Introduction

At 1:25 a. m. (EDT) on August 6, 2012, NASA’s Mars Science Laboratory (MSL), encased in a larger spacecraft and protected by a heat shield, hit the atmosphere of Mars. After a journey of eight months and 352 million miles, MSL embarked on what NASA called “seven minutes of terror.” In this brief span of time, MSL would need to decrease its speed from 13,000 miles per hour to almost zero—or it would crash. Failure was unthinkable for a $2.5 billion mission at a time when NASA was under budgetary siege. The Mars atmosphere immediately caused the spacecraft to slow, but seven miles above the Mars surface the spacecraft was still flying at 900 miles per hour. At this point, the spacecraft unfurled a giant, 51-foot parachute.

As the spacecraft’s rate of descent gradually diminished, MSL disconnected from the spacecraft that had been carrying it to this point. The spacecraft flew off, and retro-rockets blasted from MSL, causing it to come to a virtual hover two stories above the Mars surface. At one ton in weight, containing delicate instruments, the car-sized machine was too heavy to complete its landing with retro-rockets or airbags. Instead, for the first time, a newly invented device attached to MSL, called the sky crane, deployed, and cables carefully lowered the machine to the ground. Finally, with cables disconnected, the sky crane rocketed away from what NASA had now safely placed on the surface—the nuclear-powered MSL rover called Curiosity. All this happened automatically

154 million miles from Earth. The landing occurred at 1:32 a. m. (EDT). It took another 14 minutes for radio signals to go from Mars to Earth and reach the Jet Propulsion Laboratory (JPL) in Pasadena, California. Allen Chen, flight dynamics engineer at JPL, received the information. He announced excitedly, “Touchdown confirmed. We’re safe on Mars!”1

Never before had a technology this complex gone to Mars. MSL, with its Curiosity rover, climaxed a multiyear program geared to “following the water.” Its goal was to discover whether Mars was now or previously capable of being inhabited. MSL Curiosity would not actually find life. It aimed at locating the chemical “building blocks” of life. A later flight, or series of flights, would return a sample of Mars soil and rock to Earth’s laboratories for analysis. Such a mis­sion of far greater expense lay well in the future. But this particular mission was critical to Mars exploration—a milestone in a long-term quest that had begun over a half century earlier, building on what had gone before, enabling what might come ahead.

Getting to this point was a remarkable accomplishment, not only in science and technology, but in public policy and program implementation. Not only did NASA have to surmount severe technological barriers, but it also had to meet daunting political challenges along the way. In some ways, the political problems were greater than those that were technical. Large technical achieve­ment, especially when dealing with government and costing billions over many years, does not happen automatically. It takes a strong push of political advocacy from inside and outside NASA to make Mars a funding priority, establish a program, and carry it out successfully. Who does what to forward Mars explora­tion? How? The answers are critical to the history of NASA and the Red Planet.

The intent of this book is to illuminate the role of key individuals and institu­tions that have constituted a moving force for policy action in Mars exploration. Its thesis is that an informal and changing coalition of advocates inside and out­side NASA has sought to make NASA the institutional embodiment and lever for their quest to the Red Planet. The influence and limits of this coalition, as well as their scientific and political strategies, have shaped the course and pace of the Mars exploration program.

The study contends that over the long haul, the advocacy coalition has pro­pelled Mars exploration forward. This has been particularly the case as it has turned individual missions into an integrated and sequential whole, beginning in the early 1990s. It has built political support for this program and sustained it in the face of changing times and opposition. The actors most critical to coali­

tion leadership and influence affecting the Mars exploration program have been senior officials of NASA. Decisions and strategies in Washington, D. C., have powered (or frustrated) exploration on Mars.

The focus of this book is not the history of science, or advance of technology, or cultural aspects of Mars. Such subjects come up, but not as foreground. This book seeks to reveal and analyze the politics and policy behind Mars exploration.