Category Freedom 7

Freedom 7

Duane E. Graveline, M. D., is a former U. S. Air Force flight surgeon, aerospace

medical research scientist, and analyst of Soviet bioastronautics. He was selected as one of six scientist-astronauts by the National Aeronautics and Space Administration (NASA) in 1965. These days, he is a prolific writer on medical issues and science fiction subjects.

In the dark jungles of Cameroon the female chimpanzee hardly appeared to feel the sting of the dart – it appeared no more than the sting of a hornet. But within seconds her vision dimmed, her muscles became strangely unresponsive, and she plummeted to the ground. A native dragged her unconscious body to the center of a large net spread across the jungle floor. Soon her two offspring slowly made their way to her body and the trap was sprung. The two young chimps then began their long trip to Holloman Air Force Base in New Mexico where they joined a group of chimp trainees. The year was 1959. Their training for space was soon to start. One of them, designated No. 65 during the training program, would be called “Ham” after the Holloman Aviation Medical Center upon suc­cessful completion of his space flight.

On 31 January 1961, Ham’s welcoming handshake after his 16 minute 39 second space flight became known to the world. Three months later (but unfortunately three weeks after the Soviets launched Yuri Gagarin), Alan Shepard was to make his historic space flight.

We in America, in seeking some means to erase the shame of being second in manned space flight, would say that Gagarin had no option for manual control, whereas Shepard was allowed some control of his vehicle, thereby giving us some justification for the claim to have been the first to demonstrate normal extremity function during weightlessness. But even here, there is some room for debate. Ham had full use of his extremities in his responses to blinking test lights during the MR-2 mission, demonstrating that use of extremities would be normal during zero gravity. So few doubts remained.

I had selected zero gravity deconditioning as my primary area of research, and I recall with amusement the dire predictions of other scientists who made headlines back then with their warnings of physiological malfunctions that would result from even short-term zero gravity exposure. To me the critical factor was time, and you could go to the literature on bed rest to get the lions’ share of it – muscle weakness, bone demineralization and orthostatic intolerance. I even had a personal introduction to the deconditioning effects at the age of 10 years while sliding out of bed following nine days of bed rest for an appen­dectomy. After reassuring the nurse that I was fine, I would’ve slid to the floor had it not been for her support. Imagine, at age 10 years I had an introduction to the effects of zero gravity, my future research subject. Eighty per cent of astronauts returning from the space station would show a similar response to standing upright on Earth the first time.

But I was not concerned with deconditioning as a result of such short exposures to weightlessness as Ham’s ballistic flight, or even that of Alan Shepard. Zero gravity decon­ditioning as a medical concern would come; but it would come much later.

You need to remember that in the Cold War climate of those days, one could be criti­cized for saying anything good about Soviet accomplishments. One of my senior offi­cers was critical to the point of being caustic about my reports of Soviet progress in bioastronautics. I was assigned the role of intelligence analyst during this period. Calling me anti-American was one of the milder comments I would attract in those days, simply by reporting the truth. Prior to the Gemini 3 mission, by which time we had accrued a total of 34 orbits of manned space flight, the last thing that our team wanted to be told was that the Soviets had already achieved 292 manned orbits, and that their bioinstru­mentation was surprisingly sophisticated. During this entire period we were gleaning what we could from Soviet data. Analyzing that data was my job. I will summarize the mission of Yuri Gagarin next, owing to its obvious implications for what soon followed in the United States.

On 12 April 1961, Yuri Gagarin made the world’s first manned orbital flight. Its total duration from launch to landing was 108 minutes. His bioinstrumentation was the same as that of all the other cosmonauts who followed in the Vostok program: a respiratory moni­tor, two leads of electrocardiograms, blood pressure, precordial vibrocardiogram and gal­vanic skin response (GSR). The orbital plane was inclined at 64 degrees to the equator, and the initial altitudes were selected to guarantee natural orbital decay within the lifetime of the available consumables. The cabin atmosphere was of a composition and pressure equivalent to that at sea level.

The U. S. accessed Soviet biodata in real time, giving our space scientists relevant biodata throughout the mission. Lacking a frame of reference, we had no means of utilizing the precordial vibrocardiogram information or that of the GSR. But we did have electrocardiographic data throughout the flight, and this banished doubts about whether the human body could adjust to the new environment of zero gravity. In the jargon of the space age, Gagarin’s heart rate and rhythm were nominal (expected) all the way. He displayed a normal sinus rhythm throughout (the electrical activity of each heart beat originated from the usual spot near the atrial sinus), with a relative tachycar­dia (faster) in the launch and pre-deorbit phases of the mission. The mission plan was to descend by parachute, so useful biotelemetry terminated at retrofire. We physiolo­gists and doctors needed to hold our breath no longer. Our amazing bodies were able to adapt to zero gravity.

And the flight of Freedom 7 on 5 May proved to be no different in its effect on Alan Shepard. His electrocardiogram was to show normal sinus rhythm all the way with nominal rates. The non-medical reader might wonder about my use of the term “normal sinus rhythm,” and this is because the origin of our heart beat can vary considerably. The usual origin of our pacemaker is the wall of the right atrium. From there the electrical activity spreads across the atria to the nodal tissue at the junction of the atria and the ventricles. The pacemaker of the heart can be normal sinus, atrial, or nodal, or indeed any spot in between. Needless to say, had Gagarin or Shepard’s pacemaker shifted to any spot in the heart other than the sinus, physiologists would have been concerned. It did not, so everyone was happy. On the basis of Gagarin’s data we had no concerns about Shepard’s ability to adapt to zero gravity, and he took his five minutes of weight­lessness in his stride.

Alan Shepard: On 11 November 1923 in the mountains of Derry, New Hampshire was born a man who was to pee in his pants to an audience of spacecraft designers and launch personnel, and later hit golf balls on the Moon. A naval aviator of almost unsurpassed tal­ent and cool daring prior to his selection as a Mercury astronaut, he had more flight hours than anyone else. In a community of the bold and bright, he stood out like a beacon. It seemed to me that on those gravel roads so common to space launch facilities, every bend in the road was a challenge to throw gravel with his Corvette. One time, NASA tracking brought us together at Vandenberg Air Force Base in California. He may have trusted me to read the medical console, but he never trusted me to take the wheel of his prize automo­bile. It was generally a pleasure to be with him except for the telephone calls. It seemed as if the whole world wanted to meet him and shake his hand. Since I was the one who sat with him at the restaurant, I was the one they called. I asked him how to handle them. He said they just want to talk, and I learned what it meant to have been in space – to be an astronaut.

Alan Shepard had the grin of a rascal and when, in 1961, a few months after his flight, I showed him a small photo which just begged to be sketched in charcoal, without hesita­tion he wrote across the bottom of the blank sketch paper, “That’s the cleanest joke I know.” I spent months working on that charcoal sketch.

Sometime in the 1990s, having had that sketch hanging in my home in northern Vermont for a couple of decades with only my guests to see it, I finally decided to drive down to Derry and turn it in. Having spent years absorbing all that was known of Gagarin, I was surprised at the twists and turns involved in trying to find where space memorabilia relat­ing to Alan Shepard might be stored.

Most people on the main street of Derry just looked at me questioningly. Finally, one told me that he knew of some space papers stored in a room over the firehouse. Needless to say, I was astonished. There was no marker, no discernible memories – nothing to tell the world that this was the birthplace of Alan Shepard. Having just completed my ten years with the U. S. Air Force and my special assignment as an analyst of Soviet bioastro­nautics, the cosmonauts and astronauts were like a family to me. There could hardly be a child in the Soviet Union who didn’t worship Yuri Gagarin. His name was everywhere and is still revered. Yet here was his American counterpart in some shelves over the

Freedom 7

Duane (‘Doc’) Graveline with the pre-autographed sketch he drew of his astronaut colleague Alan Shepard. (Photo courtesy of Duane Graveline)

firehouse with no markers visible to the public three decades after his historic flight. The Soviets named their entire space complex after Yuri Gagarin, and to me these New Hampshire folks appeared to have almost forgotten their one-time favorite son. They were waiting to build a suitable structure, I was told. But thirty years? I would like to think that my visit, with my sketch and a few e-mails in hand, played a role in helping them finally to start building a suitable structure.

Now a well-marked sign off Interstate 93 directs traffic to Derry, the home town of Alan Shepard. Regardless of how large is the sign or the museum, they will be insufficient to encompass the memories of the man I remember.

Duane E. Graveline, M. D.,

Merritt Island, Florida, 2013

GOOD TO GO

In the very early hours of Tuesday morning, 31 January, Ham and Minnie were given a final physical examination. At 1:45 a. m., having been fitted with biomedical recording sensors and dressed in disposable diapers and plastic waterproof pants, both animals

GOOD TO GO

Ham seated in his couch with backup Minnie looking on. (Photo: NASA)

waited patiently as an operational test was conducted of the sensors. They were then dressed in their spacesuits and firmly zipped and strapped into their individual contour couches. Psychomotor stimulus plates were then attached to the soles of each animal’s feet and electrically checked for continuity. Their arms were left free in order that the one who flew the mission would be able to undertake the assigned psychomotor tasks aboard the spacecraft.

As preparations continued around them just after 3:00 a. m., Ham and Minnie enjoyed a prescribed breakfast consisting of some cooking oil and flavored gelatin, half a fresh egg, half a cup of baby cereal, and several spoons of condensed milk. All the tests had determined that Ham remained the better behaved and more animated of the two chimpanzees, and his place in space flight history seemed assured.

The next step in the proceedings was to install and bolt down the lids covering the chimpanzees, following which inlet and outlet air hoses were fitted and the air flow initiated. The containers were then checked for any air leakage, but all proved to be in order. At 5:04 a. m., after all the pre-flight tests had been satisfactorily completed, the handlers were instructed to drive the transfer van over to the launch pad, arriving 25 minutes later. Once there, Ham’s container was switched from the transfer van’s air supply to a portable oxygen supply, then carried to the gantry and up the elevator to the spacecraft level. After being gently inserted and secured into the capsule it was connected to the onboard environmental control system and electrical system. The physiological monitoring of Ham was then switched over to the blockhouse. Hatch closure was completed at 7:10, with an anticipated liftoff time of 9:30 a. m.

GOOD TO GO

Ham’s container is carefully inserted into the Mercury spacecraft. (Photo: NASA)

GOOD TO GO

The interior of the spacecraft prior to hatch closure. (Photo: NASA)

Before the gantry was removed from the Redstone rocket at 8:05 a. m., the transfer van, with the fully prepared backup chimp still aboard, was moved a safe distance away, adjacent to the blockhouse. Still enclosed in her container, Minnie would be monitored up until 30 minutes prior to liftoff, at which time the container with its portable air supply and all her attending personnel would exit the van and move into the blockhouse.

At 9:08 a. m., the count was recycled and the gantry rolled back along its tracks into position. The spacecraft hatch was then opened to cool an overheated electronic inverter which was causing the temperature in Ham’s container to rise. Technicians worked frantically to clear up a number of minor difficulties as concerns grew over a band of stormy weather closing in on the Cape. Repairs were soon completed and the countdown resumed at 10:15 a. m. But as the pad crew were evacuating the gantry its elevator jammed and had to be hurriedly fixed.

Liftoff finally occurred at 11:54:51 a. m. By then, Ham had spent nearly five hours strapped on his back inside the spacecraft. Two Mercury astronauts observed the ascent from the air, with Deke Slayton and Wally Schirra circling the launch area in F-106 jets.

GOOD TO GO

GOOD TO GO

Liftoff of the MR-2 mission. (Photo: NASA)

Countdown to launch

At 12:30 a. m. on 2 May 1961 the countdown for MR-3 began, but the prospects of a launch were never very good. In spite of being late spring, violent thunderstorms had rumbled over the Cape that evening; it was raining heavily and occasional lightning flashes danced up and down the Florida coastline. Lining the beaches were people determined to see the launch, shivering under raincoats and ponchos, praying for the filthy weather to clear. The loading of liquid oxygen into the Redstone went ahead, but as the minutes ticked by the odds against flying steadily increased.

THUNDER OVER THE CAPE

Following the unexpected orbital mission of Yuri Gagarin and the nation’s growing eagerness for an American to be launched into space, NASA had decided that as they were a civilian space agency and Mercury was an open program – unlike that of the Soviet Union – they would permit each flight to be televised live. On being assured about the abort system’s capabilities, the thoroughness of the training, the readiness of the astronaut, and the integrity of the hardware involved, President Kennedy had agreed that the world should see the launch live. Nevertheless, he and his advisors remained concerned about a catastrophe in which the astronaut was lost as the world looked on. The television coverage was scheduled to commence at T-2 minutes and, around the nation, families settled in front of their television sets in a state of nervous excitement.

As arranged, flight surgeon Bill Douglas stole into crew quarters at 1:00 a. m. and gently roused the sleeping astronaut along with his backup, John Glenn. In response to Shepard’s mumbled query, Douglas informed him the weather was quite bad at the moment, but a decision had been made to begin fueling the rocket. They were to proceed with the medical examination and suiting-up in the hope the weather would clear. After a shower and shave, Shepard donned his dressing gown and then joined Grissom and Glenn for an early morning high-protein breakfast of orange juice, filet mignon wrapped in bacon, and scrambled eggs, although the others opted instead for poached eggs.

C. Burgess, Freedom 7: The Historic Flight of Alan B. Shepard, Jr., Springer Praxis Books, DOI 10.1007/978-3-319-01156-1_4, © Springer International Publishing Switzerland 2014

Then, ready to face whatever lay in store for him that morning, it was time to undergo the pre-flight physical and psychiatric examinations.

Medical tests established that Shepard was still in the same perfect health he had previously enjoyed; his eyesight was normal, there were no respiratory ailments, his ear canals were clear, his thyroid was smooth and without any tenderness, his heart rhythm was regular and his blood pressure gave no discernible hint of the challenges he might soon face.

Then a lengthy interview with the NASA psychiatrist confirmed the astronaut’s mental preparedness. The psychiatrist’s report stated, in part, that Shepard “appeared relaxed and cheerful. He was alert and had abundant energy and enthusiasm. [His manner] was appropriate. He discussed potential hazards of the flight realistically and expressed slight apprehension concerning them. However, he dealt with such feelings by repetitive consideration of how each possible eventuality could be managed. Thinking was almost totally directed to the flight. No disturbances in thought or intel­lectual functions were observed.” [1]

The next phase of the pre-launch operations for Shepard entailed having an array of medical sensors attached to his body. Clad only in the bottom half of his specially padded and ventilated long-johns, he stood patiently while the doctors positioned the

Countdown to launch

Conditions at the Cape on 2 May 1961 were never conducive for a launch. (Photo: NASA)

six sensors which would monitor and transmit his physiological state to the Mission Control Center. In this procedure, doctors glued a non-conducting cup containing a non-irritating paste to his skin, and used this paste as the lead-off from the skin. A shielded wire attached to a stainless steel mesh was buried within the paste, but not touching the skin. Four of these sensors went in predetermined spots under the right armpit, on the upper and lower chest, and on the lower left side of his body. Another was inserted into Shepard’s rectum to record his anal temperature, and the last went below the nostrils to monitor his respiration. The six sensor wires were then bunched together in the common terminal that would later be plugged into a socket located adjacent to his right knee in the spacecraft.

Countdown to launch

Suit technician Joe Schmitt adjusts the sensor wire socket incorporated into the leg of Shepard’s suit. (Photo: NASA)

Next, Shepard made his way into the dressing room where NASA suit technician Joe Schmitt was waiting to assist in the awkward procedure of donning his $10,000 pressure suit and helmet. The first item of clothing was long cotton underwear with ribbed sections on the arms, legs, and back to facilitate the circulation of air. Next came the custom-made, 20-pound silvery space suit itself, which was comprised of an inner layer of rubber and an outer layer of aluminized nylon. The suit was sealed by means of airtight zippers, laces, and straps, and encircling the neck area was a soft rubber cone that would make the suit waterproof when the helmet had been removed for egress. Although the suit was inflatable, this safeguarding measure would only be taken if there was a loss of air pressure inside the capsule, and it would allow the astronaut 90 valuable minutes of protection. Once inflated, the suit became almost rigid, although the gloves were designed with curved fingers to allow the astronaut to grip the controls, albeit with the exception of a single finger on the left glove, which remained straight for the purpose of pushing buttons.

Shepard took a seat, and after both legs of the suit had been inserted one at a time, the bundled sensor wires were carefully threaded through a hole in the thigh area. He then stood up and slipped his arms one at a time into the sleeves of the suit, which was zippered across his chest and middle. After pulling boots over his white socks and securing them, Shepard pulled on his gloves and zipped them to each sleeve. He also slipped on a pair of plastic overshoes which he would remove prior to insertion into the spacecraft. These were to prevent dirt picked up on the way to the hatch of Freedom 7 from entering the capsule. Finally, Joe Schmitt lowered Shepard’s helmet over his head, securing it in place with a ring lock.

An air tightness test was then conducted on the space suit. To accomplish this, Shepard reclined in a contour couch and closed his helmet’s faceplate. Schmitt then inflated the suit to 5 psi and checked it for leaks. Finding none, the suit was deflated again and a portable air-conditioning unit was connected to the suit. Shepard would carry this in his hand from that moment until he was ready to plug himself into the spacecraft’s air-conditioning system.

The preparations complete, Shepard then sat in Hangar S awaiting the go/no-go decision, his suit cooled by the air-conditioning unit.

“The signs were not propitious,” he later explained. “And at 3:30 a. m., with the liquid oxygen already loaded aboard the booster, the technicians took a look at the lightning and declared a ‘hold.’ They started working again at 3:50, with the count at T minus 290 minutes.” [2]

A HERO RETURNS

At last, and for the first time in history, a spacecraft had completely returned to Earth from space with a human being on board. Even Yuri Gagarin and his Soviet space masters could not match this technological feat – although several years would pass before the truth was finally revealed – as the first cosmonaut had been ejected from his descending Vostok capsule to parachute to the ground according to highly secret plans. A workable and reliable retrorocket system had yet to be developed by Soviet engineers that would allow a controlled, soft landing for returning cosmonauts. As a result, all six Vostok pilots were required to eject from their vehicles. One reason for keeping this secret was that the Federation Aeronautique Internationale, which rules on aviation records, requires that a pilot be in his aircraft at the time of landing.

Arthur Cohen, who headed the IBM team that created and ran the computers that modeled and then tracked the flight, would report, “Everything went smoothly. All the plotting was perfect. Everything on the flight was nominal. There was really no prob­lem whatsoever. It landed at exactly the right place.” [10]

A HERO RETURNS

Freedom 7 photographed moments before it splashed down in the Atlantic. (Photo courtesy of Ed Killian)

A HERO RETURNS

The capsule hits the water, concluding America’s first manned space mission. (Photo courtesy of Ed Killian)

For his part, Shepard was exuberant over his safe return. “Splashdown!” he later wrote of that moment. “Into the water we went with a good pop! Abrupt, but not bad. No worse than the kick in the butt when I was catapulted off a carrier deck. This was home plate!” [11]

Prior to impacting the water, he had removed his knee straps. He now began his post-splashdown procedures. The first thing was to release his face plate seal bottle. This was a small pressure bottle joined by a thin hose to a connector next to his left jaw. It was used to pressurize a pneumatic seal when the face plate was closed. He then removed the exhaust hose from the helmet.

Once Freedom 7 had splashed down, it quickly swayed over on its side, about 60 degrees from vertical, covering the right porthole with seawater and causing Shepard to lean over onto his right side in the couch. Seeing that the porthole’s exterior was completely under water, he deduced that everything was going to plan. Through the other porthole he could also make out the bright green fluorescing dye automatically spreading out through the water to mark his position for recovery aircraft.

“As I waited for the shifted balance to right my great spacecraft – but lousy boat – I kept thinking about the chimp’s near-disappearance beneath the ocean. I checked and checked the cabin for leaks, ready to punch out. But I stayed dry.”

Shepard then activated the ‘rescue aids’ switch to jettison the reserve parachute, thereby reducing some of the top-heavy weight of the spacecraft and allowing it to stabilize itself upright in the water. “Shifting the center of gravity had worked, and the capsule came back upright.” [12] Flipping the switch also released the HF antenna, although he did leave his transmit switch in the UHF position. To his relief, all of the recovery aids seemed to be working well, although he was not to know that the HF antenna had failed to extend skywards. However, with the recovery ships and aircraft in the immediate vicinity its function as a location device was not needed.

“I’d broken my helmet at the neck ring seal at this point, and I did no transmitting here,” he later observed in his initial flight report aboard the recovery carrier. “I left the switch on R/T [receive/transmit] because I didn’t want any discharge from the UHF antenna [13].

“I could not see any water seeping into the capsule, but I could hear all kinds of gurgling sounds around me, so I wasn’t sure whether we were leaking. I remember reassuring myself that I had practiced getting out of the capsule under water and that I could do it now if I had to. But I didn’t have to try. Slowly, but steadily, the capsule began to right itself.” [14]

It was time to assure everyone he had survived the splashdown by making contact with the communications relay airplane (codename Cardfile Two Three) which was circling overhead.

“Cardfile Two Three” he called. “This is Freedom 7. Would you please relay: All is okay.”

“This is Two Three” came the reply. “Roger that.”

“This is Seven. Dye marker is out. Everything is okay. Ready for recovery.”

“Seven, this is Two Three. Rescue One will be at your location momentarily.”

Shepard continued his preparations to leave Freedom 7 as the spacecraft became almost vertical in the water. He began to document the instruments prior to shutting down the power. “I had just started to make a final reading on all of the instruments when the helicopter pilot called me. I had already told him that I was in good shape, but he seemed in a hurry to get me out. I heard the shepherd’s hook catch hold of the top of the capsule, and then the pilot called again.” [15]

THE ASTRONAUT

Inevitably, there are times in a nation’s history when its hopes, fears and confidence in its own destiny appear to hinge on the fate of a single person. One such moment occurred on the Sun-drenched Florida spring morning of 5 May 1961, when a

THE ASTRONAUT

Freedom 7 being delivered to the Science Museum in London, starting a year-long visit to the United Kingdom. (Photo: Science Museum/Science and Society Picture Library)

 

THE ASTRONAUT

The spacecraft attracts curious onlookers outside the museum doors. (Photo: Science Museum/Science and Society Picture Library)

37-year-old test pilot squeezed into the tiny Mercury capsule named Freedom 7, ready to ride a rocket into the beckoning skies. Navy Cdr. Alan Shepard was trained to the hilt and fully ready to become the first American into space.

Since his selection as one of the seven Mercury astronauts in 1959, Shepard had relentlessly pursued the honor of being first. Despite this, a hollow feeling pervaded his excitement. Whatever accolades he might receive later that day, they would never make up for what he deemed to be an even greater glory. Renowned for his cocksure determination and his wicked sense of humor, he had pressed himself to the limit to be the first person to fly into space, but to his chagrin he fell just 23 days short of this prized niche in history because it went to a beaming Soviet cosmonaut named Yuri Gagarin.

Despite his Mercury flight, Alan Shepard felt somewhat relegated in history, not only as the second person to fly into space, but because his had been an all-too-brief 15-minute ballistic flight. The pioneering Mercury astronaut was demonstratively far from satis­fied with the acclaim heaped on him as the first American to fly into space. He wanted something more: he wanted to fly into space again, and if determination counted for anything, then one day Alan Bartlett Shepard, Jr. would proudly stand on the Moon.

THE ASTRONAUT

Freedom 7 on display in the museum. (Photo: Science Museum/Science and Society Picture Library)