Weiler Takes Control

Griffin quickly asked Ed Weiler to leave the Goddard Space Flight Center, where he was director, to return to his former position of associate administrator for science. Weiler took the job initially on an acting basis, but soon was ap­pointed permanent associate administrator. Weiler knew he faced a controver­sial situation and a program in disarray. His professional background had been with space telescopes, and hence he was viewed as having neither an “outer” nor “inner” planets bias. Moreover, JPL and the Mars scientists knew that Weiler had played a strong role in building up the Mars program under Goldin and O’Keefe.

Weiler appreciated the public’s fascination with Mars. He shared the view that MSR was the long-term goal of the robotic program. He did not agree with Stern about the need to go there sooner at the cost of interim missions. He was conscious that MSL was a project in trouble, and that another decision to delay or not delay was likely to arise. Unlike Stern, he knew he had to have influential allies on a possible delay decision, if that in fact was required. A delay would indeed cost additional money, and MSL was already consuming much of SMD’s planetary budget. A delay decision could also have cascading effects on other missions. A delay decision would not come easily. JPL was still pushing for a 2009 launch, and so was the NASA Administrator.

A seasoned bureaucrat who was politically astute, Weiler announced he would revisit the 2009 Mars budget plan, given “all the criticism.” “When I left the SMD,” Weiler stated, “we had a program in place of taking advantage of every [Mars launch] opportunity and someday, when we have the data we needed and all the science we needed, we’d spend the billions of dollars for a Mars Sample Return.”104

What we need to know, Weiler said, is this: “What is the real cost of Mars Sample Return? Does the community want to pay that cost in terms of missions that could be done in the interim or not done?” Aware that Stern had taken an especially strong stand on the issue of cost control, Weiler promised he would watch costs very carefully and would cancel projects if necessary. “On the other hand, I’m also going to make sure that programs aren’t nickel and dimed to save a few cents, because I have direct personal experience where cost was the only concern. And that was Mars ’98 [the two Mars missions launched in 1998 that failed in 1999]. Do you remember that little baby? And what I got for good cost control on that program was two craters on Mars.”105

He also commented on some other lessons learned from experience: “There are three things you don’t do at NASA. That is cancel Spirit, Opportunity, or Hubble.”106 Finally, Weiler made it clear organizationally that he understood the status of Mars as “first among equals” in the planetary program. He inher­ited the organizational structure that placed the Mars director under another individual, James Green, who was in charge of planetary programs. Weiler dealt with this individual for planets other than Mars. Weiler wanted an integrated planetary program. But when it came to Mars, McCuistion could work with Weiler directly.107 The perception—as important as reality in government—was that Weiler intended to restore Mars’s status to where it had been during his first tour as associate administrator for science, organizationally and in funding.

While controversy abounded in Washington and the planetary science com­munity over the future of the Mars program, Weiler found that the existing operations on Mars were going extremely well. Indeed, the Phoenix mission illustrated how a sequence of missions, coming every 26 months, each building on the one before, could succeed.

In 2002, the Odyssey orbiter had detected substantial amounts of water ice lying just beneath the Martian surface. It was Phoenix’s task to follow up and dig for ice in this northern polar region. The principal scientist of Phoenix, Peter Smith of the University of Arizona, had written his Scout proposal as a clear follow-up to Odyssey.

On May 25, Phoenix descended. When it landed successfully, after several nerve-wracking minutes, the celebration began. “It was hugs, cheers, and high – fives all around.” Griffin was there in the control room at JPL. He pointed out that Phoenix marked the first successful landing without airbags since Viking in 1976.108

In June, Phoenix was put to work, its robotic arm extending to shovel soil and ice to its lander instruments. “This is an incredibly science-rich location,” exclaimed Smith. In short order, Phoenix “found proof” of water-ice on Mars which was away from the polar caps. Then, later in the month, Phoenix discov­ered evidence of mineral nutrients in Martian surface material which would be essential to life. Rather than being hostile, the soil results were “friendly” to life. In July, Phoenix detected water vapor coming off a scoop of Martian soil. A tiny oven on the lander heated the dirt until ice mixed with it and evaporated. For the first time, instruments touched water and did more. “We have tasted the water and it tastes good,” said William Boynton of the University of Arizona. “It’s something we’ve been waiting quite a while for.”109

August began, and rumors flew that Phoenix had made discoveries that pre­cluded life, and then that it had found something so profound about life that NASA had contacted the White House. The reality, as NASA and Phoenix leaders explained at a hastily called teleconference with reporters on August 5, was that Phoenix had indeed made an important discovery, although not one that was necessarily worthy of presidential notification. It was the presence of perchlorate, a chemical compound commonly found in the Atacama Desert of Chile, one of the driest places on Earth. Atacama was often used as an analogue for conditions found on Mars. Researchers had found “extremophiles” at Ata­cama. Some of them survived on perchlorate. The Phoenix team held that the finding was highly favorable to the possibility of microbial life on Mars.110

As Phoenix fascinated scientists and received considerable media attention, Weiler took increasing control of the science program. He confirmed Stern’s plan to launch a flagship outer planets mission to either Saturn or Jupiter as soon as possible, but perhaps not as quickly as would Stern. He dropped the ap­proach that would spend relatively little on Mars in the early and middle years of the second decade and maximize spending as 2020 approached. Weiler wanted missions at regular opportunities throughout the decade, although it remained to be seen what they would be. Like Stern, Weiler saw MSR as the goal of the robotic science program, but he was willing to let it recede beyond 2020 to allow for adequate funding of missions at periodic, nearer-term launch opportunities.

Meanwhile, he firmed up plans for the first flight beyond MSL. Because of the conflict of interest that obviated the 2011 mission, this Scout project would go up in 2013. It would be called MAVEN, for Mars Atmosphere and Volatile Evolution. An orbiter, MAVEN’s task was to study Mars’s atmosphere and in­quire how it had dissipated. With so little atmosphere, there would be no water on Mars’s surface. The cost would be $485 million.111

MAVEN might be followed in 2016 with a rover potentially costing $1.4 billion. This rover could test equipment useful for an eventual MSR mission.112 An international planning group now estimated the actual MSR mission to cost up to $8 billion or more—an expense that would require international sponsor­ship.113 Stern had said he would try to get partners to supplement U. S. expen­ditures for his 2020 MSR mission. Weiler stated that he would have to do the same for a post-2020 mission.

While the goal of MSR was clear, Weiler’s date for this mission was not, and the projects leading up to it still had to be clarified. Weiler understood that the follow-the-water decade established when he was formerly associate

administrator was ending and a new strategy had to take its place. If Stern’s ap­proach was not acceptable—and the Mars scientist, Mustard, called it “smoke and mirrors”114—Weiler had to develop a substitute long-term strategy, even as he helped make exceedingly difficult decisions about the immediate challenges facing the program.

On October io, Weiler, Griffin, and others connected with the Mars pro­gram met to determine MSL’s fate. JPL reported that it was still having technical problems that would cost perhaps another $ioo million to resolve. Moreover, making the 2009 launch window would be quite difficult, but still possible, JPL said. The cost of MSL was now pushing close to $2 billion. If NASA had to delay the mission to the next launch window, two years off, NASA would have to spend even more. Cancellation was a possible option, but Griffin did not con­sider it seriously. Once again, he decided to retain the October 2009 launch date.

However, Griffin said he would meet again with Weiler and others in January 2009 for a final decision, based on program progress between October and then. Afterward, Weiler explained the rationale for the approach to the decision: “It’s easy to say, ‘Let’s cancel it and move on,’ but we’ve poured over a billion and a half dollars into this. This science is critical. It’s a flagship mission in the Mars program and as long as we think we have a good chance to make it, we are going to do what we have to do.”115

Stern, outside NASA but assertive in his views, told the media he would raise two questions about the decision: First, “How much new damage will this do to other parts of the Mars planetary and wider SMD program to continue on this path; and secondly, will the time for testing before the launch in ’09 really be sufficient to guarantee that this [more than] $2 billion investment will work?”116

On October 31, Stern wrote the editor of Science that a 2020 MSR launch could have been possible had NASA supported his cost-control policies, espe­cially early in 2008, in regard to MSL. But “higher levels” at NASA rejected his proposed options for addressing MSL and other problems.117

While JPL worked overtime, and NASA Headquarters pondered what to do about MSL, the national elections took place. On November 4, Barack Obama was elected president and given a Congress with a strong Democratic majority. During the campaign, he had said he was a strong supporter of space and would increase the NASA budget. However, his specific space policy priorities were unknown, and advocates of various positions were eager to influence him to favor their claims.

Stern looked to the new president to address the ills of NASA. He published an op-ed in the New York Times on November 24, lamenting NASA’s “Black Hole Budgets.” He asked Obama to extirpate the “cancer [that] is overtaking our space agency.” The cardinal example of the overrun issue was the “poorly – managed, now over-$2 billion Mars Science Laboratory.” He again pointed out that when he fought the cost increases, “I found myself eventually admonished and then neutered by still higher ups, precipitating my resignation earlier this year.”118

Garvin, who had fought Stern inside NASA, countered Stern’s outside cam­paign against MSL in a letter to the editor of Science, November 28. He pointed out that MSL was less costly in current dollars than Viking and would have far more capability. The cost had grown, he said, because of technical problems not foreseen. Nevertheless, thanks to MSL, he argued, NASA was “ready to assault the Martian frontier.”119

That assault on Mars would not now include the $2 million sample cache Stern had added to MSL. In a decision widely viewed as a rebuke to Stern, NASA removed this device. A NASA spokesman said it was done after “exten­sive interaction with the science community” had indicated its low science value. A science advisory group told NASA that the cache, coming late in MSL’s devel­opment, “was likely to complicate MSL operations, leading to interruptions in the activities related to the prime mission.”120 Deleting the cache, NASA stated, would also save money on MSL.121