A Third of the Way There (13P)

Why did the desert tortoise cross the runway? Now that Scaled Composites planned a longer burn, it could no longer fly under the radar of the FA A. Scaled Composites needed a commercial launch license, and the Office of Commercial Space Transportation (AST) of the FAA required Scaled Composites to do an environmental impact report as part of the application process.

Doug Shane explained, “One of the caveats that came back with that [application] is before taking off in White Knight and before landing in SpaceShipOne, we had to do a sweep of the Mojave runway for desert tortoises. And if we found a desert tortoise, we couldn’t move it. We couldn’t touch it. We couldn’t talk to it. We couldn’t negotiate with it. We couldn’t threaten it. We couldn’t bribe it in any way.

“What we had to do was call the desert tortoise control specialist from Ventura County, about a three-hour drive away, and let them come and negotiate some kind of a successful conclusion.”

Ґ————————————————————————– A

Flight Test Log Excerpt for 12G

Date: 11 March 2004

Flight Number Pilot/Flight Engineer

SpaceShipOne 12G Pete Siebold

White Knight 49L Brian Binnie/Matt Stinemetze

Objective: The twelfth flight of SpaceShipOne. Objectives included: pilot proficiency, reaction control system functionality check, and stability and control and performance of the vehicle with the airframe thermal protection system installed. This was an unpowered glide test.

(source: Mojave Aerospace Ventures LLC, provided courtesy of Scaled Composites)

v___________________________________________ 7

Fortunately, Scaled Composites got their license, no tortoises made runway excursions, and flight 13P was a go. Pete Siebold, who would have the controls of SpaceShipOne for the second power flight, recalls, “That was the first time that we flew basically at our heavy weight. First time we put all the nitrous on board. The airplane was fully ballasted to be a representative weight for the spaceflights. It was part of that incremental weight expansion.”

Right upon release from White Knight at 45,600 feet (13,900 meters) and 125 knots, though, SpaceShipOne ran into problems. “We pulled the nose up to maintain our speed, and we realized that the wings at that weight and speed could not lift the vehicle,” Siebold said. “So, the wings were stalling earlier than anticipated. So, there was this problem that we were faster than we wanted to be to light the rocket, which would result in an overspeed.

But we also didn’t want to abort the flight, because we had some really questionable handling qualities if we dumped all the nitrous to our landing weight. It would send our CG dangerously far aft.”

Flight Test Log Excerpt for 13P

Date: 8 April 2004

Flight Number Pilot/Flight Engineer

SpaceShipOne 13P Pete Siebold

White Knight 53L Brian Binnie/Matt Stinemetze

Objective: The second powered flight of SpaceShipOne. Forty seconds motor burn time. Handling qualities during boost, through transonic and supersonic. Reaction control system functionality inflight and feather configuration stability during transonic reentry. Evaluation of radar tracking capability.

(source: Mojave Aerospace Ventures LLC, provided courtesy of Scaled Composites)

V___________________ J

г >1

A Third of the Way There (13P)A Third of the Way There (13P)Fig. 8.5. Nearly four months after the first rocket-powered flight test, Pete Siebold ignited the rocket engine of SpaceShipOne for 40 seconds and reached an apogee of 105,000 feet (32,000 meters). He hit a top speed of Mach 1.6 on the boost and Mach 0.9 on the way down. Mojave Aerospace Ventures LLC, video capture provided courtesy of Discovery Channel and Vulcan Productions, Inc.

V_________________________________________________ )

Ґ Л

Fig. 8.6. SpaceShipOne reached a third of the way up to the Ansari X Prize goal of 328,000 feet (100,000 meters). This was all part of the incremental testing plan. Although not able to test the feather while moving supersonically, Pete Siebold was high enough to test the reaction control system (RCS). Mojave Aerospace Ventures LLC, video capture provided courtesy of Discovery Channel and Vulcan Productions, Inc.

V

A Third of the Way There (13P)

Ignition was delayed by two minutes as Mission Control tried to decide whether to abort the flight or just to go ahead with the burn.

“One of the benefits we had in delaying was we went to a lower altitude, which would allow us to turn the corner much faster, which minimized the risk of overspeed in starting the flight at a higher than expected airspeed,” Siebold said.

After dropping for more than a mile, Siebold lit the rocket engine at 38,300 feet (11,670 meters). Figure 8.5 shows Siebold during the pull-up after rocket engine ignition.

SpaceShipOne was moving at Mach 1.6 when Siebold shut down the rocket engine after a 40-second rocket burn. The rocket plane reached an apogee of 105,000 feet (32,000 meters), which was about a third of the distance SpaceShipOne needed to climb for the Ansari X Prize. On descent, SpaceShipOne experienced Mach 0.9 while feathered.

The flight overall was a success. Burn duration increased signifi­cantly from the 15 seconds of the first rocket-powered flight.

“We also were able to demonstrate that we could maintain control during the pull-up, which was something on 11P that was sort of in question. Brian was fighting the vehicle trying to keep the wings level. So, overall, I think the only objective that we weren’t able to meet was the supersonic feather reentry” Siebold said.

Figure 8.6 shows Siebold flying SpaceShipOne back to Mojave.

Leave a reply

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>