William H. Pickering

The Jet Propulsion Laboratory’s director, William H. Pickering, played a central role in reshaping the organization’s direction at the beginning of the Space Era. Born in New Zealand in 1910, William H. Pickering was attracted to CalTech by an uncle. There, he took his bachelor’s and master’s degrees in electrical engineering. He received his Ph. D. in physics in 1936 and stayed on as a faculty member in electrical engineering. His graduate and postgraduate work put him in touch with the work of CalTech’s Robert A. Millikan and Victor Neher, whose seminal work in cosmic ray research especially caught his interest.

In 1944, he began part-time work at CalTech’s JPL, organizing their electronics efforts to support their guided missile research and development. He became project manager for Corporal, the first operational missile that JPL developed. During Corporal testing at White

OPENING SPACE RESEARCH

Подпись: 202Sands, Pickering became aware of the work of von Braun’s group on the V-2, and the two groups collaborated to launch a series of combined V-2-WAC Corporal two-stage vehicles known as the Bumper-WAC. One of its flights reached a record altitude of 244 miles in February 1949, becoming the first man-made object to reach extraterrestrial space.

During that period, Pickering broadened his interest in scientific research and its special demands on technology, including serving on several national committees that were active in charting upper atmospheric research. He shifted from part-time to full-time work at JPL in 1950. From then on, although retaining the rank of full professor on the campus, the JPL work took most of his attention. He took over as the JPL director in the fall of 1954.

In his discussions with California Institute of Technology president Lee DuBridge, the new director agreed that JPL should begin thinking of a shift away from classified missile development to something that was more compatible with the open research character of university research. The Sergeant missile program had been authorized shortly before Pick­ering’s assumption of the JPL leadership—he and DuBridge agreed that it would be their last army missile program.35

In September 1955, upon returning to Pasadena from Huntsville from the von Braun discussion following the Vanguard decision, Froehlich placed the remaining scaled-Sergeant rockets in a “long-term life test.” It was explained to me after I went to JPL much later, that, although the ABMA and JPL had been instructed from Wash­ington to stop all work on the remaining Jupiter C rockets, they did obtain permission to use them in “technology tests.” The tests were characterized tongue-in-cheek as “placing the spare rockets in storage at normal room temperature and pressure until destroyed.” Through that stratagem, the upper-stage rockets were preserved for later use in the satellite program.

From the time of the discussion at Huntsville in September 1955 through the time of the third RTV flight in September 1957, JPL carried the project responsibility for three major RTV tasks: (1) adaptation of the scaled-Sergeant rockets for that purpose, (2) development of the cluster arrangement to form the upper stages of the vehicle, and (3) development of a telemetry system for relaying flight performance data to the ground.

The first two tasks, adaptation of the scaled-Sergeant rockets and development of the upper stage cluster, required the combined efforts of teams of mechani­cal engineers, materials specialists, and propulsion experts. They configured the rocket’s thrust chamber and developed a suitable ignition mechanism. Under Geoffrey Robillard’s leadership, they loaded and fired enough test rockets to determine the op­timum fuel and chamber configurations and to establish the rocket’s reliability. As for the mechanical configuration of the cluster, under John Small’s leadership, they determined the number of stages required, made the weight analyses, designed the mechanical configuration, and performed mathematical analyses of the structural design and in-flight performance. As already stated, the work was done in such a way that a live fourth stage with its satellite payload could easily be added to the cluster.

CHAPTER 7 • THE U. S. SATELLITE COMPETITION 203

The third JPL area of responsibility was to develop a suitable tracking and data telemetry system to assist in obtaining engineering data from the RTV final stages. That might have been quite simple if the system were designed exclusively for that purpose. Those flights were of short duration, so long-lasting batteries were not nec­essary. The RTV rocket configuration had sufficient weight-carrying capability that more conventional flight components, including vacuum tubes, could have been used. The higher weight-carrying capability also meant that much higher-powered trans­mitters could be used, obviating the need for a supersensitive tracking and telemetry system.

However, from the very beginning, the JPL engineers wanted the system to be usable in a satellite. Initial ideas for what became the future Microlock system had been developed while JPL was designing the Corporal missile. When JPL was brought into the Orbiter program planning by the Huntsville and navy teams in the fall of 1954, the long-range possibilities for such a system became even clearer in their minds, and the Microlock system began to take more tangible form. A look at the Microlock development emphasizes the extent to which it was shaped by their dreams of space flight.

One of the leaders in the Microlock development was a new engineer, Henry L. Richter. He figured prominently in the application of that system to the satellite program and in the preparation of the Jupiter C satellite instruments.

Henry holds a special place in my memory as my primary contact and close friend during the five months that I was at JPL during late 1957 and early 1958.