“RADIO MOSCOW HAS JUST ANNOUNCED THAT THE RUSSIANS HAVE PLACED A SATELLITE IN ORBIT 900 KILOMETERS ABOVE THE EARTH.”

There was a short, stunned silence, and then applause gradually swelled as we began to grasp the reality and immensity of the moment. Reporters rushed out of the room for telephones to contact their papers. The Soviets beamed with obvious pleasure as the first of the many toasts with excellent Russian vodka was offered (Figure 6.2).

Walter Sullivan, science writer for the New York Times, was one of the guests that evening. Moments before, as he had stood in one of the small groups, an embassy

“RADIO MOSCOW HAS JUST ANNOUNCED THAT THE RUSSIANS HAVE PLACED A SATELLITE IN ORBIT 900 KILOMETERS ABOVE THE EARTH.”

Подпись: OPENING SPACE RESEARCH FIGURE 6.2 The USSR delegates to the CSAGI Conference on Rockets and Satellites raise their glasses in a triumphant toast upon hearing the first news of the launch of Sputnik 1. This scene occurred at the Soviet Embassy at a cocktail party that they were hosting for all conference delegates on 4 October 1957. From the left, S. M. Poloskov, Anatoly A. Blagonravov, and A. M. Kasatkin. (Courtesy of the E. W. Scripps Company)

168

official informed him that he was wanted on the telephone on the ground floor. It was his paper’s Washington Bureau, and they informed him of their receipt of the news from Moscow. With great excitement, he had bounded up the grand staircase and threaded his way across the ballroom to pass the news to Berkner.

The Soviet conduit for breaking this news to the world was via an Associated Press wire story from Moscow at 6:30 PM EST, Friday, 4 October 1957. According to that account, the satellite had been launched on the first try of a new vehicle, the SL-1 (A) derived from the R-7 ICBM. The satellite was described as a 184 pound sphere measuring 22.5 inches in diameter, with an initial orbital height of 569 miles, inclination of 65 degrees, and orbital period of 96.2 minutes. Its official Soviet name before launch, as mentioned above, was PS-1, standing for Prosteishiy Sputnik, translated “Simple Satellite.” After launch, they referred to it as Iskustvennyi Sputnik Zemli, translated “Fellow Traveler of the Earth.” That was immediately abbreviated for all time as, simply, Sputnik. The satellite transmitted for 23 days. Its orbit decayed on 4 January 1958, after three months of flight.

A RCA receiving station at Riverhead, New York, was the first to hear the satellite’s signal in the United States. There was some initial confusion about the nature of the satellite. Some assumed that the satellite was making many scientific measurements. Others ascribed various sinister purposes to its mission. That confusion need not have occurred, as the Soviets had been quite open about its characteristics from the beginning. The delegates’ comments at the end of the conference on Saturday provided a general description. The most authoritative, more detailed account of the

CHAPTER 6 • SPUTNIK!

satellite’s physical form was provided later by the USSR Participating Committee for the IGY. That description read:

The satellite had a spherical form. Its diameter was 58 cm [22.8 inches] and its weight 83.6 kg [183.9 pounds]. The airtight casing of the satellite was made of aluminum alloy. The surface of the satellite was polished and specially treated. The casing contained all the instruments and sources of power. Before launching, the satellite was filled with gaseous nitrogen.

Moving along its orbit, the satellite periodically experienced widely differing thermal influences; i. e. warming in the Sun’s rays when passing over the sunlit half of the Earth, cooling in the Earth’s shadow, thermal friction of the atmosphere, etc. Moreover, a certain amount of heat was due to the functioning of instruments in the satellite. Thermally, the satellite is an independent stellar body, which maintains a radiant heat exchange with the surrounding space. To provide the normal thermal regime necessary to allow the satellite’s equipment to function during a long period of time was, therefore, in general a new and complex task. The maintenance of the necessary thermal regime in the first satellite was effected by giving its surface suitable values for the coefficients of emission and of absorp­tion of solar radiation, and by regulation of the thermal exchange between the satellite’s casing and the instruments inserted in the satellite by forced circulation of nitrogen in the satellite.

Two radio transmitters installed in the satellite continuously emitted signals on frequencies 20,005 and 40,002 MHz (the wavelengths being 15 and 7.5 m respectively). It should be added that, owing to its relatively large weight, the first satellite was able to house rather powerful radio transmitters. This made it possible for signals from the satellite to be received at great distances and made possible the participation of a large number of radio amateurs all over the globe in the observations of the satellite.

The observations of the satellite’s flight affirmed the possibility of satisfactory reception of its signals by average amateur radio installations at a distance of several thousand km. There were cases when the satellite’s signals were received at a distance of 10,000 km.

The signals of the first satellite’s radio transmitters on both frequencies were in the form of telegraphic messages. The signal on one frequency was sent during the pause in the signal on the other frequency. The duration of each signal was about 0.3 sec. These signals were used for orbital observations [satellite tracking for orbit determination] and for the solution of several scientific problems. In order to register the processes taking place in the satellite, the satellite had sensitive elements that changed the frequencies of the telegraphic messages and the correlation between the duration of messages and pauses with the change of some parameters (temperature and pressure [within the satellite]). During reception, the satellite’s signals were registered for further deciphering and analysis.14

At the cocktail party, the Soviets took full advantage of the ebullience of the moment to extol their country’s technical prowess, and their role in the history of rocketry. One of their staff members detailed to me with obvious pride the accomplishments of Konstantin Tsiolkovsky, their great rocket pioneer. The conversation and toasts continued for a while, but many of the attendees soon faded away, some of them to return to their offices or hotel rooms to ponder the meaning of the event, or to receiving stations to pick up the satellite’s signal.

Homer E. Newell later reported an especially significant postparty gathering. Hugh Odishaw, executive director of the U. S. National Committee for the IGY, who had attended the cocktail party, called Newell, who had chaired the Conference’s Working Group on Internal Instrumentation in Van Allen’s absence, but who had not attended

OPENING SPACE RESEARCH

Подпись: 170the cocktail party, to convey the news to him and to see if several of them should get together to discuss the turn of events. Odishaw, Newell, Richard Porter, who had chaired the Working Group on Satellite Launching, Tracking, and Computation, and several others met at the U. S. IGY Headquarters in Washington at 1145 19th Street, Northwest. There, into the night, they followed Sputnik’s course by plotting its ground track on a map as reports were obtained from receiving stations around the world. In a few hours, a good idea emerged of the satellite’s orbit. Newell later reported:

As the group in imagination followed the course of the satellite across the heavens, the members tried to weigh the Soviet accomplishment against the fact that the launching of the U. S. satellite, Vanguard, was still some months away. They tried to estimate what the public reaction would be. Disappointment was to be expected, but they did not anticipate the degree of anguish and sometimes-genuine alarm that would be expressed over the weeks and months that followed.15

There was another notable cocktail party that Friday evening. At Huntsville, Alabama, Wernher von Braun and Major General John Medaris were hosting Neil H. McElroy, the incoming secretary of defense. As McElroy was chatting with von Braun and Medaris, they were interrupted by the Army Ballistic Missile Agency’s press secretary, Gordon Harris, who dashed in to exclaim, “General, it has just been announced over the radio that the Russians have put up a successful satellite.”

After a stunned moment, Von Braun erupted, “We knew they were going to do it! Vanguard will never make it. We have the hardware on the shelf. For God’s sake! Turn us loose and let us do something. We can put up a satellite in sixty days, Mr. McElroy! Just give us the green light and sixty days!” A somewhat more cautious Medaris, upon thinking of all the things that had to be done to prepare for the launch, interjected, “No, Wernher, ninety days.”16,17,18

Thus was begun, in the very hour of the announcement of the Soviet achievement, a frenzied effort to complete the preparation of the Jupiter C launch vehicle to launch a U. S. satellite. It culminated in the launch of Explorer I about four months later.

In another part of the world, James Van Allen and Larry Cahill were on the USS Glacier for their equatorial and Antarctic rockoon launching expedition. On that momentous date, they were near the Galapagos Islands after transiting the Panama Canal and steaming toward the Christmas Islands in the middle of the Pacific Ocean. Van Allen’s account of the receipt of the news was related in Chapter 4.