Category Escaping the Bonds of Earth

THE BAY OF PIGS

Deep within the Gulf of Cazones, on the southern coast of Cuba, is a place known as Bahia de Cochinos. In English, ‘cochinos’ is sometimes translated as ‘pigs’, although this may be erroneous and could refer instead to a species of triggerfish. In mid-April 1961, events at this small, nondescript place – the ‘Bay of Pigs’ – would lead to a major diplomatic incident between the United States, Russia and the newly – established pro-communist regime of Fidel Castro on the island. It would leave the Kennedy administration, still reeling from Yuri Gagarin’s flight, severely embar­rassed and, in the eyes of socialists, would significantly raise the profile of both the Soviet Union and Communism.

The roots of the debacle had actually been laid during the presidency of Kennedy’s predecessor, Dwight Eisenhower, in March I960. A year after Castro had come to power with his own brand of revolutionary rule, the CIA had begun secret efforts to train and equip a force of up to 1,500 Cuban exiles, with the intention of invading the island and overthrowing the dictator. Initial plans sought to land a brigade close to the old colonial city of Trinidad, some 400 km south-east of Havana, where the population was known to generally oppose Castro’s regime.

Already, the dictator was beginning to align himself with the Soviet Union, agreeing in February 1960 to buy Russian oil and expropriating the American – owned refineries in Cuba when they refused to process it. The Eisenhower administration promptly cut diplomatic ties with the fledgling nation, which only served to strengthen Castro’s links with the Soviets. When Eisenhower reduced Cuba’s sugar import quota in June 1960, Castro responded by nationalising $850 million-worth of American property and businesses. Although some of his policies proved popular among the Cuban poor, they alienated many former supporters of the revolution and precipitated over a million migrations to the United States.

In February 1961, less than a month after his inauguration, an opportunity presented itself for Kennedy to topple Castro: the Cuban armed forces possessed Soviet-made tanks and artillery, together with a formidable air force, including A-26 Intruder medium-range bombers, Harrier Sea Fury fighter-bombers and T-33 Shooting Star jets – surely a tangible threat to the United States’ security. As these plans were being thrashed out, the landing site for the anti-Castro brigade was changed to an area in Matanzas Province, 200 km south-east of Havana, at the Bay of Pigs. The exiles’ chance of success here was limited still further by warnings from senior KGB agents, by loose talk in Miami and by the interrogation of over 100,000 Cuban suspects, which gradually exposed the plans for the invasion.

Of critical importance to these plans was Operation Puma, which sought to undertake 48 hours of air strikes, eliminating Castro’s air force and ensuring that the exiles – known as ‘Brigade 2506’ – could land safely at the Bay of Pigs. This failed when additional waves of air support were cancelled; Kennedy wanted the invasion to appear as if engineered wholly by the Cuban exiles and not by his own government. For this reason, he had insisted the landing site be moved from Trinidad to the Bay of Pigs – the former was a popular resort and would undoubtedly grab unwanted headlines if the invasion should fail. It was a fatal

mistake. Trinidad was actually an ideal spot: in addition to the broadly anti-Castro sentiment of its people, it offered excellent port facilities, armaments and was close to the Escambray Mountains, an anti-communist rebel stronghold. In order to maintain the ability of his administration to claim ‘plausible deniability’ and avoid admitting that it was actually an American-financed operation, Kennedy doomed the invasion to failure.

On 17 April 1961, two days after the first bombing run and still under the impression that they could rely upon several more waves of decisive air cover, over 1,500 Cuban exiles landed at the Bay of Pigs in four chartered transport ships. They were joined by a pair of CIA-owned infantry craft, together with supplies, ordnance and equipment. The hope that they would find support in the local populace, however, proved fruitless. Cuban militia had already contained the Escambray rebels, Castro had executed several key suspects thought to be involved in the plot and troops were waiting at the Bay of Pigs. The hard-fighting exiles, by now aware that they would not receive effective air support and were likely to lose, were forced back to the beach. By the time the fighting ended on 21 April, 68 exiles were dead, together with four American pilots, and the remainder captured. Some would be executed and over 1,100 imprisoned. After lengthy negotiations, the latter were released 20 months later in exchange for $53 million in food and medicine from the United States.

The fiasco proved extremely embarrassing for the Kennedy administration and was quickly followed by the forced resignations of the CIA director, his deputy and the deputy director of operations. Although he admitted responsibility for the bungled invasion, as the fighting in Cuba drew to an end, on 20 April, Kennedy refined his plans to draw the Soviets into a space race and perhaps gain more credibility for his government. ‘‘Is there any space programme,’’ he asked Vice­President Lyndon Johnson in one of the 20th century’s most influential memos, ‘‘that promises dramatic results in which we could win? Do we have a chance of beating the Soviets by putting a laboratory in space or a trip around the Moon or by a rocket to land on the Moon or by a rocket to go to the Moon and back with a man?’’ His motives, of course, were chiefly political, but he was clearly pinning his colours to the space flag.

One of the main personalities approached by Johnson as he weighed up the options was the famed rocket scientist Wernher von Braun, who, in a 29 April memo, felt that the ‘‘sporting chance’’ of sending a three-man crew around the Moon before the Soviets was somewhat higher than putting an orbital laboratory aloft. Others, including Secretary of Defense Robert McNamara, would even push for a landing on Mars, although his motivations for such a proposal have been questioned. Von Braun, who had designed Nazi Germany’s infamous V-2 missile before coming to the United States in 1945 as a key player in its rocketry and space programmes, felt that a lunar landing was the best option, since ‘‘a performance jump by a factor of ten over their present rockets is necessary to accomplish this feat. While today we do not have such a rocket, it is unlikely that the Soviets have it’’. The rocket to which von Braun referred, known as Saturn, remained in the early planning stages, but a commitment to its development had been one of the conditions he had applied before agreeing to join NASA in October 1958. “With an all-out crash effort,” he told Johnson, “I think we could accomplish this objective in 1967-68.”

Von Braun’s judgement won the day for Johnson. Three weeks later, still smarting from Bay of Pigs humiliation, Kennedy delivered the speech which – perhaps more than any other – would truly define his presidency.

THE COMPETITOR

‘‘Who let a Russian in here?’’ Louise Shepard joked on the evening of 19 January 1961, when her husband announced that she had her arms around the man who would be first to conquer space. Her light-hearted words hinted at the closeness of the race between the United States and the Soviet Union in achieving that goal, but would prove unfortunately prophetic when, in less than three months’ time, Yuri Gagarin would rocket into orbit. Al Shepard would not be the first man in space, but would come close, missing out by barely three weeks. Privately and publicly, the gruff New Englander would fume over the lost opportunity to make history. ‘‘We had ‘em by the short hairs,’’ he would growl, ‘‘and we gave it away.’’

Shepard had been born in East Derry, New Hampshire, on 18 November 1923, the son of an Army colonel-turned-banker father and Christian Scientist mother and the progeny of a close-knit, fiercely loyal and wealthy family. His key qualities – bravery, a spirit of adventure and an absolute determination to be the best – emerged at a young age: as a boy, he did chores around the home and a paper round gave him enough money to buy a bicycle, which he rode to the local airport, cleaning hangars and checking out aircraft. At school, his boundless energy led teachers to advise that he skip ahead two grades, making him the youngest in each class he attended. After spending a year at Admiral Farragut Academy in New Jersey, Shepard entered the Naval Academy in Annapolis, Maryland, receiving his degree in 1944 and serving as an ensign aboard the destroyer Cogswell in the Pacific theatre during the closing months of the Second World War.

He subsequently trained as a naval aviator, taking additional flying lessons at a civilian school, and received his wings from Corpus Christi, Texas, and Pensacola, Florida, in 1947. Shepard served several tours aboard aircraft carriers in the Mediterranean and was chosen in 1950 to join the Navy’s Test Pilot School at Patuxent River – the famed ‘Pax River’ – in Maryland; whilst there, he established a reputation as one of the most conscientious, meticulous and hard-working fliers. On more than one occasion, he was hand-picked to wring out the intricacies of a new aircraft, purely on the basis of his technical skill and precision. His test work included missions to obtain data on flight conditions at different altitudes, together with demonstrations of in-flight refuelling systems, suitability trials of the F-2H-3 Banshee jet and evaluations of the first angled carrier deck.

Later, as operations officer for the Banshee, attached to a fighter squadron at Moffett Field, California, Shepard made two tours of the western Pacific aboard the Oriskany. A return to Pax River brought further flight testing: this time of the F-3H Demon, F-8U Crusader, F-4D Skyray and F-11F Tiger jets, together with posts as a project officer for the F-5D Skylancer and as an instructor at the school. Graduation from the Naval War College in Rhode Island in 1957 led to assignment to the staff of the commander-in-chief of the Atlantic Fleet as an aircraft readiness officer. By the time he was selected as an astronaut candidate by NASA in April 1959, Shepard had accumulated 8,000 hours of flying time, almost half of it in high-performance jets. His flight-test experience surpassed that of the other members of the Mercury Seven, although he was alone among them in having never flown in combat.

His standoffish attitude also set him apart from the others. Since childhood, perhaps in light of his family’s wealth, Shepard had been a loner and in his years at NASA many fellow astronauts would comment on his notorious dual personalities: warm and smiling one minute, icy and remote the next. ‘‘If you were a friend of Al’s,’’ said Deke Slayton’s wife Bobbie, ‘‘and you needed something, you could call him and he’d break his neck trying to get it for you. If you were in, you were in. It was just tough to get in.’’ During the mid-Sixties, when he was grounded from flying due to an inner-ear ailment and serving as NASA’s chief astronaut, Shepard’s secretary would put a picture of a smiling or scowling face on her desk each morning to pre-warn astronauts of which personality to expect from ‘Big Al’ that day.

Reputation-wise, though, he was quick-witted, a top-notch aviator and, as a leader, possessed all of the characteristics of a future admiral – a rank which, even whilst attached to NASA and never having commanded a ship, he attained in 1971. In fact, when he told his father of his selection as an astronaut candidate, the older Shepard expressed grave misgivings that he was abandoning a promising naval career for what was perceived by many as an ill-defined programme with limited

prospects, run by a newly-established civilian agency. For Shepard, though, Project Mercury represented a logical extension to a life spent looking for the next challenge. His competitive nature had become the stuff of legend years before Mercury and had gotten him into hot water with superiors on more than one occasion: after several illicit, close-to-the-ground flying stunts, known as ‘flat-hats’ – one over a crowded naval parade ground, another looping under and over the half-built Chesapeake Bay Bridge in Maryland and a third blowing the bikini tops off sunbathing women on Ocean City beach – he had come dangerously close to court-martial.

Undoubtedly, Shepard’s less-than-reputable exploits had come to the attention of the NASA selection board, but Neal Thompson speculated that it was viewed as an aspect of his fearless and competitive personality, rather than as an excuse to discard his application. He indulged in other hobbies, too. After taking up water-skiing, he progressed rapidly from two skis to one and, later, even experimented on the soles of his bare feet. His wife, Louise, whom he had married in 1945 whilst at Annapolis, would remark that it was ‘‘characteristic’’ of Shepard to always be restless for new challenges. His biggest feat – and, he would say later, his proudest professional accomplishment – was selection to fly the first American manned space mission. ‘‘That was competition at its best,’’ he said, ‘‘not because of the fame or the recognition that went with it, but because of the fact that America’s best test pilots went through this selection process, down to seven guys, and of those seven, I was the one to go. That will always be the most satisfying thing for me.’’

SCIENCE FLIGHT

When Carpenter was named to pilot MA-7 in March 1962, he decided on the moniker ‘Aurora 7’ for his capsule. “I think of Project Mercury and the open manner in which we are conducting it for the benefit of all as a light in the sky,’’ he wrote later. ‘‘Aurora also means ‘dawn’ – and, in this case, the dawn of a new age. The Seven, of course, stands for the original seven astronauts.” By now, the suffix had become commonplace and, coincidentally, ‘Aurora’ also happened to be the name of one of two streets bordering Carpenter’s boyhood home in Boulder. The capsule which bore this name was Spacecraft No. 18 off the McDonnell production line and arrived at Cape Canaveral on 15 November 1961, followed by its Atlas booster just two weeks after John Glenn’s mission.

Owing to the ‘experimental’ nature of Friendship 7 – ‘‘for all its first-time danger,’’ wrote Carpenter and Stoever, ‘‘MA-6 had been designed to answer the simple question: Could it be done?’’ – the next mission was intended to encompass far more engineering and scientific tasks, including observations, photography and extensive manoeuvres. Deke Slayton, when the flight was still his to fly, had expressed consternation at the sheer volume of tests and experiments. ‘‘Everybody and his brother came out of the woodwork,’’ Slayton wrote. ‘‘One guy wanted me to

SCIENCE FLIGHT

Scott Carpenter prepares for his flight.

release a balloon to measure air drag. Another guy had some ground observations I was supposed to make. One damn thing after another. I had my hands full trying to resist it.” From 16 March 1962, with barely ten weeks to go, Scott Carpenter found that the scientific demands of MA-7 were his to handle: they included combined yaw-roll manoeuvres to study orbital sunrises, using terrestrial landmarks and stars for navigational reference and flying in an inverted attitude to determine the effect of ‘Earth-up/sky-down’ orientation on the pilot’s abilities.

Furthermore, Homer Newell, head of NASA’s Office of Space Sciences, had established a formal panel to outline experiments and objectives for future flights. Astronomer Jocelyn Gill of NASA Headquarters was appointed to run this ‘Ad-Hoc Committee on Scientific Tasks and Training for Man-in-Space’ and her enthusiasm for Carpenter, who had an impressive background in navigational astronomy following his experience aboard the P2V with Patrol Squadron Six, was evident. Gill’s committee considered a number of possible experiments and Kenny Kleinknecht, now in charge of the Mercury Projects Office, appointed Lewis Fisher to lead a newly-established Mercury Scientific Experiments Panel. With the Fisher group overseeing the Gill committee ‘‘from an engineering feasibility standpoint’’ and on the basis of their ‘‘scientific value, relative priority and suitability for orbital flight’’, a consensus was reached on 24 April to propose five major experiments for Aurora 7. In his autobiography, Carpenter wrote that he ‘‘liked and admired scientists’’ and ‘‘liked being a champion of embattled groups with high purpose . . . And in 1962, the scientists at NASA were already a beleaguered group’’.

Deke Slayton’s perspective had always been that scientific tasks should be kept to a minimum, particularly in light of John Glenn’s problems with the flight controls. ‘‘Scott had a different perspective,’’ Slayton wrote. ‘‘He was always at home with the doctors and scientists – I think he was genuinely curious about the things that interested them. But it bit him in the ass during his flight.’’ Within NASA, added Carpenter, scientific experiments were viewed ‘‘with a mixture of suspicion and ridicule, the butt of jokes when the reporters weren’t around’’ and the astronaut found himself at loggerheads with Flight Director Chris Kraft. Although their relationship would never turn antagonistic, many observers have commented over the years that Carpenter’s performance during Aurora 7 would lead Kraft to declare openly that he would never fly in space again.

The five experiments recommended by the Fisher panel required Carpenter to observe, measure, analyse and photograph (1) a tethered, multi-coloured balloon, (2) the behaviour of liquids inside a sealed flask, (3) different visual phenomena – both celestial and terrestrial – using a modified photometer, built by psychologist Bob Voas and nicknamed ‘The Voasmeter’, (4) weather patterns and land masses and (5) the ‘airglow’ layer of the upper atmosphere. Of these, the balloon was the most visible. Measuring 76.2 cm in diameter and weighing 900 g, it was an inflatable Mylar sphere, divided into five equal sections painted an uncoloured aluminium, Day-Glo yellow, Day-Glo orange, white and a phosphorescent coating which appeared ‘white’ by day and ‘blue’ by night. The intention was for it to be inflated with a small nitrogen bottle immediately after release from Aurora 7’s antenna canister at the end of the first orbit. Carpenter would then observe and photograph the effects of space and sunlight on the different colours at different times, perhaps aiding in the design of future lunar spacecraft and their docking systems, which would require exceptionally good visibility. To better understand atmospheric density at orbital altitudes, it would be fitted with a ‘tensiometer’ – a strain gauge – to measure tension on the 30 m tether. Carpenter would add his own observations, monitoring the amount of atmospheric drag and turbulence in the balloon’s slipstream by carefully watching its oscillations and general behaviour as it trailed behind Aurora 7. During launch, the balloon would be folded, packaged and housed with its nitrogen bottle in the antenna canister on the spacecraft’s nose.

Meanwhile, the fluid flask – just behind Carpenter’s right ear in the cabin – was designed to build on theoretical and experimental work at NASA’s Lewis Research Center in Cleveland, Ohio, where it was already known that liquids behave differently under microgravity conditions. Its inclusion was intended to provide preliminary answers to questions of how fuels and other spacecraft fluids could be transferred from one storage tank to another during the long-duration Gemini and Moon-bound Apollo missions. Terrestrial aircraft flights and drop-tower tests conducted at Holloman Air Force Base and the service’s School of Aviation Medicine in Texas had been too short. One of the leading suggestions was that surface tension could be used to pump fluids, using capillary action, between tanks. The flask on Carpenter’s mission contained a small capillary, or meniscus, tube and by observing the behaviour of the fluid it would be possible to determine how effectively surface tension translated into pumping action, simply by measuring how far the liquid was drawn up into the tube. It was 20-per cent-filled with some 60 ml of a mixture of distilled water, green dye, an aerosol solution and silicone.

Observations of the constellations were also planned and considered important for future navigational purposes. Moreover, the Massachusetts Institute of Technology had requested photographs of the ‘daylight’ horizon through blue and red filters to define more precisely the Earth’s limb as seen from above the atmosphere. John O’Keefe of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, sought a distance measurement of the airglow above the atmosphere, together with its angular width and a description of its characteristics. For this study, Carpenter would use the Voasmeter. (It was lucky that Voas lent his name to the device, for its formal title was the ‘extinctospectrophotopolariscopeoculogyrogra – vokinetometer’; a name requiring 20 syllables!) The astronaut would also have a German-made 35 mm SLR camera, called a ‘robot recorder’, capable of exposing two frames per second from a 250-frame magazine, which would provide images of the daylit horizon, considered valuable for the design of Apollo’s navigation system. Another Goddard scientist, Paul Lowman, requested images of North America and Africa.

In addition to analysing events beyond his spacecraft, Carpenter was also charged with monitoring himself: by performing numerous exercises at specified intervals, followed by blood pressure readings. Aurora 7 would be the most science-heavy Mercury mission so far and the numerous problems encountered by Carpenter would be at least partly attributed to an overloaded work schedule.

DECLINE

On the face of it, the Soviets remained in the lead in terms of space endeavours – even the first manned Gemini mission, launched a few days after Voskhod 2, ran for barely five hours and the United States’ first spacewalk would not occur until June 1965. However, before the year’s end, American astronauts would have not only surpassed Valeri Bykovsky’s five-day endurance record, set on Vostok 5, but would have nearly tripled it. Moreover, they would have experimented with fuel cells for longer flights, demonstrated ‘real’ rendezvous techniques necessary for lunar sorties and their Apollo project was gearing up for its own missions from 1966 onwards. At the time, of course, many western observers would find it hard to fathom why the Soviets – once so far ahead – fell so far behind during this period. Their next manned mission, Soyuz 1, would not fly until April 1967 and would end with the death of its cosmonaut pilot, Vladimir Komarov.

Key to the Soviet slowdown was the death of Sergei Korolev, the famed Chief Designer, whose identity had been kept such a closely guarded secret that his importance would not become widely known until years later. In his autobiography, Alexei Leonov lamented that, even compared to Wernher von Braun, Korolev was both a giant and a genius. At a conference in Athens in August 1965, Leonov asked von Braun why America’s supposed technological superiority had not enabled them to launch their own Sputnik, their own Gagarin, their own Voskhod 2, first. The man who designed the Saturn rocket which would win the Moon race in barely three years’ time responded respectfully that the ‘Chief Designer’, his name still unknown in the west, was a far more determined man.

Determined, indeed, but by the middle of the Sixties, Korolev was also a sick man. Nikolai Kamanin had made numerous references in his diaries that Korolev had not been well and towards the end of 1965, as two American Gemini capsules rendezvoused in orbit, he was diagnosed as suffering from a bleeding polyp in his intestine, then admitted into hospital early in the new year. Released temporarily on 10 January to celebrate his birthday at home, he spent an evening with his closest friends, including Leonov and Yuri Gagarin, to whom he told the story of his remarkable life: from his early work in the field of rocketry to his incarceration in one of Stalin’s gulags, near Magadan in the Kolyma region of the Soviet Far East, then his recall to Moscow to support Russia’s war effort and, later, its space effort.

Only days later, on 14 January, after complications arose in what should have been a routine operation, Korolev died. The effect on the cosmonaut corps and upon the Soviet Union’s direction in space was dramatic, with many recognising that the death of this previously-unknown man would severely affect future endeavours.

Pravda ran an obituary, Yuri Gagarin delivered a solemn eulogy – describing Korolev as “a name synonymous with one entire chapter of the history of mankind” – and Leonid Brezhnev, Alexei Kosygin and Mikhail Suslov took turns to carry his ashes for interment in the Kremlin Wall. The men who followed Korolev – his deputy, Vasili Mishin, who succeeded him, together with Georgi Babakin, Vladimir Chelomei and rocket engine designer Valentin Glushko – exhibited entirely different personalities which many cosmonauts felt damaged the Soviet Union’s chances of beating America to the Moon.

In particular, Alexei Leonov has said, the lack of co-operation between Korolev and Glushko led to problems with the choice of propellants and the number of engines needed for the gigantic N-l lunar rocket, while Mishin’s apparent favoritism of newly-selected engineer-cosmonauts over the veteran pilots alienated many in the corps. Summing up, Leonov is not alone in having suggested that, had Korolev lived a little longer, “we would have been the first to circumnavigate the Moon’’. His optimism was far from misplaced. In fact, even under Mishin’s leadership, early plans called for Leonov himself to command the first loop around the back of the Moon, scheduled, at one point, for mid-1967.

Judging from the ambitious Voskhod follow-on flights planned while Korolev was still alive, there is much reason to suppose that a Soviet man on the Moon was possible. Voskhod 3, notably, endured a lengthy and convoluted development and reared its head, drearily, on several occasions as yet another effort to upstage the Americans, this time by attempting a mission of almost three weeks in duration. Early plans from March 1965 envisaged a 15-day flight in October of that year, carrying a pair of cosmonauts – a pilot and a scientist – followed by the longer, 20-day Voskhod 4 in December, crewed by a pilot and a physician. By April, the first hints of crews appeared: Boris Volynov and Georgi Katys were favoured by Nikolai Kamanin for Voskhod 3, although some within the Soviet leadership contested this. Volynov, for example, was Jewish, whilst Katys’ father, of course, had been executed by Stalin and the cosmonaut had half-siblings living in Paris. As the months wore on, Volynov was retained, paired firstly with Viktor Gotbatko and, finally, with Georgi Shonin. The next Voskhod to feature a spacewalk proved yet more controversial, with a crew of two female cosmonauts: Valentina Ponomaryova and Irina Solovyeva, backed-up, interestingly, by two men, Gotbatko and Yevgeni Khrunov.

In terms of space endurance, the United States seized the lead in August 1965, when Gemini V astronauts Gordo Cooper and Pete Conrad spent eight days in orbit, an endeavour which the Soviets, even with Korolev still alive, were powerless to prevent. Hopes of launching Voskhod 3 before the year’s end to at least upstage Gemini V faded when it became clear that the challenges of modifying the spacecraft, its environmental system and controls to handle such a long flight were simply too great. The 14-day Gemini VII mission pressed the American lead still further in December. In the final months of his life, Korolev was overburdened with the development of the new Soyuz (‘Union’) spacecraft, the massive N-l lunar rocket and plans to soft-land a probe on the Moon in early 1966. Privately, and with little direction from the government, he had already abandoned work on Voskhod 3.

The Soviet armed forces provided the impetus to jumpstart the proceedings when it became apparent that military activities had been conducted by the Gemini V astronauts. Ballistic missile detection experiments were duly added to Voskhod 3 and one of Korolev’s projects, an artificial gravity investigation, which utilised a tether between the spacecraft and the final stage of the R-7 rocket, was also approved. Short-lived plans were even floated by the Soviet Air Force in August 1965 to stage a one-man Voskhod 4, lasting around 25 days, for exclusively military tasks. One of these would centre on a set of high-quality, Czech-built cameras known as ‘Admira’. By the end of the year, Voskhod 3 had slipped into February 1966, much to the chagrin of many in the cosmonaut corps, who had already written to Leonid Brezhnev, complaining that the Soviet Union’s lead in space was being hampered by its lack of focus and clear management.

Following Korolev’s death, his successor Vasili Mishin pushed on with plans for a third Voskhod, pencilling it in for March 1966, although this date quickly became untenable due to nagging problems with ripped parachutes and an environmental control system which could not be qualified for missions longer than 18 days. On 22 February, the prime crew, Volynov and Shonin, passed their final examinations and were cleared to fly. In readiness for their launch, an unmanned Voskhod – under the cover name of‘Cosmos 110’ – entered orbit on 28 February and completed a 21-day flight with two dogs, Veterok and Ugulyok. However, Voskhod 3 itself continued to drift further and further to the right. An R-7 failure provided the first postponement and Voskhod 3 was scheduled for May, but Leonid Smirnov, chairman of the Military-Industrial Commission, argued that the flight served no purpose for the Soviet government. Despite achieving a new record duration, it was not enough, Smirnov reasoned, to have a profound impact on the world.

For his part, Kamanin argued that valuable military experiments would be conducted by Voskhod 3 and Smirnov relented a little and the launch was rescheduled for sometime in late May. A state commission convened early that month and confirmed that problems with the R-7’s engines, which had exhibited high-frequency oscillations in test-stand runs, would probably not occur under ‘real’ flight conditions. Later plans moved Voskhod 3 to July and even as late as October 1966, Mishin was ordered to prepare for its launch, but did so with little enthusiasm that it would actually go ahead as the new Soyuz project gained momentum. It has also been speculated that, just months after being appointed the new Chief Designer, Mishin simply did not want to begin his tenure under the cloud of a now-obsolete spacecraft which provided its cosmonauts with a limited margin of safety. In this way, as Mark Wade has pointed out on his website www. astronautix. com, Voskhod 3 was never really cancelled; it simply faded away.

Nikolai Kamanin had long since seen the writing on the wall: that Smirnov had killed the mission in favour of the more ambitious Soyuz project, which would demonstrate rendezvous and docking, long-duration flights, spacewalking, the potential to support an orbital station and whose crews would circumnavigate and land on the Moon. Placing their eggs in the Soyuz basket, it seemed, would give the Soviets a far better chance than Voskhod of decisively beating the American lead achieved by Gemini. The maiden voyage of the new spacecraft would suffer more than its own fair share of technical obstacles, but the loss of the Apollo 1 crew in a January 1967 flash fire offered increased hopes that the Soviets might yet beat the United States to the lunar surface. Then, just three months after the Apollo disaster, tragedy would strike the Russians in a manner that even their best propaganda apparatus could not fully conceal.

A DAY IN ORBIT

Gherman Titov’s dismay at having lost the chance to fly first in space was tempered somewhat by the realisation that his own orbital journey in August 1961 would be more than ten times longer. In fact, one of the reasons cited by Nikolai Kamanin for deferring the poetry-loving teacher’s son from the first Vostok to the second had been his greater physical endurance to handle a longer period in the peculiar state of weightlessness. Ironically, Titov’s response to this environment would earn him the unenviable record of becoming the first person to suffer space sickness.

The plans for a lengthy mission had been sketched out earlier in 1961, with Sergei Korolev wanting a cosmonaut to spend 24 hours aloft. Kamanin, together with many cosmonauts and their physicians, believed such an endeavour to be too ambitious – “too adventurist’’, he wrote in his diary – and advocated a shorter, three-orbit mission, lasting around five hours and landing in the eastern Soviet Union. Korolev rejected it. His opposition was based on sound judgement: a recovery during this period, and specifically between the second and seventh orbits, would not be possible, since retrofire would need to occur whilst in Earth’s shadow. If this happened, Vostok 2’s solar orientation sensor could not function reliably.

With typical single-minded determination, Korolev ordered his deputy, Kon­stantin Bushuyev, to lay plans for a 24-hour flight. His unwavering effort, devotion and – to a great extent – obstinacy was the result of a hard, driven, thankless life of service to the Soviet Union by a man of pure technical genius. Born in 1907 in the central Ukraine, Korolev’s interest in aviation and rocketry emerged at a young age. Under Stalin’s regime, with its ingrained fear of the power of the individual, there was little opportunity for the ‘intelligentsia’ to prosper and, as a highly respected and brilliant engineer, Korolev quickly found himself arrested and sentenced to ten years of hard labour in the Siberian gulag. The Nazi invasion of 1941, however, prompted his release to support the war effort. Subsequently, Korolev set to work developing an arsenal of rockets and missiles which he hoped could someday transport instruments into the high atmosphere and, eventually, into space. His masterpiece, the R-7, though principally intended for the Soviet military as a ballistic missile, would indeed eventually put satellites and men into orbit. By giving it this dual­purpose use, he kept his military critics quiet by satisfying their needs and his own.

Nikita Khrushchev’s regime proved generally supportive of Korolev and his projects, but for different reasons: the Presidium – later known as the Politburo – was far more interested in the glamour, political and military impact of spacegoing rocketry than purely upon scientific advancement. Indeed, on the evening of 11 April 1961, when Korolev informed Khrushchev of the final preparations to launch Vostok, the Soviet leader’s exasperated response amounted to a demand for him to “get on with it’’. Even in the wake of Gagarin’s triumph, Korolev – still officially a state secret and known only as the ‘chief designer’ to the outside world – received no congratulation, was barred from wearing his medals and even had to thumb a lift into Moscow when his antiquated Chaika limousine broke down. Later efforts by the Nobel Prize Committee to create an award for the anonymous chief designer fell on deaf ears in the Soviet leadership.

It is astonishing, therefore, that the resilience of the man – whose sufferings in Stalin’s gulag had left him physically weakened – was so high in the light of so little tangible reward. Under pressure from Korolev to fly the 24-hour mission, Kamanin reluctantly acquiesced, but imposed a condition that a manually-implemented retrofire could be conducted between the second and seventh orbits if the cosmonaut felt unwell. Opposition to the long flight, though, remained strong. As late as June 1961, Soviet Air Force officers, physicians and cosmonauts felt more comfortable with a three-orbit mission and the dispute remained unsettled until Korolev took his plan all the way to Leonid Smirnov, head of the State Committee for Defence Technology, who opted in favour of spending 24 hours in space. Later that month, the Vostok 2 State Commission convened, named Titov as the prime cosmonaut and Andrian Nikolayev as his backup.

A summertime launch was highly desirable for Korolev. Already, since Gagarin’s pioneering flight, no fewer than two American astronauts had ventured into space, albeit on 15-minute suborbital ‘hops’ from Florida into the Atlantic Ocean. Khrushchev wanted a summertime launch, too, but at a specific point and possibly for specific reasons. In mid-July, he summoned Korolev to his Crimean vacation home and hinted strongly that Vostok 2 should fly no later than 10 August; some observers have since speculated that this was deliberately engineered to provide propaganda cover for the initial steps to build the Berlin Wall just a few days later. ‘‘While it was not the first case in which Khrushchev had suggested a particular time for a specific launch,’’ wrote Asif Siddiqi in ‘Challenge to Apollo’, ‘‘it was clearly the first occasion in which the launch of a mission was timed to play a major role in the implementation of Soviet foreign policy.’’

The western world knew little of the Vostok 2 plans, of course, and persistent rumours abounded that other Soviet efforts to put men – and a woman – into space had backfired and ended disastrously. One notable example suggested that a woman had been launched on 16 May, a few weeks after Gagarin, but that her re-entry had been delayed, perhaps due to damage incurred by her Vostok capsule’s heat shield. A decision to come home on 23 May, due to dwindling oxygen supplies, was apparently taken. . . and on the 26th, the state-run Tass news agency announced the return of a large unmanned satellite, which burned up during re-entry. More notorious was a story penned by the pro-communist London newspaper The Daily Worker, which revealed, two days before Gagarin flew, that a renowned Soviet test pilot had been killed during his return from space. Such stories did not seem to go away for many years and, as late as 1979, the British Interplanetary Society suggested that the son of

Russian aircraft designer Sergei Ilyushin had flown before Gagarin, but had landed “badly shaken” and had “been in a coma ever since”.

These rumours have since been shown for what they are, but they certainly demonstrate the lack of knowledge of exactly what was going on behind the Iron Curtain at this time. Indeed, news of Titov’s impending launch did not reach even the keenest western ears until 5 August. Late that evening, the Agence-France-Presse issued a cable from Moscow, reporting that further ‘rumours’ from the Soviet capital hinted at a manned launch within 24 hours.

Early the following morning, Titov headed for Gagarin’s Start in an old eggshell – blue bus and rode the elevator to the capsule that would be his home for more than a day. Following an unfortunate incident during training, he had been reminded, only half-jokingly, by his fellow cosmonauts not to get his parachute lines entangled after ejecting from Vostok 2 or ‘‘they would be forced to expel him from the corps’’. As he was being strapped in, Titov was handed a notepad and pencil to log his experiences during the flight. Seconds after 9:00 am Moscow Time, American radar installations detected the launch of the R-7, although President Kennedy had been informed the previous night that a second Soviet manned shot was imminent.

Two hours into the flight, at 10:45 am, Radio Moscow’s famous wartime announcer Yuri Levitan boomed out the details for a listening world. Vostok 2 was in an orbit of 178-257 km, inclined 64.93 degrees to the equator. For the first time, and undoubtedly for propaganda purposes rather than in the interests of ‘true’ openness, Tass revealed the radio frequencies on which the cosmonaut was transmitting his reports. These appeared in the state-run Pravda newspaper on the morning of 7 August, together with details that the 143.625 MHz voice transmitter was frequency-modulated with a frequency deviation of plus or minus 30 kHz; obviously a clear invitation to western radio enthusiasts to listen in. Following the doubts over the authenticity of Gagarin’s mission, this would eliminate any suggestion that Titov’s flight might be a fake. In fact, listening posts in western Europe, including the Meudon Observatory, near Paris, heard the cosmonaut’s voice within two hours of liftoff, as did Reuters’ monitoring station outside London. The BBC also picked up an announcement from Titov, in which he provided details about Vostok’s cabin temperature – a pleasant 22°C, he reported – together with his personal callsign, ‘Oriel’ (‘Eagle’).

In his post-flight press conference, held a few days later, he would describe candidly the acceleration, noise and vibrations during the launch as having been endurable. Weightlessness, though, posed a different challenge. ‘‘The first impression,” he told a packed Moscow State University auditorium on 13 August, ‘‘was that I was flying with my feet up. After a few seconds, however, everything returned to normal. The Sun shone through the illuminators and there was so much light inside the cabin that I could turn off the artificial illumination. When the Sun did not shine directly into the illuminators, it was possible for me to observe, simultaneously, the Earth – which was illuminated by the Sun – and the stars above, which were sharp and bright little points on a very black sky.’’

Although he was undoubtedly impressed by his view of the heavens, Titov’s experience of the microgravity environment would be somewhat different. Shortly

after reaching orbit, he began to feel disorientated and uncomfortable and, even before beginning his sleep period at around 6:30 pm he exhibited symptoms of vertigo: dizziness, nausea, headaches. Titov, the teacher’s son from the village of Verkhnie Zhilino, in the Altai region, would be the first of many to suffer from the condition known as ‘space sickness’.

DIFFERENT WORLD

The day after Bob Gilruth picked Shepard for the first American manned space mission, another selection was being ratified in a cold and snowy Washington, DC, under the auspices of Chief Justice Earl Warren and accompanied by Robert Frost’s poetry. At 12:51 pm on 20 January 1961, the man who would truly define the United States’ space ambitions for the new decade officially became its 35th president. John Fitzgerald Kennedy, the first incumbent of the office to have been born in the 20th century, famously encouraged Americans in his 14-minute, 1,300-word inauguration speech to participate as active citizens: to ‘‘ask not what your country can do for you; ask what you can do for your country’’. Only months later, speaking before a joint session of Congress in the wake of Shepard’s flight, Kennedy would rally hundreds of thousands of Americans from all corners of the nation to participate, actively, in the greatest scientific endeavour ever attempted: to land a man on the Moon.

Today, he holds a somewhat nostalgic, even mystical, place in the hearts of space aficionados, as the first major world leader to truly support a peaceful exploration programme with words, deeds and serious money. Indeed, the lunar landing effort, known as Project Apollo, would consume more than $25 billion in a little over a decade of operations. However, Kennedy’s motivations for funding it were at least partly political. At the time of his appointment, American missile and space technology had fallen seriously behind that of the Soviet Union, opening up a much – publicised ‘gap’ between the two superpowers and creating an issue which had been a central component of his election campaign. It is interesting to speculate when one considers Kennedy’s words – that ‘‘the world is very different now’’ – whether or not the lunar effort would have gone ahead if such issues with the Soviet Union and the steady march of communism into south-east Asia had not been present.

The son of a businessman-turned-ambassador, Kennedy’s grandfathers had both been important political figures in Boston, Massachusetts. After a stint in command of a torpedo boat in the Solomon Islands in 1943 – during which he famously brought his crew ashore after being hit by a Japanese destroyer – Kennedy remained undecided for a time over whether to enter journalism or politics in civilian life. He eventually settled on the latter, winning a seat in the House of Representatives in 1946, supporting President Harry Truman and advocating policies of progressive taxation, the extension of social welfare and increasing the availability of low-cost housing. Election to the Senate in 1952 was followed by his sponsorship of bills to provide federal financial aid for education, liberalise immigration laws and implement measures to require full disclosure of all employees’ pension and welfare funds. He also wrote the Pulitzer-winning Profiles in Courage in 1956, becoming the first president to achieve the coveted literary prize.

Kennedy officially declared his intent to run for the presidency on 2 January I960, defeating opponents Hubert Humphrey and Wayne Morse in the Democratic primaries. Despite his staunch Roman Catholic beliefs – which caused suspicion and mistrust of him in several states, particularly the largely-Protestant West Virginia – he succeeded in winning solid support and cemented his credentials. In a speech delivered to the Greater Houston Ministerial Association, he revealed himself to be ‘‘the Democratic Party’s candidate for President, who also happens to be a Catholic’’. Further, he attacked religious bigotry and explained his belief in the absolute separation of Church from State. By mid-July, the Democrats had nominated him as their candidate, with Lyndon Johnson joining him for the vice-presidency.

During the first televised debate in American political history, Kennedy appeared relaxed opposite his Republican rival (and then-Vice-President) Richard Nixon, further increasing the momentum of his campaign. On 8 November 1960, he won the election in one of the most closely-contested votes of the 20th century, leading Nixon by just two-tenths of a per cent – 49.7 against 49.5 – although it might have been higher, had not 14 electors from Mississippi and Alabama refused to back him on the basis of his support for the brewing civil rights movement. Nevertheless, and despite Nixon lambasting Kennedy’s lack of experience in senior politics, the second- youngest man ever to win the presidency duly took office.

A little more than three years later, he would also become the youngest – and the last – to be assassinated.

RISE AND FALL OF THE AURORA

Preparations for the MA-7 mission had begun long before Deke Slayton’s grounding. In mid-November 1961, Spacecraft No. 18 arrived in Hangar S at Cape Canaveral, followed, shortly after the Friendship 7 flight, by its Atlas. Checkout problems with capsule and rocket delayed an original mid-April launch to mid-May. The landing bag switches which had caused problems for John Glenn were rewired so that both had to be closed in order to activate a ‘deployed’ signal. Engineers also determined that the cause of the flight control system glitches lay in the fuel line filters, which were replaced with platinum screens and new, stainless steel fuel lines. Finally, on 28 April 1962, Aurora 7 was attached to its rocket at Pad 14. A simulated flight proved satisfactory, although decisions were made to install an extra barostat in the capsule’s parachute circuitry, fit temperature survey instrumentation and replace flight-control canisters in the launch vehicle. Additional delays were caused by Atlantic Fleet tactical exercises which required participation by the recovery ships and aircraft for several weeks. Other concerns arose following the failure of an Atlas – F missile a few weeks earlier. However, the different engine start-up sequences of the Atlas-F and Carpenter’s own Atlas-D eliminated any doubts over its reliability.

The installation of the extra barostat postponed the mid-May launch attempt and, on the 19th, an effort to get Aurora 7 into space proved fruitless when irregularities were detected in a temperature control device on the Atlas’ flight control system heater. Five days later, however, Carpenter was awakened at 1:15 am and proceeded through the usual pre-flight breakfast ritual, was examined by Bill Douglas, suited – up by Joe Schmitt’s team and departed for Pad 14. He was aboard the capsule by 5:00 am, to enjoy one of the smoothest countdowns in Project Mercury, with only persistent ground fog and cloud and camera-coverage issues complicating matters. During a 45-minute delay past the original 7:00 am launch time, Carpenter sipped cold tea from his squeeze bottle and chatted to his family over the radio. His wife Rene and their four children represented the first astronaut family to journey to the Cape and watch the launch. To avoid media attention, a neighbour provided a private flight to Florida and a car, which Rene drove to the astronauts’ hideaway – nicknamed the Life House – near Pad 14, wearing huge sunglasses, a kerchief over her conspicuous blonde coif and her two daughters hidden under a blanket. The media, anticipating the arrival of a blonde mother of four, instead saw only a well – disguised mother of two. . .

Sixteen seconds after 7:45 am, the Atlas’ engines ignited, prompting all four Carpenter children to abandon the television set and rush onto the beach to watch their father hurtle spaceward. Elsewhere, at the Cape and across the nation, an estimated 40 million viewers watched as America launched its second man into orbit. Carpenter himself would later describe ‘‘surprisingly little vibration, although the engines made a big racket’’ and the swaying of the rocket during the early stages of ascent was definitely noticeable. In his autobiography, he would express surprise, after so many years of flying aircraft and ‘levelling-out’ after an initial climb, to see the capsule’s altimeter climbing continuously as the Atlas shot straight up.

Already, however, the first glitches of what would become a troubled mission

RISE AND FALL OF THE AURORA

Aurora 7, atop its Atlas, is readied for launch.

were rearing their heads. Aurora 7’s pitch horizon scanner, responsible for monitoring the horizon to maintain the pitch attitude of the spacecraft, immediately began feeding incorrect data into the automatic control system. When this ‘wrong’ information was analysed by the autopilot, it responded, as designed, by firing the pitch thruster to correct the perceived error – in effect, wasting precious fuel. Forty seconds after the separation of the LES tower, the scanner was 18 degrees in error, indicating a plus-17-degree nose-up attitude, whilst the Atlas’ gyros recorded an actual pitch of minus 0.5 degrees. It had reached 20 degrees in error by the time Carpenter achieved orbit. As the flight wore on, the error persisted and, wrote Carpenter and Stoever, produced ‘‘near-calamitous effects’’ as Aurora 7 neared re­entry.

Sustainer engine cutoff came as a gentle drop in acceleration, with a pair of bangs providing cues that explosive bolts had fired and posigrade rockets had pushed Aurora 7 away from the spent Atlas. The astronaut reported, with clear elation in his voice, ‘‘I am weightless! Starting the fly-by-wire turnaround.” Deciding not to rely on the automatic controls, his use of fly-by-wire smartly turned the capsule around at a fuel expense of just 725 g, as compared to 2.3 kg on Friendship 7. Carpenter would later describe that he felt no angular motion during the turnaround and, in fact, his instruments provided the only evidence that a manoeuvre was being executed. No sensation of speed was apparent, although he was travelling at 28,240 km/h and was soon presented with his first ‘‘arresting’’ view of Earth. Carpenter watched the Atlas’ sustainer tumble into the distance, trailing a stream of ice crystals two or three times longer than the rocket stage itself. As he flew high above the Canaries, he could still see its silvery bulk, tagging along with Aurora 7.

Five and a half minutes into the mission, Capcom Gus Grissom radioed the good news: Carpenter’s orbit was good enough for seven circuits of the globe. The astronaut got to work. ‘‘With the completion of the turnaround manoeuvre,’’ he wrote, ‘‘I pitched the capsule nose down, 34 degrees, to retro attitude, and reported what to me was an astounding sight. From Earth orbit altitude, I had the Moon in the centre of my window, a spent booster tumbling slowly away and looming beneath me the African continent.’’ He pulled his flight plan index cards from beneath Aurora 7’s instrument panel and Velcroed them into place; these would provide him with timing cues for communications with ground stations, when and for how long to use control systems, when to begin and end manoeuvres, what observations to make and when to perform experiments. Minute-by-minute, they mapped out his entire flight. First, he took out the camera, adapted with strips of Velcro – ‘‘the great zero-gravity tamer’’ – to begin photographing Sun-glint on the Atlas sustainer. Next came filters to measure the frequency of light emissions from Earth’s atmospheric airglow, followed by star navigation cards, worldwide orbital and weather charts and bags of food.

Orienting the capsule such that the sustainer was dead-centre in his window, Carpenter reported to the Canaries ground station that he could see ‘‘west of your station, many whirls and vortices of cloud patterns’’. His view of the heavens was somewhat less clear, with the stars too dim to make out against the black sky, although the Moon and terrestrial weather patterns were obvious. Then, 16 minutes after launch, the astronaut noted that his spacecraft’s actual attitude did not seem to be in agreement with what the instruments were telling him. Aware of problems that John Glenn had experienced with his gyro reference system, and cognisant of the fact that he had other work to do, Carpenter dismissed it.

“A thorough check, early in the flight, could have identified the [pitch horizon scanner] malfunction,” he later wrote. “Ground control could have insisted on it, when the first anomalous readings were reported. Such a check would have required anywhere from two to six minutes of intense and continuous attention on the part of the pilot. A simple enough matter, but a prodigious block of time in a science flight – and in fact the very reason [such] checks weren’t included in the flight plan.’’ With so much to do, it would not be until his second orbit that Carpenter would again report problems with the autopilot.

Passing over the ground station at Kano, in north-central Nigeria, Carpenter successfully photographed the Sun for physicists at the Massachusetts Institute of Technology, then, over the Indian Ocean, acquired initial readings for John O’Keefe’s airglow study. However, conditions aboard the spacecraft were becoming uncomfortable, as the cabin temperature increased. Years later, in ‘The Right Stuff’’, Tom Wolfe would describe Aurora 7 as ‘‘a picnic’’ and that its astronaut had ‘‘a grand time’’; Carpenter, however, countered that his lengthy training as Glenn’s backup and shorter-than-normal preparation for his own mission made it anything but a walk in the park. ‘‘To the extent that training creates certain comfort levels with high-performance duties like spaceflight,’’ he wrote, ‘‘then, yes, I was prepared for, and at times may have even enjoyed, some of my duties aboard Aurora 7. But I was deadly earnest about the success of the mission, intent on observing as much as humanly possible, and committed to conducting all the experiments entrusted to me. I made strenuous efforts to adhere to a very crowded flight plan.’’

Admirably, for the first 90 minutes of his mission, Carpenter focused on his Earth-observation tasks, photographing rapid changes in light levels as the spacecraft crossed the ‘terminator’ – the dividing line between the darkened and sunlit sides of Earth – and expressing sheer astonishment as the Sun disappeared below the horizon. ‘‘It’s now nearly dark,’’ he remarked in the flight transcript, ‘‘and I can’t believe where I am!’’ Passing over Muchea in Australia, Carpenter discussed with Capcom Deke Slayton possible ways of establishing attitude control on the dark side of Earth with no moonlight and relayed what reliable visual references he had through the window or the periscope. Pitch attitude was not a problem, thanks to scribe reference marks on Aurora 7’s window, but accomplishing the correct yaw angle was much more difficult and time-consuming.

‘‘At night, when geographic features are less visible, you can establish a zero-yaw attitude by using the star navigation charts, a simplified form of a slide rule,’’ Carpenter wrote. ‘‘The charts show exactly what star should be in the centre of the window at any point in the orbit – by keeping that star at the very centre of your window, you know you’re maintaining zero yaw. But there are troubles even here, for the pilot requires good ‘dark adaption’ to see the stars and dark adaption was difficult during the early flights because of the many light leaks in the cabin.’’ Among the most annoying of these leaks were Aurora 7’s instrument panel lights and, particularly, the glowing rim around the spacecraft’s on-board clock. Carpenter told Slayton that his pressure suit’s temperature was higher than normal, before crossing over the Woomera tracking station, with the intention of observing four flares of a combined one million candlepower, fired from the Great Victoria Desert as a visibility check. To see the flares, Carpenter was required to undertake “a whopping plus-80 degrees yaw manoeuvre and a pitch attitude of minus-80 degrees’’, but, unfortunately, cloud cover was too dense. “No joy on your flares,’’ he told Woomera.

Another aspect of the mission about which no joy was forthcoming was the multi­coloured balloon, which he released an hour and 38 minutes after launch. For a few seconds, the expected ‘confetti spray’ signalled a successful deployment, but it soon became clear that the balloon had not inflated properly. Due to a ruptured seam in its skin, it deployed to a third of its expected size and only two of its five colours – Day-Glo orange and dull aluminium – were visible. Two small, ear-like appendages, each about 15-20 cm long and described as ‘‘sausages’’, emerged on the edges of the partially-inflated sphere. Its movements turned out to be erratic and, although Carpenter succeeded in acquiring a few drag-resistance measurements, the 30 m tether quickly wrapped itself around Aurora 7’s nose. Consequently, the aerodynamic data was of limited use. Carpenter attempted to release the balloon during his third orbit, whilst flying over Cape Canaveral, but it remained close to the spacecraft. There it stayed until retrofire and eventually burned up during re-entry.

By this time, Mission Control was keeping a close eye on Aurora 7’s fuel usage, which, by two hours into the flight, was at the 69-per cent capacity for both its manual and automatic supplies. As Carpenter passed over Nigeria early in his second orbital pass, the manual supply had dropped still further to just 51 per cent. He told the Kano capcom that he felt he had expended additional fuel trying to orient the spacecraft whilst on the dark side and blamed “conflicting requirements of the flight plan’’. During each fly-by-wire manoeuvre, very slight movements of the control stick would activate the small thrusters, whereas bigger movements would initiate larger thrusters. For every accidental flick of his wrist, Carpenter could activate the larger thrusters and would then have to correct them, thus wasting valuable fuel. ‘‘The design problem with the three-axis control stick, as of May 1962,’’ he wrote later, ‘‘meant the pilot had no way of disabling, or locking-out, these high-power thrusters.’’ Subsequent Mercury flights would employ an on-off switch for just that purpose.

The still-unknown problem with the pitch horizon scanner, though, remained. A little over two hours into the mission, the Zanzibar capcom informed Carpenter that, according to the flight plan, he should now be transitioning Aurora 7 from automatic to fly-by-wire controls. The astronaut opposed this, preferring to remain in automatic mode, which was supposedly more economical with fuel consumption. Unfortunately, this proved not to be the case, because the malfunctioning pitch horizon scanner was feeding incorrect information into the autopilot, which, in turn, was guzzling far more fuel than it should. A few minutes later, in communication with a tracking ship in the Indian Ocean, Carpenter reported difficulties with the automatic control mode and switched to fly-by-wire in an effort to diagnose the problem.

Although a malfunctioning automated navigational system in orbit was tolerable, its satisfactory performance was essential for retrofire to ensure that the spacecraft was properly aligned along the pitch and yaw axes to begin its fiery descent through the atmosphere. “Pitch attitude … must be 34 degrees, nose-down,” wrote Carpenter. “Yaw, the left-right attitude, must be steady at zero degrees, or pointing directly back along flight path. The [autopilot] performs this manoeuvre automatically, and better than any pilot, when the on-board navigational instruments are working properly.” Sadly, on Aurora 7, they were not. The astronaut could align his capsule manually, but with difficulty: by either pointing the nose in a direction that he thought was a zero-degree yaw angle and then watching the terrain pass beneath him (considered near-impossible over featureless terrain or ocean) or use a certain geographical feature or cloud pattern for reference.

“Manual control of the spacecraft yaw attitude using external references,” he wrote later, “has proven to be more difficult and time-consuming than pitch and roll alignment, particularly as external lighting diminishes… Ground terrain drift provided the best daylight reference in yaw. However, a terrestrial reference at night was useful in controlling yaw attitudes only when sufficiently illuminated by moonlight. In the absence of moonlight, the pilot reported that the only satisfactory yaw reference was a known star complex nearer the orbital plane.”

Carpenter had other worries, too. His cabin and pressure suit temperatures were climbing to uncomfortable levels; the former, in fact, peaked at 42°C during his third orbit, while the latter rose to 23.3°C and a “miserable” 71 degrees of humidity. The capcom’s query as to whether the astronaut felt comfortable, having fiddled with his suit’s controls, was greeted with a non-committal “I don’t know”. After the flight, the high cabin temperatures were attributed to the difficulty of achieving high air­flow rates and good circulation, as well as the vulnerability of the spacecraft’s heat exchanger to freezing blockage when high rates of water flow were used. Meanwhile, Carpenter was also required to take frequent blood pressure readings, pop xylose pills for post-flight urinalysis and monitor each of his scientific experiments. He did also manage to eat solid food during the mission: the Pillsbury Company had prepared chocolate, figs and dates with high-protein cereals, whilst Nestle provided some ‘bonbons’, composed of orange peel with almonds, high-protein cereals with almonds and cereals with raisins. These had been processed into particles a couple of centimetres square and were coated with edible glazes. The astronaut sampled them, but found them to crumble badly, leaving pieces floating around the cabin.

He succeeded in shooting photographs of the Sun for the Massachusetts researchers, acquired photometric readings on the star Phecda (more formally, Gamma Ursae Majoris) and his work on the liquid-behaviour experiment showed that capillary action could indeed pump fluids in space. However, he also reported worrying decreases in his fuel, which had hit just 45 per cent in the case of the manual supply. Indeed, Flight Director Chris Kraft, writing in his post-flight report on Aurora 7, would comment that the mission had run smoothly thus far, with the exception of the ‘‘over-expenditure of hydrogen peroxide fuel’’. At this point, Kraft felt that sufficient fuel remained to achieve the retrofire attitude, hold it steady and re-enter the atmosphere with either the automatic or manual control systems.

In his autobiography, Carpenter suggested that Kraft’s frustration with him began to emerge at this point, the flight director having apparently concluded that the astronaut had deliberately ignored a request to conduct an attitude check over Hawaii. Kraft also voiced serious concerns to California capcom Al Shepard that Carpenter was to tightly curb his automatic fuel use prior to retrofire. By this time, Aurora 7 was restricted to long periods of drifting flight, with both automatic and manual fuel quantities now dropping to less than 50 per cent. Years later, Gene Kranz would blame ground controllers for waiting too long before addressing the fuel status and felt that they should have been more dogged and forceful in getting on with the checklists. “A thoroughgoing attitude check, during the first orbit,’’ added Carpenter, “would probably have helped to diagnose the persistent, intermittent and constantly varying malfunction of the pitch horizon scanner. By the third orbit, it was all too late.’’ Whilst drifting, Carpenter beheld one of the most spectacular sights of the mission: his final orbital sunrise, witnessed four hours and 19 minutes after launch, shortly before retrofire. “Stretching away for hundreds of miles to the north and the south,’’ he wrote, sunrise presented “a glittering, iridescent arc’’ of colours, which faded into a purplish-blue and blended into the blackness of space.

This blackness, he would write in his post-flight report, together with brilliant shades of blue and green from the sunlit Earth, were “colours hard to imagine or duplicate because of their wonderful purity. Everywhere the Earth is flecked with white clouds’’. The South Atlantic, he recounted, was 90 per cent cloud-covered, but western Africa was completely clear and Carpenter was granted a stunning view of Lake Chad. He spotted patchy clouds over the Indian Ocean, a fairly clear Pacific and an obscured western half of Baja California. He described the atmospheric airglow layer in detail to Slayton when he came within range of Muchea. “The haze layer is very bright,’’ he reported. “I would say about eight to ten degrees above the real horizon. . . and I would say that the haze layer is about twice as high above the horizon as the bright blue band at sunset is.’’

His long period of drifting flight also meant that he had the opportunity to witness the ‘fireflies’ seen by John Glenn three months earlier. By rapping his knuckles on the inside walls of the spacecraft, he could raise a cloud of them and determined that they came from Aurora 7 itself. ‘‘I can rap the hatch and stir off hundreds of them,’’ he reported. To Carpenter, they appeared more like snowflakes and did not seem to be ‘luminous’, actually varying in size, brightness and colour. Some were grey, some white and one in particular, he said, looked like a helical shaving from a lathe. Carpenter then decided, with only minutes remaining before retrofire, to yaw the spacecraft in order to get a better view with the photometer. Shortly thereafter, he passed over Hawaii, whose capcom told him to reorient Aurora 7, go to autopilot and begin stowing equipment and running through pre – retrofire checklists.

More problems arose. Four hours and 26 minutes after launch, with retrofire barely six minutes away, Carpenter reported that the automatic system did not appear to be working properly and confirmed that the ‘‘emergency retro-sequence is armed and retro manual is armed’’. In his autobiography, he would recount that the autopilot was not holding the spacecraft steady and, indeed, that achieving the correct pitch and yaw attitudes were critical to ensuring that he would descend along a pre-determined re-entry flight path and plop into the waters of the Atlantic, just south-east of Florida. Carpenter promptly switched to the fly-by-wire controls, but forgot to shut off the manual system, which wasted even more fuel. At around the same time, two fuses overheated and the astronaut noticed smoke drifting through the cabin.

Concerned that the critically-timed retrofire would now be delayed by the autopilot malfunction, Carpenter initiated it manually. He fired the rockets three seconds late, but admitted later “at that speed, a lapse of three seconds would make me at least 15 miles ‘long’ in the recovery area”. Although he radioed to Shepard that he felt his spacecraft attitudes were good, privately, Carpenter was not sure and added, almost as an afterthought, that ‘‘the gyros are not quite right’’. Years later, he would describe the difficulty in dividing his attention between two attitude reference systems and attempting to accomplish a perfect retrofire. ‘‘It appears I pretty much nailed the pitch attitude,’’ he wrote, ‘‘but the nose of Aurora 7, while pitched close to the desirable negative 34 degrees, was canted about 25 degrees off to the right, in yaw, at the moment of retrofire. By the end of the retrofire event, I had essentially corrected the error in yaw, which limited the overshoot. But the damage was already done.’’

The 25-degree cant alone would have caused Aurora 7 to miss its planned splashdown point by around 280 km; however, the three-second delay in firing the retrorockets and a thrust decrement – some three per cent below normal – contributed an additional 120 km to the overshoot. On the other hand, if Carpenter had not bypassed the autopilot and manually fired the retrorockets, he could have splashed down even further off-target. At this stage, his fuel supplies were holding at barely 20 per cent for manual and just five per cent for automatic. Carpenter survived re-entry, but experienced a wild ride back through the atmosphere, with Aurora 7 oscillating between plus and minus 30 degrees in pitch and yaw. The astronaut was able to damp out many of these oscillations with the fly-by-wire controls and the post-flight report would commend him as having ‘‘demonstrated an ability to orient the vehicle so as to effect a successful re-entry’’. It provided clear evidence that a human pilot could overcome malfunctioning automatic systems.

Carpenter’s descent and the trapezoidal window offered a spectacular view of Earth, zooming towards him. ‘‘I can make out very small farmland, pastureland below,’’ he reported, some four hours and 37 minutes after launch. ‘‘I see individual fields, rivers, lakes, roads, I think.’’ Five minutes later, Gus Grissom, the Florida capcom, informed him that weather conditions in the anticipated recovery zone were good. By this time, shortly before ionised air surrounding the capsule caused a communications blackout at an altitude of around 22 km, Carpenter began to see the first hints of an intense orange glow as particles from the ablative heat shield formed an enormous ‘wake’ behind him. Then came distinct green flashes, which the astronaut assumed were the ionising beryllium shingles on Aurora 7’s hull. As the re­entry G forces peaked at 11 times their normal terrestrial load, telemetred cardiac readings at Mission Control revealed the substantial physical effort needed by

Carpenter to speak, announce observations and make status reports. His breathing technique, perfected in the Johnsville centrifuge, would come in useful.

Five minutes before splashdown, at an altitude of 7.6 km, he manually deployed the drogue parachute, which steadied the capsule and damped out what he had earlier described as “some pretty good oscillations”. The drogue was soon followed by the main chute, again manually deployed, although Carpenter’s announcements of each milestone over the radio to Grissom fell on deaf ears. The capcom could not hear his transmissions and was forced to broadcast ‘in the blind’ to inform him that his splashdown point would be some 400 km ‘long’ and advise that pararescue forces would arrive on the scene within the hour. A minute before splashdown, Carpenter acknowledged Grissom’s call. The impact with the water, 215 km north-east of Puerto Rico, was not hard, but Aurora 7 was totally submerged for a few seconds. It popped back up and listed sharply, 60 degrees over to one side, before the landing bag filled and began to act as a sea-anchor.

Keen to get out as soon as possible and probably thinking back to Grissom’s own misfortune, Carpenter opted to exit the capsule through the nose, becoming the first and only Mercury astronaut to do so. It took him four minutes and required him to remove the instrument panel from the bulkhead, exposing a narrow egress passage up through the spacecraft’s nose, where the two parachutes had resided. As he squirmed his way through the cramped space, Carpenter decided, in defiance of standard egress procedures, not to deploy his pressure suit’s neck dam. He was already overheating and felt the gently swelling seas would make it unnecessary. Next, still perched in the nose of the capsule, he dropped his life raft into the water, where it quickly inflated and a Search and Rescue and Homing (SARAH) beacon came on automatically. The latter would allow recovery forces to home in on his position.

Preparing himself for a long wait, Carpenter tied the raft to the side of the capsule, deployed his neck dam, said a brief prayer and relaxed. He stretched out on his raft and was joined, he wrote later, by ‘‘a curious, 18-inch-long black fish who wanted nothing more than to visit’’. It was his first physical contact with another living being and his first moment of calm in four hours and 56 minutes since launch.

For those watching the mission from afar, however, there was no relaxation. At Cape Canaveral, CBS anchorman Walter Cronkite played up the drama by describing for his audience Mission Control’s repeated attempts to contact Aurora 7, then highlighted that Carpenter had endured ‘‘half a ton’’ of pressure during re-entry and finally recapped that flight controllers were still ‘‘standing by’’ after losing voice contact with the astronaut. ‘‘While thousands watch and pray,’’ Cronkite told his audience, ‘‘certainly here at Cape Canaveral, the silence is almost intolerable.’’ In Manhattan’s Grand Central Terminal, a hush fell over the crowd gathered before a huge CBS screen, while in the White House a direct telephone link with the Cape had been set up to provide President Kennedy with news. In fact, the SARAH beacon had already given Carpenter’s co-ordinates and his telemetred heartbeat had been clearly heard in Mission Control throughout re-entry. Moreover, his splashdown point was almost exactly where the IBM computers at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, had predicted him to be after factoring-in radar tracking data and the yaw error at the point of retrofire.

Aboard the destroyer John R. Pierce – nicknamed the ‘Fierce Pierce’ – the attitude was quite different thanks to the reception of the strong SARAH signal. ‘‘Believe you me,’’ reported CBS journalist Bill Evenson from aboard the destroyer, ‘‘this bucket of bolts is really rolling now and what a happy crew we’ve got!’’

It was a Lockheed P2V Neptune, one of the same breed of patrol aircraft that Carpenter had flown a decade earlier in Korea, which finally greeted him. The astronaut signalled the pilot with a hand mirror and was acknowledged when the Neptune began circling his position. Shorty Powers, upon hearing the news, announced that ‘‘a gentleman by the name of Carpenter was seen seated comfortably in his life raft’’. One hour and seven minutes after splashdown, at 1:48 pm Eastern Standard Time, Airman First Class John Heitsch and Sergeant Ray McClure from an SC-54 transport aircraft joined the astronaut in the water, opened their rafts and tethered them together. Carpenter offered them some of his food rations, which were politely declined. Eventually, the astronaut was picked up by the Intrepid, originally earmarked as the prime recovery ship, but delayed in its arrival by Aurora 7’s 400 km overshoot. The Fierce Pierce, meanwhile, successfully recovered the spacecraft itself and delivered it, on 28 May, to Roosevelt Roads in Puerto Rico.

Carpenter, meanwhile, was hot and wet after almost an hour on his back on the launch pad, followed by five hours in space and more than an hour in the Atlantic. Soon after boarding the rescue helicopter, he borrowed a pocket knife, cut a hole in the sock of his pressure suit and let his sweat and seawater drain out of the makeshift toe hole. Army physician Richard Rink asked Carpenter how he felt. In true Mercury Seven fashion, perfectly demonstrative of the ‘right stuff’ about which Tom Wolfe would later write, America’s fourth man in space replied simply: ‘‘Fine’’.

GROUNDED

By the middle of 1963, shortly after Faith 7, Shepard’s chances of commanding the first Gemini looked bright. Then his career and health, figuratively and literally, started spinning. Years earlier, just after being selected as one of the Mercury Seven, he had complained about feeling light-headed during a game of golf; every time he attempted to swing the club, he felt that he was about to fall over. It was an isolated, peculiar incident, which did not resurface again until the summer of 1963. It came with a vengeance, usually striking him in the mornings and taking the form of a loud metallic ringing in his ears, coupled with feelings of intense dizziness and nausea. At first, Shepard dealt with the problem himself: he saw a private physician, who prescribed diuretics and vitamins such as niacin, which had little effect. It did not stop Slayton from assigning him to command Gemini 3 and, indeed, Shepard and Stafford completed the first six weeks of their training, visiting McDonnell’s St Louis plant in Missouri to watch their spacecraft being built.

He told no one in the astronaut corps of the problem. However, very soon, it became impossible to conceal. An episode of dizziness whilst delivering a lecture in Houston forced him to admit his concerns to Slayton, who sent him to the astronauts’ physician, Chuck Berry, for tests. In May 1963, unknown to everyone else in the corps, Shepard was temporarily grounded. The diagnosis was that fluids were regularly building up in the semicircular canals of his inner ear, affecting his sense of balance and causing vertigo, nausea, hearing loss and intense aural ringing. Although the incidents were intermittent, they proved sufficiently unpredictable and severe to render him ineligible to fly Gemini 3.

Known as Meniere’s Disease, the ailment was a recognised but somewhat vague condition. Indeed, formal criteria to define it would not be established by the American Academy of Otolaryngology-Head and Neck Surgery until 1972. The academy’s criteria would describe exactly the conditions suffered by Shepard:

Grounded 219

fluctuating, progressive deafness – he would be virtually deaf in one ear by 1968 – together with episodic spells of vertigo, tinnitus and periodic swings of remission and exacerbation. Nowadays, it can be treated through vestibular training, stress reduction, hearing aids, low-sodium diets and medication for the nausea, vertigo and inner-ear pressure: such as antihistamines, anticholinergics, steroids and diuretics. In mid-1963, however, the physicians who examined Shepard had next to no idea what caused it, some speculating that it was a ‘psychosomatic’ affliction. Moreover, there was no cure.

His removal from flight status was temporarily revoked in August, with the prescription of diuretics and pills to increase blood circulation, in the 20 per cent hope that the condition would clear up on its own. This allowed Shepard to be internally assigned to Gemini 3, but when the early diagnosis was confirmed and no sign of improvement was forthcoming, he was formally grounded in October, after only six weeks of training with Stafford. During those weeks, the men had spent some time in the Gemini simulator, but little more. Not only was Shepard barred from spaceflight, but, like Deke Slayton, he also could not fly NASA jets unless accompanied by another pilot. Subsequent examinations revealed that he also suffered from mild glaucoma – a symptom of chronic hyperactivity – and a small lump was discovered on his thyroid. It was surgically removed in January 1964 and, the press announced, ‘‘would have no impact on his status in the space programme’’. In reality, Shepard had been effectively grounded for months by that point.

Ironically, at the same time, John Glenn, who had resigned from NASA after being told that his chances of flying again were slim, suffered damage to his own vestibular system. Glenn’s friendship with Attorney-General Bobby Kennedy had led to the first inkling of a political career and, after leaving the astronaut corps in January 1964, he announced his candidacy to run for the Senate in his home state of Ohio. A few weeks later, he slipped and cracked his head on the bathtub in his apartment, resulting in mild concussion and, more seriously, swelling in his inner ear, which produced similar symptoms to Meniere’s Disease. Glenn spent several weeks in a San Antonio hospital, virtually immobile, and was forced to withdraw from the Senate race in March.

Elsewhere, at the Rice Hotel in downtown Houston, Shepard pulled Stafford aside one evening that same March and asked him if Slayton had mentioned anything about the Gemini 3 assignment. No, Stafford replied, and could only listen open-mouthed as his former crewmate told him about the dizziness, the vertigo, the Meniere’s diagnosis. . . and the bombshell that Shepard was grounded. In his autobiography, Stafford recalled fearing for his own place on Gemini 3, and, indeed, in mid-April, the crew changes were announced. Slayton moved Gus Grissom up from the command slot on Gemini V to lead Shepard’s old mission and replaced him with Gordo Cooper, who had established himself as capable of enduring a long – duration flight on Faith 7. Unluckily for Stafford, however, Slayton felt that John Young was a better personality match with Grissom and designated him as Gemini 3’s new pilot. He had nothing against Stafford, of course, simply revealing in his autobiography that ‘‘Tom was probably our strongest guy in rendezvous, so it made sense to point him at [Gemini VI], the first rendezvous mission’’.

Stafford learned of his removal from the Gemini 3 prime crew from one of the flight surgeons, Duane Ross, who told him that he was now on Gus Grissom’s backup team, paired with Wally Schirra. Grissom’s original pilot, Frank Borman, would be “held for later’’ and another mission. In his biography of Grissom, Ray Boomhower cited fellow astronaut Gene Cernan as remarking that Grissom’s and Borman’s egos – both of them were strong-headed leaders – were too large to fit one mission. Indeed, in an April 1999 oral history for NASA, Borman hinted that he “went over to [Grissom’s] house to talk to him about it … and after that I was scrubbed from the flight’’. Borman, eventually, would command his own Gemini. Meanwhile, on 13 April 1964, the four-man unit for Gemini 3 set to work. Only days earlier, the first unmanned test to assess the compatibility of the spacecraft and its launch vehicle had proven a remarkable success. It came after almost three years of technical and managerial difficulties and a development programme laced with problems.

TEACHER’S SON

To this day, Gherman Stepanovich Titov remains the youngest person ever to have flown into space, a record he has held for almost five decades. On 6 August 1961, he was just a month shy of his 26th birthday. Born on 11 September 1935, he was named Gherman – an unusual name for a Russian – by his father, in honour of a favourite Pushkin character from ‘The Queen of Spades’. Titov’s own love of literature, though, went far beyond the inspiration for his name: in his cosmonaut days, he was well-known for quoting long reams of poetry or fragments from stories or novels. Jamie Doran and Piers Bizony have hinted that, in the “egalitarian workers’ and peasants’ paradise’’ that was the old Soviet Union, this may have harmed his chances of becoming the first man in space. Unlike Pushkin, whose liberal views and influence on generations of Russian rebels led the Bolsheviks to consider him an opponent to bourgeois literature, Titov’s pride, love of poetry and reading and a ‘‘suspicion of class’’ bestowed on him by his learned father made him somewhat less appealing to Nikita Khrushchev’s regime than Yuri Gagarin.

His breakthrough to reach the hallowed ranks of the first cosmonaut team in March 1960 came about through his excellence as a MiG fighter pilot. Titov had entered the Ninth Military Air School at Kustanai in Kazakhstan in 1953, transferring to the Stalingrad Higher Air Force School two years later, where he commenced military flight training. Following qualification, in September 1957 he was attached to two different Air Guard regiments in the Leningrad Military District and subsequently became a Soviet Air Force pilot in the Second Leningrad Aviation Region. His selection as a cosmonaut, he would recall more than three decades later, was almost a fluke, with the answers he gave to the physicians and psychologists bordering on arrogance. He seemed non-committal in his interviews even when the subject of ‘‘flying sputniks’’ in orbit was broached. However, he said, ‘‘I was curious about how it would be to fly a sputnik and I was told that I had been called to Moscow. I went to Moscow and I was enrolled into the cosmonauts’ team’’.

Titov’s selection was lucky in another way, too. At the age of 14, he had crashed his bicycle and shattered his wrist. Instead of revealing the injury to his parents, he nursed it secretly, unwilling to show any sign of weakness, particularly as he had already signed up for elementary training at aviation school. During his time as a cadet, fearful that his injury would be discovered, Titov bluffed them by performing early-morning exercises on a set of parallel bars, until his damaged wrist appeared as good as the other. When he underwent intensive X-rays for the cosmonaut selection in 1960, the medical staff found nothing amiss. Only years after his Vostok 2 flight, when they learned of the injury, did they tell him that his recruitment would never have been sanctioned if they had known.

“WE GAVE IT AWAY”

As Kennedy battled through the closing months of his election campaign, NASA battled with similar tenacity and vigour to launch the first man into space. Many in the United States, however, were already echoing Louise Shepard’s sentiment that the Soviets remained in pole position to accomplish the historic feat. Project Mercury, Time magazine told its readers in September I960, “is not far behind, but it will be at least nine months before a US astronaut will enter orbit’’. ‘Orbit’ would prove the pivotal point, for neither America’s first man in space, nor even its second, would achieve orbit – they would experience little more than 15-minute suborbital arcs over the Atlantic Ocean, into space and back down – and the nation’s first piloted circuit of the globe would not come until February 1962. Still, in the weeks after Kennedy’s inauguration, Al Shepard and John Glenn were dividing their time between Langley Research Center in Virginia and the swamp-fringed Cape Canaveral launch site in Florida, familiarising themselves with ‘Spacecraft No. 7’: the vehicle which, since October of the previous year, had been earmarked for the first mission.

Unlike the huge spherical Vostok which had ferried Yuri Gagarin into space, the Mercury capsule was a cone-shaped machine, 1.9 m across the blunt, ablative heat shield at its base and 2.9 m tall, with a total habitable volume of just 1.6 m3 and an approximate weight at launch of 1,930 kg. The idea that a blunt cone was the most suitable shape to prevent a rocket-carried warhead from burning up in the atmosphere had arisen in the early Fifties, thanks to the work of NACA engineers Julian Allen and Al Eggers. Attached to its nose was a cylindrical parachute compartment and at its base a cylindrical package of three retrorockets. Its cramped nature prompted the astronauts to smirk that, far from ‘flying’ the spacecraft they actually ‘wore’ it. ‘‘You get in with a shoehorn,’’ added McDonnell’s pad leader Guenter Wendt, ‘‘and get out with a can opener!’’ During the early stages of ascent, capsule and astronaut would be protected by a pylon-like, solid-fuelled Launch Escape System (LES), capable of whisking them away from an exploding or malfunctioning rocket. This measured 5.15 m tall and produced 23,580 kg of thrust. Under normal circumstances, however, it was intended that the LES would be jettisoned shortly after the burnout of the rocket, although many engineers doubted its effectiveness and felt that a catastrophic failure would give an astronaut little chance of survival.

The Mercury capsule was equipped with attitude-control thrusters to enable yaw, pitch and roll exercises, but was incapable of actually changing its orbit. The three solid-fuelled retrorockets provided an ability to return to Earth, firing in sequence at five-second staggered intervals, in a ‘ripple’ fashion, although one was sufficient to complete this task if the others failed. To guard against temperatures as high as 5,200°C at its base during re-entry, a heat shield composed of fibreglass, bonded with a modified phenolic resin, was employed. By charring, melting and peeling off, taking heat with it, this ‘ablative’ material would protect the structure of the spacecraft from the high heat flux of hypersonic re-entry into the atmosphere. It was first tested atop an Atlas rocket in September 1959, surviving re-entry in remarkably good condition. The heat shield was not, in fact, an integral part of the spacecraft, but was held in place by a series of hooks. Between it and the base of the capsule was a folded rubber-and-glass-resin ‘landing bag’, 1.2 m deep, which would unfold and fill with air shortly before splashdown in the ocean. This would act as an absorber,

“WE GAVE IT AWAY”

The Mercury spacecraft. Note the parachute container at the top and the retrorocket package at the base of the capsule.

 

softening the shock of landing from 45 G to 15 G, before filling with water to provide a kind of ‘sea-anchor’.

Mercury was the brainchild of NACA aerodynamicist Max Faget, adapted from Allen and Eggers’ blunt-cone design, and received the go-ahead on 7 October 1958, only six days after NASA’s birth. The name arose from that of the fleet-footed messenger of Roman mythology and, wrote Loyd Swenson in ‘This New Ocean’, a seminal 1966 work on Project Mercury, ‘‘seemed too rich in symbolic associations to be denied. The esteemed Theodore von Karman had chosen to speak of Mercury, as had Lucian of Samosata, in terms of the ‘re-entry’ problem and the safe return of man to Earth’’. By mid-January 1958, McDonnell had been awarded the $18.3 million contract to build the spacecraft, beating Grumman, which was heavily loaded with conceptual naval projects at the time. Faget’s original design for a ballistic capsule envisaged that it would re-enter the atmosphere at an attitude 180 degrees from that of launch, such that the G forces would be imposed on the front of the body under acceleration and deceleration; in effect, its ‘tail’ during launch would become its ‘nose’ during the journey back to Earth. Initial sketches from late 1957 revealed a squat, domed body with a nearly flat heat shield, the former slightly recessed from the perimeter of the latter, leaving a narrow ‘lip’ to deflect airflow and minimise heat transfer. However, this configuration proved dynamically unstable at subsonic speeds, so Faget’s group lengthened the capsule and removed the heat shield lip.

By March of the following year, the design resembled an elongated cone, which provided dynamic stability, but hypersonic wind tunnel tests showed that too much heat would be transferred by turbulent convection. Further, engineers could not figure out how to incorporate parachutes into the upper part of the nosecone, prompting its redesign into a rounded shape with a short cylinder attached to the top. Heat-transfer concerns, however, remained, and it was not until the late summer that the design, incorporating maximum stability, relatively low heating and a suitable parachute compartment, had been finalised. Faget’s team argued that by launching the capsule on a ballistic trajectory, its automatic stabilisation, guidance and control equipment could be minimised and the only manoeuvre it would be required to make would be to fire the retrorockets to decelerate and dip into the atmosphere for aerodynamic drag. In fact, added Faget, even that manoeuvre did not need to be too precise to accomplish a successful recovery.

In theory, Spacecraft No. 7 – the seventh of 20 Mercury capsules built by McDonnell – should have been capable of flying Shepard almost immediately, but after delivery to Cape Canaveral on 9 December 1960, it became necessary to implement 21 weeks’ worth of unexpected tests, repairs and rework. Additionally, the landing bag, beneath the heat shield, which would cushion its splashdown in the Atlantic Ocean, had to be installed and communications hardware checked. Its reaction-control system needed attention, whilst damaged and corroded hydrogen peroxide fuel lines required replacement and a variety of other obstacles surrounded equipment, minor structural defects and even the need to install a manual bilge pump to remove seawater. The need for the latter had been compounded by the successful, though harrowing, flight of a chimpanzee named Ham. He had been launched atop a Redstone in late January, but his capsule had suffered a multitude of niggling malfunctions. Firstly, a faulty valve had fed too much fuel into the rocket’s engine, causing Ham to fly too high and too far, whereupon the tanks ran dry, the spacecraft separated too early and re-entered the atmosphere too fast and at the wrong angle. Temperatures soared and a glitch ‘rewarded’ Ham not with banana pellets for pulling the right levers and pushing the right buttons, but with electric shocks. At the end of the mission, with the capsule filling with seawater and about to sink, ‘‘a very pissed-off chimp’’ was safely fished from the Atlantic by the recovery forces.

Wernher von Braun, whose team had designed and built the Redstone, feared that Shepard’s mission, then scheduled for March, could be similarly affected and opted for one final unmanned launch. The astronaut, however, pushed NASA officials and even von Braun himself to go ahead with his mission, regardless of the risk, feeling that he could handle and overcome any Ham-type problems. The German stood firm, though, and a nervous NASA stood beside him.

‘‘We were furious,’’ remembered Chris Kraft. ‘‘We had timid doctors harping at us from the outside world and now we had a timid German fouling our plans from the inside.’’ Furthermore, Jerome Wiesner, recently picked by President Kennedy as his science advisor, warned of the harm a dead astronaut could cause the new administration and pressed for another test flight. In addition, having inherited chairmanship of the President’s Science Advisory Committee (PSAC), he convened a panel of experts to assess the situation and recommend whether or not to proceed with Shepard’s launch. After viewing astronauts ‘flying’ in the simulators, whirling in the MASTIF and pulling up to 16 G in the centrifuge, the panel concluded that the manned mission should proceed. Their report, ironically, landed on Kennedy’s desk on the afternoon of 12 April 1961.

By this point, Shepard’s launch had already been postponed until the end of the month and, despite the crushing disappointment of Vostok 1, both he and Glenn continued to train feverishly, rehearsing every second of the 15-minute ‘up-and – down’ mission that would arc 188 km into space and back to Earth, splashing into the Atlantic some 200 km downrange of the Cape. It would be a suborbital ‘hop’: the Redstone, capable of accelerating to around 3,500 km/h, lacked the impulse to deliver Shepard into orbit – an Earth-girdling flight would have to await the Atlas – but the mission would prove to the world that the United States was in the game. Today, wrote Chris Kraft in his foreword to Neal Thompson’s biography of Shepard, it is easy to dismiss it and, when placed alongside Vostok 1, it was insignificant, but in the spring of 1961 it captivated not only America, but the world. ‘‘Add to this the fact that the reliability of a rocket-propelled system in 1961 was not much better than 60 per cent,’’ wrote Kraft, ‘‘and you may begin to have a feel for the anxiety all of us were experiencing.’’

The Redstone itself was a direct descendant of the infamous V-2, used by Nazi Germany with such devastating effect in the Second World War, and had been employed as a medium-range ballistic missile to conduct the United States’ first live nuclear tests during Operation Hardtack in August 1958. It remained operational within the Army until 1964, gaining a reputation as the service’s workhorse and, as a non-military launcher, as ‘Old Reliable’. Initial production, under the auspices of prime contractor Chrysler, had gotten underway at the Michigan Ordnance Missile Plant in Warren, Michigan, in 1952. Meanwhile, the Rocketdyne division of North American Aviation built its Model A-7 engine, Ford Instrument Company supplied its guidance and control systems and Reynolds Metals Company fabricated its fuselage. As a weapon, it could be armed with an atomic warhead with a yield of 500 kilotons of TNT or a 3.75 megaton thermonuclear warhead and, indeed, batteries of Redstones were stationed in West Germany until as late as 1964.

A direct outgrowth of the Redstone was the Jupiter-C intermediate-range ballistic missile, which, some observers believe, could have beaten Sputnik 1 by orbiting an artificial satellite in August 1956, had the political will been there. President Eisenhower’s administration, however, preferred to launch America’s first satellite atop a civilian rocket named Vanguard, rather than with a modified military weapon, and the chance was lost. The Vanguard failed spectacularly in December 1957, exploding on the pad, but less than two months later a Jupiter-C successfully lofted the United States’ first satellite, Explorer 1, into space.

A number of modifications were incorporated into the Redstone from 1959 onwards to complete the metamorphosis from a warhead-laden weapon to a man­rated launch vehicle; its reliability as a tactical missile, though high, was inadequate for an astronaut. Since redesigning it to provide the required assurances could have meant implementing a totally new, expensive and lengthy development programme, it was decided instead to adapt the existing model with only the changes needed for a manned flight. In January 1959, the Army Ballistic Missile Agency (ABMA) received the go-ahead to convert the rocket and, two months later, the Space Task Group requested the implementation of an effective abort system. By June, ABMA had submitted its response and, throughout the remainder of the year and into 1960, the design was finalised and implemented: an automatic system, capable of shutting down the Redstone’s engine and transmitting separation abort signals to the Mercury capsule and its attached LES tower. Had the rocket veered off-course, a range safety officer at the Cape would have had little option but to remotely destroy it. However, a three-second delay existed between the transmission of the abort command and the actual destruction of the Redstone, offering a hair’s breadth of time for the capsule to be pulled clear of the conflagration.

It had long been recognised that some emergencies could develop too rapidly for a mission to be manually aborted and, moreover, the astronaut’s own performance under the dynamic conditions of a launch were not known. During their analysis of this problem, ABMA engineers studied 60 Redstone flights, identifying a huge number of components which could conceivably fail. It would be impractical to accommodate them all. However, the study did find that many malfunctions – loss of attitude control and velocity, a lack of proper combustion chamber pressure in the engine or perhaps power supply problems – led to similar results, thus permitting the inclusion of relatively few abort sensors.

Constructed from aluminium alloy, the single-stage Redstone measured 25.4 m long and weighed 3,720 kg. Ignition of its engine was initiated from the ground and liftoff occurred when approximately 85 per cent of its rated thrust had been achieved. During ascent, carbon jet vanes in the exhaust of its propellant unit, coupled with air rudders, served to control its attitude and stability. Its Model A-7 engine, fuelled by a mixture of ethyl alcohol and liquid oxygen, together with a hydrogen peroxide-fed turbopump, yielded 35,380 kg of thrust and was essentially the same as that used by the military Redstone, although a number of improvements had been implemented for efficiency and safety. The Jupiter-C’s use of a highly-toxic propellant mixture called hydyne had been ruled out in favour of alcohol, although the use of the latter was more erosive of the jet vanes. Engine operations continued until the Redstone had reached a pre-determined velocity, at which stage an integrating accelerometer emitted a signal to initiate shutdown by closing off the hydrogen peroxide, liquid oxygen and fuel valves. As pressures in the thrust chamber decreased, a timer started in the Mercury capsule which triggered its separation from the tip of the Redstone.

Other modifications included lengthened tanks, the walls of which were thickened to handle the increased loads of the capsule and heavier propellant haul, and changes were made to increase the reliability of critical electronic components in the Redstone’s instrument section. Indeed, the entire layout of this section was extensively revamped to accommodate new control and abort systems. The elongated propellant tanks and increased payload weight, however, meant that the rocket tended to become more unstable in the supersonic region of flight, around 90 seconds after liftoff, and necessitated the inclusion of 310 kg of steel ballast. Stringers were also added to the inner skin of the Redstone’s aft section to support the weight of the Mercury capsule. The overall ‘burn time’ of the engine for suborbital launches was shortened by 20 seconds to 143.5 seconds in total, prompting the addition of heat-resistant stainless steel shields for the stabilising fins. Additionally, nitrogen-gas purging equipment was added to the tail to prevent an explosive mixture from accumulating in the engine compartment whilst the Redstone sat on the pad.

The first three unmanned test flights evaluated each of these modifications and the combined performance of both the rocket and the capsule under real mission conditions. The first, named Mercury-Redstone 1 (MR-1), was intended to put the abort system fully through its paces, in addition to achieving the kind of velocities – around Mach 6.0 – that the suborbital astronaut would experience and demonstrating the ability of the capsule to separate satisfactorily from the rocket. A launch attempt on 7 November 1960 was scrubbed due to low hydrogen peroxide pressures in the capsule’s thrusters and was rescheduled for the 21st. At 8:59 that morning, ignition occurred on time, but as the Redstone made to leave the pad, a shutdown signal was initiated. The thrust buildup was sufficient for the rocket to rise 10 cm, before it settled back onto its pedestal. However, the shutdown signal had caused the LES tower to fire, producing huge clouds of smoke which momentarily hid the Redstone from view. Flight Director Chris Kraft, watching the proceedings, was astonished by the tremendous acceleration, thinking it to be the actual liftoff. . . ‘‘but then the smoke cleared and the missile was still there!’’ Wally Schirra described the fiasco as ‘‘a memorable day, especially for someone who likes sick jokes’’.

The rocket swayed slightly, but remained upright and did not explode. Worryingly, though, the LES – which shot 1.2 km high and landed 360 m from

“WE GAVE IT AWAY”

In full view of the world’s media, the Redstone carries its first human passenger into space.

 

the pad – had not pulled the Mercury capsule clear of the Redstone and, as the shocked flight controllers watched, the drogue parachute popped out of its nose, followed by the main canopy and lastly, accompanied by a green cloud of marker dye, an auxiliary chute. All three fluttered pathetically down onto the pad. The rocket, meanwhile, was left alone as its liquid oxygen and high-pressure nitrogen were drained, its fuel and hydrogen peroxide tanks emptied, its circuits deactivated and its destruct arming devices removed. (Initial suggestions to relieve the pressurised propellant tanks by shooting holes in them with a rifle, thankfully, were squashed.)

“The press had a field day,” Kraft recalled later. “It wasn’t just a funny scene on the pad. It was tragic and America’s space programme took another beating in the newspapers and in Congress.’’ Time magazine bemoaned ‘Lead-Footed Mercury’ and ridiculed Wernher von Braun for downplaying the MR-1 fiasco, although a New York Times journalist urged President-elect Kennedy to persevere.

Investigators would find that the shutdown had been triggered by a ‘sneak’ circuit, created when two electrical connectors in a two-pronged booster tail plug separated in the wrong order. And why did the capsule fail to separate along with the LES? According to NASA’s investigation report, it was because the G load sensing requirements had not been met. Ordinarily, after an engine cutoff, a ten-second timer was initiated and, upon its expiration, was supposed to separate the capsule if acceleration was less than 0.25 G. However, MR-1 had settled back onto the pad before the timer expired and the G-switch, sensing 1 G of acceleration, blocked the separation signal. On-board barostats, meanwhile, properly sensed that the rocket’s altitude was less than 3 km and therefore activated the parachutes. ‘‘Once we realised that the capsule had made the best of a confusing situation and had gone on to perform its duties just as it would have on a normal flight,’’ John Glenn said later, ‘‘we were rather proud of it.’’ However, to avoid a recurrence, a ‘ground strap’ was added to maintain grounding of the vehicle during all umbilical disconnections and changes to the electrical network distributor prevented a cutoff signal from jettisoning future LES towers prior to 130 seconds after liftoff.

The undamaged spacecraft would be recycled and reused on the MR-1A flight just four weeks later. Despite some difficulties with a leakage in the capsule’s high – pressure nitrogen line and a faulty solenoid valve in its hydrogen peroxide system, the mission was launched successfully at 11:15 am on 19 December. Thankfully, the abort system performed as advertised, although a malfunction of the velocity integrator caused the Redstone’s velocity cutoff to occur 78 m/sec higher than planned, thus boosting the capsule 9.6 km above its intended 205 km altitude. Accelerations during re-entry were correspondingly more severe and high tail winds during the final portion of the flight led to MR-1A splashing into the Atlantic 32 km further downrange than anticipated. The source of the velocity integrator problem was traced to excessive torque against the pivot of the accelerometer, caused by electrical wires; five of these were replaced and a softer wire material was implemented. This solved the problem, as the chimpanzee Ham’s MR-2 flight at the end of the following month would demonstrate.

Ham was not the first animal to have been launched by the United States. A pair of Rhesus monkeys, nicknamed ‘Sam’ and ‘Miss Sam’, from the School of Aviation

“WE GAVE IT AWAY”

Ham, the chimpanzee occupant of MR-2.

 

Medicine in San Antonio, Texas, had been launched atop Little Joe rockets in December 1959 and January I960, respectively. Although neither of their Mercury capsules reached space (Sam achieved an altitude of 88 km, Miss Sam of 15 km), their flights demonstrated that living creatures could survive a launch and return alive. Unfortunately, the flights of the Rhesus monkeys and chimpanzees, though significant, would offer an excuse for some test pilots to heap further ridicule on the Mercury Seven. When asked if he was interested in riding a capsule into orbit, Chuck Yeager had laughed. “It doesn’t really require a pilot,” he said, “and, besides, you’d have to sweep the monkey shit off the seat before you could sit down!’’

Ham – the name was an acronym for the Holloman Aerospace Medical Center, based at Holloman Air Force Base in New Mexico, which prepared him for his mission – was launched at 11:54 am on 31 January 1961. Chosen specifically because of their close approximation to human behaviour, a colony of six chimpanzees, four female and two male, accompanied by 20 medical specialists and handlers from Holloman, had arrived at Cape Canaveral’s Hangar S a few weeks earlier. The chimps were split into two groups to prevent the spread of any contagion and were led through training exercises with the help of Mercury capsule mockups in their compounds. By the end of the month, each of the chimps was somewhat bored, but nevertheless an expert at pulling levels and pushing buttons in the right order, receiving either banana pellets or mild electric shocks for doing the right (or wrong) thing. The day before launch, James Henry of the Space Task Group and Holloman veterinarian John Mosely examined the six chimps and settled on a particularly frisky and good-humoured male as the prime candidate, with a female as his backup. Both were put on low-residue diets, instrumented with biosensors and, early on the 31st, outfitted in their space suits, placed in their contoured couches and taken to the launch pad. With 90 minutes to go, Ham, described as “still active and spirited’’, was inserted inside the MR-2 capsule.

His home for the 16-minute mission boasted a number of significant innovations, including an environmental control system, live retrorockets, a voice communica­tions device and the accordion-like pneumatic landing bag. The latter was attached to the heat shield and shortly before splashdown, the pair would drop 1.2 m, filling with air to help cushion MR-2’s impact. In the water, the deflated landing bag and heat shield were intended to serve as an anchor, keeping the spacecraft upright.

Ham’s liftoff was successful, although his Mercury capsule, programmed to travel 183 km into space and 468 km downrange of the Cape, actually flew 67 km higher and 200 km further downrange than intended. The chimp experienced six and a half minutes of weightlessness and endured 14.7 times the force of normal terrestrial gravity at one point during his re-entry. He survived and seemed to be in good spirits, despite having to wait for several hours before being picked up by the dock landing ship Donner. After splashdown, his heat shield had skipped on the water, bounced against the capsule’s base and punched two holes in the pressure bulkhead. As MR-2 capsized, the open cabin pressure relief valve let in yet more seawater. By the time he was rescued, it was estimated that there was around 360 kg of seawater inside the capsule. Ham, however, seemed in good cheer, gobbling down a pair of apples and half an orange on the recovery ship’s deck.

Post-flight analysis would reveal that the Redstone’s mixture ratio servo control valve failed in its full-open position, causing early depletion of the liquid oxygen supply; consequently, the propellant consumption rate increased, the turbopump ran faster and led to higher thrust, an earlier-than-scheduled engine shutdown and the inadvertent ‘abort’ of the MR-2 spacecraft. Nonetheless, the basic controllability and habitability of Mercury was deemed a success. In the wake of Ham’s flight, the reliability of the booster-capsule combination was reassessed, culminating in an estimated probability of success at somewhere between 78 and 84 per cent. However, many components had been designed to parameters which exceeded those demanded by the Space Task Group and launch operations personnel had devised their own methods which were more conducive to flight success. Taking this into account, the overall reliability of the system was judged at 88 per cent for launch and 98 per cent for the survival of the astronaut. These assurances were confirmed by one final test prior to Shepard’s mission – the Mercury-Redstone Booster Development (MR-BD) flight, launched at 12:30 pm on 24 March.

Although it was doubtful that any of the problems experienced on either MR-1A or MR-2 would have endangered Shepard, had he been aboard, the Space Task Group’s scrupulous attention to reliability meant that all significant outstanding modifications to the Redstone had to be dealt with. Von Braun also invoked one of the original ground rules, which insisted that no manned flight would be attempted until all responsible parties felt assured that everything was ready. Shepard’s mission was fatefully postponed until 25 April. The MR-BD test, meanwhile, was perfect: the Redstone flew flawlessly, with its thruster control servo valve’s closed position adjusted to 25 per cent open and flight sequencer timer changes prevented a recurrence of the problems on Ham’s flight. Control manoeuvres were executed to evaluate the effect of higher-than-normal angles of attack, confirming that the Redstone could withstand additional aerodynamic loads. No attempt was made to separate rocket and capsule and they splashed down together, some eight and a half minutes after launch, before sinking to the bottom of the Atlantic. The success of MR-BD had cleared the way for MR-3 – the first manned mission – to launch.

To help them prepare more effectively for the flight, Shepard and Glenn had, since February, been using a pair of McDonnell-built Mercury simulators for 55-60 hours per week. They went through flight plans together and, indeed, Shepard ‘flew’ more than 120 simulated Redstone launches during this period. As February wore into March, the training became yet more exacting: both men even went through the ritual of their pre-flight medical examinations, just as they would on launch morning, and were instrumented with biosensors and outfitted in their silver pressure suits. A week after Gagarin’s mission, on 19 April, Shepard sat in the actual capsule, atop its Redstone, on Pad 5 at the Cape, with the hatch open, meticulously plodding through each of the procedures he would follow.

By this time, he had nicknamed his tiny spacecraft ‘Freedom 7’ – not, as some observers would hint, in honour of the seven Mercury astronauts, but rather to reflect its status as the seventh capsule off the McDonnell production line. According to assistant flight director Gene Kranz, the name was adopted during the final Freedom 7 training exercises. On later missions, each member of the Mercury Seven

would suffix their own spacecraft with the number as something of a good-luck charm.

By now, the launch was officially scheduled for 7:00 am on 2 May and, in late April NASA timetabled a full dress rehearsal, with Gordo Cooper standing in for Shepard. He duly suited-up, rode the transport van out to the base of Pad 5 and jokingly bawled “I don’t want to go! Please don’t send me!” before being shoved into the elevator. The assembled journalists, apparently, did not appreciate Cooper’s gallows humour and the following morning’s newspapers even went so far as to criticise NASA for its astronaut’s inappropriate horseplay at such a tense moment. Meanwhile, Shepard checked out of a Holiday Inn where he had been staying with his wife, dropped her at the airport and drove to the astronaut quarters in the three – story Hangar S at the Cape. Since they were still required to maintain the official ‘secret’ that the first American in space could be any one of them, Shepard, Grissom and Glenn shared the same air-conditioned quarters, which had been specially decorated for them by their nurse, Dee O’Hara.

The heavens opened to heavy rain and storms early on 2 May, as the trio arose and ate a breakfast of bacon-wrapped filet mignon and scrambled eggs, together with orange juice and coffee. Since defecation in the spacecraft was, at best, difficult, such ‘low-residue’ launch-morning diets had been enforced by NASA. (Indeed, the astronauts’ lawyer and agent, Leo D’Orsey, when told about the diet, had exclaimed ‘‘No shit?’’ Shepard responded with a grin, ‘‘Exactly!’’)

The intention was that the public ‘final choice’ of who was to fly would be made that morning, with some officials even suggesting bringing all three men out of their quarters wearing hoods to keep the charade going until one of them boarded the Pad 5 elevator. Shepard, wrote Neal Thompson, opposed this lunacy and opted instead to emerge from Hangar S in his pressure suit and wade through the teeming journalists. It made little difference: the rain was so bad that the launch was scrubbed, although not before the identity of America’s first astronaut became known to the newsmen. ‘‘An alert reporter standing by the hangar door,’’ wrote Gene Kranz, ‘‘had seen him and broke the story. The secret was out.’’

Originally planned as a 48-hour postponement, it was soon realised that an attempt early on 4 May would be impossible, so foul was the weather. However, at 8:30 that night, the two-part, ten-hour-long countdown began for a launch the following morning. The stunted nature of this countdown owed itself to past experience, which showed that it was preferable to run it in two short segments to permit the launch crews responsible for both Freedom 7 and the Redstone to be adequately rested and ready. A built-in hold of some 15 hours was called when the clock hit T-6 hours and 30 minutes, during which time various pyrotechnics were installed into the capsule and the hydrogen peroxide system to feed Freedom 7’s thrusters was serviced. The countdown resumed at 11:30 pm and proceeded smoothly until another hour-long built-in hold at T-2 hours and 20 minutes, intended to check that all preparations had been made before Shepard’s departure for the launch pad.