four part­ners, plus France, in 1983. The Eurofighter design drew heavily on BAe’s Experimental Aircraft Programme (EAP), and a number of other technology demonstrator programmes. The twin-RB.199 EAR technology demonstrator first flew in August 1986 and amassed invaluable data before retirement in May 1991, The Eurofighter copied EAP’s unstable canard delta layout, adding active digital fly-by-wire flight controls, advanced avionics, multi-function cockpit displays, carbon-fibre composite construction and extensive use of aluminium-lithium alloys and titanium.

The new ECR-90 multi-mode pulse-Doppler look – up/look-down radar was selected for development in May 1990, building on the proven and highfy – regarded Blue Vixen used by the Sea Harrier. While optimised for AMRAAM use, ECR-90 also provides CW illumination for SARH AAMs. The radar is supplemented by an IRST Integrated defensive aids comprise missile approach, laser and radar warning systems, wingtip ESM/ECM pods.

Two of the Seven Eurofighter development aircraft, the British-built DA4 (seen here) and Spain’s DA6, were built in two-seat configuration.

chaff/flare dispensers and a towed radar decoy.

A development contract signed in late 1988 covered the building and testing of eight EFA prototypes (though this total was subsequently reduced to sevenl, In 1992, Germany demanded major cost – reductions, triggering major project reviews and leading to major delays, against threats of withdrawal. Various less capable ‘New EFA’ config­urations were studied before Germany decided to procure a smaller number of standard aircraft, stripped of their advanced DASS, and re-christened as the Eurofighter 2000- The original requirement for 765 EFAs (250 each for the RAF and the Luftwaffe, 165 for the AMI and 100 for the Ejercito del Airej was cut back and now stands at 620, (232 for the RAF, 180 for the Luftwaffe. 130 for Italy and 103 4or Spain!. The name Typhoon was adopted for export aircrs*t (and for the RAF’s Eurofighte’s) in 1998, and strong interest in the aircraft has already been expressed by Greece and Norway.

The prototype EFA 2000 made its long-awaited first flight on 27 March 1994 from Marching. Germany, and began what was to be a successfu (if occasionally troubled) flight test programme. The first production Eurofighters were rolled out during 2001, and service entry is expected in 2003.

image109

Specification: Eurofighter Powerplant: two90-kN {20.250-lbl Eurojet EJ200 turbo fans

Dimensions: wing span 10.50 m (34 ft 5/ in); length 14.53 m (47 ft 7 in), height 4.00 m (13 f! 1.5 in)

Weights: empty 3750 kg (21.49b )t>); maximum take-off 21000 kg (46,297 lb I Performance: maximum level speed 2125 kmh (1,321 mph); take-off run 500 ml 1,640 ft) at normal take-off weight; landing run 500 m (1,640 ft) at normal landing weight, combat radius between 463 and 556 km (288 and 345 miles)

Armament: Mauser Mk 27 27-mm cannon, maximum ordnance 6500 kg (14,330 lb]

 

Mikoyan MiG-29 ‘Fulcrum

image158

T

he MiG-29 (NATO code-name ‘Fulcrum’) was developed to meet a 1971 requirement for a lightweight fighter to replace Frontal Aviation MiG-21 s, MiG-23s and Su-17s in the battlefield air superiority and ground – attack roles. Design work began in 1974, and the first prototype flew on 6 October 1977, Deliveries began in 1983.

The baseline MiG-29 ‘Fulcrum-A’ carries two BVR AA-10 ‘Alamo-As’ inboard and four short-range AA-8 ‘Aphid’ or AA-11 ‘Archer’ IR-homing missiles outboard, backed by an internal 30-mm cannon. Early Russian MiG-29 regiments included a ‘strike’ squadron, its aircraft using the 30-kT RN-4Q nuclear weapon on the port inboard pylon, The MiG-29 has an N-019 pulse-Doppler radar and a passive IRST sysiem. This can detect, track and engage a target while leaving the radar in a non-emitting mode. For close-in engagements, a helmet-mounted sight can be used to cue IR-homing missiles onto an off-bore – sight target.

More than 450 single-seat ‘Fulcrums’ are esti­mated to be in service with the WS, and other for­mer Soviet states including Belarus, Kazakhstan. Moldova, Turkmenistan, Ukraine and Uzbekistan. The aircraft has also been acquired by Bangladesh, Bulgaria, Cuba, Czech Republic, East Germany, West Germany, Hungary, India, Iran, Iraq, North Korea, Malaysia, Peru, Poiend, Romania, Slovakia, South Yemen, Syria and Yugoslavia. MiG-29s have been evaluated by Israel and by the USA.


The MiG-28SE demonstrator was based on the ‘fat back’ ‘Fulcrum-C’ and was intended as an improved export version of the first-generation MiG-29.

The MiG-29UB (9-51) ‘Fulcrum-B’ trainer has no radar, but retains the IRST and has a weapons system simulator, allowing the instructor to gener­ate HUD, IRST and radar symbology in the front cockpit. An improved single-seater HVIodel 9-13, known to NATO as the ‘Fulcrum-C’) introduced a bulged spine, housing additional fuel and an active jammer. None have been exported outside the former USSR, except a handful of Moldovan aircraft supplied to the USA.

MiG-293, SD, SE and SM designations were applied to planned late production variants and upgrade configurations, while the MiG-29M (9-15) was an advanced derivative with revised structure, increased fuel and genuine multi-role capability. This reached the prototype stage, as did the carrier – borne MrG-29K (9-31) . A handful of MiG-29S air­craft entered service with Russian regiments, and the SD formed the basis of the MiG-29N for Malaysia. A number of upgrade programmes are underway in Germany (DASA), Romania (Aerostar Sniper) and Russia itself,

The Luftwaffe’s ‘Fu/crum-Asinherited from the former East German air force, have been overhauled by DASA to make them more reliable and economic.


Specification: Mikoyan MiG-29 ‘Fulcrum-A’ Powerplant: two 81 39-kN 118,298-lb) Klimov/ Leningrad RD-33 afterburning turbofans Dimensions: wing span 11.36 m (37 ft 31/4 in); length 17.32 m (56 ft 10 in); height 4.73 m (i 5 ft 6.2 in)

Weights: empty 10900 kg (24,030 Ib); maximum take-off 18.500 kg (40,785 Ib) Performance: maximum level speed 2445 kmh (1.Ы9 mph); maximum rate of climb at sea level 19800 m (64.961 ft) per minute; service ceiling 17000 m (55.775 ft), ferry range 2100 km (1,305 miles). 1500 km (932 miles) with internal fuel

Armament: ore GSh-301 30-mm cannon, maximum stores of 3000 kg (6,614 Ib)

 

image159image160

Russia

Enhanced multi-role combat aircraft

image161

The MiG-29SMT upgrade is the latest in a series of attempts to improve the range and performance of the MiG-29 ‘Fulcrum’.

 

T

ne first attempt to produce a ‘second-generation’ muiti-role MiG-29 resulted in the MiG-29M (9.15). six prototypes of which were constructed and flown from April 1986. This featured a redes;gned airframe, with deleted overwing intake ducts and with extensive use of composites and advanced welded aluminium-lithium alloy compo­nents, giving increased internal volume with the minimum weight penalty. The aircraft aiso featured aerodynamic refinements, including ‘sharp’ LERXes and increased spar ailerons. The ai’craft also had a revised weapons system, with RLPK-29M (N010) Zhuk radar, and new TV and laser guidance sys­tems for PGMs. The aircraft impressed during acceptance trials, but cid not enter production, due to the high, cost of re-tooling. Two prototypes of a carrierborne derivative, the MiG-29K (9.31) were also built, with an increased span, reduced-sweep folding wing and extenced chord flaps, drooping ai erons and enlarged tailp anes. Development ceased in 1992, after the less versatile Su-27K was selected for Russia’s carrier.

Instead of procuring a new-build second-genera­tion MiG-29, it was eventually deciced to produce such an aircraft by upgrading existing MiG-29s. The MiG-29SMT (9.17) can be manufactured using
existing jigs, or produced by upgrade. It has a new glass cockpit, and new multi role avionics, and has a massive swollen spine to provide the necessary extra internal fuel capacity. This covers the old ‘spl’t-beaver tail’ airbrakes, and requTes the addition o* a large dorsa airbrake, like that used on the MiG-29M. Tne aircraft also features a bolt-on retractable refueling probe and has an extra pair of uncerwing harcpoints. The airframe is strengthened to allow ooeraiior at much higher weights, and has an extended airframe life. An avionics prototype first flew on 29 November 1997, and an aircraft with a mock-up of the new spine followed on 22 April 1998. A fully converted prototype flew on 14 July 1998. Current plans call for about 180 Russian air force MiG-29s to be upgraded to SMT standard. This includes the two-seat MiG-29UBT version, which car also be configured for a combat role.

The MiG-29SMT forms the oasis of s new can erborne version (using the MiG-29K’s wing, landing gear anc other navalised features) known as the MiG-29SMTK A further sub-variant, the MiG-29MTK or IVMG-29K-2002 offers fold ng tailplanes and a narrow-span ‘nboard wng fold, and has been offered to India to equip the newly – acquired ar. d converted carrier Gorshkov.

Подпись: The two-seat MiG-29 UBT development prototype, which first flew in 1998, was converted from MiG's existing MiG-29UB testbed Specification: Mikoyan MiG-29SMT Powerplant: planned to receive two SB 1 kN (22,050-lb) Klim ov/L эп і ng rad RD-933 (RD-43) turbofans

Dimensions: wing span 11.36 nn (37 3!4in|: length 17.32 m (56 ft 10 in); height 4.73 n (15 ft 6.2 in)

Weights: maximum take-off 71,100 kg (46,237 lb) in ground attack configuration Performance: maximum level speed 2445 krnii (1,519 mph); maximum rale sf climb st sea level 19800 m |64,90". ft) per minute; service ceiling 17000 n (55,775 ft); ferry range 3500 km [2,7)4 miles): combs* radius 1550 km (963 miles) Armament: one GSn-301 30-nvr cannon, p us 5000-icg (11,023-lb) of ordnance

Russia

Long-range heavy interceptor

image163

T

he MiG-31 ‘Foxhound’ was ceve oped to counter the threat Dosed by new low-level strike aircraft and cruise missiles, complementing the Su-27 in service, and us ng its ultra-long-range capability to fill gaps in Russia’s ground-based radar cha:n. A two-seat derivative of the MiG-25 ’Foxbat’ airframe, the ‘Foxhound’ introduced an ai – new structure, a new wing planform with small LERXes, Soloviev D-30F-6 turbofans and a new undercar­riage. The Ye-155MP prototype flew on 16 September 1975 and series probuct’or of 280 fvliG-31s began in 1979.

The MiG-31 featured a flat belly with four missi e recesses for its orimary armament, which consisted of R-33 (AA-9 ’Amos’) AAMs. The ‘Foxhound’ also carries a scafcbed-on GSh-6-23 six-barrel ed 23-mm cannon ooo and has underwing pylons for two AA-6 ‘Acrid’ or four AA-8 ‘Aphid’ missiles. The new ‘Zaslon’ radar had a pnased-array antenna, increasing range and allowing faster, more accurate beam pointing. Ten targets can be tracked simultaneously, and four engaged. Groups of four IVliG-31s can operate independently of ground control, covering a 900-km (560-mile) swathe of territory, with tne leader automatically controlling his wingmen,

The MiG-31 01-DZ introduced a retractable inflight refuel ing probe, whi e the MiG-31 В also had an improved radar with better ECCM, and a new digital processor, Existing aircraft brought up to the same standard were designated MiG-31 BS


This is one of the improved MiG-31 development aircraft, identifiable by its wingtip fairings. It is carrying a load ofR-77 (AA-12 Adder’) missiles.

Two MiG-3 ID prototypes were produced as test­beds for a new anti-satellite missile. The MiG-31E, MiG-31 F and MiG-31FE designations were applied to unbui’t export ana upgrade configurations, while the MiG-31 BM s a proposed defence suppression variant,

The improved MiG-31M interceptor variart was oui t in prototype form only. The MiG-31 M carried six R-37 long-range AAMs in three side-by-side recesses under the belly, each accommodating tandem pairs of missiles. Its new radar hac a 1.4-m diameter antenna anc could simultaneously engage six targets. A fully-retractable IRST was fitted, and MiG-31 Ms also have a redesigned rear cockpit, with three CRT MFDs. Other changes include a one-piece carooy and windscreen, a retractable IFR probe, large wingtip ESM pods, and aerodynamic refinements. Redesigned LERXes improved high AoA handling, and a bulged spire gave increased fuel caoacity, but development was abandoned due to lack of funding. The first of six prototypes made its maiden flight on 21 December 1985.

This Foxhound’ is the one-off MiG-31 LL flying testbed, operated by the Lll flight test and development institute, atZhukhovskii.


Specification: Mikoyan MiG-31 ‘Foxhound-A’

Powerplant; two 151.9-kN (34.170-lb) Aviavidgate! D-30F6 turoofans Dimensions: wing span I ЗАВ – n |44 ft 2 in), lengti 77.69 m І74 ft 5У n) including probe, height 6.15 m [20 ft 2X in)

Weights: empty 21825 leg |48,115 lb); maximum іаке-оИ <55200 kg [10′ .850 lb) Performance: maximum level sneer. 300G kmh (1,365 mphj; service ceiling 20600 m 157,600 ft!; combat radius with maximum interna – fuel and four R-33 AAMs 1200 krn (745 miles! Armament: one GSh-6-23 23-mm cannon with 250 rounds, hardpoints for four missiles under the fuselage, ar. d two urderwing pylons.

 

image164

Russia

Basic and advanced trainer, light attack aircraft

image165

The MiG-ATs distinctive ‘overwing’ intakes have recently been replaced by Hawk-style oval intakes, extending just ahead of the leading edge.

 

D

uring the late 1980s MiG began design work on a new type of advanced trainer. The Russian а;г force had an emerging requirement to replace its Czech-built L-29 and L-39 jet trainers and opened up the search for the new aircraft to Russian indus­try. Submissions from Sukhoi and Myasischev were rejected, but the MiG-АТ proposal was selected to go forward with the Yakovlev Yak-130 for evaluation.

The MiG-АТ was a more conventional design than the Yak-130, using a low-wing configuration, mid-set tailplane and over-wing inlets for its Turbomeca-SNECMA Larzac turbofans. The original design featured a ‘T-taiT and the PS/ZMK DV-2 (R-35! engine, but these elans were abandoned – as was an intended industrial co-operation with Korea’s Daewoo.

In addition to its French-supplied engines the MiG-АТ also features French-supplied cockpit avionics, from Sextant and Thomson-CSF (now Thales). Each cockpit is fitted with a pair of colour multi-function displays and provision for helmet – mounted sights, while the front cockpit had a wide- angle HUD for the student. MiG designed the MiG-АТ to have a re-configurable three-axis digital flight control system, allowing the aircraft to

Development and acquisition funding for the MiG-AT have been hard to come by in recent years, as post Cold War military budget cuts have bitten deeply.

replicate the handling characteristics of a number of different front-l ne combat types.

MiG has proposed two versions of the basic trainer, the MiG-ATR for Russian air force service (with Russian engines and avionics) and the export MiG-ATF with Sextant Topflight avionics. The MiG-ATR would be powered by the Soyuz/CIAM RD-1700 engine wnich is currently under develop­ment. The MiG-ATS (or MiG-AT-UTS) is a combat – capable/weapons training version, fitted with under­wing hardpoints end a centreline stores station. The second MiG-AT prototype was built to this standard. MiG is also proposing a dedicated light-attack variant, the single-seat MiG-AS, with a built-in gun, radar and air-to-air missiles.

The first MiG-AT made its official maiden flight on 21 March 1996. The MiG-AT is being adopted by the Russian air force, though Yakovlev claims to have received air force orders for the Yak-130 also. Russia has a requirement for between 200 and 250 MliG-ATs, and MiG is building an initial batch of 18 aircraft, the MiG-AT is also being promoted on the export market – most recently in South. Africa and India. In both cases it was beaten by the BAE SYSTEMS Hawk, but MiG is optimistic that the MiG-AT will find new customers.

image166

Specification: MiG-AT Powerplant: Two 14.12-kN |3,175-Го)

1 urbomeca-SNECMA Larzac ІИ R20 turbofans, Dimensions: wing span 10.16 m(33 It 4 in): length 17.01 m (39 ft 5 in) excluding probe; height 4.42 m (14 ft 6 in)

Weights: norma: take-off 461Okg (10,163 lb); maximum take-off 7800 kg (17,195 lb) Performance: maximum level speed 1000 kmh (621 mph; maximum rate of climb at sea level 4140 m 113,580 ft) per minute; service ceiling 15500 m 150,860 ft); ferry range 2600 km (1.615 miles)

Armament: maximum ordnance 2.000 kn (4,410 ib) cn seven urtdcrfuselage and wing hardpoints.

 

image167

Kazan Helicopters has refined the ‘Hip’ design to produce the round-nosed Mi-17MD/Mi-8MTV-5.

Note the cockpit armour and IR jammer.

 

M

il’s Mi-8 (NATO code-name ‘Hip’) helicopter was designed as a turbine-engined Mil Mi-4 derivative, using the same tailboom and rotors. The new Isotov turboshaft was relocated above the fuselage, allowing a simpler transmission and big­ger cabin for up to 28 troops. The single-engined prototype V-8 ‘Hip-A’ flew during 1961, followed by the V-8 ‘Hip-B’, powered by twin TV2 engines, The Mi-8P ‘Hip-C’ was a transport, while the Mi-85 Salon was в passenger/VIP transport with toilet and galley, and square cabin windows The МЇ-8Т/АТ ‘Hip-C’ is a utility transport with circular cabin windows, and optional outriggers cauying four weapons pylons. The МІ-8ТВ ‘Hip-E’ is a dedicated assault derivative, with a nose – mounted machine-gun. It has new outriggers with three underslung nylons per side. Above the outer four pylons are launch rails for the AT-2 ‘Swatter’ ATGM. The export МІ-8ТВК ‘Hip-F’ had six ‘over – wing’ launch rails for the AT-3 ‘Sagger’ ATGM. To improve performance, the Mi-8 was re-engined with uprated TV3-117MTs to produce the Mi-17 ‘Hip-H’. The new aircraft has PZU intake filters, anc the tail rotor is relocated from starbosrd to port. CiS/Russian air forces use the Mil МІ-8МТ or Mi-8TV designations depending on equipment fit.

The ‘Нір-D’ was a command post/radio relay platform, with a pair of tubular antennas above the rear fuselage, and a V-shaped antenna mast under the tailboom. The Mi-9 ‘Hip-G’ is another command
post/radio relay variant, with ‘hockey stick1 antennas under the tailboom. The Mi-8SMV ‘Hip-J’ operates in the ECM jamming role. The Mil МЇ-8РРА ‘Hip-K’ is a communications jammer, with box fairings on the fuselage sides, a complex mesh-on-tubular – framework antenna array on the rear fuselage and six side-by-side neat exchangers below the forward fuselage. The МІ-17Р or МІ-17РР ‘Hip-H (EW)’ has the same heat exchangers and box-like fairings on the fuselage sides but has a solid array in place of the mesh antenna.

Since the break-up of the Soviet Union, the pants building Mii helicopters have begun marketing their own versions. These include Kazan, Ulan Ude and the Mil Moscow Helicopter Plant. Ulan Ude has offered an export Mi-17 with Western avionics ca led the Mi-171 and also the Mi-8AMT(Sh) ‘Terminator’ which has a four hardpoint stub wing. Kazan’s main version is the Mi-8TV-3 (similar to the ‘Terminator’, With the Mi-172 as the export version. Kazan a so makes the Mi-17MD with a rear loading ramp and capacity increased to 40 passengers.

Подпись: The Mi-8AMT(Sh) ‘Terminator’ is the latest model of the Mi-8 armed transport on offer from the Mil Bureau and its associated Ulan-Ude plant. Specification: Mil Mi-B "Hip-C’ Powerplant: two 125/-kW(1,700-hp) Klimov (Isotov) TV2-117 A turboshefts Dimensions: rolyr diameter 21.29 m (69 ft 1014 in); length overall, rotors turning 25.2-5 m (82 ft 9K in) and fuselage 18 "7 m {59 ft 7.35 in); height overall 5.65 n (18 It 52 in)

Weights: tyoical empty 7260 kg (16.007 lb); maximum payload 4000 kg 18,8′ 3 lb); maximum take-oil 12000 kg (26.455 lb);

Performance: maximum level speed 2БС kinh (161 mph); muximLm cruising speed 225 kmh (140 mph); sendee ceiling 4500 m (14760 It); hovering cei ng 1500 m (6.235 ft) IGE and 800 m (2,525 III OGt; ferry range 1200 km (746 milesl; range 465 km 1259 miles), standard fuel

image169

The Mi-24D ‘Hind-D’ introduced the redesigned armoured cockpits that now characterise the ‘Hind’. This is a Hungarian airforce aircraft

 

T

he Mil Mi-24 ‘Hind’ wss developed from the Mi-8, using the same engines and rotor, It was designed as a flying ARC, to carry soldiers and provide its own suppressive fire, while relyirg on speed lor protection. A V-24 prototype flew in 1970 and the production ‘Hind-A’ entered service during 1973, armed with АЇ-2 ‘Swatter’ missiles. During production the TV3-117 engine (used by the Mi-17) was introduced, leading to repositioning of the tail rotor to the port side of the tailboom.

The Mi-24’s anti-tank capability became more important, but the original heavily-gla2ed cockpit provided inadequate visibility and little protection. The solution was en entirely new nose, with separate, stepped, heavily armoured tandem cockpits for the pilot (rear) and gunner (front). Under the nose was a stabilised turret housing a four-barreiled 12.7-mm gun. The new aircraft was the Mi-24D ‘Hind-D’ iMi-25 for export). This was soon replaced by the MI-24V ‘Hind-E’ (Mi-35 for export) armed with tube-launched AT-6 ‘Spiral’ missile.

Combat experience in Afghanistan proved that the Mi-24 was a sound design. However, the original 12.7-mm machine-gun proved ineffective against some targets, and the ‘Hind’ needed a bigger gun. Accordingly, Mil designed the МІ-24Р ‘Hind-F’
whicn mounts a GSh-ЗОК twin-barrelled 30-mm cannon on the starboard forward fuselage. This was followed by the Mi-24VP, armed with the smaller twin-barrelled GSh-23L 23-mm cannon in its nose turret. Export versions of the ‘Hind-F’ were designated МІ-25Р and МІ-35Р Over 35 countries, most recently Macedonia, have taken delivery of Hind’ variants and they have seen combat in numerous conflicts, including Ethiopia-Eritrea, Nicaragua, Sri Lanka, and various parts of the former Soviet Union, notably Chechnya.

The МЇ-24М is an upgraded night-capable version for the Russian forces with the rotor and transmission system of the Mi-28 and a turret for a twin 23-mm cannon. This is offered for export as the Mi-35M, while the Russian army has gone for a less sophisticated Mi-24VM with new avionics. A second phase will see the Mi-28 rotor/transmission introduced, as well as a lightweight fixed undercar­riage. Israel’s Tamam (a division of IA!) and South Africa’s ATE have offered upgrades with western avionics and weapons capabilities. ATE’s ‘Super Hind’ has a 20-mm chain gun cannon and new night vision systems. The first ‘Super Hind’ customer is Algeria, while the Tamam upgrade is thought to encompass 25 Mi -25s for India,

Подпись: Poland operates a mix of'Hind-Ds' and ‘Hind-Es’ and has announced plans to upgrade and modernise its Mi-24s, adapting some for the C-SAR role. Specification: Mil Mi-24D ‘Hind-D’ PowerpSant: two 1640-kW {2,200-hp) Klimov (Isotov) TV3-117 Senes III turboshafts Dimensions: main rater dameter 17.30 ni (55 ft 9 in|, length cverall, rotors turning 19.79 nn (64 ft 11 n) and ‘fuselage 17.51 m (57 ft 57 ir) excluding rotors and gun; heigh overall 6.50 n (21 ft 4 ini with rotors turning Weights: empty 8400 kg (18.519 b); тэх:тит take-off 12500 kg (27,557 lb] Performance: maximum level speed 310 krnh (192 mph), service ceiling 4500 m (14,765 It); combat radius 160 km (99 miles) with maximum military load

Armament: one four-barrelled JakB 12.7-mni gun, maximum ordnance 2400 kg (5.201 lb)

Russia

Multi-role combat helicopter

image171

This is the first production МІ-28А ‘Havoc1 which introduced the definitive do wn wa rd po in ting exhaust suppressors for its TV3-117VMA engines.

 

M

il’s Mi-28 (NATO code-nams ‘Havoc’) is a successor to the Mi-24 and a direct rival to the Kamov Ka-50, Born in the Soviet era, the post Cold War years have seen funding for new p’-ograrrmes collapse and the Mi-28’s progress has been slow. The first of three Mi-28 attack hel copter prototypes flew on 10 November 1982. The basic production – standard МІ-28А flew in 1987 and was first seen in the West at the 1989 Paris Air Show. Since then it has not entered production.

The Mi-28’s conventional layout has stepped armoured cockpits accommodating a pilot (rear) and gunner (forward), with an undernose cannon. A conventional three-bladed tail rotor was abandoned and replaced on the second and third prototypes by a ‘scissor’-type tail rotor, with two independent two-bladed rotors on the same shaft, set at approxi­mately 35° to each other and forming a narrow X.

The Mi-28 is armed with a single-barrelled 2A42 30-mm cannon, with twin 150-round ammunition boxes co-mounted to traverse, elevate and depress with the gun itself, reducing the likelihood of jamming. The stub wings have four pylons, each able to carry 480 kg (1.058 lb), typically consisting of four tube – launched AT-6 ‘Spiral’ missiles or a variety of rocket pods. The wingtip houses a chaff/flare dispenser.

The cockpit is covered by flat, non-glint panels of armoured glass, and is protected by titanium and ceramic armour. Vital components are protected and duplicated, and shielded by less important
items. In the event of a catastrophic hit the crew are protected by energy absorbing seats. An emer­gency escape system is installed which blows off the doors and inflates air bladders on the fuselage sides. The crew ‘oil over these before pulling their parachute ripcords.

Mil’s development effort has now movec on to the radar-equipped МІ-28ІМ all-weather day/night attack helicopter. This aircraft is fitted with a mast – mounted Kinzhal V or Arbalet millimetre-wave radar, like that of the Longbow Apache, with FUR and LLLTV sensors in the nose. The Mi-28N has an NVG-compatible cockpit with multi-function dis­plays. Only four Mi-28s have been completed to date and they have undergone numerous detail changes. The first Mi-28N demonstrator was modi­fied from the МІ-28А prototype. It had its formal roll out in August 1996 and first fiew on 30 April 1997. The names Night Hunter and Night Pirate have been applied to the Mi-28N, by Mil. Officially, the Russian army has adopted the Ka-50. but Mi-28N development continues.

Подпись:Specification: Mil МІ-28А Havoc" Powerplant: two 1640-kW (2,200-hp) Klimov (Isotpv) TV3-117VMA turbcshafts Dimensions: main rotor diameter 17.20 m ІВЄ it 5 in); wing span 4.87 m (16 ft); length oveiral. rotors turning 1915 m (62 ft 10 in) and fuselage 16.85 m (66 T37 in)

Weights: empty 8095 kg [17,046 lb); maximum lake-all 11500 kg (25.353 lb) Performance: maximum level speed 300 kmn (188 mph); service ceiling 5800 m (19,025 ft); hovering coiling 3500m (11,810 ft) 0GE; range 470 km (292 miles), endurance 2 hours Armament: one single-barrelled 2A42 30-mm cannon with two 150-round drums, maximum ordnance approximately 1920 kg (4,233 lb)

Japan

Подпись: Mitsubishi F-2Multi-role combat aircraft

image173

The larger wing and revised tailplane configuration of the Mitsubishi F-2, when compared to the F-16C, are clear in this view of the first prototype XF-2 A

 

J

aoan has established a Tradition of military self – sufficiency, preferring to licence-build or indige­nously develop its military hardware, despite the higher financial costs that such small-scale production ineviraoly Incurs. When the JASDF launched its FS-X competition to find a replacement for its attack-dedicated Mitsubishi F1s – and ultimately its upgraded F-4EJs – the solution came in an interesting hybrid, Japan decided to adopt a modified F-16C, redesigned in conjunction with Lockheed Martin and built by Mitsubishi (with Kawasaki, Fuji and Lockheed Martin as important sub-contractors). The new aircraft was given the designation F-2 Mitsubishi modified the F-16 by adding an entirely new, and larger, composite materials wing, a longer mid-fuselage, wider tailplanes, a slightly elongated nose and a brake-chute housing. The F-2 is powered by a General Electric F110 IPE turbofan, It is fitted with a Mitsubishi Electric active phased array radar, and a cockpit with LCD MFDs and a wide-angle holographic HUD – all of Japanese origin. A new integrated EW system has also been developed by Mitsubishi.

The Mitsubishi proposal was selected as the winning FS-X design in October 1987 and Mitsubishi was appointed as the prime contractor
in November 1988. After some early difficulties with the allocation of workshare and technology transfer between the US and Japan were ironed out, the initial airframe development contract was awarded in March 1989.

Mitsubishi has built four flying prototypes – two single-seat XF-2As and two two-seat XF-2Bs. The first prototype XF-2A made its maiden flight on 7 October 1995 and the first XF-2B flew on 17 April 1996. In May 1996 the Japanese government approved the production of 130 aircraft, comprising 83 F-2As and 47 F-2B trainers (and, at the same time, officially allocated the F-2 designation).

On 22 March 1996 the first XF-2A was handed over to the Japan Defence Agency. The XF-2 test fleet was transferred to the Air Development and Test Wing at Gifu AB. During 1998/99 serious prob­lems were uncovered when the composite wing began to show signs of cracking when carrying heavy loads. This caused a nine-month delay in the programme while the wingtips and pylon attach­ments were redesigned. Mitsubishi delivered the first production F-2A aircraft to the Japan Defence Agency in a ceremony at its Komaki-South facility in September 2000. By the end of March 2001, 18 F-2s had been delivered to the JDA.

Подпись: The fourth and final XF-2 prototype - the second two-seat XF-2B operational trainer - was painted in a representative blue/grey camouflage. Specification: Mitsubishi F-2A Powerplant one 131.7-kN (29,BOO-lb) General Electrjn F110-GE-129 IPE afterburning turbofan (licence-built by I HI)

Dimensions: wing span 1113m (16 ft 6!* in), aver missile rails; length 15,52 m{50 ft11 in); height 4.96 m (16 ft 371 in)

Weights: empty, eqL pped 12QD0 kg (25,155 lb), maximum take-off 22Ю0 kg (48.722 lb) Performance: maximum level speed approximately Mach 2.0 IDetailed performance figures not available) Armament: one internal M61A1 Vulcan 20-mm cannon, plus 13 external stores stations

China Tactical bomber

image175

D

evelopment of the Nanchang Q-5 ‘Fantan’ began in 1958 to meet a PLA requirement for a dedicatee attack aircraft. Although based on the MiG-19, Nanchang’s design retained only tne rear fuselage and main undercarriage, introducing a new, stretched, area-ruled fuseiage with an internal weapons bay, new conical-section nose, wings of greater area and less sweep, larger tailplanes and lateral air intakes. A prototype made its delayed maiden flight on 4 June 1965, but extensive modifi­cations proved necessary to solve problems with the hydraulics, brakes, fuel and weapons systems. Two new prototypes flew in October 1969 and the type was ordered mto production.

Little is known about the dedicated Q-5A tactical nuclear strike version, which carries a single 5- to 20-kT free-fall bomb. The Q-51 is an extended-range variant with a new ejection seat, two additional hardpoints and a new Wopen WP6 engine. Some Q-5ls were modified to serve as missile-carriers with the PLA navy, and some of these may have Doppler nose radar. C-801 anti-ship missiles and torpedoes could also be carried. The Q-5IA, certified for production in 1985, was fitted with an additional underwing hardpoini and introduced a new gun/bomb sighting system and new defensive avionics. Thep-511 received an RWR but was other­wise similar. The A-5C (Q-5IIII was an export Q-5IA for Pakistan with substantially improved avionics and compatibility with AIM-9 AAMs. The A-5Cs


The A-5C Is still on offer to export customers, but its bargain-basement price brings with it outdated technology and debatable effectiveness.

serve with two squadrons at Peshawar, one having been disbanded due to the high accident rate. A programme to rebuild A-5Cs in Pakistan has beer •Liming out refurbished aircraft at about 10 per year for very low cost compared to new-build examples.

Production of the Q-5/A-5 continues by Hongdu Aviation Industry Group (HAIG) – which Nanchang became in 1998 – though only at a low rate as attrition replacements. Over 1,000 are believed to have been delivered. Approximately 500 Q-5s serve with 12 regiments of the PLAAF.

The A-5 has been exported to Bangladesh, North Korea, Pakistan and Myanmar (Burma). Several programmes were launched to upgrade Q-5s with Western avionics and/or equipment. The A-5K Kong Yun (Cloud) was equipped with a French-built laser rangefinder The А-БМ programme began in conjunction with Italy and added a ranging radar, an INS, a HUD and new IFF and RWR equipment. An extra wing hardpoint was added, along with compatibility with the PL-5 AAM. All western-aided upgrade work on the A-5 has now ceased.

The PLAAF relies heavily on the 0-5 as Its primary tactical strike/attack aircraft It has no obvious successor in the Chinese inventory.


image176Specification: Nanchang Q-5 IA ‘Fantan’ Powerplant: two 39.7-kN (8,930-lb) Liming (LM) Wopen-6A afterburning turbojets Dimensions: wing span 9.58 m (31 It Э in), length 15.65 m (51 ft in) including probe, height 4,333 m (14 ft 2A in)

Weights, emoty 6375 kg (11,354 lb): rraxmum take-off 11830 kg I25.CB0 lb) Performance: maximum leve speed 1190 kmh (74C mph); maximum rate of climo at 5C00 m (16,400 ft) 4980-5180 m (16.340-20,275 ft) per minute; service ceiling 15850 m (52.030 ft); combat radius with maximum external stores. 400 km (248 miles!

Armament: two Type 23-2K 23-mm cannon with 100 rpg, plus 2000-kg (4,409-lb) ordnance

Подпись: N H Industries NH90Fran се / Germ a пу/ It а І у Advanced multi-role helicopter

image177

The NH 90 TTH-configuration has a nose-mounted FUR and weather radar, a radar-/missile launch – Jlaser-warning system, EWjammers and chaff/flares.

 

A

longside the EH101 the li H Industries NH 90 is the ‘most inportent European collaborative helicopter programme. In terms of planned production numbers it is certainly the largest. The NH 90 is being developed by a consortum of manufacturers from France, Germany, Italy and the Netherlands with Eurocopter and Agusta {now AgustaWestland) as the senior partners. Two versions, the multi-role raval NFH and the battlefield tactical transport TTH are being developed from a common airframe.

The NH 90 prog’amne can trace its beginnings back to the mid-1980s (its very name betrays the fact that was intended as a helicopter for th9 1990s). Tne first NATO ndustrial Advisory Group studies were aunched in 1983/84 and a five-nation Moll (including Britain) was signed in 1985. The initial design phase was launched in 1986, but in ‘.987 tne UK withdrew and the German and Italian work- shares had to be renegotiated n 1990/91. Further design and development VIoUs were finally signed in 1992, agreeing to the production of five flying prototypes – nearly 10 years after the NH90 programme began.

The NFH (NATO Frigate Helicopter) is desigred for ASW and ASuWjssks, with a secondary SAR and transoort role, he TTH (Tactical Transport

Helicopter! is an army/ar force version – or akmobi e operations. The twir-engined NH 90 will be the world’s firs: f:y-by-wire helicopter, using a quadruplex digital flight control system. The fuselage is built entirely from composite materials, as are the main ‘otor blades (which use an advanced aerofoil section with curved tios). The NFH cockpit has a five – screen EFIS layout, wnilethe TTH has four,

The first of the five NH 90 prototypes was bu It to a common basic configumtion and made its fhst Tght or 18 December ‘995, powered by RTM 322 engines. It flew with the NIT 90’s alternate T70Q powerplsnts n March 1998. The first full TTH missior system was f own n 1999 on the fourth prototype, while the first full NFH system flew later that year on the fifth prototype,

m June 2000 the partner nations gave the go – ahead for full NH 90 production. A month later, in July, they s gned a firm order for the first batch of 298 NH 90s, comprising 70 TTHs and 46 ~THs for Italy (plus one option), 27 NFHs for France, 80 TTHs for Germany (plus 54 options) and 20 NFHs for the Netherlands. The initial NH 90 production comrrri – ment is for 366 helicopters and the tota European requirement *or tne NH 90 stands at 595 aircraft The first (TTH) deliveries will begin in 2003.

Подпись: In its NFH configuration, the NH 90 is fitted with a 360° search radar in a ventral radome. It will also have a dipping sonar, FURMAD, ESM and datalink. Specification: NH 90 TTH Powerplant: two 1253-<W*1.680-hoi class Ralls-Rayce/lirbomeca PTM372-01/9 or Alfa Rameo/6ET70C-T6E turboshafts Dimensions: rotor diameter 16.30 m (53 ft 5/ in): length overall, rotors turnirg 19 55 m (G4 ft 2 it) arid luseloge 15.89 m |57 ft 1/ it): height overall 5.44 m (‘7 ft 10 in)

Weights: typical empty 54-30 kg (11.505 >b). mission payload 2500 ку {5.512 Ibl; maximum take-off 10000 xg (22,046 lb):

Performance: maximum erasing soeed 251 kmh (181 rrph); service celling 4250 m (13,840 ft); hovering ceiling 35CC m(11,480 ft) IGF and 2900 n (9.52C ftl 0GE; ^erry range 1204 km (748 miles); missinn radius 250 <m (’55 nilesl

image179

The EA-6B is now a key element of US (and Allied) air operations, because of its powerful jamming capability and HARM anti-radar missiles.

 

D

esigned and bu’lt for the US Navy, Grumman’s EA-6B Prowler is now the United States’ only dedicated lethal SEAD (Suppression o’ Enemy Air Defences} and IVgh-oerformance jamming glat’orm. Experience with the two-crew EA-6A EW aircraft led to the development o’ an advanced, lengthened four-seat A-6 variant, seating a oilot and three e ectronic warfare officers (EWOsl to manage the sophisticated smay of ECM ard ESM systems Entering service dining 1971, it introduced a tactical jamming system 0iS} which employs noise1 jamming originating from a maximum of five transmitter pods. The first 23 production aircraft were to ‘Basic’ standard with ALQ-99 TJS and ALQ-92 communications jamming system.

These were fo loweo in "I973 by 25 EXCAP (Expanded Capability} a’rframes witn the ALQ-99A TJS. in 1976, the ICAP (Improved Capability) standard was app iec to ^5 new-bui. d and 17 ea-lier aircraft and introduced new displays, AN/ALQ-126 multiple – band defensive treakers anc upcated raaa – decep­tion gear, All 55 surviving ICAPs were upgraded with software and display improvements to ІСАР-І standam. This also introduces ungraded jamming pods and is able to handle groups of weapons systems with imoroved identification of hostile emitters and improved reliability and maintainability. The ICAP-ll/Block 86 introduced ‘hard kill’ canability with AGM-88A HARMs. More recently, EA 63s have been upgraded to two ADVCAP conf gurat;ors. The
basic ADVCAD has new jammer transmission and passive Detection capabilities and an expanded AK/ALE-39 chaff dispenser fit. An Avionics Improvement Pmgrarr was to lead to a remanufec – tured ADVCAP, Block 91 EA-6B with new displays, radar improvements, an imarcved tactica support jamming suite, AK/ALQ-K9 communications jam­ming system and a digital autop lot. In fact, only three prototypes were tested, and a new uograue, Block 86, proceeded instead. This inciucec new radios, a cig tal fue indicator ana other cockpit imo-ovements. All surviving aircraft then became Block 89, with new ‘safety of flight’ features such as halon fire extinguishers and hardened control rods, and were followed by Block 89A rebu;ds with imoroved instrumentation and imbedded GPS.

With tne retirement of the USAF’s F 4G ‘Wild Weasel’s and EF-111 jamming aircraft, a joint – service agreement allocated four Prowler squadrons to Air Fcrce use when needed. These units have a mix of USAF and USN crews and first saw action during Operation Allied Force in 1999.

In addition to the US Navy’s 16 Prowler squadrons, the US Marine Corps operates another four. This aircraft is from VMAQ-1 ‘Banshees’.


image180"Specification; EA-6B Prowler Powcrplant; two 49.8-kN (11.200-0) Pratt & Whitney J52-P4CR turbojets Dimensions: wing span 16.1b n!53 fl); width folded 7.87 rr (25 ft 10 r$ length 18.24 m I59 ft 10 in); height 4.85 m (16 ft 3 in)

Weights: empty 1432′ kg (ЗІ,572 lb); normal carrier take-off 24/03 kg (54,461 1Ы. o’ from lard 27493 <g{6C, B1011:1 Performance: maximum level soeed with five jamnnrr pass 962 krnh {6:0 mph); service cel mg with five jammer pods’ 1Ь39 m (38,000 ft); rence 1769 km (1,099 miles! with maximum external load

Armament: up to four AGM-S8A HARM enti – rariar missiles

United States Long-range ‘stealth’ bomber

image181

T

he Northrop B-2 Spirit flying wing was developed in great secrecy as a ‘stealthy’, radar-evading, bomber for the Cold War mission of attacking Soviet targets with stand-off nuciear weapons. B-2 development was a ‘black’ programme, known in its infancy as Project Senior C. J. and later as the ATB {Advanced Technology Bomber)

The 8-2’s four F118 turbofans are non-afterburning variants of the F110 turbofan and have intakes and exhausts locatedabove the aircraft to shield them from detection. The crew/payload section of the aircraft starts aft of the apex of the wing, ends at the wing trailing edge and is smoothly blended on the upper surfaces of the wing. The crew compart­ment provides side-by-side seating for two pilots, seated in zero-zero ACES II ejection seats.

The first flight of a B-2 took place on 17 July 1989. Test flying to evaluate low observables tech­nology began on 30 October 1990. The USAF received is first operational B-2 in December 1993 and the last was delivered to the 509th Bomb Wing at Whiteman AFB, MO in December 1997. As later aircraft were delivered, early examples were upgraded to Block 20 and Block 30 standard, Block 30 bombers have full PGM and terrain-following capability and improved stealth measures.

The B-2 has a nuclear strike role, armed with cruise missiles or bombs. This aircraft was involved in inert drop tests of the B61-11 penetrating nuclear bomb.


The B-2 used stealth technology developed a generation after the F-117 Stealth Fighter, and the differences between the two are striking.

Total procurement, reduced initially from 132 to 75, has been curtailed to just 20 front-line aircraft due to the enormous $2.25 billion cost of each B-2. The need for secrecy and problems with the Defensive Management System (DMS) contributed to the ballooning of costs. Maintenance costs are also very high due to the need to preserve the smooth, RAM-coated surface finish.

Although many observers thought that the USAF would never risk the costly B-2 in anything other than all-out nuclear war, the Spirit saw action against Yugoslav forces in Kosovo in 1999. Non­stop 15-hour missions were flown all the way from Whiteman to the Balkans and back, in which up to 16 GPS-guided 2.000-lb JDAMs were dropped on targets such as airfields and air defence sites with 16 direct hits, and complete surprise from the defenders The USAF plans to build special dedicated B-2 hangars at forward locations such as RAF Fairford, in the UK, to support future deployed operations and reduce the strain on aircrews from such extremely long missions. With possible charges to US defence strategy forthcoming, Northrop Grumman has offered to reopen the pro­duction line for an improved version at a cost of $700 million each for a batch buy.

image182

Specification: Northrop B-2A

Po we rp la nt: four 84.52-k N (19,000-1 b) General Electric F118-GE-110 non-afterburning turbofans

Dimensions: span 52.43 m {172 ft!; length 21 03 m (59 ft); height 5.18 m {17 ft!

Weights: empty between 45360 and 49900 kg (100.000 and 110,000 lb); maximum take-off ;8I437 kg (400.000 lb)

Performance: maximum level speed 754 kmh 1475 mph); service ceiling 15240 m (50,000 (l); range with a 10886-kg (24.000-lb) warloed 12231 km (7,600 miles) on a hi-hi-hi mission or 8339 km (5.182 miles)on a hi-lo-hi mission Armament maximum ordnance 50,000 lb (22680 kg)

 

image183

Until the delivery of the far-larger E767, the E-2C Hawkeye was the sole AEW and ABCCC asset of the Japan Air Self Defence Force.

 

T

he E-2 Hawkeye has been the US Navy’s airborne early warning platform since entering service in 1964. It has a rotodome (mounted above the rear upper fuselage) housing antennas for the main radar and IFF systems. Including prototypes and development aircraft, a total of 59 E-2As was built, equipped with the APS-96 surveillance radar. Most were later converted to E-2B standard with a general-purpose computer and retired from service in the mid-1980s.

Current generation Hawkeyes are built to E-2C standard, the first example of which flew on 20 January 1971. Identified by a cooling intake behind the cockpit, the E-2C introduced a new APS-125 radar and improved signal processing capability. The basic E-2C has been the subject of continual updating over the years. Raoar units have changed to the APS-138 (E-2C Group 0), the APS-139 (E-2C Group I, from 1989) and the APS-145 (E-2C Group II) now fitted to all aircraft. APS-145 offers improved resistance to jamming and better overland surveillance capability.

Production of the Hawkeye by Grumman on Long Island finished in 1994 with the 139th exam­ple, but was reinstated at St. Augustine, Florida to turn out four Group II aircraft per year plus export aircraft. In the AEW role, the E-2C extends the detection range of the battle group by about 480 km (300 miles) for aircraft and 258 km (160 miles) for cruise missiles. Small surface vessels can be located
at 231 km (143 miles). Communication is main­tained with the carrier’s Combat Information Centre and patrolling fighters by means of a datalink. The Hawkeye can also act as an airborne control and command post, feeding directions to attack aircraft and escorting fighters to deconflict them, in addition to providing warnings of hostile aircraft.

In US Navy service, the E-2C flies with 11 active – duty units, two training units and two Reserve squadrons. E-2Cs have been exported to the air forces of Egypt (six), Japan (13). Singapore (four plus two on option) and Taiwan (four E-2Ts>. Israel had four aircraft fitted with refuelling probes but has now retired them. The French navy is acquiring four E-2Cs to operate from its new carrier, Charles De Gaulle.

The next-generation Hawkeye 2000 will inte­grate into the USN’s Co-operative Engagement Capability network. Northrop Grumman also has plans for an Advanced Hawkeye with a new multi- bladed propeller and a tactical cockpit giving the pilots access to the overall sensor ‘picture’

Подпись: The US Navy is investing in future developments of the E-2 Hawkeye, while beginning to explore options for its replacement by 2020. Specification: Grumman E-2C Hawkeye

Po we гр I a n t two 3661 – kW (4.910-hp) Allison T58-A-425 turbuprops

Dimensions: wing span 24.56 m (80 ft 7 in): folded width 8.94 m{29 ft 4 in); length 17,54 m (57 ft in); height 5 58 m (18 ft VA in) Weights: empty 1728b kg (38,063 lb); maximum lake-off 23556 kg (51.933 lb) Performance: maximum level speed 598 kmh (372 mphl; maximum rate of climb at sea level 767 m (2.515 It) per minute; service ceiling 9390 m (30.800 ft); minimum take-off run 610 m (2,000 ft), minimum landing run 439 m (1,440 ft). 1,605 miles]; operational radius 320 km (200 miles) for a petrol of 3 to 4 hours

Подпись: United States Battlefield surveillance

*U. S. AIR FORCE

M

aking a ‘star’ appearance in Operation Desert Storm years before it was truly operational, the Boeing/Grumman E-8 represents a major advance in battlefield command and control, intro­ducing the capaoility for monitoring and controlling the land battle that the E-3 provices in the air batt e.

і wo E-8A prototypes were converted from former Boeing 707 airliners, with the first flying in operational configuration in 22 December 1988. The E-8A had a cabin configured with 10 operator consoles. It introduced the Norden AN/APY-3 multi – mode side-looking phased array radar (housed in a forward ventral canoe fairing). Its synthetic aperture radar gives a high resolution radar picture out to 257 km (160 miles) from the orbiting aircraft, wh le two pulse-Doppler modes provide moving target indication (MTl).

A wide area search MTl mode monitors a large sector of land, while an MTl sector search mode is used to target smaller areas of inte’est to follow individual vehicles. The antenna can be electronically slewed 120° to either side of the aircraft to cover nearly 50,000 km’ (19,305 sq miles) and the radar has some capability to detect helicopters, rotating antennas and low slow-moving fixed wing aircraft. A dataiink is used to transmit intelligence gathered


A former Southern Air Transport Boeing 707 was used to provide the first full-scale development E-8C aircraft, which will serve as a permanent testbed.

in near rea – time to mobile ground consoles, similar to those on the E-8. Using the various modes, the JSTARS (Joint Surveillance Target Attack Radar

System) can be used for general surveillance and battlefield monitoring to provide the ‘big picture’ to commanders, stand-off radar reconnaissance or individual targeting functions for attacking vehicles and convoys.

In January 1991 both E-8As deployed to Riyadh to fly combat missions in Desert Storm. Forty-nine war missions were flown, for a total of 535 hours, a sizeable portion of which was spent on the search for Iraqi ‘Scud’ missiles.

In service, the JSTARS system was to have been carried on the new-build E-8B aircraft with F108 (CFM56) turbofans but, despite one YE-8B being procured (later sold), the production-standard platform is the E-8C based on converted 707 airliner airframes. The first production E-8C end a pre-pro­duction aircraft made their operational debut over Bosnia in 1996, but IOC with the 93rd Air Control Wing was not declared until December 1997. The E-8C crew consists of four flight crew and 18 oper­ators. Current plans are for 14 E-8Cs to be in service by 2003. The USAF is already working on the RTIP radar upgrade for the JSTARS.

The AN/APY-3 radar is housed in a canoe fairing under the forward fuselage. It uses an electronically – scanned, mechanically-steered (in elevation) array.

image186

 

Specification: Northrop Grumman E-8C Poworplant: four 84.52-kN (t9.000-lb) Pratt & Whitney JT3D-7 turbofans Dimensions: wing span 44.42 m 114b ft 9 ini; length 46.SI m 1152 ft 11 in); height 12.93 m (42 ft bin)

Weights: empty 77564 kg(171,000 lb), maximum take-off 152407 kg (336,090 lb) Performance: max cruising speed at 7620 m (25.000 ft) 973 kmh (605 mph); economical cruising speed at 10670 m (35,000 ft) 860 kmh (534 mph); maximum rate of climb at sea level 12T9 m (4.000 hi per minute; service ceiling 12800 m |42,000 ft); range with maximum fuel 9266 km (5,758 miles); endurance 11 hours unrefuelled, 20 hours refuelled

 

United States Lightweight fighter

image187

Chile’s F-5E Tigre III upgrade was carried out in conjunction with Elbit and added a new EL/M-2032 radar, helmet-mounted sight and Python III missiles.

 

I

n 1954 the US government initiated a study for a simple lightweight fighter to be supplied via the Military Assistance Program. Northrop’s private – venture N-156C design made its first flight on 30 July 1959, and was selected in 1962 by the USAF as the required FX’ fighter. It was designated F-5, and an F-5A prototype flew in May 1963. A corre­sponding two-seat F-5B trainer entered service in April 1964, four months ahead of the F-5A. Northrop also developed the reconnaissance RF-5A, equipped with four nose-mounted cameras.

First generation F-5s were exported to Brazil, Greece, Jordan, Morocco, Philippines, Saudi Arabia, South Korea, Spain, Thailand, Turkey, Venezuela and Yemen. Improved versions were built by Canadair as the CF-5A and CF-5D and were later upgraded by Bristol Aerospace. Some were iater sold to Botswana. The Royal Netherlands air force ordered 105 NF-5As with leading-edge manoeuvre flaps and Doppler radar.

The F-5E/F Tiger II incorporated uprated J85 engines, an integrated fire control system, additional fuel and a larger, modified wing with LERXes and manoeuvring flaps. The F-5E is the single-seat variant and was first flown on 11 August 1972. The combat – capabie F-5F trainer had a lengthened fuselage was first delivered to the USAF in 1973, to prepare the aircraft for foreign users. F-5E/Fs later served for aggressor training with the USAF until the late 1980s and still fly with the USN.

Some 1,300 F-5E/Fs were supplied to 20 air forces. Current operators are Bahrain, Botswana, Brazil, Chile, Honduras, Indonesia, Iran, Jordan, Kenya, Malaysia. Mexico, Morocco, Saudi Arabia, Singapore, South Korea. Sudan, Switzerland, Taiwan, Thailand. Tunisia, USN/USMC, Venezuela and Yemen. It was also built under licence in South Korea, Switzerland and Taiwan.

Many F-5 upgrade programmes are now available. Chile, Brazil, Indonesia, Singapore, Taiwan and Turkey have all modernised their aircraft with new radars, cockpit systems and weapons.

A specialised RF-5E Tigereye reconnaissance version, retaining full combat capability, first flew in 1978. A modified lengthened nose houses a single camera. This can be augmented by two inter­changeable pallets, containing combinations of panoramic cameras and an IR linescanner. The RF-5E has been exported to Malaysia and Saudi Arabia Singapore Aerospace has converted some of its F-5Es to RF-5S configuration and others to RF-5E TigerGazers for Taiwan.

Подпись: The last F-5s in US service are the aggressor F-5Es operated by the US Navy’s VFC-13 'Saints’ (seen here) and the USMC's VMFT-401 ‘Snipers'. Specification: Northrop F-5E Tiger II Powerplant: two 22,24-kN (5,000-lb) General Electric J85-GE-21B afterburning turbojets Dimensions: wing span 8.53 m {28 ft) with tip-mounted MMs; length 14.45 m (47 ft 4K in! including probe; height 4.08 m {13 ft 4/ in| Weights: empty 4349 kg |9,558 IbJ; maximum take-off 11187 kg (24.664 lb)

Performance: maximum level speed 17Э0 kmh I I,056 mph); maximum rate of climb at sea level 10455 m (34,300 ft) per minute; service ceiling 15590 m (51,800 ft); combat radius 1405 km (875 miles) with two AIM-9 AAMs Armament two M39A2 20-mm revolver cannon with 280 rounds per gun, maximum ordnance 3175 kg (7,000 lb) ~

United States