Science Payloads for Apollo:. The Struggle Begins
In July 1960, before President Kennedy’s dramatic declaration that we would send men to the Moon and return them safely and before Alan Shepard’s successful Mercury launch, NASA announced that it was considering manned circumlunar flights. This unnamed program proceeded slowly, responding in some degree to what the Soviet Union was accomplishing. Then, pushed by growing concerns about Soviet success in space and relying on NASA managers’ assurances that a manned lunar landing was achievable, the president made his historic national commitment, soon endorsed by Congress.
Little by little, with many twists and turns along the way, the program matured. It was given the name Apollo, and its ‘‘mission architecture” was agreed to. Mission architecture comprises those aspects of a typical mission (size of the rocket stages, spacecraft design, flight trajectories, timelines, etc.) required to accomplish its objectives. This “architecture” would eventually control or shape the scientific experiments the Apollo astronauts would conduct. Here I discuss these aspects of Apollo and briefly describe the supporting programs, both manned and unmanned, that Apollo science depended on. Then later in this chapter and in the following ones I tell about the struggle to add science payloads to the missions. To maintain the continuity of particular topics, I sometimes depart from a strict chronological sequence.
After the lunar orbit rendezvous (LOR) approach described in the introduction was adopted, work began to build the Saturn V launch vehicle and two spacecraft: the three-man command and service module (CSM) and the lunar module (LM; earlier called the LEM, lunar excursion module). Lunar missions utilizing LOR required the Saturn V to first place the spacecraft in Earth orbit and then send them on to lunar orbit. After doing their jobs, the initial two stages of the Saturn V, the S-IC and S-II stages, would be jettisoned, reenter the Earth’s atmosphere, and burn up. The upper stage, the SIVB, with the CSM and LM spacecraft attached, would then be sent to the Moon or, in NASAese, put into a translunar injection. Once safely on the way and coasting toward the Moon, the CSM would separate from the SIVB, turn, and pluck the LM from the SIVB, where it had been stored just behind the CSM inside a protective fairing. The SIVB stage, with no further function and essentially depleted of fuel, would go its separate way, deliberately steered away from the Moon in the first flights to avoid any interference with the mission. Together the CSM and LM would continue on to the Moon. Upon arrival the spacecraft would use the CSM engines to brake into a low lunar orbit.
Once in lunar orbit and after all systems had been checked, two astronauts would enter the LM, separate from the CSM, and descend to the lunar surface, leaving the third astronaut in lunar orbit in the CSM to await their return. The LM would be a sophisticated two-stage spacecraft comprising the descent stage that fueled the landing maneuvers and the ascent stage in which the astronauts would travel to the Moon’s surface and return to rendezvous with the CSM in lunar orbit. If the landing had to be aborted, the LM descent and ascent stages could separate while in flight and allow the astronauts to rendezvous with the CSM. The LM also included the small cabin in which they would live during their stay on the lunar surface. The two stages would carry the equipment for use on the lunar surface. After leaving the Moon and meeting the CSM in lunar orbit, the ascent stage would be jettisoned, and when its orbit decayed it would crash on the Moon.
Similarly, the CSM was a multifunction spacecraft. As the name indicated, it had a dual purpose, serving as a command ship and a service module. The command module portion was the control center of the spacecraft and the astronauts’ home on both the voyage to the Moon and the return to Earth. The command module pilot would monitor the other astronauts’ progress on the lunar surface and, on later missions, conduct sophisticated experiments. After the astronauts left the Moon’s surface in the LM ascent stage and achieved a lunar orbit, it was the CSM pilot’s job to rendezvous and dock with the LM ascent stage so the astronauts could transfer to the CSM along with any material they brought back from the lunar surface. The rear end of the CSM, the service module, was primarily a rocket and logistics carrier. It supplied power and life – support expendables for the command module and propulsion to permit a wide range of maneuvers. Most important, it provided the propulsion to take the CSM out of lunar orbit and bring the astronauts home. Once Earth reentry was ensured, the service module would be jettisoned. The command module would reenter and parachute to an ocean landing.
With this abbreviated description of the Apollo hardware as background, I can begin to tell how we struggled to place science payloads on board Apollo. Because the Saturn У had to lift some six million pounds of equipment and fuel from the Earth’s surface to Earth orbit and the succeeding stages had to perform efficiently in order to send as large a payload as possible to the Moon (much of it in the form of rocket fuel), the weight of the total Saturn У and all the many components rapidly became an overriding design concern. On my first visit to Grumman in 1965, at Bethpage on Long Island, to see an early version of the LEM, weight concerns were high on the agenda. After a brief walk around this peculiar contraption with long spindly legs and tiny triangular windows, we attended a status review. The LEM was in trouble; among the issues covered was how to reduce its weight. If this could not be done, the problem would affect all the Apollo systems and subsystems. The Grumman engineers took this so seriously that they were counting rivets as they modified the design to achieve their weight targets. And here we were, trying to convince management to add hundreds of pounds of science payload to the LEM; without question it would be difficult.
Based on the scientific guidelines mentioned in chapter 1 and on the Sonett Report, in November 1963 I made a quick parametric study to determine what science might be done at any point in a typical Apollo mission, from translunar injection to the final return to Earth.1 This brief analysis focused primarily on the ‘‘what-ifs’’: for example, what if the first astronauts achieved lunar orbit but could not descend to the surface; what if they descended to the surface but couldn’t land; and what if they landed but couldn’t exit the LEM? My purpose was to identify instruments and equipment that would be needed to make the most of each opportunity and set priorities for what should be included in the (probably small) science payload. As one might guess from the list of what-ifs, a camera, or several cameras, would have high priority. The Martin Marietta contract discussed in chapter 3 was a direct outgrowth of this analysis, concentrating on what to do if the astronauts made a successful landing but were not permitted to leave the LEM.
Two months later, in February 1964, after our office further reviewed the Sonett Report and the Apollo science program guidelines, Will Foster sent the Space Science Steering Committee of the Office of Space Science and Applications a memorandum providing a preliminary listing of the scientific investigations that should be considered for Apollo.2 This memo, which I discuss in detail in the next chapters, defined the areas of interest for each scientific discipline and listed the scientists who would be asked to help plan individual experiments. With this additional guidance, Ed Davin, Paul Lowman, and I did a more careful analysis of the what-ifs and wrote a short report in early June outlining a program of Apollo scientific investigations covering the first seven Apollo landings, the approved program at that date.3 We went into some detail for the first landing mission, assuming it would allow only four hours of extravehicular activity (EVA) on the lunar surface. We also described a ‘‘limited mission profile’’ that permitted only one hour of EVA. Both the one-hour and four-hour EVA plans took into account our limited knowledge of the constraints that might be in effect based on prototype Apollo space suits. A primary reason for our report was to have a handout reflecting Manned Space Science’s position available for distribution at the Manned Spacecraft Center Lunar Exploration Symposium that was scheduled for June 15 and 16, 1964.
At the symposium we and many of the scientists named in Foster’s memo were exposed to MSC’s view of what could be done on the lunar surface, allowing for probable operational constraints. Lively debates took place, with the science side attempting to understand and relax these constraints so that more scientific work could be accomplished. The science planning team members described the experiments they hoped to have the astronauts deploy and the types of studies and observations that would be needed. Everyone left with a much better understanding of what lay ahead before we could all agree on the best methods of exploration during the missions.
The symposium led us to rethink several of the what-ifs. In particular, what if the astronauts could not leave the LEM to deploy the experiments they were carrying? Members of the seismology panel thought the seismometer could be designed to be turned on from Earth while still in the descent stage equipment bay, thus allowing some readings of the Moon’s seismicity, especially if any large natural events occurred near the landing site. MSC had pointed out that the landings would take place at low sun angles and there was a fifty-fifty chance that after touchdown the LEM windows would be facing the Sun, making photography from inside the LEM difficult. If the astronauts could not leave the LEM, the landing site would be poorly documented. We again suggested adapting the LEM telescope or adding a periscope to permit photographs, but we received no encouragement.
Another interesting discussion dealt with speeding up one of the housekeeping tasks—recharging the space suits’ life-support batteries. In the preliminary timeline that was presented, six hours were allocated for the recharge while the astronauts were back in the LEM, thus restricting the total EVA time. The Crew Systems Division pointed out that simply swapping out new batteries could reduce this time to fifteen minutes, and the spent batteries could be recharged during any subsequent downtime. Our office proposed reserving some of the science payload for additional batteries (about five pounds each). We updated our June report to reflect our new knowledge.4 Fortunately, payload weight allowances grew and we were spared a painful trade-off, giving up science payload for additional batteries to get more EVA time.
During the symposium two trends were becoming evident. We were more and more at odds with the MSC Engineering and Development Directorate on how to incorporate science on the missions and even on what experiments should be carried. Yet we were developing a close relationship with members of the Crew Systems Division, which had day-to-day contact with the astronauts in developing operational protocols covering not only future scientific work but all the astronauts’ other activities. Like our good working relationships with other MSC offices, this one would prove invaluable in the years ahead, since they would act as intermediaries with MSC management.
Three other programs—Ranger, Surveyor, and Lunar Orbiter—were also under way at this time, designed to support the manned lunar landings. These were unmanned programs managed by OSSA at NASA headquarters and implemented by NASA field centers: the Jet Propulsion Laboratory (JPL) for Ranger and Surveyor and Langley Research Center for Lunar Orbiter. Both the Ranger and Surveyor projects were initiated in the late 1950s, not to support Apollo but as purely unmanned scientific programs. However, these two projects soon succumbed to the needs of the larger Apollo program. Eventually both were reduced from their original scope, reflecting both funding and priority concerns, but their primary functions endured. Ranger would provide early detailed pictures of the lunar surface, so necessary in planning for the manned landings, and Surveyor would demonstrate the ability to soft land a spacecraft and would also send back some close-up pictures of the lunar surface and engineering data on its characteristics. Lunar Orbiter had the specific objective of taking detailed photos of potential Apollo landing sites.
The programs would be increasingly complex, testing our ability to operate spacecraft at lunar distances, which could not be done in the late 1950s when Ranger and Surveyor were conceived. Among other considerations, a network of communication stations would have to be built around the world to permit round-the-clock tracking and control of the spacecraft. The three projects represented important technological advances, but they would be far less difficult to develop and operate than the Apollo missions. By 1963 the Soviets had already sent six partially successful Lunik spacecraft to the Moon; with these and their manned Earth orbital flights, they were considered far ahead of us in developing and operating such complicated missions.
Leading up to the Apollo flights, the Mercury and Gemini projects made NASA confident that it had conquered the hazards of manned space flight. Faith 7, piloted by Gordon Cooper, the last spacecraft in the Mercury program, had already splashed down in the Pacific by the time I joined NASA. The six manned Mercury flights accomplished all the goals assigned to the project and more. NASA had graduated to the next big step—Gemini—with new confidence in its ability to safely launch men and equipment into space and recover them at sea even if the splashdown occurred far from the planned recovery point, as on Scott Carpenter’s Aurora 7 flight. Apollo would also be designed around an ocean recovery, the final act in each mission. The Soviets’ manned program made all its recoveries on land, usually somewhere in one of the eastern republics. Ocean recovery was viewed as less risky in case of reentry problems, and with our large naval forces deployed around the world, ocean recovery of any Apollo crew was judged easier.
When I joined NASA in late 1963, all the Gemini flights still lay ahead. They were designed to provide the training for the more complex space operations needed for the Apollo missions. The Gemini spacecraft carried two astronauts in cramped quarters. They would perform maneuvers never before attempted in space, such as a rendezvous with another spacecraft and the movements outside the Gemini capsule that NASA called extravehicular activity and the press dubbed space walks. Considering that men had been operating in space only four short years before the first manned Gemini flight, these missions would be truly groundbreaking. The Soviets were still ahead in number of missions and man-hours in orbit, but their spacecraft were not capable of maneuvering like the Gemini spacecraft, and their EVAs had been short, tethered stunts. On the Gemini EVAs the astronauts would perform specific tasks like those that might be needed on an Apollo mission.
Like the Mercury program, Gemini accomplished all its planned objectives. Gemini 8 was especially memorable for me. It was launched on March 16, 1966, its crew consisting of Neil Armstrong and David Scott. The launch coincided with one of the aerospace industry’s most important social events, the Goddard Memorial Dinner in Washington, D. C. In 1966 this dinner attracted aerospace luminaries from both industry and government. The Goddard trophy, named after Robert Goddard, the father of United States rocketry, was awarded to an individual or group in industry or government chosen for special contributions in advancing the space program during the past year. The award on this night went to President Lyndon Johnson, with Vice President Hubert Humphrey accepting for the president.
In 1966 the Goddard dinner was a rather intimate gathering of some three to four hundred guests. I say intimate because today the dinner attracts more than two thousand, with the men in black tie or dress uniforms and the ladies in formal gowns. The 1966 dinner, as I recall, had few women, and all the civilians wore business suits. Government attendees were usually the guests of some company, and the invitations were—and still are—carefully orchestrated to avoid any perception of conflict of interest, although it was clear who your host was. Tickets cost about $35 in those days; today they are $175, not an insignificant sum then or now. I was the guest of Bendix, one of the contractors working on the studies I was sponsoring at Marshall Space Flight Center.
As the guests at the head table were being acknowledged, including the vice president, there was an interruption in the speeches. Someone walked up and whispered in George Mueller’s ear. He nodded and said a few words to several other NASA managers seated near him, then they all got up and filed out. The room buzzed, but the program continued with the vice president’s speech accepting the prestigious award on behalf of the president. It was several hours before any of us knew why Mueller and the others left. Gemini 8 had experienced a serious problem.
In the first scheduled space docking between a Gemini capsule and an earlier-launched Agena target vehicle, the two spacecraft, after being joined for about thirty minutes, began to spin rapidly, forcing Armstrong to back away.
One of the capsule’s thrusters had stuck open, causing the rapid rotation; only through Armstrong’s extraordinary skill were they able to bring the spacecraft under control. This complication forced an early termination of the mission, and not all its objectives were achieved. But Armstrong’s and Scott’s cool behavior in this dangerous incident (some estimated they only had a few more seconds to correct the problem before centrifugal force would have caused them to black out) undoubtedly elevated their position in the astronaut corps and put them on Deke Slayton’s short list of prime candidates for the later Moon landings.
In early 1964, with the ink barely dry on his agreement to coordinate science activities between OSSA and the Office of Manned Space Flight through Will Foster’s office, Mueller took the next step toward controlling what science would be carried out on the Apollo flights. Many types of experiments besides those falling under OSSA’s purview were being suggested by other offices. Some dealt with the life sciences, primarily advocated by MSC’s Medical Directorate, and a series of engineering experiments were being proposed by several NASA offices as well as the Department of Defense. To establish uniform requirements for the experiments and set priorities for inclusion on the flights, Mueller established the Manned Space Flight Experiments Board, with membership from all the competing offices but chaired by OMSF.
Attention to science concerns was advancing on another front at MSC. In 1963 Max Faget had established a new division in his Engineering and Development Directorate, called Space Environment, that would interact with the scientific community. At the beginning of 1964 this new office, led at first by Faget, began to address two important questions: How would the returned samples be handled, and who would be responsible for receiving, cataloging, archiving, and distributing samples to those approved to do the analyses? MSC, led by Elbert A. King, a recently hired geologist, began lobbying to build a small laboratory to carry out these tasks. At the end of 1964 Homer Newell asked the National Academy of Sciences’ Space Science Board to determine if there was a requirement for a special facility to handle the samples. The board, chaired by Harry Hess, forwarded its report in February 1965.5 It endorsed the need for a rather modest laboratory that, among its other functions, would quarantine the lunar samples for some unspecified time to ensure that they did not contain dangerous pathogens. With the release of the report, a major difference of opinion surfaced between headquarters and MSC on where the lab should be.
The report pointed out some of the pros and cons of establishing such a facility at MSC but noted that the committee did not believe it should be there. Those of us in Foster’s office who had an interest in the outcome of this debate were dead set against the lab’s being built at MSC. Based on our earlier attempts to work with some of the MSC science staff and with particular individuals in the Space Environment Division, we were suspicious that their wanting to build a special sample facility at MSC was a devious attempt to control all the returned samples and thus justify having MSC staff carry out most of the analyses. We advocated considering an existing laboratory such as Fort Dietrick in nearby Maryland, which already had experience in handling dangerous biological material, as the repository for the samples.
Congress also became involved, since a new facility would be costly. In spite of all these objections, the Lunar Receiving Laboratory was built at MSC, and King was later named the first curator. Although some of our fears were realized in the ensuing years, the LRL was very successful. A major reason our office accepted MSC as the LRL location was the appointment of Bill Hess, whom we all trusted to make the right decisions on how it would operate. Hess oversaw staffing and the development of procedures that would ensure the integrity of sample analysis and control sample distribution.
The many functions the LRL would perform required a unique design. Because of its extraordinary mission and the controversy over its siting, during the next several years I watched the construction with interest on my many visits to MSC. One of the concerns the National Academy of Sciences committee had about locating the lab at MSC was the construction of a radiationcounting facility. It had to be built far below the surface (fifty feet) to shield selected samples from background radiation. Gamma radioactivity had to be measured as soon as possible after the samples arrived, before the shorter-lived nuclides decayed. These sensitive measurements (never before attempted on such fresh extraterrestrial material as the Apollo samples would represent) would furnish information on the origin and history of the samples and of the Moon itself. During counting and storage, the samples would have to be held in a room that was not only below ground but heavily encased in steel plating and other types of shielding. It was feared that underground construction at MSC, where the water table was high, would greatly increase the cost of the lab. I attended the unveiling of the low-level counting facility and heard about how difficult it had been to find steel for the outer shell that would meet the stringent low-radiation standards. Steel cast after the United States and Soviet nuclear tests would be contaminated by the fallout from these tests so that background radiation would be too high even with a thick layer of dunite between the outer shell and the counting laboratory itself. The contractor finally found some scrap steel from the hull of a ship built before World War II.
In addition to the low-level counting facility, the LRL had several other unique features, including crew quarantine living quarters. After splashdown and before leaving the CSM, the astronauts would don special isolation garments so as not to come into direct contact with the helicopter recovery team that picked them up and flew them to the carrier. Once on board the carrier the astronauts would be rushed to the mobile quarantine facility, which looked suspiciously like an Airstream trailer without wheels (it was built by Airstream to NASA specifications). You may have seen pictures of the Apollo 11 astronauts at a window in the MQF, waving to President Nixon on board the carrier USS Hornet. The MQF was designed to be airlifted back to Ellington Air Force Base, then it would be trucked to MSC and the LRL. Once at the LRL, the astronauts and the physicians who had volunteered to accompany them would leave the MQF and pass through an airlock into their quarantine quarters, called the crew reception area, where they would stay for the rest of their twenty-one-day quarantine period. The CM would also be flown back to the LRL, since its interior would be considered contaminated from lunar dust adhering to the astronauts’ space suits.
The LRL interior was maintained at negative atmospheric pressure to prevent the escape of any dangerous organisms. When you visited, either to attend astronaut debriefings or to observe sample preparation, you passed through an airlock, popped your ears, and went on about your business. Inside the LRL were a number of gas-tight glove cabinets and vacuum chambers where technicians would open the sample bags, record their contents, and prepare the samples for shipment to the sample analysis principal investigators (PIs) at the end of the quarantine period. The LRL functioned with few problems over the next five years, and it exists today as a curatorial facility, although most of the samples from all the missions have been transferred to another location. Only small amounts of sample material were distributed and analyzed in great detail. NASA still entertains proposals to examine samples from those qualified to conduct some unique study.
Backtracking slightly, in January 1965, over the signatures of George Mueller and Apollo program director Sam Phillips, OMSF issued the Apollo Program Development Plan.6 Originally a classified document (I assume to keep the Soviets from knowing our schedules and other details), the plan was designed to ‘‘clearly identify the program requirements, responsibilities, tasks, resources, and time phasing of the major actions required to accomplish the Apollo Program.’’ Consisting of 220 pages of detailed guidance on all aspects of the program, it stated in the introduction that the manned lunar flights would conduct scientific experiments in cislunar space and that the manned lunar landings would be made ‘‘to explore the moon’s surface and to conduct scientific experiments.” All the various parts of the program were identified from the development of the Saturn У and its several components to the launch facilities and ground tracking stations. The plan also identified which NASA center or other government agency would develop each of the pieces. Despite Mueller’s and Newell’s recent coordination in establishing the Manned Space Science office, the plan is remarkably silent on how scientific undertakings would be managed or who would ensure that experiments would be ready when needed. Reading between the lines, you could assume that MSC had this assignment under the heading of Flight Mission Operations, but scientific operations were not specifically called out. The Manned Space Science office receives one mention, as a title only, in a facilities analysis matrix. Why it was placed in that section of the plan is a mystery—probably an afterthought by the authors. In early 1965 Apollo’s objective clearly was to land men on the Moon and return them safely, the few words in this new plan dealing with science notwithstanding.
In 1965 Mueller also established the Apollo Site Selection Board (ASSB). In the beginning the board was chaired by Sam Phillips and included members from headquarters and center offices. Its initial function was to set priorities for Lunar Orbiter photographic coverage to ensure that the pictures needed for selecting Apollo landing sites were adequately identified and scheduled. After Lunar Orbiter successfully completed its objectives, the ASSB turned its attention to the more difficult task of choosing the first and subsequent Apollo landing sites.
In most respects the first landing sites were easier to select than the later sites. The ‘‘Apollo zone of interest’’ was quickly established based on the predicted performance of the Saturn У and the Apollo spacecraft. The ‘‘zone,’’ bounded by the lunar coordinates five degrees north and south latitude and forty-five degrees east and west longitude, covered—as far as we could tell from telescopic photography—mostly smooth lunar mare areas, another requirement for the first landing. Conditions for touchdown required that the LM come to rest at an angle no greater than twelve degrees from the horizontal, to avoid problems when the ascent stage lifted off. Since one of the LM’s landing struts might end up in a depression or the lunar surface might have a low bearing strength, the ASSB was hoping to find areas rivaling a billiard table.
After the initial landing conditions were met, it was anyone’s guess where the next landings would take place. Again, overall system performance dictated mission safety rules, which in turn would restrict site accessibility. MSC wanted to stay close to the lunar equator for flexibility. Those of us pushing lunar science wanted to stretch system performance to its limits and land near a variety of important features that promised to answer important scientific questions. Such features usually augured rough landing sites.
While all these assignments were under way, Homer Newell was putting procedures in place that would give OSSA greater influence concerning the experiments carried on Apollo. In addition to the National Academy of Sciences’ Space Science Board—a powerful voice for science from outside the halls of NASA that gave him overall recommendations and direction—Newell looked to the Space Science Steering Committee (SSSC) to help oversee the selection of experiments for both the manned and unmanned programs. This committee, composed of government employees, was assisted by several subcommittees that included members from both inside and outside NASA. The subcommittee that dealt most directly with lunar science was the Planetology Subcommittee, chaired by Urner Liddell. It met frequently to review and approve scientific proposals for the unmanned programs, and in 1964 it began to provide OSSA with Apollo science oversight.
Liddell was a strong proponent of unmanned space science and a confirmed skeptic about the value of having man (astronauts) in the loop. His leadership of this subcommittee would create some friction between OMSF and OSSA in the next few years. Liddell had a voice in choosing members, and he selected prominent scientists who supported his low opinion of manned science. Fortunately there was one strong defender of manned science on the subcommittee— Harry Hess, who also chaired the Space Science Board. Hess, a renowned geologist and a professor at Princeton, would soon become one of our leading champions, countering the scientific elite who shared Liddell’s opinion that no good science would be accomplished on the Apollo missions. Dick Allenby also served on the subcommittee. He represented our positions on manned science but usually found himself overruled by his former boss, Liddell.
Bob Fudali, never one to mince words, wrote: ‘‘The character of Urner Liddell continues to fascinate me. It was most instructive to watch him squelch the junior subcommittee members with his overbearing mannerisms.’’7 The Planetology Subcommittee meeting of January 1965 that Fudali was reporting on introduced two new members: Donald Wise, from Franklin and Marshall University, and George Field, from Princeton. Wise later had a prominent role in Apollo science. Since they were the two most junior members, they were undoubtedly the unnamed squelchees.
The agenda for that meeting was long and included discussions of the design and location of the LRL and developments in the ‘‘Moon Blink’’ project. Those attending were asked to rank four experiments proposed for the first Apollo landing: passive seismometer, gravimeter, magnetometer, and micrometeorite detector. The first three experiments did not yet have identified PIs, and the last one was proposed by MSC. The seismometer and gravimeter were given top priority, and a decision on the magnetometer was deferred. The micrometeorite experiment was given the lowest priority as ‘‘not germane’’ to lunar science. MSC sent John ‘‘Jack’’ Eggleston to the meeting to participate in the experiment and LRL discussions. While defending MSC as the future LRL location, he made an interesting disclaimer. In reaction to negative comments from the subcommittee members, Fudali reports, Eggleston said he realized MSC lacked qualified scientific personnel and that it would hire only enough technicians and junior scientists to assist the sample investigators chosen by the scientific community. But MSC soon went back on this pledge and hired a large scientific staff, assigned to Faget’s organization. Most would be transferred to the Science Directorate when it was formed, reporting to Bill Hess.
With minimum fanfare, we brought into the program prominent scientists who would develop specific experiments. By this time a good consensus existed on the important experiments to conduct during the Apollo missions. This made it a relatively straightforward task for the Planetology Subcommittee and its parent body, the SSSC, to select PIs. The only potential difficulty would be choosing between well-known PIs wanting to do the same experiment. This competition never arose because the major experiments were proposed by teams of scientists that included some of the most recognized names in their disciplines. The first PI selected under this procedure to lead the Field Geology
Team was Gene Shoemaker. PIs were soon named for all the high-priority experiments.
In June 1965, under the auspices of OSSA, we circulated within NASA the first comprehensive report on the exploration and utilization of the Moon. The report included important contributions from many OSSA offices, since it covered plans for both manned and unmanned lunar exploration extending to 1979.8 Will Foster’s office took the lead in summarizing our current thinking on manned missions, beginning with the first Apollo landing, shown as occurring at the end of 1969 and progressing through dual-launch Apollo Extension System manned orbital and surface missions to the first lunar bases.
We explained the rationale for this mission progression by tying it to the important scientific questions and operations that would justify a continuing program. Many of the studies we had initiated at MSFC were cited to provide the detail the plan required to justify the types of missions referred to in the plan’s ninety-six pages. The report concluded by stating, ‘‘The lunar exploration program is an important part of the nation’s space program. Scientific investigations in this field are a significant aspect of the overall endeavor to advance our capability and to continue U. S. leadership in the adventure into space.’’ Those of us who had been working on manned lunar exploration saw this statement as OSSA’s first acknowledgment of the importance of manned exploration. Up to this point we had always felt that the science side of NASA was merely tolerating manned missions while its eyes were on bigger targets— unmanned explorations of the planets.
Just before the Falmouth conference, OMSF published the first Apollo Experiments Guide, intended to supplement the announcements of flight opportunities (AFOs) then in circulation or any that might be released by NASA offices about opportunities to carry out experiments on the Apollo missions.9 A short preliminary guide had been issued in June 1964, peppered with such warnings as ‘‘best estimate,’’ ‘‘experiments shall be conducted on a non-interference basis,’’ and ‘‘specific weight assignments. . . cannot be stated for each flight at this time,’’ to indicate the uncertainty associated with putting experiments on the Apollo missions.10 The 1965 edition contained more information but continued to demonstrate OMSF’s ambivalence about encouraging scientific experiments on the Apollo flights. Eighteen months earlier we had issued preliminary guidelines for Apollo science including a designation of 250 pounds for science payloads. The new guide seemed to be a step backward. It estimated seventeen cubic feet of stowage on the LM and the capacity to return eighty pounds of samples from the lunar surface, but it listed no overall allocation of payload weight on what were termed the early developmental missions. One could interpret the guide to mean that the stowage space might be empty on these flights and that the only ‘‘science’’ conducted would be the astronauts’ collecting samples with their gloved hands.
The 1965 guide stated that the Manned Space Flight Experiments Board (MSFEB) would approve the experiments to be carried and outlined the procedures it would follow. The board, nominally chaired by George Mueller but often led by a deputy, consisted of senior managers from headquarters and field centers and one representative of the Air Force Systems Command. Will Foster was our representative for lunar exploration. Experiments would be selected by various NASA offices such as OSSA and then passed to the MSFEB. Those of us who had been trying to increase the science payload allocation looked with deep suspicion on this board because it included members from NASA offices of Space Medicine and Advanced Research and Technology as well as MSC’s director, Bob Gilruth. We knew that these offices and MSC had already proposed some Apollo experiments (such as the micrometeorite detector). We could see the limited science payload, however much it ultimately turned out to be, being slowly eaten up and given to what we felt were peripheral experiments, not designed to study the Moon as a planetary body. In later years, when the actual experiments were approved by the MSFEB, Ernst Stuhlinger often represented Wernher von Braun and MSFC, giving us another voice on the board who fully understood what the science community was trying to accomplish for lunar exploration.
As the final filter, the MSFEB would carry out another important function. For all space missions, manned or unmanned, AFOs would usually give experimenters broad guidelines on integrating experiments with the spacecraft they would fly on. But at this early date, 1965, no Saturn У boosters or Apollo spacecraft had flown, so many of the integration specifications were guesstimates. Experiment design considerations dealing with such aspects as vibration levels, acceleration forces, shock, and acoustical levels would not be known for some time. In addition, other concerns such as avoiding materials that might cause adverse reactions like electrolytic corrosion or electromagnetic interference (airplane passengers must turn off electronic equipment during the early and final stages of a flight) and a host of other dangerous interactions with the spacecraft or booster could not be completely defined. The MSFEB would be the ultimate judge of whether the experiment, in many cases conceived and designed before final specifications were available, passed the rigid integration criteria and would be approved, rejected, or sent back for modification. Integration of the experiments was a difficult hurdle because experiments also had to pass ‘‘astronaut integration” if they required any input from the astronauts, a developing art in 1965. Principal investigators soon learned that if they wanted to participate they needed patience and perseverance and that they must overlook what seemed like strange, bureaucratic rules.
Time was also becoming a factor in selecting and building the experiments. The guide advertised 1968 to 1969 as the need date for delivering the experiments to Kennedy Space Center (KSC). Along with the uncertainties mentioned above, a tight schedule added to the challenge of preparing good experiments. Although the Apollo Experiments Guide did not include science payload weight allocations, we continued to plan based on 250 pounds. We divided this weight into three parts: 100 to 150 pounds reserved for a surface geophysical station, 100 pounds for the geology equipment, including cameras and sample containers, and a small allocation for orbital science, essentially whatever might be left over. When potential experimenters inquired about payload availability, we offered these numbers for planning their submissions.
At the end of September 1965, in response to a request by Bob Seamans and as an elaboration on the plan we circulated in June, Mueller and Newell forwarded the first ‘‘Lunar Exploration Plan.’’11 The forwarding memo stated that the attached plan had been coordinated between OMSF and OSSA. This was indeed true, for along with others I had worked on the attachment wearing both my OMSF and OSSA hats. Events were moving rapidly, however, and during the three days between completing the plan and sending it on to Seamans, two major management decisions had been made: Surveyor missions after Surveyor 6 and Lunar Orbiter flights after Orbiter 5 would be canceled. We went back to modify the plan reflecting these changes, and at the end of October we issued a revised plan noting that there might be follow-ons to the Surveyor and Lunar Orbiter programs after 1970, though no funding was identified. Seven Apollo missions, including test flights and the first landing attempts, were shown on the schedule through 1969, and by the end of 1971 these would be followed by three Apollo Applications Program (AAP) surface missions and three orbital missions. Additional AAP surface and orbital missions were dashed in on the schedule chart through 1973, and after that date a new category, Extended Manned Missions, would begin, continuing beyond 1975.
From our perspective this plan contained all the right words, words we had labored to have our senior management embrace publicly for the past two years. Now we had it in writing. To give just a brief sample, the plan stated: ‘‘The primary objective. . . is to define the nature, origin, and history of the moon as the initial step in the comparative study of the planets. . . . A secondary objective, following naturally from the first, is to evaluate the potential uses of the moon.’’ Apollo and post-Apollo lunar exploration would accomplish all we wanted if the words were followed up with action. But only NASA management had bought into the plan; allies in the administration and Congress were still lacking. The plan would be updated from time to time, not always by formal documents but by working papers written to reflect the latest guidance and the realities of NASA funding projections.
To improve our relationship with the MSC Flight Operations Directorate (FOD) and benefit from its ‘‘real mission’’ experience, we invited some of the flight controllers to come to Flagstaff and witness a training exercise we would be conducting for a post-Apollo mission simulation. Our demonstration of Command Data Reception and Analysis, a smoothly functioning embryonic science support room, once denigrated by MSC, convinced FOD that an experiments room would be a valuable asset.
After much give and take on how experimenters and the science community would interact with mission controllers and the astronauts in real time during an Apollo mission, MSC agreed in 1967 to build an experiments room in the mission control building. Christopher Kraft and his flight controllers in FOD deserve the credit for recognizing the wisdom of having such a facility, but the intervention of Jack Schmitt, Donald Lind, and other astronauts who had worked with the training and simulation teams assembled by USGS was critical to getting this agreement. They had firsthand knowledge of how valuable it would be for the crews on the lunar surface to have experienced scientists backing them up.
The arrangement was formalized in April 1967, when FOD issued its ‘‘Flight Control Handbook for Experimenters.’’12 It called for an experiments room, later named Science Support Room (SSR), to be located in building 30 near the Mission Operations Control Room (MOCR). The MOCR was the large room, filled with banks of monitors manned by engineers in short-sleeved white shirts and ties, seen by everyone who watched the Apollo space missions on television. During initial discussions it was proposed that the experiments room be located with other support teams in building 226, a few blocks away, and for Apollo 8 that was its location. However, we were able to convince Chris Kraft that for the landing missions it had to be nearer the action, like other critical Staff Support Rooms (SSR again), so that the displays and other information we planned to coordinate would be accessible to those who might have to make quick decisions. This would be especially important for the later missions, when we expected that lunar surface operations would be much more complex and timelines would be jammed with tasks. Being in the same building as the MOCR also let us use the pneumatic tube message system that connected all the SSRs in the Mission Operations building and was used extensively to pass information around. This sounds primitive today, when it is so easy to communicate between computer terminals, but in 1967 it was state of the art and local area networks were still a technology of the future. The staffing and layout for the experiments room were still under study at the time the handbook was issued, but eventually we were assigned room 314, which contained TV monitors, tables, phones, other equipment, and eventually closed-circuit television that allowed quick exchange of vital information. Perhaps as a small bone to keep the headquarters types off their backs, a console was designated for a headquarters representative, and that is where we usually were stationed when the missions began rotating shifts with Ed Davin, John “Jack” Hanley, Donald Senich, and me.
In the coming years, as we continued to refine our activities in the SSR, it became clear that we needed more space to accommodate all the people and equipment we required to follow the action. Another small SSR was added in the building; Raymond Batson from USGS recalls that during Apollo 11 this auxiliary SSR got so crowded you could hardly move around. In addition to Ray’s crew, who were monitoring the television pictures coming back from the Moon and the air-to-ground conversations with the astronauts, Bendix engineers were at their consoles keeping track of the data transmitted from the deployed experiments. Court reporters were also taking down the voice communications so this historic record wouldn’t be lost if the tape recorders malfunctioned, as they frequently did in NASA’s early days.13 After Apollo 11 the auxiliary SSR was moved to a larger room where a plotter allowed Ray’s crew to create a real-time map of each landing site showing where the astronauts were and had been. They would supplement the map with Polaroid panoramas captured from the TV pictures sent back to Earth. Based on all this information, the staff and PIs in the SSRs would formulate questions and send them to the capsule communicator (CapCom), who would then decide whether to pass them on to the astronauts.14 Later in the program, for the final landings, three SSRs were staffed, two for surface science and one for orbital science.
As soon as a Saturn У cleared the launch tower, control of the mission transferred from KSC to MSC. MSFC also continued to play an important role throughout the mission and kept a crew at MSC, since they were the experts to be consulted if there were problems with any of the Saturn rocket stages. Backing up the SSRs would be support rooms in building 45 for all of Apollo’s major systems. They were manned by contractor and NASA staff who had access to detailed knowledge of what made the systems and experiments tick.
This behind-the-scenes support, which most people who followed the missions were unaware of, figured prominently in saving the Apollo 13 astronauts and was portrayed rather accurately in the movie. Every detail for every system and subsystem could be found and displayed in these rooms, almost instantly, and they were manned around the clock while missions were under way. They were connected by phone to the MOCR and in most cases were directly linked to the contractor’s plant or manufacturing facility so that additional brainpower could be brought to bear in an emergency.
As important as it was for the experiments to have assigned SSRs, the handbook also formalized the procedures for simulations with the flight controllers. This was another major step forward and for the first time placed experiment simulation in the mainstream with all the other simulations carried out for the missions. Simulations would cover normal and abnormal situations that might require consultation with the SSR, and the flight controllers were given particularly wicked problems as they gained experience. The schedule called for the experiment simulations to start four weeks before launch, so beginning in June 1969 we had to man the SSR with the staff that would be present during the actual missions.
A memo to my staff in September 1970 lists a schedule for Apollo 14 surface experiment simulations, giving an idea of what these simulations entailed.15 By this time simulations were conducted from the Mission Control Center, Houston (same place as MOCR, different name). The memo called for two simulations of the planned first EVA and three simulations of the second, spread over two months rather than the one month originally planned. It was getting hard to assemble the large cast of characters that was required and, more important, to fit the simulation into the astronauts’ tight schedules. The simulations would include the prime crew, using either sites at KSC or one designated by Flagstaff. There were also two ‘‘canned’’ simulations at Houston when the astronauts were not part of the exercise and the flight controllers and our SSR staff were tested with contrived problems. Later missions, because of their complexity, added additional simulations. Each simulation would last four hours or more and would be followed by a candid critique, usually leading to new guidelines on how to respond to emergencies during the real mission.
As the PIs and their supporters began to spend more and more time at MSC, the members of the Field Geology Team availed themselves of a rather unusual perk. Jack Schmitt had long since completed his flight training and was now in Houston full time. He had a modest bachelor apartment just a few blocks from the center. His old Flagstaff buddies saw nothing wrong in staying there when they were in town, and if you visited Jack late at night you usually found at least one of them in a sleeping bag on the floor. I don’t know how many keys were in circulation, but Jack’s hospitality helped the visiting team members stretch their meager government per diem to include extra dinners at the San Jacinto Inn, the Rendezvous, or some other favorite restaurant. Jack was also using the LM and CSM simulators at MSC and KSC when they were not scheduled for designated crew simulations, to become familiar with these complicated spacecraft. When Jack was selected in the first scientist-astronaut class in 1965, some of us who knew him at Flagstaff recommended that he make it clear to Deke Slayton and Al Shepard how seriously he wanted to be looked on as one of the ‘‘regular guys,’’ removing any stigma from his hyphenated title. Whether or not this urging had any influence, Jack spent long hours in the simulators and added to his flight log by flying the astronauts’ T-38s around the country, frequently coming to Washington to attend meetings and briefings at headquarters. Did Jack’s diligence have any direct effect on Slayton and Shepard? I have to believe it did, and as we know, he was selected for the crew of the final Apollo landing mission.
Mission Control interactions with the experiments to be conducted on the journey to the Moon or on the way back home, as well as those conducted in lunar orbit, were not completely defined in 1967, but the groundwork had been established. Each experiment was assigned an FOD experiments activity officer who would represent the experiment through all phases from planning to flight operations. This person would work with the PI(s) to ensure that the experiment was properly integrated and operated. If a mission contingency should arise requiring some modification to normal operations, the EAO was charged with coordinating with the PI and then representing his interests in maintaining the experiment’s integrity during the brainstorming to solve the problem. Although it sounds bureaucratic, acknowledgment that such interaction might be necessary was another encouraging sign that science objectives had moved up in the MSC engineering culture. With so much going on during a mission, great discipline was required for all mission operations, and precise procedures were followed for all the flight systems—not just the experiments—during the actual missions. But by the time the Apollo flights began, PI relations with the flight controllers had improved significantly, and minor adjustments could be made in a much less formal atmosphere. Most of the FOD staff became strong champions for science, and when obstacles arose they did all they could to overcome them.
Another advance for science was the promotion of scientist-astronauts to be mission scientists and CapComs during the lunar landing missions. CapComs were the only ones allowed to speak directly to the astronauts during missions, and they had to be astronauts themselves, a rule still followed for all manned missions. This is not to say that the other astronauts serving as CapComs did not do an acceptable job in directing the crews or relaying information and suggestions to them. But this change went a long way toward reassuring us, especially the field geology PI, that the best advice would be quickly available if the astronauts met with some unexpected discovery or predicament on the lunar surface. We had always hoped that the PIs, and other Earth-bound scientists, would be able to communicate directly with the astronauts, but this never happened except for one instance described in chapter 12.
In mid-September 1967 I attended a dry run at MSC of a session on Apollo mission planning that would be presented later to MSC senior management.16 Owen Maynard of the Apollo Spacecraft Project Office (ASPO) chaired the meeting. Maynard had been involved with Apollo from its earliest days, having served in 1960 on the Langley Space Task Group that drew up the first specifications for the launch vehicle and Apollo spacecraft. With Joe Shea, he had enumerated the steps that had to be achieved as the program progressed toward a lunar landing. At this meeting we were briefed for the first time on the development schedule that MSC expected to follow leading up to the first landing, which was now designated the G mission.17 Joseph Loftus discussed the three types of missions that were possible when we reached the final level: (1) touch and go—this mission might stay on the lunar surface for as little as two hours with no EVA permitted, have an umbilical EVA of half an hour, or have an EVA of an hour and a half with the astronauts using the portable life – support system (PLSS) within a limited radius of the LM; (2) limited stay— structured around twenty-two and a half hours on the lunar surface, one EVA, and no deployment of the Apollo Lunar Surface Experiments Package (ALSEP), an automated geophysical laboratory or ground station; and (3) maximum stay—with four EVAs, each lasting up to three hours.
During discussion of these three options, ASPO made it known that it favored the limited stay mission for the first landing. Thomas Stafford, representing the astronaut office, pointed out that on the Mercury and Gemini flights it was only after the fourth flight that the spacecraft became really operational, and he expected the same for the LM. He mentioned that LM propellant leaks might restrict the surface staytime and said he thought this situation would improve as LM production continued. He also was concerned that with all the other high priority training they would need, the crew for the G mission would have a hard time completing the required training to carry out a multi-EVA mission. For these reasons he also supported the limited stay as the best that could be accomplished on the first landing. A few days later, at the MSC directors’ briefing, the limited stay mission was endorsed with one modification; ALSEP deployment would not be deleted. Thus, some two years from the date the first landing would be scheduled, we saw that planning for man’s first lunar landing would continue to follow a conservative mission profile. A small victory at the time, ALSEP would still be a part of the science payload.
Soon after this decision was announced, the MSC Crew Systems Division began regular monthly meetings to review and highlight any new problems that could affect the astronauts’ EVAs. This new group was named the Lunar Surface Operations Planning Committee and was chaired by Raymond Zedekar. The meetings were well attended by the various MSC offices that had a finger in any of the EVAs. We had established a good working relationship with Ray, so our office was invited to attend as well as staff from Bellcomm and USGS.18 These meetings covered a wide range of topics, including the latest results of space suit simulations and their implications for the astronauts’ ability to perform certain types of surface tasks, and we reviewed all other EVA concerns such as PLSS power budgets, tool design, and sampling procedures. These meetings continued through 1968 and were later replaced by another planning process.
As 1967 was winding down and we were assimilating the advice we received at Santa Cruz, the last major organizational change involving Apollo science was made at NASA headquarters. Still wearing my two hats but officially assigned to the Advanced Manned Missions Program Manned Lunar Missions office, in early December I was moved to a staff position in anticipation of a new assignment.19 By the end of the month, Mueller established the Apollo Lunar Exploration Office, reporting to Sam Phillips, and put Lee Scherer in charge.20 Lee had just finished tying up the loose ends from the Lunar Orbiter program, and this appointment gave him a chance to expand his management role. His new office combined the responsibilities of Foster’s office and some of the post – Apollo lunar exploration duties of Advanced Manned Missions. He inherited most of Foster’s staff as well as other headquarters staff who had become involved in lunar science, including William ‘‘O. B.’’ O’Bryant and Richard Green. They had been managing the development of the Apollo geophysical station (ALSEP) in the Office of Space Science and Applications. As part of the agreement to establish this new office, OSSA continued to fund the lunar programs it had started through the end of FY 1969. O’Bryant was named assistant director for flight systems and continued to be in charge of ALSEP. Noel Hinners and his growing Bellcomm group also switched hats and supported our new office. Will Foster was given a staff position within OSSA to oversee Apollo experiment selection.
Scherer’s appointment was a management masterstroke by Mueller. He was well liked and trusted by John Naugle (who had replaced Homer Newell just three months earlier) and by the science side of NASA, having managed the highly successful Lunar Orbiter program. The close connection of Lunar Orbi- ter to Apollo made him well known to OMSF management. After our initial meeting in 1963, I got to know him well from working with his NASA and contractor team during Lunar Orbiter site selection meetings. Perhaps it was his navy connection and my familiarity with the navy way of doing business, but with his appointment I expected to see more progress in all aspects of Apollo science. Lee would have much greater influence on the decision makers than Will Foster did. Being on Phillips’s staff put him directly in the chain of command—no more half OSSA and half OMSF, with both offices never sure whose side you were on. We were all now, clearly, part of the Apollo team. Most of the senior NASA managers on Apollo were either active-duty or retired military officers, so Lee fit right in. With my new office colleagues I had a change of address and moved into the Apollo offices at the just completed L’Enfant Plaza complex, where we remained until the last mission came home. I was given a new title in Scherer’s office—program manager, plans and objectives. My new responsibilities involved me in all aspects of Apollo science; most important was the planning for what would come after the first few flights.
The Apollo program was overseen by several special committees; perhaps the most prestigious was OMSF’s Scientific and Technology Advisory Committee (STAC). Its membership comprised distinguished scientists and engineers. Chaired by Charles H. Townes from the University of California, Berkeley, it was increasingly important as Apollo neared its first launch. It met quarterly with Mueller and other senior NASA management to review all aspects of the program. At the beginning of April 1968, Townes wrote to Jim Webb expressing the committee’s satisfaction with the program’s status and also its concerns.21 He stated that after spending seven days reviewing various steps in the mission, the committee believed that ‘‘NASA personnel involved in this effort are mastering well a very demanding and difficult, as well as an exciting, assignment.’’ He wrote, however, that ‘‘it did not appear that efforts toward working out operational procedures for activities on the moon and coordinating the astronauts’ abilities and restrictions with optimum scientific experimentation had yet made comparable progress.’’ And in referring to the NASA budget reductions, Townes closed with, ‘‘We believe it would be poor economy indeed for the nation to jeopardize the chances of a ringing success for the entire effort by undue paring down of support during the last stages which are ahead.’’ STAC’s concerns echoed those being expressed by our new office, and I believe they went a long way toward elevating Lee Scherer’s influence with Apollo management in the months leading up to the first landing.
At the beginning of 1968 our office prepared to update the 1965 ‘‘Lunar Exploration Plan.’’ A Bellcomm technical memorandum written in January also addressed long-range lunar exploration planning.22 It was distributed widely inside and outside NASA with the purpose of justifying a continuing program of exploration after the Apollo landings and rebutting the recently announced reduction in FY 1969 funding that would discontinue missions after Apollo 20.
The memo outlined a program based on the Bellcomm authors’ judgment of the scientific results that would be achieved by exploring specific sites using lunar orbital surveys and on our AAP concept of using a rendezvous between an extended lunar module and an unmanned LM payload module to permit longer staytimes and greater payloads. Except for listing the landing sites they thought were most important and giving their rationale for choosing them, their memo did not propose any major changes in previously circulated internal documents describing AAP plans. The memo placed Bellcomm management squarely on our side in support of dual-launch missions. Until this time it had only gingerly endorsed the approach we had been advocating for several years in the Advanced Manned Missions office.
At the time the Bellcomm memo was circulating, a senior NASA management team called the Planning Steering Group was put in place to furnish an overall NASA stamp of approval for the agency’s long-range space exploration plans. In April 1968 Scherer established a Lunar Exploration Working Group to reexamine the situation and recommend a long-range exploration program to the PSG. He hoped to influence the NASA FY 1970 budget proposal and perhaps change the administration’s mind about what needed to be done after the initial landings. The Lunar Exploration Working Group included members from MSC, MSFC, Langley Research Center, JPL, and Goddard Space Flight Center in addition to headquarters. John Hodge of MSC was appointed director of the effort. We met frequently during the spring and summer of 1968. George Esenwein, Martin Molloy (detailed from JPL), and I took the lead for Scherer’s office. We had many differences of opinion with the MSC representatives on the working group concerning what should constitute a long-range lunar exploration plan, especially in regard to using dual launches to extend staytime and permit greater science payloads.23 But eventually, reinforced by the recommendations of the Santa Cruz summer conference and by the Bell – comm report, we prevailed and shaped a program similar to the one we had proposed earlier for AAP.
In October 1968 we distributed a Program Memorandum for Lunar Exploration.24 With funding constraints uppermost in our minds, we tried to throw the ball back to the Bureau of the Budget by quoting from and answering an earlier BOB inquiry: ‘‘What program should be undertaken for lunar exploration after the first manned lunar landing?’’ Our memorandum outlined such a program, and to give it additional clout, we also quoted from a 1963 President’s Science Advisory Committee (PSAC) report and the 1965 study by the National Academy of Sciences. Both had made strong statements that continued lunar exploration was essential to unraveling important scientific questions. This memorandum, like the 1965 plan, proposed an exploration program that would extend beyond 1975. It included manned and automated missions, dual launches, and even new hardware systems. The guidance we had received from BOB for our FY 1970 submittal was that NASA should pause after the first few landings and wait some unspecified time before continuing lunar exploration. (Typically BOB issued guidance each spring for drawing up each agency’s budget for the next year. This guidance included the language and dollar targets it expected the agencies to adhere to when they submitted their budget requests to the administration later in the year.) Between 1963, when we quoted PSAC’s opinions on the importance of exploring the Moon, and 1967 a major shift had occurred. PSAC’s new view was that “repetition of Apollo flights for more than two or three missions will be unjustifiable in terms of scientific return without the modification of the system to provide for additional mobility. . . . and the capacity to remain on the surface for a longer period of time.’’ We could not have agreed more. Unfortunately, without a budget increase, what PSAC was suggesting couldn’t be done.
The final pages of our memorandum addressed these issues. We rejected the option of pausing, for several reasons, and proposed that either we continue without modifying the Apollo hardware, in order to maintain momentum, or start to modify the basic systems to improve the astronauts’ mobility and extend staytime. If either of these last two options was accepted, we would need additional funding in FY 1970. BOB rejected our request for more funds but eventually permitted NASA management to juggle the approved budget and make the changes that resulted in the J missions to be discussed in following chapters.
At the end of the Santa Cruz conference, in the summer of 1967, Bill Hess established an interdisciplinary Group for Lunar Exploration Planning. Its objective was to integrate the science planning for each mission and offer an overall strategy to ensure that the missions complemented each other for the maximum scientific return. With the AAP missions at least on hold, GLEP focused on coordinating the planning for the Apollo missions. Planning centered mainly on selecting landing sites. Each site’s unique characteristics would dictate the experiments to be carried out and how the geological surveys would be conducted.
To do the staff work in support of GLEP, a small group of scientists and engineers that we dubbed the ‘‘rump GLEP’’ met to put all the pieces together for presentation to GLEP. The rump GLEP initially included (besides me) Hal Masursky and Don Wilhelms from USGS; John Dietrich and John ‘‘Jack’’ Sevier from MSC, joined at times by Jack Schmitt; several scientists from outside NASA, including Paul Gast and Eugene Simmons; and two Bellcomm staffers, Farouk El Baz and Noel Hinners, the latter chairing the meetings. For the next two years we met regularly to plan each of the upcoming flights, updating our recommendations as more and more information became available. We were not the only ones trying to identify landing sites; many others at MSC and Bellcomm besides those mentioned above were also putting in suggestions. But because of our diverse backgrounds and intimate knowledge of mission constraints, we felt we were the only team working on candidate sites that had the big science and operational picture in mind.
The site selection process involved making recommendations to GLEP accompanied by supporting arguments. Based on this work, lists periodically went to GLEP adding or subtracting sites as advocates made the case for one site or another. GLEP, in turn, would make recommendations to ASSB, the final arbiter in site selection. Work on selecting landing sites became more intensive as the launch dates drew nearer. The few sites finally chosen would represent the coming together of many interests, both scientific and engineering. If someone held a strong position or theory on some aspect of lunar science, you would hear arguments for sites that held the most promise of vindicating that position. Site politics could rear its head at times; but fortunately consensus prevailed, though for several landings we chased the ephemeral ‘‘recent volcanics’’ advocated by a small USGS clique and others. Many people spent long hours reviewing the Lunar Orbiter photographs and other information to arrive at the recommended sites. As Noel Hinners’s staff gained strength with the addition of James Head and others, they worked closely with USGS in Menlo Park and Flagstaff and took the lead in providing site rationale for GLEP. The importance of selecting the right sites could not be overestimated: they would shape and control our understanding of the Moon for many years to come.
For the first landings, Lunar Orbiter photography, supplemented by USGS 1:1,000,000 scale lunar quadrangle geologic maps made from telescopic studies, were the key sources we used to develop a list of recommended landing sites. Lunar Orbiter coverage was designed to supply the following products for the initial landing sites: a series of photographs with three-foot ground resolution; detection of obstructions eighteen inches high; stereo coverage for detection of slopes of seven degrees or greater; approach path coverage of the last twenty miles of the LM approach to the landing site; and oblique views to approximate what the LM pilot would see as he approached the landing site. We selected thirty-two sites in the ‘‘Apollo zone’’ that met these specifications, and they were designated set A. We then turned these sites over to the Mapping Sciences Branch at MSC for final ‘‘landability’’ analysis.25
From set A, eight sites (set B) were selected that incorporated all the landing site considerations, including proper lighting and separation to allow three launch attempts, two days apart, in case of launch-pad holds. This last constraint was imposed to avoid costly detanking (removing the propellants), and rechecks of all the Apollo systems if the launch to a selected site was missed for any of several possible reasons. If no secondary or tertiary landing sites were available, a launch abort would require a month’s delay to arrange lighting at the initial site for avoiding obstacles. For the first landing attempt, set B was further refined to a five-site set C that included Tranquility Base, Apollo 11’s final destination. Apollo 12’s site, near Surveyor 3, was included in set B.
In March 1968 President Johnson announced the formation of the Lunar Science Institute (LSI). The National Academy of Sciences had pushed such an institute to offset the continuing perception by many in the scientific community that NASA was not paying enough attention to science on Apollo. The site selected was a renovated mansion belonging to Rice University, just outside the MSC fence. William W. Rubey, one of the renowned scientists who had volunteered time to work with the astronauts during their early training, was appointed the first director. Still on the faculty at the University of California at the time of his appointment, he was a popular choice and gave the institute instant credibility.
At headquarters we supported the need for the institute but were not keen on the location. We felt that MSC’s proximity and reputation might discourage scientists from taking advantage of the institute’s mission to provide a base from which to work on the material and data the Apollo flights would return. Other purposes, such as attracting graduate students and scientists on sabbaticals and hosting conferences and seminars, might also suffer because of the climate of distrust that existed. These fears went away in the ensuing years as LSI (later named the Lunar and Planetary Institute) ably performed its functions and remained independent of MSC.
Although LSI was chartered by the National Academy of Sciences and its board of governors was appointed by the Academy, most of the funding came from the Apollo program.26 Eventually LSI outgrew its initial home and moved to more spacious quarters at Clear Lake, where it continues to be a focal point for the study of Apollo material as well as information returned from later lunar and planetary programs.