The End of the Cold War and Beyond: Chandrayaan-1

With the end of Cold War and the demise of Soviet Union India had to restruc­ture its foreign policy to meet the emerging geopolitical realities. The Indian political elite began to formulate new recipes to begin closer relations with the United States. India’s economic liberalization in the early 1990s and the momen­tum sustained by successive governments created a conducive environment for a closer relationship between India and the United States. The Clinton administra­tion’s grand strategy of “engagement and enlargement” was favorably received by the Indian political leadership. However, despite these expanding links, the overall political relationship continued to be undermined by the India-Pakistan dispute over Kashmir and India’s nuclear weapon and ballistic missile programs.

Notwithstanding the controls on technology transfer India went alone or worked with others. It managed to keep a steady pace in developing launch vehi­cles and satellites for India’s domestic economic, commercial, and strategic needs. The Polar Satellite Launch Vehicle, PSLV, was followed by the Geosynchronous Satellite Launch Vehicle (GSLV), a technically upgraded version of PSLV. The architecture of the GSLV included a cryogenic stage that replaced the top two stages of the PSLV. Considering the pound per thrust, these were much more superior to ordinary liquid engines that used other propellant combinations.

The 1998 nuclear weapons tests by India attracted worldwide condemnation and onerous sanctions were imposed on India by the United States and many other developed countries. The United States prohibited trade with a long list of Indian entities and curtailed, for a short time, a broad array of cooperative space initiatives. The geopolitical situation that ensued after the terrorist attacks of 9/11 changed the situation again and catalyzed closer cooperation between India and the United States.

The Bush administration lifted the sanctions in September 2001 and a frame­work was established through the US-India High Technology Cooperation Group (HTCG) for closer technological cooperation between the two countries. Critical civilian technologies that were once out of bounds—space and nuclear— became tools for improved bilateral relations. Kenneth I. Juster, undersecretary of commerce in June 2004, indicated the various steps that were being taken by the US government to foster closer relations with India. He noted that “since the lifting of the U. S. sanctions in September 2001, only a very small percent­age of our total trade with India is even subject to controls. The vast majority of dual-use items simply do not require a license for shipment to India.” During the fiscal year 2002 (October 2001 through September 2002), 423 license applica­tions for dual-use exports to India, worth around $27 million, were approved by the US government. This was 84 percent of all licensing decisions for India that year. In 2003 the United States approved 90 percent of all dual-use licens­ing applications for India. These actions were indicative of the new strategic partnership with India.92

In March 2005, a US-India Joint Working Group on Civil Space Cooperation was established. The inaugural meeting was held in Bangalore in June 2005. This forum was meant to provide a mechanism for enhanced cooperation in areas including joint satellite activities and launch, space exploration, increased interoperability among existing and future civil space-based positioning and navigation systems, and collaboration on various earth observation projects. At this time a memorandum of understanding was signed for a joint moon mis­sion.93 Called Chandrayaan-1 it was a continuation of the international efforts to study the lunar surface to understand origins and the evolution of the moon.94

The $83 million Chandrayaan-1 had a cluster of eleven instruments, five from the Indian side and six from foreign agencies: three payloads from the European Space Agency (ESA), two from NASA, and one from Bulgarian Academy of Sciences (BAS). The experiments aimed to map and configure the chemical and mineralogical composition of the lunar surface using more enhanced instru­ments than previously attempted. The spacecraft was launched using India’s trusted workhorse, the Polar Satellite Launch Vehicle (PSLV)—C11. Its launch weight was 1,380 kilograms. The two instruments sent by NASA were the Miniature Synthetic Aperture Radar (MiniSAR) prototype developed by the Johns Hopkins University Applied Physics Laboratory and the US Naval Air Warfare Center to look for water/ice in the permanently shaded craters at the lunar poles, and the Moon Mineralogy Mapper (M3). M3 was an imaging spec­trometer developed at Brown University and the Jet Propulsion Laboratory, and was designed to assess and map lunar mineral resources at high spatial and spec­tral resolutions.

November 14, 2008, was an historic day for the Indian space program. A Moon Impact Probe (MPI) with the Indian tricolor, representing the national flag painted on its surface, made contact with the lunar soil. The timing of the MPI was coordinated to coincide with the birthday of Jawaharlal Nehru, the first prime minister of independent India, who gave his passionate support to the growth of science and technology—especially nuclear and space sciences. It was a significant moment for NASA too to see the maturation of a space program that it helped to found with the scientific elite in India in the early 1960s.