Category Escaping the Bonds of Earth

ROOM WITH A (BETTER) VIEW

Grissom’s efforts during his first two years as an astronaut proved pivotal in securing him his seat on Mercury-Redstone 4, planned as a virtual duplication of Freedom 7, in July 1961. It, too, would last barely 15 minutes, arcing high above the Atlantic Ocean and splashing down a few hundred kilometres east of Cape Canaveral. However, Grissom’s spacecraft – which he had nicknamed ‘Liberty Bell 7’ – would differ, visibly, from that of Shepard in an important way: it was the first to boast a large trapezoidal window, instead of two, 25.4 cm portholes. This window provided a field of view of 30 degrees in the horizontal plane and 33 degrees in the vertical, allowing him to look ‘upward’ and see directly outside, and had actually been one of the Mercury Seven’s earliest recommendations when they visited the capsules in production at McDonnell’s St Louis plant in Missouri. Manufactured by the Corning Glass Works of Corning, New York, the window comprised an outer pane of 8.9 mm-thick Vycor glass and a dual-layered inner pane. Its strength closely paralleled that of the capsule’s hull and during re-entry it was capable of withstanding temperatures as high as 980°C. To reduce glare, it was also treated with a magnesium fluoride coating.

Additional improvements implemented since Shepard’s flight included a make­shift urine collector, pieced together by the astronauts themselves the day before Liberty Bell 7 launched, which Grissom would later nonchalantly remark “worked as advertised”. More importantly, however, the second suborbital mission would feature an explosively-actuated side hatch. Early plans had called for the astronauts to exit their capsules through an antenna compartment in the nose, but the awkwardness of this exercise, coupled with the need to remove a small pressure bulkhead to do it, led the Space Task Group and McDonnell engineers to develop two hatches: one activated manually, the other explosively. The hatch itself was held in place by 70 titanium bolts, each measuring 6.35 mm in diameter, and the mechanical version was employed on both Ham’s and Shepard’s missions. However, it weighed 31 kg – three times as much as its explosive counterpart – and was deemed too heavy for the orbital Mercury flights. Thus, to put it through its paces, an explosively-actuated hatch was installed on Grissom’s capsule.

Built by Honeywell’s ordnance division of Hopkins, Minnesota, it contained a mild detonating fuse, installed in a channel between an inner and outer seal around the periphery of the hatch. When fired, the gas pressure between the two seals fractured each of the 70 screws and blew off the hatch. Small holes, drilled into each bolt, provided weak points and aided the fracturing process. The fuse could be triggered manually by the astronaut himself, using a knobbed plunger close to his right arm, or from outside the capsule by means of an external lanyard. The performance of the hatch on the Liberty Bell 7 mission would, in some eyes, tarnish Grissom’s reputation for the rest of his life and even today continues to arouse fierce debate.

The manual controls he would use during his 15-minute flight, too, had been extensively modified. A new rate stabilisation control system enabled him to manage the spacecraft’s attitude movements by small twists of the hand controller, rather than by simply jockeying the device into the desired position. It provided a kind of ‘power steering’, offering finer control and easier handling qualities. The instrument panel, moreover, had been upgraded with a new Earth-path indicator, showing Liberty Bell 7’s precise position. A redesigned fairing for the spacecraft adaptor clamp ring, a rearrangement of the instruments and more foam padding to the headrest of Grissom’s couch, it was hoped, would prevent a recurrence of the vibrations and blurred vision experienced by Shepard.

Other changes to the flight plan included adjusting the sequencing of retrofire to ensure that the Redstone and capsule would be at least 1.2 km apart on their suborbital paths as they neared the end of their mission. A new life raft, weighing less than 2 kg, had been provided by NASA’s Langley Research Center and the Space Task Group, and Grissom’s pressure suit featured a better wrist fitting for improved movement and a convex, chest-mounted mirror – the ‘Hero’s Medal’ – which would allow the spacecraft’s camera to record both the astronaut and the instrument panel readings.

During training and throughout the production of Liberty Bell 7, Grissom established his reputation as a ‘hands-on’ pilot, attending meetings, supervising some of the engineering work and, he said, ‘‘fretting a little over whether all of the critical parts would arrive from the subcontractors on time and get put together’’. Among his concerns were mistakenly-switched instruments, which caused the spacecraft to yaw to the left instead of the right, and the failure of the attitude controls, which did not properly centre themselves after manoeuvres. The capsule itself arrived at Cape Canaveral on 7 March 1961, followed by its Redstone three months later. On 22 June, the rocket was erected on Pad 5 and Liberty Bell 7 installed a few days thereafter. Throughout June, however, nagging problems were encountered whilst testing Grissom’s pressure suit and the need to replace the spacecraft’s rusted on­board clock. As for Grissom, to ensure that he did not inadvertently take himself out of the running for the flight, he gave up water-skiing and even calmed down some of his raucous exploits in his General Motors-provided Corvette. As souvenirs for the flight, he took two rolls of Mercury dimes – a hundred in all – which he stuffed into the pocket of his pressure suit. He would regret this decision later.

The Liberty Bell 7 mission would, in many ways, be substantially different from Freedom 7. Al Shepard’s flight had been literally overloaded with activities during barely five minutes of weightlessness. Grissom’s plan would ‘weed out’ a number of communications obstacles and allow him more time to use the new trapezoid window to learn about an astronaut’s visual abilities in space. Shepard had controlled his spacecraft by one axis at a time; Grissom would assume full manual control, taking over all three axes simultaneously. ‘‘I also planned to fire the retrorockets manually,’’ he said, ‘‘instead of automatically, as they had been fired on Freedom 7.’’

Grissom’s selection as the prime pilot for Liberty Bell 7, with John Glenn again serving as backup, was ratified by Bob Gilruth on 15 July 1961 and launch was scheduled for three days later. Part of what was becoming traditional was naming the capsule. Grissom’s choice honoured the famous Liberty Bell, today housed in Philadelphia, Pennsylvania, and considered one of the most important symbols of the American War of Independence, epitomising freedom, nationhood and the abolition of slavery. Cast in 1751, its most famous ringing, supposedly, occurred a quarter of a century later to summon Philadelphia’s citizenry for a reading of the Declaration of Independence. When questioned about the name, Grissom explained that the bell’s message of freedom and, indeed, its similarity of shape with the spacecraft had influenced his decision. To further honour the original bell – which had cracked during its first ringing, was repaired, cracked again in 1846 and was eventually rendered unusable – it was decided to paint a large white fracture along the side of the spacegoing Liberty Bell. ‘‘No one seemed quite sure what the crack looked like,’’ said Grissom, ‘‘so we copied it from the tails side of a 50-cent piece.’’

On 17 July, the day before the planned launch, Grissom and Glenn relaxed in the crew quarters at Hangar S. During this time, they set to work on their urine – collection device. They took a pair of condoms, snipped off the ends and secured some rubber tubing which ran to a plastic bag taped to Grissom’s leg. Flight surgeon Bill Douglas even asked the astronauts’ nurse, Dee O’Hara, to buy a panty girdle for Grissom to wear in order to hold the hastily-made contraption in place.

Late that same night, the launch was scrubbed by low cloud cover. Fortunately, the decision was taken before the lengthy procedure of loading the Redstone with liquid oxygen had begun. This meant that only a 24-hour delay, as opposed to a 48- hour stand-down, would be necessary. Bill Douglas duly woke Grissom at 1:10 am on 19 July and informed him that the scheduled launch time had been moved up by an hour, to 7:00 am, in the hope that the mission could be underway before an anticipated spell of bad weather settled over the Cape. The plan was for Grissom to eat breakfast and undergo his pre-flight physical examination. Unfortunately, the astronaut recalled later, “someone forgot to pass the word about the earlier launch time, because breakfast was not ready at 1:45 as it was supposed to be”. As a result, Douglas and psychologist George Ruff checked Grissom and, for breakfast, he was joined by Glenn, Scott Carpenter and Walt Williams.

After the now-customary procedure of gluing sensors to his body, Grissom was helped into his pressure suit and, at 4:15 am, clambered into the white transfer van. Inside, technicians had helpfully stencilled a sign which read ‘Shepard and Grissom Express’. Despite the presence of cloudy skies along the entire Atlantic coast, ‘‘from Canaveral on north’’, the astronaut was given the go-ahead at 5:00 am to board his spacecraft. To alleviate any boredom, should a lengthy, Shepard-like situation materialise, Douglas handed Grissom a crossword book. The countdown, though, proceeded normally, albeit with a keen eye on the weather, until T-10 minutes and 30 seconds, when the clock was stopped in the hope that conditions might improve. They didn’t. The launch was scrubbed and, since the Redstone had been fully loaded with liquid oxygen, a 48-hour turnaround was now unavoidable.

Early on 21 July, Grissom again suited-up and headed out to Pad 5. Delay after delay hit the countdown: firstly, one of the 70 titanium bolts around the rim of the hatch became cross-threaded, then the pad’s searchlights had to be switched off to prevent them from affecting telemetry from the rocket and, all the while, cloud cover was given the opportunity to move away from the launch area. The astronaut, meanwhile, spoke briefly to his wife, did deep-breathing exercises and flexed his arms and legs so as not to become too stiff. At length, at 7:20:36 am, Liberty Bell 7 lifted- off. Again paying tribute to Bill Dana’s reluctant Mexican spaceman character, Jose Jimenez, Capcom Al Shepard radioed ‘‘Loud and clear, Jose. Don’t cry too much!’’ as Grissom headed for space. Passing through the sound barrier at an altitude of 11 km, he experienced none of the vibrations that had affected Freedom 7 and the Redstone’s engine shut down, as planned, 142 seconds after liftoff. The astronaut felt a ‘‘brief tumbling sensation’’ at this stage and would later describe the clear sound of the LES tower jettisoning. ‘‘Actually,’’ he wrote in his post-flight report, ‘‘I think I was still watching the tower at the time the posigrade rockets [which separated Liberty Bell 7 from the Redstone] fired… the tower was still definable as a long, slender object against the sky.’’

Two minutes after launch, at an altitude of 30 km, Grissom noticed the sky turn rapidly from dark blue to black. He also noticed what he believed to be a faint star, roughly equivalent in brightness to Polaris, but which actually turned out to be the planet Venus; this won him a steak dinner from John Glenn, who had bet him that he would not be able to see any stars or planets. Observing Earth proved somewhat more problematic. Cloud cover over the Gulf of Mexico coastline between Apalachiocola, Florida, and Mobile, Alabama, made it virtually impossible for him to discern any land masses. Still, unlike Shepard’s grey-tinted view, Grissom was granted a fascinating glimpse through the trapezoid window. “I could make out brilliant gradations of colour,’’ he remembered later, “the blue of the water, the white of the beaches and the brown of the land.’’

His attempts to manoeuvre Liberty Bell 7 through all three axes were hampered when the yaw and pitch controls overshot their marks; overall, he judged the system as “sticky and sluggish’’. These problems, together with Grissom’s observations through the window, put the mission behind schedule and the planned roll manoeuvres had to be abandoned. He did, however, successfully execute a manual retrofire five minutes into the flight and, as the retrorocket pack fell away, Cape Canaveral came clearly into view. “The Banana and Indian Rivers were easy to distinguish,” he said later, “and the white beach all along the coast was quite prominent. I could see the building area on Cape Canaveral. I do not recall being able to distinguish individual buildings, but it was obvious that it was an area where buildings and structures had been erected.’’

Re-entry posed no significant problems, with the exception that it gave Grissom the peculiar sensation that he had reversed his backward flight through space and was actually moving face-forward. Plummeting towards the Atlantic, he saw what appeared to be the spent retrorockets passing the periscope view. Nine minutes and 41 seconds after launch, the drogue chute deployed, slowing Liberty Bell 7, before the descent was arrested by the jolt of the main canopy. “The capsule started to rotate and swing slowly under the chute as it descended,’’ he said later. “I could feel a slight jar as the landing bag dropped down to take up some of the shock.’’ In spite of a small, L-shaped tear in the main canopy, it did its job and the spacecraft impacted the Atlantic at 7:35 am, completing a mission of 15 minutes and 37 seconds – barely nine seconds longer than Shepard’s flight – with what Grissom described as “a good bump’’. After splashdown, it nosed underwater, with the astronaut lying on his left side with his head down, but slowly righted itself as the landing bag filled with water and acted as a sea anchor.

Shortly thereafter, he disconnected his oxygen inlet hose, unfastened his helmet from his suit, released the chest strap, lap belt and shoulder harness and detached his biosensors. At first, he considered not bothering to unroll a rubber neck dam to keep air in and water out of his suit. “It’s a chore to secure the dam,’’ he said of the device, which had been designed by fellow astronaut Wally Schirra, “and I didn’t think I’d need it. Fortunately, I reconsidered.’’

THE END

Gus Grissom had two reasons to be grateful to Wally Schirra. The first came immediately after his ill-fated splashdown on 21 July 1961, when he owed his life to the neck dam designed by his Mercury colleague. The second, however, came only minutes after Schirra’s splashdown in the Pacific at the close of Sigma 7. Grissom’s misfortune had prompted both John Glenn and Schirra to refrain from opening their capsules’ hatches in the water and choosing instead to explosively blow them when on the deck of the recovery ship.

‘‘I blew the hatch on purpose,’’ Schirra wrote in his autobiography, ‘‘and the recall of the plunger injured my hand – it actually caused a cut through a glove that was reinforced by metal. Gus was one of those who flew out to the ship and I showed him my hand. ‘How did you cut it?’ he asked. ‘I blew the hatch,’ I replied. Gus smiled, vindicated. It proved he hadn’t blown the hatch with a hand, foot, knee or whatever, for he hadn’t suffered even a minor bruise.’’ Already close from their three years training together, the two men were also neighbours in Houston and Schirra had agreed to act as the executor of Grissom’s will. Little did he know that he would be called upon to do just that a little over four years’ time.

The euphoria which surrounded Schirra’s return from one of the most productive Mercury missions to date was evident. After a greeting at Pearl Harbour and a day­long stay in VIP quarters in Hawaii, the nation’s latest astronaut hero found himself surrounded by the state’s governor, a senator and military top brass. He was also pleased to be able to verify that he had, in fact, responded correctly to Deke Slayton’s ‘turtle’ question, uttered during the launch. Whilst still aboard the Kearsarge, he asked the communications officer for a copy of the transcript of the first few minutes of his flight – and there it was, on his microphone’s voice recorder, the correct answer: ‘‘You bet your sweet ass I am!’’

Some voices within NASA opted to end Project Mercury immediately, its brief of placing a man into orbit for a lengthy period having been met. The next step on the road to the Moon, the two-piloted Gemini series, was just around the corner, with an inaugural unmanned venture scheduled for sometime in 1964. However, another of Mercury’s original goals had been to fly a mission lasting at least one full day and, although erased in October 1959 due to the growth of the capsule’s weight and power requirements and the limitations of the tracking network, this option returned to the fore shortly after Gus Grissom’s flight. Among officials at the burgeoning Manned Spacecraft Center (MSC) in Houston, Texas, the decision was easy, particularly since long-duration experience prior to Gemini was highly desirable. Early in January 1962, Project Gemini was publicly named as the nation’s interim stepping stone to Apollo and both NASA and McDonnell were hard at work planning a ‘Manned One-Day Mission’ (MODM) to round out Project Mercury in style.

By this time, MSC had effectively replaced the Langley Space Task Group and NASA Headquarters had reorganised Abe Silverstein’s Office of Space Flight Programs into an Office of Manned Space Flight, directed by D. Brainerd Holmes. Silverstein himself had been made director of the Lewis Research Center. By September 1962, days before Schirra’s launch, negotiations with McDonnell settled on a number of configuration changes needed for the MODM flight, which Bob Gilruth hoped to launch as early as April of the following year, using Spacecraft No. 20. The success of Sigma 7 prompted an emboldened NASA, in November 1962, to extend the MODM from 18 to 22 orbits, which would require a stay in orbit of around 34 hours. Such an ambitious venture – surpassing Vostok 2, though little more than a quarter as long as Andrian Nikolayev’s Vostok 3 – was anticipated to cost in the region of $17.8 million and require truly enormous tracking support, since its orbital path would carry it over virtually all of Earth’s surface between latitudes 33 degrees north and south of the equator.

Twenty-eight ships, 171 aircraft and around 18,000 military personnel would be needed to support the mission. Its duration also meant that, for the first time, round – the-clock control operations were required, with a Red Shift flight director (Chris Kraft) and a Blue Shift counterpart (a Canadian engineer named John Hodge). On 14 November 1962, Schirra’s backup, Gordo Cooper, was assigned as the MODM pilot, with Freedom 7 veteran Al Shepard backing him up.

Other problems surrounded the Atlas rocket, whose ‘F-series’ military variant had

suffered two inexplicable failures. When Cooper’s Atlas-D was rolled out of its Convair factory in San Diego in late January 1963, it failed to pass its initial inspections and was returned for rewiring of its flight control system. This led NASA, on 12 February, to officially postpone the originally scheduled mid-April launch until mid-May. Meanwhile, the MODM capsule itself – at the centre of the mission designated ‘Mercury-Atlas 9’ – was being outfitted with more than 180 engineering changes: heavier and larger-capacity batteries for more electrical power, an additional oxygen bottle, extra cooling and drinking water, more hydrogen peroxide manoeuvring fuel, a full load of consumables for the life-support system, various other modified components and, of course, an expanded scientific payload. Providing partial compensation for the added weight, the periscope, which Schirra had considered virtually useless on Sigma 7, was deleted, together with UHF and telemetry transmitters and a rate stabilisation control system. Other plans included removing Cooper’s fibreglass couch and replacing it with a lighter hammock, but fears that its material might stretch and the astronaut might ‘bounce’ meant that this proposal never materialised.

Still, the increasing weight of the later Mercury missions prompted an extensive requalification of the spacecraft’s parachute and landing systems. Other changes included the installation of a slow-scan television unit to monitor both the astronaut and his instruments. In fact, at a press conference on 8 February, Cooper had referred to his mission as ‘‘practically. . . a flying camera’’, in recognition not only of the television unit, but of a 70 mm Hasselblad, a special zodiacal-light 35 mm camera and a 16 mm all-purpose moving-picture camera. Cooper himself would wear a pressure suit which sported a mechanical seal for its helmet, new gloves with an improved inner liner and link netting between the fabrics at the wrist and a torso which afforded greater mobility. His lightweight boots were integrated, providing better comfort and reducing the time it took to put them on. All in all, the suit was much less bulky than its predecessors.

The mission appeared to be back on track by mid-March 1963, when the Atlas passed its acceptance inspection, this time without even a single minor discrepancy. In fact, having defined an offset of the engines to counteract the threatening roll rate experienced by Schirra during his liftoff, the rocket’s contractor confidently believed that they had produced their best bird to date. The delays had, however, pushed the MODM into mid-May and on 22 April the Atlas and its Mercury capsule were mated. As launch drew nearer, Cooper and NASA had their hands full with other problems. Four years after the selection of the Mercury Seven, attitudes towards manned spaceflight had already begun to change, with Philip Abelson, editor of the journal Science, Warren Weaver of the Alfred P. Sloan Foundation and Senator J. W. Fulbright of Arkansas arguing that the high cost of President Kennedy’s Moon project neglected urgent social and political problems at home.

Therefore, in spite of Schirra’s success, Project Mercury and the manned space effort still had much to prove as the days ticked down towards Cooper’s launch. After much consideration, he had named his ‘spacecraft’ – no longer called a ‘capsule’ – as ‘Faith 7’, to symbolise, he said, ‘‘my trust in God, my country and my teammates’’. Within the higher echelons of the space agency, concerns were

THE END

Gordo Cooper trains for the last Mercury mission.

 

expressed over the name: a mission failure, the Washington Post told its readers, could produce unfortunate headlines, such as ‘The United States today lost Faith’. Much consideration was also given to a ‘Mercury-Atlas 10’ mission, flown by Al Shepard for up to three days, thereby further closing the space-endurance gap with the Soviets. Tests had already shown, as part of NASA’s Project Orbit in February 1963, that a Mercury spacecraft could theoretically endure a four-day mission, although the effects of freezing or sluggishness in its hydrogen peroxide thrusters remained a lingering worry. Shepard himself, naturally, was in favour of a three-day flight, whose allocated spacecraft he had already nicknamed ‘Freedom 7-II’.

Had it gone ahead, it would have been launched sometime in October 1963. Shepard, for his part, even went so far as to lobby John Kennedy to support the extended-duration flight, although the president deferred the final decision, rightly, to NASA Administrator Jim Webb. ‘‘After Cooper finished his day-and-a-half orbital mission,’’ Shepard reflected in a February 1998 interview, ‘‘there was another spacecraft ready to go. My thought was to put me up there and just let me stay until something ran out – until the batteries ran down, until the oxygen ran out or until we lost a control or something; just an open-ended kind of a mission.’’

Even before Cooper’s flight, however, on 11 May, NASA’s newly-appointed deputy assistant administrator for public affairs, Julian Scheer, had emphatically declared that MA-10 would not fly. Webb himself killed off the plan a few weeks later, arguing that Gemini was already planned for long-duration missions – why prove something, only once, with an obsolete system, he asked – and that an accident on MA-10 could postpone subsequent ventures. In mid-June, the mission was officially removed from consideration, its spacecraft placed into storage and the shift to Project Gemini began in-earnest.

For Gordo Cooper, therefore, his own launch, set for 14 May, would be the end of the beginning.

THE ASTRONAUT

In some ways, Grissom and his younger pilot, John Watts Young Jr, were perfectly matched. ‘‘They were both good engineers who understood their machines,’’ wrote fellow astronaut Mike Collins, ‘‘and liked fooling with them. They were

uncomfortable with the invasion of privacy the space programme had brought into their lives and tried as hard as they could to deflect questions from themselves to their beloved machines. They were generally taciturn but both had strong opinions that could flash unexpectedly… Neither was interested in small talk and they would endure uncomfortable silences rather than fill the void with what they considered ancillary trivia.” Collins, who would fly as Young’s pilot on Gemini X a year later, admitted that the “aw-shucks” demeanour and country-boy drawl cleverly concealed a sharp, talented and analytical mind that would carry him to the Moon twice, to its surface and ultimately to command of the first Space Shuttle mission.

Born in San Francisco on 24 September 1930, Young and his family moved to Cartersville, Georgia, when he was three years old and eventually settled permanently in Orlando, Florida. At around this time, he related in an interview, Young began building model aircraft. It was a hobby that would remain with him throughout high school, together, it seemed, with rockets, which he chose for a speech to his classmates in the 11th grade. Young earned his degree in aeronautical engineering, with highest honours, from Georgia Institute of Technology in 1952, receiving coveted membership of the institute’s prestigious Anak Society. He joined the Navy in June of that year and, among his earliest assignments, served as fire control officer aboard the destroyer Laws. During this time, he completed a tour in Korea and a former shipmate would remember his coolness under duress.

“Though only an ensign at the time,’’ wrote Joseph LaMantia, quoted on the website www. johnwyoung. com, “he was the most respected officer on the ship. When we sustained counter-battery fire and enemy rounds were striking the ship, it was John Young’s leadership which kept us all cool and focused on returning that enemy fire… which won the day.’’ After Korea, Young entered flight school at Naval Basic Air Training Command in Pensacola, Florida, learning to fly props, jets and helicopters and later undertook a six-month course at the Navy’s Advanced Training School in Corpus Christi, Texas. With receipt of his wings came four years’ service as a pilot in Fighter Squadron 103, flying F-9 Cougars from the Coral Sea aircraft carrier and F-8 Crusaders from the Forrestal supercarrier. During these years, colleagues would describe him as “the epitome of swashbuckling aviators… he exuded confidence coupled with uncommon ability’’.

This ability, indeed, would ultimately guide him into the hallowed ranks of NASA’s spacefaring corps. But not yet. The selection process to pick the Mercury Seven began early in 1959, at which time Young was just starting Naval Test Pilot School at Patuxent River, Maryland; test-flying credentials were a prerequisite for astronaut training. After graduation, he worked as a project test pilot and programme manager for the F-4H weapons system at the Naval Air Test Center in Maryland, evaluating armaments, radar and bombing fire controls for both the Crusader and the F-4B Phantom fighters. During one air-to-air missile test, he and another pilot approached each other’s aircraft at closing speeds of more than three times the speed of sound. “I got a telegram from the chief of naval operations,” Young later quipped, “asking me not to do this anymore!’’ In early 1962, he would also set two time-to-climb world records.

By now a lieutenant-commander, Young’s experience with the ‘Phabulous’

Phantom had made him the obvious choice to set the records as part of Project High Jump. The first, on 21 February, saw him climb to 3,000 m above Naval Air Station Brunswick in Maine in 34.5 seconds; followed, six weeks later, by another attempt from Point Mugu in California, which achieved 25,000 m in 230.4 seconds. In September of that year, after leaving active naval duties as a maintenance officer in Phantom Fighter Squadron 143, he received a phone call from Deke Slayton which marked the start of an astronaut career that would span four decades. Training, though, would be arduous. “You had to learn a lot of stuff,” he said later. “You probably only needed to know one per cent of all the stuff you had to learn. . . but you didn’t know which one per cent it was!”

As pilot of Gemini 3, Young became the first of the 1962 astronauts to fly into space. He was originally assigned to accompany Wally Schirra on backup duties for the mission, but Al Shepard’s grounding turned such plans on their heads. However, Young and Grissom would work well together, providing a good basis for some famous – or infamous – banter whilst in orbit. In fact, when asked by a journalist a few days before launch if he had any qualms about flying with Gruff Gus, Young had deadpanned: “Are you kidding? I’d have gone with my mother-in-law!”

AN IRON MAN AND “A PUZZLE”

When he was shortlisted as a candidate for the first man in space in January 1961, Andrian Grigoryevich Nikolayev was described by his examiners as ‘‘the quietest’’ of the six finalists. By the time he launched into orbit on 11 August 1962 to begin the longest manned space mission to date, he had earned another nickname: ‘Iron Man’, due to his astonishing stamina and ability to sit alone in an isolation chamber, without stimulus or awareness of the passage of time, for no less than four whole days. Born on 5 September 1929 on a collective farm in the village of Sorseli in the forested Chuvash region of the Volga River valley, he was one of four children and discovered a love of aviation when, aged eight, he visited a nearby airfield. One story from his early years tells how he clambered into the branches of a tree and

announced that he intended to fly from it; fortunately, local villagers changed his mind and persuaded him to come down.

Following his father’s death in 1944, his intention was to support his family, although this was opposed by his mother, who wanted him to gain a full education. Nikolayev entered medical school, then tried his hand at forestry, serving as a lumberjack and timber camp foreman for a time, before joining the Soviet Army. He initially trained as a radio operator and machine gunner, demonstrating “composure under stress’’ when he crashed a flamed-out jet in a field rather than bailing out. Undoubtedly, this was a contributory factor in his selection as a cosmonaut trainee, along with Yuri Gagarin, Gherman Titov and 17 others in March I960. A bachelor at the time of Vostok 3, he is famously said to have kissed his girlfriend goodbye at the foot of the launch pad. That ‘girlfriend’ – 25-year-old Valentina Tereshkova – would not only become his wife a little over a year later, but would also become the first woman to venture into space.

In stark contrast to the quiet, reserved nature of Nikolayev, that of Vostok 4 cosmonaut Pavel Romanovich Popovich has been described as considerably more extroverted. He was also the only member of the 1960 cosmonaut group to have flown a ‘high-performance’ aircraft, having piloted the MiG-19. Interestingly, although he was shortlisted among the final six candidates for the first Vostok mission, his examiners labelled him ‘‘a puzzle’’ and mysteriously attributed his behaviour to ‘‘secret family problems’’. A lieutenant-colonel at the time of the flight, he became the most senior-ranking cosmonaut yet to reach orbit. Born on 5 October 1930 in Uzyn, within the Kiev Oblast in the north of the then-Ukrainian Soviet Socialist Republic, Popovich is today revered as the first ethnic Ukrainian spacefarer.

During his early teens, Popovich apparently so loathed the Nazi occupation that he refused to learn German at school, instead stuffing cotton into his ears and being expelled as a result. He was, it is said, even dressed in old frocks and passed off as a girl by his mother to avoid being sent away to Nazi labour camps. After the Second World War, Popovich worked as a herdsman, before achieving a diploma from a technical school in the Urals and entering the Soviet Air Force. Whilst assigned as a fighter pilot in Siberia, he met his future wife, Marina, a woodcutter’s daughter who became a high-ranking officer and engineer. She was also an accomplished stunt pilot and outspoken UFO researcher, which her husband, too, later embraced. In fact, in 1984, after his retirement from the cosmonaut corps, Popovich headed the Soviet Academy of Sciences’ UFO Commission. Like Titov, he was a voracious reader, an admirer of Hemingway and Stendhal and often quoted the works of the Soviet poets Sergei Yesenin and Vladimir Mayakovsky. In the isolation chamber, he proved very much the opposite of steely Nikolayev: he was more light-hearted and jocular, often relieving the tedium by dancing and singing operatic arias with such gusto that scientists and engineers gathered to listen.

“THE FIRST THING I HAD EVER LOST”

As Grissom moved smartly through his post-landing checks, a quartet of Sikovsky UH-34D helicopters, despatched from the recovery ship Randolph, were already on the scene. One of their crews, Jim Lewis and John Rinehard, had been tasked with raising Liberty Bell 7 from the water, after which the astronaut would explosively blow the hatch, exit the capsule and be winched aboard the chopper. Seconds after splashdown, Grissom radioed Lewis, callsigned ‘Hunt Club 1’, to ask for a few minutes to finish marking switch positions. Finally, after confirming that he was ready to be picked up, he lay back in his couch and waited. All at once, he recounted, ‘‘I heard the hatch blow – the noise was a dull thud – and looked up to see blue sky… and water start to spill over the doorsill’’. The ocean was calm, but Mercury capsules were not designed for their seaworthiness, particularly with an open hatch, and Liberty Bell 7 started to wobble and flood. Grissom, who later admitted that he had ‘‘never moved faster’’ in his life, dropped his helmet, grabbed the right side of the instrument panel, jumped into the water and swam furiously. ‘‘The next thing I knew,’’ he said, ‘‘I was floating high in my suit with the water up to my armpits.’’

Although both cap and safety pin were off the detonator, Grissom would later explain that he did not believe he had hit the button to manually blow the hatch. ‘‘The capsule was rocking around a little, but there weren’t any loose items… so I don’t know how I could have hit it, but possibly I did,’’ he told a debriefing that morning aboard the Randolph. Lewis, meanwhile, had to dip his helicopter’s three wheels into the water to allow Rinehard to hook a cable onto the now-sinking Liberty Bell 7. ‘‘Fortunately,’’ Lewis recounted, ‘‘the first time John tried, he managed to hook-up while the capsule was totally submerged.’’ Grissom, by now in the water, was puzzled, anxious and then angry when the helicopter did not lower a horse collar to hoist him aboard. Lewis, whose own training had shown him that Mercury pressure suits ‘‘floated very well’’ and had seen the astronauts apparently enjoying their time in the water, had no idea that Grissom was actually close to drowning. The astronaut had inadvertently left open an oxygen inlet connection, which allowed water to seep into his suit and air to leak out, thus reducing his buoyancy. Although he closed the inlet, some air also seeped from the neck dam, causing him to sink lower and regret the weight of souvenirs in his pockets.

Grissom did not know that Lewis was himself struggling with the spacecraft: in addition to the waterlogged capsule, the landing bag had filled with seawater and it now weighed in excess of 2,000 kg – some 500 kg more than the helicopter was designed to lift. Although Lewis felt he could generate sufficient lift to raise Liberty Bell 7 and take it back to the Randolph, every time he pulled it clear of the water and it drained, a swell would rise and fill the capsule again. Lewis’ instruments told him that the strain on the engine would allow him only five minutes in the air before it cut out. He therefore released the $2 million capsule to sink in 5,400 m of water and requested that another chopper fish Grissom from the water while he nursed his own aircraft back to the ship.

Unaware of the difficulties the astronaut was having – they assumed that his frantic waving was to assure them that he was fine – it was several more minutes before the second helicopter, with the familiar face of George Cox aboard, dropped him a horse collar, which he looped around his neck and arms (albeit backwards) and was lifted to safety. Grissom was so exhausted that he could not even remember the helicopter had dragged him across the water before he finally started ascending. He had been in the water for only four or five minutes, ‘‘although it seemed like an eternity to me,’’ he said later. His first request upon arrival on the Randolph’s deck

Подпись: 106 Monkeys to Men

“THE FIRST THING I HAD EVER LOST”

The unsuccessful attempt to hoist Liberty Bell 7 from the ocean.

 

was for something to blow his nose, as his head was full of seawater. A congratulatory call from President Kennedy fell on deaf ears as, for the first time, “my aircraft and I had not come back together. In my entire career as a pilot, Liberty Bell 7 was the first thing I had ever lost”. Worse was to come. At his first post­mission press conference, and in the years to follow, Grissom would be grilled by journalists, not over the success of his mission, but over the festering question of whether he had contributed to the loss of his spacecraft by blowing the hatch. It was an accusation that Grissom would refute until the day he died.

Not surprisingly, his temperature and heart rate were both high when he arrived aboard the Randolph. Physicians described him as “tired and… breathing rapidly; his skin was warm and moist”. Years later, although it was known that Grissom had an abnormally high heart rate, Tom Wolfe, in his bestselling book ‘The Right Stuff5, would point to his physiological state as ‘evidence’ that he had panicked inside Liberty Bell 7 and possibly blown the hatch. Even Grissom, at his first post­flight press conference in Cocoa Beach’s Starlight Motel, admitted that he was ‘‘scared’’ during liftoff, an admission later jumped upon by the media as proof that America’s second spaceman had displayed a chink of weakness. Test pilots at Edwards Air Force Base in California scornfully mocked that Grissom had ‘‘screwed the pooch’’ – had made a terrible mistake – and even the astronaut’s two sons were lambasted by their schoolmates for the loss of the capsule. In his own summing-up for Life magazine, Grissom admitted that ‘‘if a guy isn’t a little frightened by a trip into space, he’s abnormal’’. Chris Kraft agreed, pointing out that ‘‘if you weren’t nervous, you didn’t know what the hell the story was all about’’.

A subsequent investigation from August to October 1961, which included Wally Schirra on its panel, would determine that the astronaut did not contribute in any way to the mysterious detonation of the hatch. Indeed, said Schirra, whose design of the neck dam had helped save Grissom’s life, ‘‘there was only a very remote possibility that the plunger could have been actuated inadvertently by the pilot’’. During the inquiry, Schirra, fully-suited, even wriggled into a Mercury simulator himself and, no matter how hard he tried, could not ‘accidentally’ trigger the hatch’s detonator. One of the conclusions reached by the Space Task Group was that a 76 cm-diameter balloon would be installed in future capsules to allow recovery ships to pick up the spacecraft if the helicopters were forced to drop them.

Many other engineers and managers shared the astronauts’ conviction that Grissom was blameless. However, even though confidence in him remained high and he went on to command the first two-man Gemini mission, the stigma refused to go away. Some engineers continued to mutter of ‘‘a transient malfunction’’, but had no ability to identify it because the evidence lay on the floor of the Atlantic. Not until 1999 would Liberty Bell 7 be salvaged and raised to the surface.

Grissom himself participated exhaustively in the investigation. ‘‘I even crawled into capsules and tried to duplicate all of my movements,’’ he said, ‘‘to see if I could make the whole thing happen again. It was impossible. The plunger that detonates the bolts is so far out of the way that I would have had to reach for it on purpose to hit it. . . and this I did not do. Even when I thrashed about with my elbows, I could not bump against it accidentally.” Moreover, to hit the plunger manually would have required sufficient force to produce a nasty bruise, which Grissom did not have. Possibilities explored over the years have included the omission of the ring seal on the detonator’s plunger, static electricity from the helicopter, a change of temperature of the exterior lanyard after splashdown or – a hypothesis that Grissom supported – the entanglement of the lanyard with the straps of the landing bag. Walt Williams, writing in Deke Slayton’s autobiography, considered the astronaut to be blameless, but thought it “very possible’’ that he had bumped the plunger accidentally with his helmet.

Launch pad leader Guenter Wendt, speaking in 2000, fiercely discounted all theories but one: the entanglement of the exterior lanyard. “It is the most logical explanation,” he said, but acquiesced “Can we prove it? No.’’ It is a pity that the mishap – however it happened – should have, in the eyes of the public, marred what had otherwise been a hugely successful mission and which cleared the way for John Glenn’s historic orbital flight in February 1962. Was the unfortunate, twice-cracked Liberty Bell to blame for its spacegoing namesake’s watery demise? All Grissom would say was that Liberty Bell 7 “was the last capsule we would ever launch with a crack in it!’’

HOTSHOT

Cooper almost missed out on flying in Project Mercury entirely. Since his selection in April 1959, he had steadily gained a reputation for himself, firstly as a hotshot pilot with a passion for fast cars, but also as a complainer who pulled dangerous stunts, including one in an F-106 jet which screamed right outside, and below, Walt Williams’ office window. Moreover, Deke Slayton wrote of his personal surprise that Cooper had been chosen as an astronaut at all. ‘‘My first reaction was, something’s wrong,’’ he noted. ‘‘Either he’s on the wrong list or I am. Gordo was an engineer at Edwards. As far as I was concerned, he wasn’t even a test pilot.’’

Test pilot or not, if Schirra had been flying before he was born, then Leroy Gordon Cooper Jr was all but born in a pilot’s seat. His father, an Air Force lawyer, county judge and pilot from Shawnee, Oklahoma, frequently plopped his young son onto his lap in the cockpit of an old Command-Aire biplane, even allowing the boy to take the controls at the age of six. Later, in his teens, Cooper would hang around at the airport in Shawnee to pay for lessons in a J-3 Piper Cub trainer; inspired to fly, it seems, from his own experiences and from his father’s tales of the famed aviation aces Amelia Earhart and Wiley Post. He soloed, ‘officially’ at least, at the age of 16. It would garner a lifelong fascination with aviation which Cooper would retain for the rest of his life. Even in his seventies, he once told an interviewer that ‘‘I get cranky if I don’t fly at least three times a month!’’

His love of fast cars also became legendary during his astronaut days, as Gene Kranz, arriving at Cape Canaveral for his first day at work, related in his book ‘Failure Is Not An Option’. ‘‘After the plane rolled to a stop,’’ Kranz wrote, ‘‘a shiny new Chevrolet convertible wheeled to a halt just beyond the wing tip. An Air Force enlisted man popped out, saluted and held open the car’s door for a curly-haired guy in civilian clothes, a fellow passenger who deplaned ahead of me.’’ The curly-haired man offered Kranz a lift to the Cape, which he accepted, then ‘‘peeled into a 180- degree turn and raced along the ramp for a hundred yards, my neck snapping back as he floored the Chevy. I had never driven this fast on a military base in my life.’’ For a while, Kranz wondered if he had a madman behind the wheel as the driver seemingly broke every rule in the book and apparently cared nothing for being pulled over by the Air Police. ‘‘Hitting the highway,’’ Kranz continued, ‘‘he made a wide turn and a hard left, burning rubber. In no time, he had the needle quivering between 80 and 90 miles an hour. After a joyful cry of ‘Eeeee-hah’, he turned and offered his hand, saying ‘Hi, I’m Gordo Cooper’. I’d just met my first Mercury astronaut!’’

Born on 6 March 1927 in Shawnee, Cooper attended primary and secondary schools in his hometown and in Murray, Kentucky, and enlisted in the Marine Corps after graduation. The Army and Navy flying schools, he found, were not taking any new candidates that year. He promptly left for Parris Island, South Carolina, but the Second World War ended before he had an opportunity to see combat and he was assigned to the Naval Academy’s Preparatory School and was an alternate for Annapolis; Cooper was given Marine guard duty in Washington, DC, and was serving there with the Presidential Honour Guard when he and other reservists were released from service. After his discharge, he moved to Hawaii to live with his parents – his father, at the time, was assigned to Hickam Air Force Base in Honolulu – and it was whilst there that he met his future wife, Trudy. A drum majorette at the University of Hawaii, she owned a third interest in a Piper Cub and taught flying. She would be the only Mercury Seven wife to hold a pilot’s licence in her own right. In fact, when Cooper joined the astronaut corps, he and Trudy were the only members of the Mercury Seven to own an aircraft: a Beechcraft Bonanza.

The couple married in Honolulu in August 1947 and lived there for two years as Cooper pursued his degree at the University of Hawaii. Whilst studying, he received a commission from the Army’s Reserve Office Training Corps, transferred to the Air Force and was called to active duty for flight training at Perrin Air Force Base, Texas, and Williams Air Force Base, Arizona. Cooper received his pilot’s wings in 1950 and was attached to the 86th Fighter-Bomber Group at Landstuhl, West Germany, flying F-84 and F-8 jets and later commanding the 525th Fighter-Bomber Squadron. Whilst in Europe, he attended an extension of the University of Maryland’s night school, returning to the United States in 1954 for detachment to the Air Force Institute of Technology at Wright-Patterson Air Force Base in Dayton, Ohio. From here, he received a degree in aeronautical engineering in August 1956 and was sent to Edwards Air Force Base in California for a year at test pilot school.

It was at around this time, in Denver, that he first flew with another Air Force pilot named Gus Grissom; the pair crashed a T-33 jet off the end of the runway at Lowry Air Force Base, though thankfully both were unhurt. Graduation from Edwards brought rapid reassignment to the fighter section of the famed base’s Flight Test Engineering Division as a project engineer and test pilot. Whilst there, Cooper worked on the F-102A and F-106B development efforts. Then, early in 1959, he read an announcement that McDonnell had been awarded the prime contract to build a space capsule. Shortly afterwards, he received mysterious orders to attend a classified briefing in Washington. After undergoing the Lovelace and Wright – Patterson tests, he was so confident that he would be picked by NASA that he told his boss to start looking for a replacement and took two weeks’ leave to move his family to Langley, Virginia. When NASA called him to ask how soon he could get to Langley, Cooper replied “How about now?’’

Despite his flying credentials and engineering talent – he designed a personal survival knife and chaired the Emergency Egress Committee for Project Mercury – Cooper’s early days within the astronaut corps were somewhat less than illustrious and would lead several senior managers to consider bypassing him entirely for a spaceflight. He was, some said, a complainer, unpredictable, with a seemingly indifferent stance towards the public image that NASA wanted each of its astronauts to display. Cooper protested, for example, about the lengthy periods away from his family, about the lack of opportunities to fly jets and collect flight pay and, in fact, when Deke Slayton was grounded from Delta 7, he even threatened to leave the programme. Flying a chase plane over Cape Canaveral during Gus Grissom’s July 1961 ascent, Cooper buzzed the launch site, momentarily disrupting communications and earning him a severe ticking-off from superiors. On another occasion, he flew to Huntsville in Alabama, landed on a runway that was too short and asked to be refuelled. When ground crews objected that it was too dangerous for him to take off again, Cooper shrugged, took off regardless and made it to a nearby air base with fumes in his tanks. . .

Even in the weeks leading up to Cooper’s own mission, Faith 7, there were persistent rumours in the press that he might be dropped in favour of his backup, Al Shepard. In fact, so shaky was operations director Walt Williams’ ‘faith’ in Cooper that he had approached Shepard several months earlier and strongly hinted that the Freedom 7 pilot might be tipped to fly instead. Believing the mission to be his, Shepard continued training feverishly, but Deke Slayton – removed from his own flight – felt that Faith 7 belonged to Cooper. Others agreed that it would reflect badly on NASA if the astronauts were switched so soon before launch.

A timely intervention by Wally Schirra, who threatened to raise the roof if his friend was overlooked, eventually contributed towards securing Cooper his seat on the very last Mercury mission. Shepard was livid and Williams admitted that the Freedom 7 flier could have done a better job, but that the decision had been made

and it was now his job to ensure that Cooper was as prepared as possible. As partial compensation, Williams half-promised Shepard the three-day MA-10 mission. This never transpired. (Shepard later gained his revenge by lending Williams his Corvette for the day… then, as the operations director drove off, phoned security to inform them that ‘someone’ had just stolen his car.)

Perhaps reacting to these frustrations, two days before the scheduled launch, Cooper took a flight in an F-106 and, to the great surprise of Walt Williams and Chris Kraft, made a very low pass over Cape Canaveral. ‘‘We were talking,’’ Kraft recalled of that Sunday afternoon in Williams’ office, ‘‘and a sudden roar came upon us. The roar was a jet airplane diving onto the Cape at a very high rate of speed, which was forbidden. We looked out the window to see none other than Gordo.’’ Cooper flew beneath the second-floor office window and the astonished managers were actually able to look down on the screaming jet. The Cape, of course, was restricted airspace and its switchboard quickly lit up with frantic calls. Williams went berserk, according to onlookers, and threatened to have Cooper’s ‘‘ass on a plate!’’

He called Deke Slayton, who had to shout down the phone to be heard over the F-106’s roar, and Williams argued that Cooper should lose Faith 7. He even contacted Al Shepard, asking him if he and his pressure suit were ready to go. Slayton, however, refused to pull Cooper off the mission, but expressed serious reservations about the astronaut’s judgement. Both he and Williams allowed Cooper to sweat about his flight status for a day to put some fear into him. Not until late on the evening before launch did the operations director finally relent and agree to let him fly. Although many would come to regard him as a daredevil, Cooper’s supporters described him as a good, smart pilot, a man with a mission ‘‘to go a little bit higher and a little bit faster’’. In May 1963, he would fly his highest and fastest mission so far.

BLOODSHED IN ALABAMA

Two weeks before Grissom and Young’s launch, the gradual progress of the American civil rights movement exploded into violence when 600 protestors marching from Selma to Montgomery in Alabama were attacked by club-wielding, tear-gas-spraying police. As a result, 7 March 1965 would become forever known as ‘Bloody Sunday’.

At the time, Selma – seat and main town of Dallas County – had a population that was 57 per cent black, although fewer than one per cent was actually registered to vote. The vast majority of the black community lived beneath the poverty line in mundane, unskilled occupations, a situation which the Boynton family and others sought to rectify. Their efforts to achieve this had been hampered since the late Fifties by the White Citizens’ Council, the Ku Klux Klan and direct violence. The situation reached a head in February 1965, when an Alabama state trooper shot Jimmie Lee Jackson as the latter tried to protect his mother and grandfather during a nocturnal demonstration.

Jackson’s murder was the catalyst for the first of three Selma-to-Montgomery marches. The initial plan was for the marchers to ask Alabama Governor George Wallace if he had authorised the troopers to shoot during the demonstration, which ultimately broadened with Martin Luther King’s desire to request better protection of black voting registrants from Wallace.

The reaction from the governor, disturbingly, was that the march represented a threat to public safety and he opposed it. Mounted police awaited the marchers and, in the presence of journalists, attacked them with clubs, tear gas and bull whips. Amelia Boynton, one of the organisers, was beaten and gassed and 17 other marchers were hospitalised.

Two days later, on 9 March, King organised a second march. Numbers had by now swelled to more than 2,500 in outraged reaction to the images from Bloody Sunday. However, an attempt to gain a court order to prevent the police from interfering was rejected by a federal district judge, who instead issued a restraining order to stop the march until further hearings could be held. To avoid breaking the terms of the order, King led the marchers out to the Edmund Pettus Bridge, held a short prayer session, then turned them around and disbanded. Violence, however, was not far away. That evening, three white ministers involved in the second ‘march’ were clubbed by white supremacists. One of the ministers, James Reeb, later died from his injuries.

After finally gaining approval for an unimpeded march, the full journey along Route 80 through rain and cold was completed from Selma to Montgomery on 24 March. Five months later, President Lyndon Johnson signed the National Voting Rights Act, which prohibited states from preventing their citizens from voting on the basis of colour or race. Previous practices of requiring voters to pass literacy tests before being cleared to cast at the ballot box were abolished. Moreover, states with a history of abuses over voting rights could not make any changes without first requesting the consent of the Department of Justice. A wind of change had taken hold in America.

FLYING FALCON, SOARING EAGLE

When Radio Moscow announced Nikolayev’s successful 11:24 am launch on 11 August, observers could be forgiven for wondering what this latest Soviet mission might entail. The answer became clear when Popovich roared aloft from Gagarin’s Start in an R-7 he had christened ‘Swallow’ at 11:02 the following morning and, within an hour of reaching orbit, he had established visual line of sight with Vostok 3. In his post-flight debriefing, Nikolayev would recount that, despite positioning his ship in the correct attitude, he had been unable to see Popovich’s launch from space. Over the following days, despite the paucity of reliable information from Tass, western analysts set to work plotting the two ships’ radio signals and estimated that they were flying some 120 km apart. This led to increased speculation about whether the Soviets had trumped the United States again by achieving what the Americans were not expected to achieve until their two-man Gemini spacecraft flew in 1964: rendezvous in orbit. If, indeed, they had achieved this remarkable feat of celestial mechanics, a Soviet man on the Moon by the middle of the decade was entirely possible. ‘‘Once they have achieved orbital rendezvous,’’ the British Interplanetary Society’s Kenneth Gatland said at the time, ‘‘they have taken a vital step toward lunar flight.’’

Strictly speaking, what had been achieved was not rendezvous. The wording of the official communiques allowed the interpretation that the spacecraft had manoeuvred to reduce their initial separation, but the reduction was due to orbital dynamics, after which the range increased again. Nonetheless, inserting two manned spacecraft into similar orbits at the same time was a feat that the United States could not hope to match for several years and the propaganda value of this was fully exploited. As announced, the purpose of the missions by Nikolayev and Popovich, callsigned ‘Falcon’ and ‘Golden Eagle’, respectively, was to check ‘‘contact’’ between two spacecraft flying in similar orbits. Although the minimum range is believed to have been 6.5 km, one account claimed that the cosmonauts had been able to see each other through their capsules’ portholes! Hence their ‘‘contact’’ seems to have been exclusively visual or by radio.

Indeed, the Sohio tracking station in Cleveland, Ohio, reported that after their initial close proximity, the two spacecraft drifted more than 2,800 km apart. ‘‘We’re convinced that if they had the proper equipment, they could have touched,’’ the station’s supervisor was later quoted as saying by Time magazine. Yet the dual mission did induce some concern in the Pentagon. ‘‘If the Russians can send Colonel Popovich up to look at Major Nikolayev,’’ said one officer, ‘‘they can go up and look at one of our birds. Why, they could knock out those delicate instruments in some of our satellites by hitting them with almost anything.’’ Others were more cautious, pointing out that the interception of one Vostok by another was simplified by the fact that both had launched from the same pad.

Unlike Gherman Titov, who had experienced space sickness shortly after reaching orbit, neither Nikolayev nor Popovich appeared to be affected by the ailment. Their spirits seemed high as they congratulated each other over a shortwave channel which linked their two ships and even engaged in a three-way radio conversation with

FLYING FALCON, SOARING EAGLE

Подпись: 44 From the East

Sergei Korolev and his wife with the cosmonauts selected in March 1960 and a number of their trainers. Included in this portrait are five of the six Yost ok fliers. Gagarin is the only person wearing a tie; Titov stands directly behind Korolev’s wife; Popovich sits at the far left on the front row; Nikolayev is second from the left on the second row; and Bykovsky is second from the right, also on the second row. These cosmonauts, and, of course, Korolev himself, were responsible for some of the most remarkable triumphs in mankind’s early conquest of space.

fellow cosmonaut Yuri Gagarin at the control centre. Elsewhere on the ground, after the official announcement had been made, Muscovites gathered in their hundreds in the streets to listen as loudspeakers blared out the news of the latest Soviet spectacular in space. Possibly in an effort to show how much more ‘roomy’ Vostok was compared to the Americans’ cramped Mercury capsules, it was revealed that Nikolayev released his shoulder straps and floated ‘around’ the cabin.

Further details trickled out with the suggestion that he had worried about bumping into things as he moved around; Popovich, too, it was claimed, accidentally banged his head whilst floating across the cabin. Obviously, after the dimensions of Vostok were revealed to the world in April 1965, it became clear that neither cosmonaut had much room in which to move and the stories were simply a clever game designed to keep western listeners guessing about the spacecraft’s true size.

The Soviets clearly only revealed what they wanted the outside world to know and, indeed, when American networks asked to plug in on televised images of Nikolayev and Popovich via the Telstar communications satellite, they were politely refused. Instead, Soviet embassies released photographs of the cosmonauts at play with their families, at seaside resorts, riding pedal boats and even one of Nikolayev sniffing poppies. The two men, meanwhile, worked methodically through their detailed experimental programmes, photographing and – in Nikolayev’s case – filming Earth in colour for the first time. They checked their ships’ systems, monitored communications, verified guidance… and even found time to request the latest football scores. They chatted, too, about their food. Instead of the toothpaste – tube-like fare that Titov had endured, they were provided with packed meals: small, bite-sized chunks of veal cutlet and chicken, together with sandwiches and pastries. A disappointed Nikolayev, upon learning that Popovich had a small piece of dried fish in his food locker, asked for some; to which Popovich gamely invited him to ‘‘come a little closer and we’ll share what we’ve got’’.

Medical personnel hoped that the packed meals, which were more ‘normal’ than those consumed by Titov, might help avoid a recurrence of space sickness. ‘‘It was just as pleasant as a good restaurant,” Nikolayev would recall after landing and it would appear that neither cosmonaut experienced any of the dizziness, nausea or headaches suffered by Vostok 2’s pilot. In their post-flight debriefings, both would explain that they moved their heads sharply from right to left with no ill effects. However, an unfortunate misunderstanding appears to have curtailed Popovich’s mission. It was becoming clear that occurrences of space sickness might be linked to the reactions of individual cosmonauts, rather than as a result of long missions. Consequently, before launch, the cosmonauts had been given the callsign ‘‘observing thunderstorms’’ – ‘‘groza’’ – to report to ground controllers if they felt unwell and desired an immediate return to Earth. Unluckily for Popovich, it would seem that he really was observing enormous thunderheads over the Gulf of Mexico and made an innocent remark about them. Within hours, and just a few minutes after Nikolayev’s own landing, Popovich’s mission was over and he was back on Soviet soil.

Although he had tried to explain, whilst still in orbit, that he really was observing meteorological thunderstorms and was not ill, neither Nikolai Kamanin nor Yuri Gagarin wanted to take the risk, suspecting that he had experienced an attack of nausea, made the transmission and later relented, not wishing to admit to any weakness. To be fair, problems with Vostok 4’s life-support system had already caused the cabin temperature to plummet to just 10°C and some officials were pushing to bring the cosmonaut home on his 49th orbit. Additionally, since he had only expected to remain aloft for three days, Popovich had not conserved his on­board provisions with the same tenacity as Nikolayev; still, he remained cheerful, active and eager to complete a lengthy mission.

It is ironic that these events should have transpired because, by 13 August, optimism was high that both cosmonauts were sufficiently healthy to complete four – day missions: the only voice of dissent came from Kamanin, still fearful of the effects of long-duration flights on the human body. One such effect began to manifest itself midway through Nikolayev’s flight when he vented his frustration on personnel at a Soviet tracking station, who had provided him with incorrect timing information. “You were wrong by five minutes,’’ he barked. “Please give me a new time recording now. Can’t you hear what I say? Start the timing, for heaven’s sake!’’ Tension and fatigue, it seemed, were something even the Iron Man could not avoid.

Nikolayev’s feet touched Earth at 9:52 am Moscow Time on 15 August, in the hilly desert country close to the coal-mining city of Karaganda in north-central Kazakhstan, some 2,400 km south-east of Moscow. He was followed, barely seven minutes later, by Popovich, who landed a few kilometres away and at the same (48th) parallel; a similar landing principle would be adopted during the joint flight of Vostoks 5 and 6 in June 1963. Some observers have speculated that the reason was to deploy recovery forces in an east-to-west pattern. Both re-entries appeared to be smooth and not as eventful as those of Gagarin and Titov, with Nikolayev commenting only that his capsule “revolved randomly on reaching the denser atmosphere” and he experienced deceleration forces of 8-9 G. He also recounted that, although there were boulders in the landing zone, he was able to guide his parachute successfully and touch down in a clear area. After recovery, the two now – bearded cosmonauts were reunited, greeting each other, it is said, with embraces, kisses and spontaneous song. As they munched watermelon and chatted with locals in a crowded Kazakh rest house, their sole complaint was that the heat and discomfort of the desert was greater than it had been in space.

‘GAS BAG’

Despite the hatch malfunction, Grissom’s flight validated the Mercury capsule sufficiently to encourage the Space Task Group to do away with plans for two more suborbital Redstone missions; in fact, MR-6 had already been discarded from consideration since early June. Although Bob Gilruth was happy with this plan, NASA’s head of spaceflight programmes, Abe Silverstein, felt that the Liberty Bell 7 data should be fully appraised before abandoning MR-5. Moreover, the public knew that three astronauts – Shepard, Grissom and Glenn – were in training for Redstone missions and fully expected each to fly. On the other hand, by expediting Project Mercury and accomplishing a five-hour, three-orbit mission, the achievement of Yuri Gagarin would be eclipsed. To do this, the abilities of the Redstone were simply insufficient; the larger Atlas missile, a rocket with a long history of development problems, would be needed. Then, on 7 August 1961, less than three weeks after Grissom’s mission, all hopes of beating Gagarin were quashed when Gherman Titov completed 17 circuits of the globe in the day-long Vostok 2.

After the analysis of the Liberty Bell 7 data, it became clear that little more could be accomplished with the Redstone and, on 14 August, the Space Task Group’s Paul Purser drafted a termination recommendation for Gilruth to submit to Silverstein. In it, Purser argued that the Redstone had successfully qualified the Mercury spacecraft, had validated NASA’s training hardware and, despite problems, had not presented anything that could hinder a manned orbital flight. Four days later, NASA Headquarters announced the effective termination of Mercury-Redstone and the decision was made that the next manned mission would orbit Earth three times. However, although the capsule was ready, the Atlas rocket had a very bad habit of exploding either on the pad or shortly after liftoff and would require further qualification before it could be entrusted with a human pilot.

Unlike the Redstone, which owed its genesis to the Army and Wernher von Braun, the Atlas was an Air Force effort, inaugurated in 1946 to develop the United States’ first intercontinental ballistic missile. Initial studies were awarded to the Convair Corporation of San Diego and led to Project MX-774 or what was described as “a sort of Americanised V-2’’. Its novel design would control the rocket by swivelling its engines, using hydraulic actuators which responded to commands issued by gyroscopes and an autopilot. Unfortunately, President Harry Truman’s administration offered the Air Force the choice of having funding cut for either its intercontinental manned bombers and interceptors or its advanced weapons designs; the latter option was taken and, as the first MX-774 test vehicle neared completion, it was abruptly cancelled. This left the United States with no intercontinental ballistic missile, a problem made all the more worrisome when the Soviets detonated their first live nuclear device in 1949. A dramatic turnaround followed, with Truman ordering the development of hydrogen-fusion warheads on a priority basis and the outbreak of the Korean War boosting military budgets overnight. The Army began planning the Redstone and the Air Force, at last, was able to resume efforts to build an intercontinental missile which, in 1951, assumed the name ‘Atlas’.

An initially cautious approach to its development was altered dramatically late the following year, when the Atomic Energy Commission conducted the world’s first thermonuclear explosion on Eniwetok Atoll in the Pacific Ocean and increased emphasis was imposed on the Air Force to give its highest consideration to work on long-range ballistic missiles. By 1955, Convair’s rocket gained a new lease of life with a long-term contract for its fabrication: Atlas truly became a high-profile, ‘crash’ project. During its development, another Air Force missile, the intermediate-range Thor, was designed by Douglas Aircraft Company as a stopgap nuclear deterrent, while the Army and (at first) the Navy assumed joint responsibility for a rocket dubbed ‘Jupiter’.

Convair, meanwhile, was busy tackling several fundamental problem areas with the Atlas, one of which led to an entirely different airframe. The principle of this airframe, nicknamed ‘the gas bag’, utilised stainless steel sections thinner than paper, which were rigidised through helium pressurisation at between 1.7-4.2 bars. This led to a huge reduction in the ratio between the Atlas’ structure and total weight – its ‘empty’ weight was less than two per cent that of its propellant weight – and yet the airframe remained capable of withstanding heavy aerodynamic loads. Meanwhile, a three-engine design for the missile, employing two boosters and one sustainer, producing a total thrust of 163,000 kg, together with small vernier jets, was devised by the Rocketdyne Division of North American Aviation.

The technique of igniting the boosters and sustainer on the ground provided an advantage of avoiding the need to start the Atlas’ second stage in the high atmosphere. Firing the sustainer at liftoff also meant that smaller engines could be used. These would be fuelled by a combination of liquid oxygen and a hydrocarbon mixture known as Rocket Propellant-1 (RP-1) – a highly-refined form of kerosene – brought together by an intricate system of turbopumps, lines and valves, which fed them into the Atlas’ combustion chambers at a rate of 680 kg per second. Appearance-wise, it also made the Atlas ‘fatter’ than the Redstone or Thor. Its original length was nearly 23 m, its diameter at the fuel tank section was 3.3 m and its fully-loaded weight was around 118,000 kg. At burnout, it was capable of a speed of some 25,750 km/h and a range of 14,480 km. Later Atlas variants, including those used for Project Mercury’s orbital missions (the Atlas-D), were thicker-skinned and employed radio-inertial guidance systems to detect aerodynamic forces and calculate and adjust position, speed and direction.

A key stumbling block, though, involved preventing the warhead inside the Atlas nosecone from burning up as it entered the denser atmosphere at several times the speed of sound; this also had important ramifications from a man-in-space standpoint. During the development of Project Mercury, discussion flared over whether to include a beryllium heat sink or an ablative shield, with both concepts being developed in tandem for a time, until the latter option was finally selected. The Atlas’ role as an orbital rocket became more acute when the Soviets launched the first Sputniks in 1957, by which time it was only partway through its verification programme, plagued by turbopump and fuel-sloshing problems. Nonetheless, on 8 December 1958, the Space Task Group formally approved it as the launch vehicle for its orbital missions and ordered nine flight units.

Since the Mercury-Atlas combo was taller than the weapons-carrying version of the missile, the gyroscopes had to be installed higher in the airframe, in order to more precisely gauge attitude changes during flight. The Mercury spacecraft would use its own posigrade rockets to separate from the Atlas, but because there was a chance that they could burn through the thin-skinned liquid oxygen dome, a fibreglass shield was affixed to the capsule-to-rocket mating ring. Also, the two small vernier jets were adjusted to reduce weight and complexity and increased aerodynamic loads and buffeting problems with the attached capsule forced engineers to thicken the skin of the Atlas’ forebody. New instrumentation was installed to carefully monitor liquid oxygen and differential tank pressures, attitude rates about all three axes, engine manifold pressures and primary electrical power, all of which had the potential to lead to catastrophe.

Its maiden suborbital flight with a capsule, dubbed Mercury-Atlas 1 (MA-1), got underway on the morning of 29 July 1960. Despite holds for heavy rainfall, the cloud ceiling rose high enough to be considered acceptable and, after other delays caused by problems topping-up the Atlas’ liquid oxygen tanks and ensuring telemetry was sound, the rocket lifted-off at 9:13 am. The early part of ascent went like clockwork, but, around a minute into the flight, the pressure difference between the liquid oxygen and fuel tanks went to zero and all contact with the Atlas was lost. Unfortunately, cloud cover over the Cape was so thick that visual and photographic evidence was virtually impossible, although it subsequently became apparent that the Atlas’ walls had ruptured due to vibrations set up by mechanical resonance in the capsule-to-rocket adaptor. The rocket and spacecraft reached a peak altitude of 13 km, before descending to impact the Atlantic. One of the few saving graces was that the Mercury capsule maintained its structural integrity until it hit the ocean.

A stainless steel reinforcing ‘belly band’, strapped around the upper part of the

‘GAS BAG’

The crumpled MA-1 spacecraft after its ill-fated Atlas launch.

rocket, was implemented and the capsule-to-Atlas adaptor was stiffened. The MA-2 suborbital mission was duly launched at 9:12 am on 21 February 1961, passing successfully through ‘Max Q’ a minute later, and after reaching an apogee of 183 km, the now-separated capsule commenced its ballistic fall towards the South Atlantic. Splashdown occurred 18 minutes after launch and a proud NASA described the mission as ‘‘nominal in nearly every respect’’, with MA-2 recovered in good condition. When asked at a press conference later that day if an astronaut could have survived the test, Bob Gilruth beamed with a resounding ‘‘Yes’’.

Nine weeks later, at 11:15 am on 25 April, MA-3 lifted-off on what should have been an orbital flight, carrying an electronic mannequin capable of ‘inhaling’ and ‘exhaling’ man-like quantities of gas, heat and water vapour. This time, however, the Atlas failed to properly follow its roll and pitch manoeuvres due to a transient voltage. ‘‘The roll and pitch program normally changed the initial vertical trajectory of the launch into a more horizontal one that would take the Atlas out over the Atlantic,’’ wrote Gene Kranz. ‘‘This Atlas was still inexplicably flying straight up, threatening the Cape and the surrounding communities.’’ It was remotely destroyed after just 43 seconds, but, fortunately, the LES tower saved the Mercury capsule by pulling it free as planned. It impacted the Atlantic seven minutes after launch and was in such good condition that it was used on the very next Atlas flight. That flight was itself repeatedly postponed, firstly by delays in the delivery of its rocket to the Cape and also by the need to extensively overhaul the old MA-3 capsule back at McDonnell’s St Louis plant. During its time in Missouri, the spacecraft was meticulously cleaned, its heat shield replaced and other repairs implemented.

At length, at 9:04 am on 13 September, only weeks after Gherman Titov’s 17- orbit mission, MA-4 succeeded where its predecessor had failed, splashing down safely 280 km east of Bermuda. Finally, on 29 November, the chimpanzee Enos was blasted aloft in MA-5 to evaluate the capsule’s life-support systems and the Atlas’ performance with a living passenger. NASA Administrator Jim Webb’s office had questioned the Manned Spacecraft Center (MSC) about the need for this and, indeed, Washington newspapers suggested that another such mission would invite Soviet ridicule. However, the decision was taken for a ‘‘necessary preliminary checkout’’ of the hardware before committing a human pilot. Enos, one of four chimps shortlisted for the flight, owed his name to the Hebrew word for ‘man’, hopefully indicative that the next Mercury-Atlas would be flown by a somewhat less hairy hominid. He underwent 1,250 hours of training – more than Ham, because Enos would be exposed to a much longer period of weightlessness and higher G loads – which included psychomotor preparations and aircraft flights. President Kennedy drew laughs from the Senate when he announced that the just-launched Enos ‘‘reports that everything is perfect and working well’’.

The Atlas successfully placed MA-5 into an orbit of 159 x 237 km. Originally intended to fly three orbits – the same as was planned for John Glenn on MA-6 – the capsule encountered difficulties with its attitude-control system when a metal chip in a fuel line caused one of its roll thrusters to fail. This allowed the spacecraft to drift from its normal attitude and, although the automatic system worked to correct this, some 4 kg of fuel was wasted trying to keep it properly aligned during its second orbit. Coupled with this problem, the environmental system experienced glitches and the temperature of Enos’ pressure suit rose to 38.1°C. The problem later resolved itself, but engineers’ concerns over fuel consumption prompted them to request a re­entry at the end of the second orbit. As Enos hurtled over Point Arguello in California, Flight Director Chris Kraft decided to bring MA-5 home early and the retrofire command was transmitted to the spacecraft.

Three hours after launch, Enos’ capsule was bobbing in the Atlantic, just off the coast of Puerto Rico. It was hauled aboard the destroyer Stormes and its hatch explosively detonated. Enos, who, like Ham, had been ‘rewarded’ with electric shocks for operating the correct controls, thanks to an equipment malfunction, was bloodied and ‘‘excitable’’, but nonetheless alive and happy to see his rescuers.

Significant though it was, the flight of Enos – who would die of dysentery less than a year later – quickly faded as public attention became riveted on the impending mission, tentatively scheduled for 19 December. At around the same time, some members of the media speculated that Glenn, Shepard and Scott Carpenter had been selected as candidates for the first orbital mission. Glenn, however, having served as backup for the last two missions, had already been picked by Bob Gilruth to fly. Barely a day after Enos splashed down, his launch vehicle, designated ‘Atlas 109D’, arrived at the Cape and Mercury’s operations director Walt Williams told journalists that three shifts were now working around-the-clock, seven days a week, in a bid to get an American into orbit before the end of the year. That plan evaporated on 7 December, when it was announced that ‘‘minor problems dealing with the cooling system and positioning devices in the Mercury capsule’’ had obliged a postponement until January. Admittedly, many senior managers had known since October that the timeframe for a December launch was tight. Said the agency’s deputy administrator, Hugh Dryden: ‘‘You like to have a man go with everything just as near-perfect as possible. This business is risky. You can’t avoid this, but you can take all the precautions you know about.’’

With the completion of MA-5, NASA felt confident and ready for the manned orbital mission. By the end of February 1962, a somewhat different hominid – a Marine pilot, transcontinental record-holder and ‘Name That Tune’ winner named John Herschel Glenn Jr – would ride the temperamental Atlas not only into space, but into orbit and into the history books. Yet the risks were pervasive and enormous. The success of Enos’ mission did not detract from the reality that the rocket had exploded on a number of occasions. ‘‘John Glenn is going to ride on that contraption?’’ asked the Redstone’s designer, Wernher von Braun. ‘‘He should be getting a medal just for sitting on top of it before he takes off!’’

LAST MERCURY OUT

Cooper’s hotshot characteristics were balanced by a misleadingly quiet voice and laid-back personality, to such an extent that he frequently fell asleep during the lengthy physical checks… and, famously, dozed off aboard his Faith 7 spacecraft, atop the fully-fuelled Atlas, on launch morning. Al Shepard, for his part, had lost his last chance to fly the final Mercury mission. Despite having himself engaged in flat – hatting as a naval aviator, he told Walt Williams that he felt Cooper had shown ‘‘unusually bad judgement’’. However, wrote Neal Thompson, ‘‘it wasn’t the height Shepard thought was dumb; it was buzzing the administration building’’.

Four hours after a still-enraged Williams had given his consent to let Cooper fly, early on 14 May, the prime and backup astronauts ate breakfast… and Shepard got more revenge for his ‘lost’ mission through another tension-relieving, though somewhat mean-spirited, gotcha. Press spokesman Shorty Powers arrived early that morning with a pair of cameramen to shoot some behind-the-scenes footage of Cooper as he prepared for launch. However, they found, to their shock, that none of

LAST MERCURY OUT

Cooper’s Atlas 130D booster is prepared for launch.

the overhead lights were working, nor, indeed, were any of the electrical sockets. Someone, it seemed, had cut the wires, removed every light bulb, inserted thick tape into the sockets and replaced the bulbs. No one pointed any fingers, but Powers recognised the grin on Shepard’s face “that is typical of him when he has a mouse under his hat’’.

Another gift from Shepard awaited Cooper when he boarded Faith 7 at 6:36 am: a small suction-cup pump on the seat, labelled with the legend ‘Remove before launch’, in honour of the new urine-collection device aboard the spacecraft. Cooper would become the first Mercury astronaut who would be able to urinate in a manner other than ‘in his suit’. At this stage, the only expression of doubt over whether Faith 7 would fly came from meteorologist Ernest Amman. His fears were soon realised, not because of the weather, but due to a malfunctioning C-band radar at the mission’s secondary control centre in Bermuda. Shortly after this had been rectified, at 8:00 am, with an hour remaining before the scheduled launch, a simple 275- horsepower diesel engine, responsible for moving the gantry away from the Atlas, stubbornly refused to work. More than two hours were wasted in efforts to repair a fouled fuel injection pump on the engine and the count resumed around noon. The gantry was successfully retracted, but the failure of a computer in Bermuda – crucial for a ‘go/no-go’ launch decision to be made – caused the attempt to be scrubbed.

Cooper, after six hours on his back inside Faith 7, remained upbeat and summoned a forced grin. ‘‘I was just getting to the real fun part,’’ he said. ‘‘It was a very real simulation.” He spent part of the afternoon fishing, while checkout crews prepared the Atlas for launch the following morning. Arriving at Pad 14 for the second time, he greeted Guenter Wendt, with mock formality, reporting as ‘‘Private Fifth Class Cooper’’, to which the pad fuehrer responded in kind. The roots of their joke came two years earlier, when Cooper had stood in for Al Shepard in a launch – day practice run prior to Freedom 7. Upon arriving at the pad, Cooper had expressed mock terror, begging Wendt not to make him go, in true Jose Jimenez fashion. Some of the assembled media were amused, but NASA’s public affairs people were not and one even suggested that Cooper be ‘‘busted to Private Fifth Class’’. Ironically, the astronaut and Wendt liked the idea and ran with it.

This time, his wait inside the spacecraft lasted barely two and a half hours. The countdown ran smoothly until T-11 minutes and 30 seconds, when a problem developed in the rocket’s guidance equipment and a brief hold was called until it was resolved. In fact, so smooth was the countdown that flight surgeons were astonished to note that Cooper’s heart rate had fallen to just 12 beats per minute: he had dozed off. It took Wally Schirra, the capcom at Cape Canaveral, to bellow his name over the communications link to awaken him. Agonisingly, another halt came just 19 seconds before liftoff to allow launch controllers to ascertain that the Atlas’ systems had assumed their automatic sequence as planned.

Thirteen seconds after 8:00 am on the morning of 15 May, the Atlas rumbled off its launch pad in what Cooper would later describe as a smooth but definite push. A minute into the climb, the silvery rocket initiated its pitch program and the astronaut felt the vibrations of Max Q, after which the flight smoothed out and he heard a loud clang and the sharp, crisp ‘thud’ of staging as the first-stage boosters cut off and separated. Unneeded, the LES tower was jettisoned and, at 8:03 am, Faith 7’s cabin pressure sealed and held, as intended. Two minutes later, the sustainer completed its own push, shutting down and inserting the spacecraft perfectly into orbit. It was so good, in fact, that the heading was 0.0002 degrees from perfect, Cooper’s velocity was right on the money at 28,240 km/h and his trajectory set him up for at least 20 circuits of the globe. Said Wally Schirra as America’s sixth spaceman entered orbit: “Smack-dab in the middle of the plot!’’

Cooper watched for about eight minutes as the sustainer tumbled away and then moved to his checklists, running through temperature readings, contingency recovery areas and began the process of adjustment to weightlessness. So rapid was Faith 7’s passage across the Atlantic – accomplished in a matter of minutes – that he expressed surprise when called by the capcoms in the Canaries and Kano in Nigeria. Sigma 7 had been near-perfect and it seemed that Cooper’s mission would match or excel it; he dozed off for a few minutes during his second orbit, as the spacecraft passed over a lonely stretch of the Pacific, between Hawaii and California. Flight surgeons would note that his heart rate surged momentarily from 60 to 100 beats per minute, suspecting that he was having an exciting, though somewhat brief dream. At one stage, things were running so well that Capcom Al Shepard had nothing to say, except to offer Cooper some quiet time. Not until the following day, 16 May, would serious problems arise and allow him to demonstrate his skills as a pilot.

He was by no means inactive. His tasks including eating – brownies, fruit cake and some bacon – as well as Earth observations, photography, collection of urine samples and monitoring Faith 7’s health. His efficient use of the cabin oxygen even prompted Shepard to tell him to “stop holding your breath and use some oxygen if you like’’. Cooper’s response was that, as the only non-smoker among the Mercury Seven, his lungs were in better shape than his colleagues. Not only was his oxygen expenditure economical, but so too was his fuel usage, prompting mission managers to nickname him, good-naturedly, a “miser”. As Faith 7 embarked on its second orbital pass, Shepard reiterated that the flight was proceeding beautifully and “all of our monitors down here are overjoyed’’. In fact, Cooper’s only complaint during this period was of a thin, oily film on the outside pane of his trapezoidal window.

Beginning with the third orbit, the astronaut set to work on the first of 11 scientific experiments assigned to his mission. One of these was a 15 cm sphere, instrumented with two xenon strobe lights, part of efforts to track a flashing beacon in space. Three hours and 25 minutes after launch, he clicked a squib switch and heard and felt the experiment separate successfully. However, despite repeated efforts, he could not see the flashing beacon in orbital darkness. He would later catch a glimpse of it pulsing at sunset, during his fourth circuit of the globe, telling Capcom Scott Carpenter with jubilation: “I was with the little rascal all night!’’ Cooper reported seeing the beacon flickering during his fifth and sixth orbits, too. Another major experiment, the deployment of a 76 cm Mylar balloon, painted fluorescent orange for visibility, was less than successful. Nine hours into the mission, he set cameras, attitude and spacecraft switches to release the balloon from Faith 7’s nose, but it refused to move. Another attempt also proved fruitless. The intention of the balloon – similar to that flown on Carpenter’s mission – was for it to inflate with nitrogen and extend out on a 30 m nylon tether, after which a strain gauge would measure the differences in ‘pull’ at Faith 7’s apogee of 270 km and perigee of 160 km. Sadly, the cause of the failure was never determined.

Cooper was, however, able to observe not only a flashing beacon in space, but also a xenon ground light of three million candlepower, situated at Bloemfontein in South Africa. He would also make detailed mental notes throughout the flight as he flew over cities, large oil refineries near Perth in Australia, roads, rivers, small villages and even saw smoke from Himalayan houses. Although he pointed out that the finer details could only be seen if lighting and background conditions were right, his sightings were disputed after the mission, but Gemini astronauts would later confirm them. Further theoretical confirmation came from visibility researchers S. Q. Dunt and John H. Taylor of the University of California at San Diego. In a paper published in October 1963, they highlighted Cooper’s observation of a dust cloud, presumably kicked up by a vehicle travelling along a dirt road near El Centro, on the border between Mexico and the United States.

‘‘Calculation shows that the vehicle, plus the dust cloud behind it, is more visible than the road itself,’’ agreed Dunt and Taylor in their report. ‘‘It is possible, moreover, that the appearance of the dust cloud would create the impression of having a lighter tip at its eastern end. There is reason to believe, therefore, that the presence of a moving Border Patrol vehicle on the dirt road near El Centro could have been seen from orbital altitude under the atmospheric and lighting conditions which we believe to have prevailed at the time of Major Cooper’s observation.’’

Several other scientific experiments, in fact, encompassed photography. Before the mission, Cooper spent time with University of Minnesota researchers on an investigation into the mysterious phenomena of the zodiacal light and the nighttime airglow layer, as part of efforts to better understand the origin, continuity, intensity and reflectivity of visible electromagnetic spectra along the basic reference plane of the celestial sphere. His work would also help to answer questions about solar energy conversion in Earth’s upper atmosphere. Many of the zodiacal light photographs turned out to be underexposed and the airglow shots overexposed, but they were nonetheless of usable quality and complemented Carpenter’s images from Aurora 7. Flying over Mexico, Cooper photographed horizon-definition imprints in each quadrant around his local vertical position, part of a Massachusetts Institute of Technology project to design a guidance and navigation system for Apollo. Light­heartedly complaining that all he seemed to be doing was taking pictures, Cooper acquired some excellent imagery, including infrared weather photographs.

Surpassing Wally Schirra’s nine-hour endurance record for the United States, Cooper settled down to a battery of radiation experiments to ascertain that the effects of the Operation Dominic artificial aurora were indeed diminishing. He also undertook the hydraulic tasks of transferring urine samples and condensate water between storage tanks. Physicians had expressed particular interest in urine checks and the Soviets had already highlighted significant accumulations of calcium in their cosmonauts’ urine, suggesting that extended spaceflights could adversely affect human bones. Cooper found the hypodermic-type syringes used to pump liquid manually from bag to bag to be unwieldy and exasperatingly leaky, even telling his on-board tape recorder that “this pumping under zero-G is not good. [Liquid] tends to stand in the pipes and you have to actually forcibly force it through”.

Ten hours into the mission, the Zanzibar capcom officially informed Cooper that his flight parameters – circling the globe every 88 minutes and 45 seconds – were good enough for 17 orbits. Shortly before retiring for a scheduled sleep period on his ninth revolution, Cooper ate a supper of powdered roast beef mush, drank some water and checked Faith 7’s systems to ensure that they could be powered down for the next few hours. His orbital speed was truly phenomenal: after speaking to Capcom John Glenn, based on the Coastal Sentry Quebec tracking ship, near Kyushu, Japan, he swept south-eastwards over the Pacific and gave a full report to the telemetry command vessel Rose Knot Victor, positioned near Pitcairn Island… just ten minutes later!

The Pitcairn communicator told Cooper to get some rest, but that proved almost impossible. Passage over South America, then Africa, northern India and Tibet, during daylight, offered wonderful viewing and photographic opportunities. The Tibetan highlands, with their thin air and visibility seldom obscured by haze, allowed him to make rudimentary estimates of his speed and ground winds from the direction of chimney smoke. In their paper, Dunt and Taylor suggested that ground – reflectance modelling made it not impossible for Cooper to have seen such fine details. Thirteen and a half hours into the flight, Glenn told him that the communicators would leave him alone and Cooper pulled a shade across Faith 7’s window to get some sleep. The astronaut dozed intermittently for around eight hours, anchoring his thumbs at one stage inside his helmet restraint strap to keep his arms from floating freely. He woke briefly when his pressure suit’s temperature climbed too high and over the next several hours he napped, took photographs, taped status reports and cursed to himself as his body-heat exchanger crept either too high or too low.

Faith 7 swept silently over the Muchea tracking site on its 14th orbit and Cooper, by now fully alert, again checked its systems, finding his oxygen supply to be plentiful and around 65 per cent and 95 per cent of hydrogen peroxide fuel, respectively, in his automatic and manual tanks. At around this time, he said a brief prayer to offer thanks for an uneventful mission: “Father, we thank you, especially for letting me fly this flight. Thank you for the privilege of being able to be in this position, to be in this wondrous place, seeing all these many startling, wonderful things that you have created.’’ Slow-scan television images of Cooper, the first ever transmitted by an American astronaut, were broadcast during his 17th orbit and he even sang one revolution later. The prayers and light moments, it seemed, actually marked the beginning of Faith 7’s troubles.

Early on his 19th circuit of Earth, some 30 hours after liftoff, the first of several serious problems reared its head. Cooper was flying over the western Pacific, out of radio communications with the ground, when he dimmed his instrument panel lights… and noticed the small ‘0.05 G’ indicator glow green. This should normally have illuminated only after retrofire, as Faith 7 commenced its manoeuvre out of orbit, and should also have been quickly followed by the autopilot placing the spacecraft into a slow roll. Initial worries that Cooper had inadvertently slipped out of orbit were refuted a few minutes later by the Hawaii capcom, who told him his orbital parameters held steady, suggesting either that the indicator was faulty or that the autopilot’s re-entry circuitry had been triggered out of its normal sequence.

An orbit later, the astronaut was advised to switch to autopilot and Faith 7 began to roll. This had its own implications. For proper flight, Time magazine told its readers a week later, there were other functions for the autopilot to perform prior to retrofire. Since each function was sequentially linked to the next, Mercury Control knew that several earlier steps had not been performed. Cooper would have to control them by hand, a situation not entirely unpalatable, since Scott Carpenter had flown part of his re-entry in a similar manner. Still, at Cape Canaveral, a training mockup of the spacecraft in Hangar S was set up to practice various scenarios and provided an assurance that all would be well. Then, on its 20th orbit, Faith 7 lost all attitude readings and, a revolution later, one of its three inverters, needed to convert battery power to alternating current and operate the autopilot, went dead. Cooper tried to activate a second inverter, but could not. (The third inverter was needed to run cooling equipment inside the cabin throughout re-entry.) His autopilot, in effect, was devoid of all electrical power.

LAST MERCURY OUT

A Mercury capsule after splashdown.

As flight controllers scrambled to relay questions, corrections and instructions and practice procedures on the ground – including the possibility of bringing Cooper back to Earth on battery power alone – the astronaut himself remained calm, though he watched in dismay as carbon dioxide levels rose both inside the cabin and within his pressure suit. The lack of electrical power meant that he could not rely on his gyroscopic system to properly orient Faith 7 for re-entry; it would have to be lined up manually. He could not even rely on the spacecraft’s clock. “Things are beginning to stack up a little,’’ he told Capcom Scott Carpenter in a cool and typically understated manner, but acquiesced that he still had fly-by-wire and manual controls as a backup. “We would have found some way to fire the retros,’’ Mercury engineer John Yardley said later, “if it meant telling him what wires to twist together.’’

Guided by John Glenn, aboard the Coastal Sentry, Cooper ran smoothly through his pre-retrofire checklist, steadying Faith 7 with the hand controller and lining up a horizontal mark on his window with Earth’s horizon; this brought the spacecraft’s nose down to the desired 34-degree angle. Next, he lined up a vertical mark with pre­determined stars to gain the correct yaw angle. Glenn counted him down to retrofire and Cooper hit the button on time, receiving no light signals, because of his electrical system problems, but he confirmed that he could feel the three small engines igniting. Re-entry was uneventful, with Cooper damping out unwanted motions and manually deploying his drogue and main parachutes. The spacecraft broke through mildly overcast skies and splashed into the Pacific, some 130 km south-east of Midway Island, only 6.4 km from the recovery ship Kearsarge. Floundering briefly, Faith 7 quickly righted itself and Cooper requested permission, as an Air Force officer, to be allowed aboard a naval carrier.

Forty minutes later, permission having been granted, the hatch was blown and America’s sixth astronaut set foot on the deck of the Kearsarge. His mission had lasted 34 hours, 19 minutes and 49 seconds – nowhere close to the four days chalked – up by Andrian Nikolayev a year earlier, but a significant leap as NASA prepared for its ambitious series of long-duration Gemini flights. Even more significantly, Cooper had returned to Earth as all the astronauts had wanted: as a pilot in full control. It also offered a jab at the test pilot community, some of whom had ridiculed Project Mercury as little more than ‘a man in a can’ or, even more deridingly, as ‘spam in a can’. Walt Williams, who only days earlier had tried to have Cooper removed from the flight, now warmly shook the astronaut’s hand. ‘‘Gordo,’’ he told him, ‘‘you were the right guy for the mission!’’

The future seemed bright. Ahead, in a year’s time, lay Gemini. . . and then the Moon.