India’s Space Programme

In 1963, India’s entry into the space field made a nascent beginning from a small church in Thumba village in the southern parts of India. It started with launching of sounding rockets in 1963. At that time, the purpose behind investing in space technologies was for scientific investigations of the upper atmospheric and ionospheric phenomenon above the geomagnetic equator. In India, the geomagnetic equator passes through Thumba village (Kerala state in India). During 1960s, the only suitable building to start this job was a church in this village [1]. From this village, India launched its first sounding rocket on November 21, 1963.1 Over last four to five decades, India’s space programme has made significant progress and is today globally reorganised as one of the most successful programmes in recent times. India’s initial progress in the space arena was slow in comparison with the progress made by in the later days. Limited technological expertise and being an underdeveloped economy lack of financial resources were probably the key reasons for this slow growth.

Initial journey of India in this field was founded restricted to sounding rocket experimentation. Such experiments continued almost for a decade. Subsequently, India placed its first satellite in orbit with the help of the erstwhile USSR on Apr 19, 1975. Aryabhatta was India’s first satellite, named after an ancient Indian mathematician of the fifth century AD. It was launched[72] [73] from Kapustin Yar, a rocket launch and development site close to Volgograd in the then USSR. Further, India became a spacefaring nation on July 18, 1980, when it demonstrated that it could send a satellite to orbit by using its own rocket launching system. This was the launch of satellite Rohini 1 with the help of Satellite Launch Vehicle (SLV) rocket from its own launch site located at Sriharikota in South India.

Initially, India’s space programme started under the aegis of Department of Atomic Energy[74] in 1962 with creation of Indian National Committee for Space Research (INCOSPAR). The mandate to the committee was to oversee all aspects of space research in the country. Work began on the establishment of the Thumba Equatorial Rocket Launching Station (TERLS) in 1962.[75] The first sounding rocket was launched with the help form National Aeronautics and Space Administration (NASA) which provided Nike-Apache rocket along with other hardware and training aids.

India’s former Prime Minister Ms. Indira Gandhi dedicated TERLS to the United Nations on Feb 2, 1968. On that occasion, INCOSPAR Chairman Dr. Vikram Sarabhai articulated India’s aspirations in space programme. He stated that India’s programme is civilian in nature, with focus on the application of space technology as a tool for socioeconomic development of the country. The basic aim of India’s space programme was described as a programme capable of using space technologies in the vital areas of development such as communications, meteorology and natural resource management [2]. It is important to make a mention over here that Dr. Vikram Sarabhai gave the initial vision to the Indian space programme, and it was Prof Satish Dhawan (1972-1984) who made this dream a reality.

Indian Space Research Organization (ISRO) was formed under the Department of Atomic Energy in 1969 and was subsequently brought under the Department of Space in 1972. A Space Commission was also setup in the same year which reports directly to the prime minister. The Department of Space along with ISRO operates four independent projects: the Indian National Satellite Space Segment Project, the National Natural Resource Management System (NNRMS), the National Remote Sensing Agency (NRSA) and the Physical Research Laboratory (PRL). The depart­ment also sponsors research in various academic and research institutions.5

Presently, the ISRO has various operating divisions all over the country. These divisions deal with space systems, propulsion, communications, telemetry and tracking, research, launches and other facets of the space programme. The major achievements of the space programme have been in the area of the domestic design, production and launching of remote sensing and communications satellites. Over the years, ISRO has established a strong infrastructure for remote sensing and communications satellite systems with launcher autonomy. In 1992, the ISRO established its commercial outlet called the Antrix Corporation (this word is from

ancient Indian language ‘Sanskrit’—meaning space). This organisation markets space and telecommunications products of ISRO.[76]

Initially, the Indian Space Programme had focused on mainly experimental, low-capability projects that allowed Indian scientists to gain experience in the construction and operation of satellites and launch vehicles. ISRO built (with some foreign assistance) the Bhaskara Earth observation satellites, a communication satellite (the APPLE satellite), and conducted four flight tests on its SLV-3 satellite launch vehicle between 1979 and 1983 [3].

Subsequently, from mid-1980s, India focused on more capable, mission-specific systems. During this period, ISRO started designing and developing the PSLV (polar orbiting satellite launch vehicle) and its successor the geostationary satellite launch vehicle (GSLV). These vehicles were required to launch the indigenously developed Indian Remote Sensing (IRS) satellite and a meteorology and telecommunications ‘Indian National Satellite’ (INSAT). PSLV commenced its operational launches in 1997 and since then has gained an image of most dependable workhorse with ten consecutive flights till April 2007.[77] On September 2, 2007, India successfully launched its INSAT-4CR geostationary satellite with GSLV F04 vehicle. This launch proved India’s capabilities to put satellites weighing around 2,500 kg into the geostationary orbit. First two stages of these GSLV vehicles are derived from PSLV.

Further, ISRO has plans of designing and developing the Geosynchronous Satellite Launch Vehicle mark III (GSLV Mk-III) vehicle which is an entirely new launch vehicle and is not derived from PSLV or GSLV Mk-I/II. In April 2002, Indian government approved Rs. 2,498 crores (US$ 520M) for development of GSLV Mk-83 III, a rocket system capable of launching 4,400 kg satellite to GTO with a designed growth potential towards a 6,000 kg payload capability through minor improvements.[78] It may take another 2-3 years to make this vehicle operational.

India has one of the most robust remote sensing satellite programmes. In the area of satellite-based remote sensing, first-generation satellites called Indian Remote Sensing (IRS) satellites, respectively, named as IRS-1A and 1B were designed, developed and launched successfully during 1988 and 1991 with multispectral cameras which had spatial resolution of 72.5 and 36 m, respectively. Second – generation IRS-1C and 1D were launched during 1995-1997. These satellites had improved spatial resolutions of 70 m in multispectral and 5.8 m in panchromatic bands. These satellites have become main components of National Natural Resource Management System, and the data is being used for agriculture, forestry and water resources management.

Another type of remote sensing satellite called RESOURCESAT-1 was launched into polar orbit in 2003 with sensors useful for land use and resource studies. The system provides 5-m resolution of terrain features. India’s cartographic series of satellites, namely, CARTOSAT 1, 2, 2A and 2B, are satellites with one of the

finest resolution in the world. They offer stereoscopic imagery and make terrain mapping easier. CARTOSAT-1 was launched in May 2005 into polar orbit with two panchromatic imaging cameras, each with 2.5-m resolution. The stereoscopic imaging by the two cameras facilitates the construction of three-dimensional terrain maps. These systems are meeting the demands of terrain visualisation, updating of topographic maps, generation of national topographic database and other utility planning.[79] The resolution of recently launched satellites (2A and 2B launched during 2008 and 2010, respectively) matches the best in the world and offer sub­metric resolution (the American satellite QuickBird is the world’s highest-resolution commercial satellite and offers a resolution of 60 cm).[80] [81] Such satellites have significant defence utilities too.

Satellite communication is one arena where India has made significant invest­ments since the beginning of its space programme. It is difficult to delineate the exact investments made by India in the satellite communication sector since inception of its space programme because India started with the doctrine of developing multipurpose satellites. While most satellites fulfil a single, well – defined mission, INSAT series satellites were initially developed as multipurpose geostationary satellites. Its peculiar design arose partly from very unusual design constraints placed on it by India’s insistence that the satellite carries at least four different payloads.

The most significant of the payloads on INSAT was a package that could receive television programmes. Its importance arose from its special ability to transmit educational television programmes. The second package was designed to provide telephone, facsimile, data, telegraph, videotext and other communication services amongst metropolitan areas. The third was a remote sensing package built to survey the nation’s resources and thus help in its development planning. The last payload was a meteorological system capable of transmitting pictures of cloud-cover imageries and collecting weather information from several thousand unmanned data collection points on the ground; it served to trigger selected disaster­warning sirens in isolated coastal villages under the imminent threat of cyclones (hurricanes) [4].

INSAT-1 series (four satellites) constituted of mixed payloads (communication and meteorology). First two satellites of INSAT-2 series are multipurpose satellites, while 2C and 2D had only communication payloads. The same was the case with the INSAT-3 series in which 3B and 3C were dedicated communication satellites.11 INSAT-4 series of satellites has been initiated. It is proposed to have seven satellites in the series. INSAT-4A, 4B and 4CR satellites of this series are already operational.

These satellites are essentially meant for communication purposes with C and Ku band transponders.12 India has also launched a satellite called EDUSAT in 2004 in geostationary orbit. This is the first Indian satellite built exclusively for serving the educational sector. Over the years, the multipurpose INSAT satellite series are found carrying instruments for meteorological observation and data relay purposes too. However, in 2002 for the first time, an exclusive meteorological satellite called KALPANA-1 was launched. India has opened a new chapter in its weather forecasting and atmospheric research capabilities by positioning satellite called Megha-Tropiques in an orbit of 867 km during Oct 2011. It is India’s first major joint space project with France. This satellite has been launched to fill the void in regard to the atmospheric data in the equatorial region. This mission is also expected to provide boost for aerospace research in Indian universities.

Mini-satellites are more in demand in twenty-first century. Modern-day satellites are coming in various shapes and sizes like micro, nano and pico satellites. ISRO has sensed that investments in this arena have greater commercial viability. With increasing global demand for such satellite systems, ISRO is concentrating on nano­satellite market and has already launched few small satellites for various other countries. On their own, ISRO has launched two small satellites called IMS-1 (previously referred to as TWSat-Third World Satellite weighing around 83 kg) and IMS 1A also known as YouthSat. ISRO is encouraging and helping the educational institutions within and outside the country to design and develop small satellites. Some of the future Indian investments are expected to revolve around development of small satellites and clusters of nano-satellites.

India’s space programme has grown significantly mainly during last one or two decades. Presently, after reaching a certain level of proficiency in various areas of space technologies, Indian scientists are looking for fresh challenges. In November 2006, India’s space scientists and technologists held a brainstorming session at Bangalore to explore the viability of undertaking a manned mission to the Moon by the end of the next decade (2020) and were ‘unanimous in suggesting that the time is appropriate for India to undertake a manned mission’.

Over the years, India has followed the path envisaged by Prof. Vikram Sarabhai in 1970s of the socioeconomic application-oriented space vision for the country. For all these years, countries’ investments have mainly revolved around remote sensing and multipurpose application satellites and related launcher technologies. However, now the state is looking beyond Prof. Sarabhai’s vision of harnessing ‘space’ for the economic and social development. India’s ‘moon dream-a manned space mission’ is a case in point. During 1970s, Prof. Sarabhai had argued that India does not have the fantasy of competing with the economically advanced nations in the exploration of the Moon or the planets or manned spaceflight. This change in India’s policy should be viewed as a midcourse correction. It also demonstrates India’s increasing ambitions in this field.

On Apr 28, 2008, with the success of the PSLV-C9 mission, ISRO succeeded in placing in space ten satellites in the space in single mission. Some of India’s other missions also constituted of multiple satellite launching in a single launch. This indirectly demonstrates the possibility of India’s progress towards to developing multiple independently targetable re-entry vehicles (MIRVs) technology.13 Such technology when fully developed could add teeth to India’s nuclear deterrence. This technology has the potential of making any missile defence configuration employed against the incoming nuclear threat meaningless.

The year 2008 demonstrated India’s reach into deep space by undertaking its first Moon mission. On Oct 22, 2008, India successfully launched its first satellite probe towards the Moon, named Chandrayaan-1. India’s lunar probe succeeded in finding the presence of water molecules on the surface of the Moon. Even though the mission was able to fulfil all its operational objectives, still it is important to note that this mission could stay on its course only approximately half of its designed lifetime. India is expected to launch its second Moon mission in collaboration with Russia by 2014 when a rover (robotic instrument) is expected to land on the Moon. India also has plans for developing its own regional navigational system by launching satellites in to the geostationary orbit in near future.

Apart from deep space missions like the Moon mission, India also has also invested into few other interesting programmes. On Jan 10, 2007, India had successfully launched a recoverable spacecraft into the orbit (mission was known as SRE). This mission was of far greater importance to India because it was for the first time India had tested the reusable launch vehicle technology. The capsule was placed in orbit at an altitude of 625 km and was successfully recovered after 11 days. The last phase of the mission was critical, and the indigenously developed re-entry technology proved its worth. This mission provided precious knowledge about navigation, guidance and control for the re-entry phase (from the outer space to Earth’s atmosphere). Also, this capsule had an indigenously developed thermal protection system essentially in form of silica tiles which proved its worth by withstanding extremely high temperatures during re-entry. This mission could be viewed as a first step towards fulfilling the dream of human space programme. However, India’s plan for a human space flight programme still remains in very early stages of development. Surprisingly, after the success of SRE mission, no other attempts have been made by ISRO to validate this technology by undertaking few more missions. All this clearly demonstrates that human space mission is not on the agenda of the India’s space programme, at least in near future.

India plans to launch its first dedicated astronomy satellite called ASTROSAT in near future. This would be a multiwavelength astronomy mission on an IRS-class satellite into a near-Earth, equatorial orbit by the PSLV. This nearly 2-ton satellite will sport three X-ray instruments that can collect hard and soft X-rays. A fourth instrument will be able to catch X-ray bursts coming from incredibly powerful

eruptions, such as those from giant stars. It is expected that the ASTROSAT’s twin ultraviolet (UV) telescopes will be the best instruments available to astronomers for viewing such objects as young galaxies glowing hot with the light of bright new stars.14 Primary emphasis of ASTROSAT would be to conduct studies of X-ray- emitting objects. This would be India’s first observatory wherein X-ray observations can be taken. However, this Indian programme appears to be running much behind the schedule (the planned launch was in 2008).

The basic limitation for the Indian space programme comes from the fact that the country is still devoid of cryogenic technology. For launches of heavier satellites, a third stage called the cryogenic stage is required. India has yet to mature this technology. In 1992, the then Russian President Boris Yeltsin was to transfer this technology to India but was pressured by the then US administration not do so, fearing that India could divert this technology for its missile programme. Subsequently, Russia had sold six cryogenic engines to India.

It is this cryogenic engine technology required for the GSLV launches that is giving ISRO a few nightmares. The year 2010 witnessed two unfortunate failures for ISRO. On Dec 25, 2010, ISRO’s GSLV-F06 mission with the GSAT-5P satellite onboard failed. The vehicle broke up 53.8 s from liftoff. Surprisingly, the launch failed in the ‘first stage’ of the launch process itself. Earlier on Apr 15, 2010, its first attempt to use an indigenously made cryogenic engine with its GSLV-D3 to launch the GAST-4 satellite had failed. It may take ISRO some more time to test this technology again. Unfortunately, almost for last two decades, India is working towards the development of this technology indigenously; however, the success has still eluded them.

Because of these two major failures in 2010 with GSLV system, India’s capacity of having operational satellites in space and also the transponder capability has reduced significantly. Along with this, two of India’s operational satellites in space are found not able to perform to the fullest of their potential. INSAT-4CR (launched on Sep 2, 2007) is facing problems because of the launching glitches. During the launch, the third stage of the carrier rocket had underperformed, resulting in the satellite being placed into a lower than planned orbit. To put the satellite back in the designed (actual) orbit, much of the fuel onboard of the satellite was consumed, and this in turn had probably reduced the designed 10-year life of satellite to almost the half. Also, INSAT 4B which was launched during March 2007 is being reported to have facing problems since July 7, 2010. There appears to be a power – related problem in one of the solar panels resulting into switching off 50% of the transponders onboard the satellite.

The positive aspect of ISRO’s space programme is their proficiency in launching satellites in the 1- to 2-ton category. PSLV has launched more than 40 satellites

(more than half of them are for other countries) into a variety of orbits to date. Last 21 consecutive missions by this vehicle have been successful.

One important reason behind the significant achievements by the Indian space community is the reasonable budgetary support provided by the government for all these years. ISRO has not faced problems in getting resources and has tended to receive steady governmental support. This is one field where generally bottom-up approach has been found in regard to the growth of overall space programme. It is ISRO which normally decides what projects to undertake and how to proceed. The governmenthas so far been supportive of most of ISRO’s plans. The value of ISRO’s overall assets today is approximately Rs. 100,000 crores ($25 billion) [5]. Since independence, India’s science and technology policies have more or less remained unchanged irrespective of the government in power. India’s space programme is placed directly under the prime minister and hence could be said to be relatively free of major bureaucratic delays.

ISRO has immediate plans for the upgradation of various technologies from propulsion to power systems. Like any other spacefaring nation, India is keen to induct lightweight composites and fibre structures into their platform systems which are expected to bring in major revolution towards weight-carrying capacity of the satellites. ISRO has interest in the ongoing research in this field. By 2025-2030, India proposes to reach the level of technology that they would be in a position to send a spacecraft to the outer space and recover it like an aircraft (on the same lines like the US sends its ISS missions like Atlantis, Discovery, etc.).

The narrative of Indian space programme mostly carried out by developed states (read Western) could be viewed as case of ‘asymmetric ignorance’. Their evalua­tions (particularly during early years of development of India’s space programme) have reflexively been grounded in assumptions about why a poor nation should have a space programme at all. Because the mission of space exploration has been a normatively Western idea, Indian space programme (other Asian programmes too) is understood in relation to aspirations for a Western modernity. Interestingly, the manifestation of Indian space programme does not represent a modernity that is completely Western nor fully postcolonial. It could be viewed as a modernity that is decentred, globalised, constantly transforming and at times even conflicting. India’s scientific and political community links the space programme with the alleviation of poverty, help in education and the requirement for reforms in social sector. Hence, by overcoming any disagreement within the state, India has succeeded in changing the perception from ‘why poor India should not have a space programme?’ to ‘India should have a space programme precisely because it is poor’.[82] By the beginning of twenty-first century with the ‘rise of India’ becoming imminent and the significant progress witnessed by India’s space programme, the perceptions are showing change. Also, the West has started realising the broader commercial relevance of space market in Asia context.

The thrust given by India towards expanding its space programme indicates that the state has major exceptions from its space agenda. It appears to be addressing issues related to space by giving due cognizance to geopolitical, technological and economic realities. From geopolitical viewpoint, India’s success with its space programme has boosted its ‘soft power’ status. In near future, dependence of devel­oping nations interested in space activities is going to fall more on India because of its space infrastructure and economical commercial launching facilities. In the imminent future, India is expected to play an important role towards the formulation of a global space regime which would involve not only the disarmament agenda but also formulation of a policy towards international technological collaboration over areas of mutual concern.