NEW HORIZONS

Whichever new vehicle design is finally chosen to return American astronauts to space from U. S. launch sites it will need to support programs not only in various types of Earth orbit, but also those planned for journeys far beyond our planet, using far more advanced spacecraft to make the actual journeys. There are a range of options available for future space planners and explorers to aim for.

Low (and other) Earth orhit operations

The ISS will continue to be at the forefront of Earth orbital operations for the remainder of this decade, barring any unforeseen major technical problem or emergency situation. Of course, ISS operations also depend upon adequate funding and continued cooperation between the partners, but hopefully we will see possibly 60 resident crews complete their missions and observations on board the ISS by the 20th anniversary of the permanent manning of the complex. It will also require confidence in the ability of the station to continue to support future crews safely and perform its scientific functions properly if operations are to continue into the 2020s. Studies are currently being conducted in order to qualify the main hardware to support ISS operations into 2028, making it a full 30 years since construction began. The work conducted on board the station over the next 15 years or so will presumably be aimed at supporting plans for whatever follows the ISS in low Earth orbit and for missions beyond our planet.

The question of what follows the ISS is an interesting one, as there are no firm plans or suggestions for a follow-on ISS. So can the ISS remain operational and useful for another 20 years without major issues surfacing? It seems doubtful, as there are already signs that the crews’ time is being taken up as much by main­tenance, repair, and housekeeping as with pure science research. It is also difficult to imagine the complex supporting more than a crew of six, or perhaps nine without additional resources added. Of course, increasing crew numbers will add to the challenge, as more people means more power, further supplies, and logistics, requiring more investment probably for limited extra returns. Then there is the question of added waste and unwanted materials to dispose of. All of this would require further spacecraft to support expanded operations, thus increasing the operating costs.

Merely adding crew members to work on more activities does not really solve the problem, unless the working environment can be made less reliant on crew input for keeping the vehicle operating. If this were possible, then more time would be available for the crews to perform science or research, but this is probably a step beyond the current and potential capabilities of the station. It would be more likely to be included in next-generation vehicles, especially those intended for deep-space operations (see below).

It will be interesting to witness the development of new manned space vehicles, such as Orion, as they are tested in low Earth orbit. Their level of auto­mated or manual operations, and the amount of crew input required for the tasks assigned will also be critical for their success. With advances in robotics and joint operations with automated space vehicles, the argument for involving the full par­ticipation of a human crew will be something of a challenge. Even in Earth orbit, a blend of human and automated space operations is useful. Robots can venture where it is dangerous for humans to go, while humans can be on hand to offer rational decision-making choices, repair, and servicing skills to a degree not found on fully automated machines. And can humans ever truly give up the need to explore and “be there”? Looking at Mars through the eyes of a rover may be thrilling in its own way, but it cannot possibly compare with taking those first steps ourselves.

As for other nations’ involvement in human space flight operations, perhaps a truly international program is the way forward, expanding upon the success of the ISS. China is expected to develop its space station program for the rest of this decade and create a viable infrastructure for bolder ventures farther away from Earth. India has also expressed a desire to place its own citizens in orbit, though recent reports have indicated that the supporting technologies required for such a large commitment are not as advanced as originally thought. The first manned domestic Indian flight is still some years in the future, possibly not before 2020. It is also important not to totally ignore comments from Russia about their desire to rekindle their purely national manned space program, though this will of course depend upon sufficient funding commitments.

Another branch of manned operations in Earth orbit are the commercial program, both suborbital and orbital. The forthcoming Virgin Galactic flights in SpaceShipTwo are expected to increase the popularity of short flights to the fringes of space, but not yet into orbit. Since 2009 space tourist flights to the ISS have been suspended due to the increased size of crews on the station, but could be resumed sometime in the near future if hardware and funding become available and the international partners agree to support them. At the time of writing this does not seem likely before 2015 or 2016. Commercially operated space stations are often discussed and the endorsement of privately developed launch and landing systems for ISS support operations are but a step away from developing commercial orbital space operations, perhaps with further moves toward orbital tourist flights.

The idea of factories, large power platforms, and five-star hotels in space may still be a dream of science fiction, but the time will be right when those ideas come to the forefront of space flight, as we are now seeing with commercial launching agreements. One area which will probably be eagerly fought over will be space salvage, the recovery or repair operations to clear up abandoned or failed satellites, opening up the location to new and updated spacecraft. Exciting devel-

A distant Moon beckons future explorers.

opments in low Earth orbit await future space explorers and investors. The head­line glory may come from venturing outwards, but the long-term investment in Earth orbital infrastructure will allow us to look after our own planet, utilizing the huge investments in space exploration to date to improve the quality of life here on the ground.

There are, of course other types of orbits around our planet yet to be investigated by human crews. Often spoken about in tales of science fiction or yet – to-be-achieved space plans these include polar, synchronous, and geostationary orbits and are primary candidates for human expansion in the future.