Moon for What?

Moon was conquered four decades back. Then it was an event of the political one-upmanship. For scientists, it was an act of scientific adventurism, and the major challenge was to take the man to the Moon and bring him back safely to the Earth. The efforts were concentrated towards reaching the Moon than actually studying what is there on the surface of the Moon. Subsequently, also very few unmanned missions took off. Hence, even today, the Moon remains to be the least accurately measured surface for its topography for lack of accurate instrumentation. In short, the information collected during Apollo era was of little significance for understanding the structural characteristics of the Moon. All this prompted to study the Moon afresh in the twenty-first century.

There is very little knowledge about the atmospheric conditions over and around the Moon. Also, no seismic data is available in the post-Apollo era. Probably, the USA was lucky during Apollo era when their human missions had not encountered any significant hazards like solar flares or did not land on an unfriendly surface. In reality, the missions were undertaken with limited knowledge about the Moon’s atmosphere and surface. In fact, much more information is required even to undertake a robotic mission to the Moon. Mapping of Moon’s gravity particularly from the farside, knowledge about its magnetic field and presence of hydrogen in its soil (an indirect method to find the presence of ice/water on the Moon) are important from point of view of planning future human missions. There is a need to develop new data set to navigate on the Moon comfortably [12]. The basic purpose behind these three missions was to fill this data void. Their missions had various state – of-the-art equipment onboard. They undertook the three-dimensional analysis of Moon’s entire surface in real sense for the first time.

Since the basic purpose behind studying the Moon for these three states is similar, there were commonalities in their scientific objectives too. In general, there has been a commonality in the philosophy behind the Moon mission and the benefits it could achieve thereof. Beyond knowledge, the Moon missions also have far-reaching influence on pattern of international relations, economic competition and techno­logical cooperation. As per a Chinese scholar, the exploration of space resources

would help in (1) development of the aerospace industry and demonstrate China’s strength in this field; (2) China will be able to actively participate in competition and collaboration, solving problems concerning lunar resources, domain division and sharing of benefits among different nations; (3) growth of science/manpower within the country; (4) China could become a founding member of an international Moon colonisation club; (5) the manned spaceflight project could help the strategists and policymakers recognise the strategic importance of outer space security to the nations security; and (6) manned Moon landing would help country to reclaim its glory and splendour [13]. More or less the same is true in case of Japan and India also. Such missions would also bring-in direct and indirect economic benefits in the long run mainly because of the technological spin-offs from the entire exercise.

States like India have considerable interests in fields like astronomy, and their dedicated satellite for this purpose called Astrosat is scheduled for launch in near future. To continue with further research in this field, India would like to have its own telescope on the surface of the Moon. This is because this would give astronomers an enormously improved view of the universe. There are some significant advantages for placing telescope on the Moon.[250] First, the Moon has negligible atmosphere. Second, the nights there last for approximately 14 days and lastly the farside of the Moon is the only radio-quiet area in the inner solar system, providing the perfect platform for radio astronomy. It is also possible that the telescope could be built on the Moon itself by using lunar dust (regolith) for manufacture of mirrors. Experts in composite materials regard lunar dust as a prized composite material. A composite using lunar dust could offer an ultra-lightweight material with extraordinary strength [14].

Possibility of building a space platform which can be used for generating power and then beaming it back to the Earth is being debated. As per Mr Madhavan Nair, the then chairman ISRO, India is keen to work on such projects.[251] Moon is considered as the best place to build such platforms. Chinese scientists also believe that the Moon could serve as a new supplier of energy and resources for humankind. For them, lunar development is crucial to sustainable development of human beings on Earth. As per Ouyang Ziyuan, principal scientist of China’s lunar project, ‘Whoever first conquers the Moon will benefit first’ [15].

Apart from space sector, these states are developing various other important sectors of technology too, and biotechnology is one of them. Moon’s surface offers an opportunity to conduct research in this field. Biological experiments could be carried out on plants and animals over here under reduced gravity conditions. It is likely that these states could use the Moon surface for conducting advanced research in newer areas of biotechnology. Their pharmaceutical industry also may benefit from such research.

Overall, the Moon mission offers these states opportunity to develop space – related industries like satellite manufacturing, remote sensing and navigation. It would also indirectly further help them to develop their IT sector, materials industry and Microelectromechanical systems (MEMS) research and development. All these efforts are also expected to further boost their science and technology missions and also would bring economic benefits.