Buying, Coproduction, and Integration

China chose to pursue acquisition of armaments and avionics rather than outright purchases of Western combat aircraft (which Western governments would have been reluctant to allow). Helicopters were an exception to this gen­eral rule. In 1977, the French delivered the SA-321 Super Frelon helicopter to China, and allowed China to coproduce it as the Z-8 beginning in 1981.86 France also agreed to let China coproduce its Dauphin 2 attack helicopter as the Z-9 beginning in 1980.87 The earliest fighter technology transfers came in 1979, in the form of a license agreement between China and the British defense firm GEC-Marconi (now BAE avionics) to supply the J-7II tactical fighter, as well as F-7 export variants, with a complete avionics suite. This upgrade, which included the Type 226 Skyranger radar, weapons-aiming computer, and state- of-the-art display systems, represented a huge boost for China’s military avia­tion industry. Chinese-produced F-7s with Western avionics sold well on the export market with the air forces of Sri Lanka, Iran, Myanmar, Bangladesh, and Pakistan all signing purchase agreements in the 1980s. The F-7s were not actu­ally delivered until the late 1980s and early 1990s and many remain in service today. J-7/F-7 aircraft produced in the 1970s and 1980s with advanced avion­ics were an improvement over the J-6/F-6 series, but still lagged far behind Western and Soviet fourth-generation fighters that were entering service in the same time period.88

The Shenyang J-8A (a twin-engine MiG-21 derivative) was the most sophisticated fighter China operated in the late 1980s. Shenyang Aircraft Cor­poration (SAC)89 proved that it could go beyond simply reproducing Soviet designs by modifying the MiG-21 airframe to accommodate the J-8A’s two Wopen-7A turbojet engines. However, the derivative body design limited top speed to a “modest” Mach 2.2, making the J-8A slower than third-generation Soviet fighters like the MiG-23.90 China sought to use its newfound access to Western avionics to improve the J-8A’s combat capability. By the mid-1980s, China had developed its first indigenous fire control radar (Type 204), but this system lacked some state-of-the-art features embedded in Western and Soviet radar systems, most notably beyond-visual-range capacity. One of the four programs under the U. S./China “Peace Pearl” initiative launched in the mid 1980s involved the U. S. firm Westinghouse equipping 50 J-8 fighters with advanced, beyond-visual-range capable radar systems. Sanctions ban­ning sale of U. S. arms to China were imposed in the wake of the 1989 Tianan­men massacre, but in 1992 President George H. W. Bush issued a waiver stat­ing that it was “in the national interest” to fulfill the terms of four suspended weapons sales programs on the grounds that none of them “significantly” boosted Chinese military capabilities.91 The waiver also stated that fulfill­ing these programs would “improve the prospects for gaining further coop­eration from China on nonproliferation issues.”92 The PLAAF ultimately received two modified J-8 fuselages and four avionics kits to close out the “Peace Pearl” effort.

China also reportedly developed a variant of the J-8, the ACT con­trol variant, which featured analogue fly-by-wire (FBW) controls. A working test bed was flown in 1988. The ability to produce an aircraft incorporating this technology is noteworthy given the fact that China had no legal access to it through Western or Soviet channels (FBW controls had been incorpo­rated into new Western and Soviet fighters by the mid-1970s). Chinese mili­tary aviation had not mastered less challenging aspects of avionics develop­ment at the time the J-8ACT program was underway, and it is unlikely that the knowledge to produce FBW controls came about via indigenous R&D. There is no way to draw definitive conclusions about where China acquired the knowledge to produce this technology, but its defense relationship with Israel provides one possible answer. Development work on the FBW-capable Israeli Lavi fighter began in 1982 and by the time Sino-Israeli defense coop­eration was established in 1984, the Lavi project was in full swing. A range of open source information suggests that Israel transferred advanced military aviation technologies to China long before formal diplomatic relations were established in 1992.93

Advances in Chinese military aviation from the late 1970s to the late 1980s came primarily as a result of exposure to more sophisticated Western aviation technologies and their integration into PLAAF aircraft. Access to the GEC Marconi radar and to FBW technology required Chinese technical personnel to perform design modifications necessary to accommodate these new systems. It also provided a starting point for reverse engineering efforts, though due to China’s inexperience with Western production practices there was no guarantee of success. Despite newfound access to some state-of-the – art military hardware and innovations in airframe design, China’s defense sec­tor remained incapable of producing modern weapons systems.94 Numerous deficiencies prevented China from turning out cutting-edge equipment. The issues it faced were specific to its system of economic and political organiza­tion, not merely the byproducts of central planning. (The Soviet case proves that an economy based on central planning can produce some of the world’s most advanced military hardware.)

During the 1980s and 1990s, state-owned Chinese defense enterprises received cost plus 5 percent for all equipment produced, providing no incentive to cut costs or maximize production efficiency.95 There was no competition to determine which enterprise would build which system. Enterprises were (and still are to some degree) assigned projects based on ministerial bargaining, nul­lifying a great deal of the incentive to turn out a better end product.96 The story of this time period for the aviation industry is mixed: from an organizational perspective, the objectives articulated in the Four Modernizations campaign and attention to airpower at the highest levels of leadership set a course for progress. On the other hand, the industry made almost no tangible progress in closing the technology gap with Soviet or Western air forces in the 1980s.

Three significant developments would come to shape the trajectory of Chinese military aviation in the next time period we analyze. First, there was the decision to emphasize the development and diversification of the overall Chinese economy via deeper market reforms. The initial impact on the defense industry was negative, as funding for the military was reduced and the defense industry was encouraged to convert to civilian production. Over the longer run, however, development of the broader economy produced both finan­cial resources and access to technologies that would support a more advanced defense technology base. The second important event was the Sino-Soviet rap­prochement. Soviet Premier Mikhail Gorbachev’s visit to Beijing in May 1989 marked the official return of normal relations between the two sides and was eventually followed in the early 1990s by new arms sales agreements, includ­ing the sale of the Sukhoi Su-27 Flanker.97 These deals were largely negotiated on Chinese terms, offering China the opportunity to pursue new procurement strategies. Finally, the Tiananmen massacre in June 1989 led to an immediate end of Chinese legitimate access to most Western arms and military aviation technologies.