The Satellite as a New Plow for Rural Farmers: NASA,. Hasselblad Cameras, Coconut Wilt Disease, and. the Origins of Remote Sensing in India

Among the developing countries only Brazil and India have advanced remote sensing capabilities. Ideas of using modern remote sensing techniques for observing natural resources began to take shape in the late 1960s. Many scientists were sent by Brazil and India to US institutions, mainly MIT and Stanford, for basic training in the use of remote sensing technology. Beginning in the 1920s, black-and-white aerial photography was used for land survey and river assessments. Multispectral imagery was introduced in the 1970s.52 The availability of revolutionary Landsat images produced by a series of American earth observation satellites in the 1970s opened new pos­sibilities for the Indian planners to use this technology for the management of natural resources.53 These images were used extensively for surveys and for tracking natural vegetation.54 The promise of this new technology led to the institutionalization of remote sensing in India.55 NASA played an important part in the evolution of the technique by training scientific personnel and providing scientific and technological instruments to promote this new field. This helped impart technological know-how to the Indian scientists enabling them to build the first Indian Remote Sensing (IRS) satellite. The eminent Indian scientist P. D. Bhavsar viewed remote sensing in India to be full of cooperative and collaborative efforts, between scientists and engineers, tech­nologists and bureaucrats, planners and decision-makers, at all levels, within and across national boundaries, between the technically advanced and devel­oping nations, and between developing nations themselves.56 What follows is a short account of the relationship between NASA and India since the early 1970s in the field of remote sensing.

As stated in the previous chapter, the UN conference on the Peaceful Uses of Outer Space held at Vienna in August 1968 was an important milestone. It was attended by delegates from many countries who presented papers that dealt with applications of aircraft-based remote sensing in agriculture, forestry, soil mapping, watershed inventory and planning, pest and disease detection, map­ping of forest fires, range surveys, hydrology and water resources development, and geological applications. The EROS, Earth Resources Observations Satellite program of the US Department of Interior, was discussed for the first time. One of the major objectives described was “to disseminate data collected by the satel­lite to appropriate scientists in order to facilitate assessment of land and water resources of the U. S. and other nations desirous of this information.” The con­ference also discussed in great detail all facets of international cooperation and opportunities, including economic, legal, and social problems of the exploration and use of outer space.

The decade following this conference saw a great spurt in the international collaborative activities in the field of remote sensing. In its initial phase these activities were almost entirely bilateral. On September 28, 1969, US president Richard Nixon told the UN General Assembly that America would proceed with its earth resources program so as to share the benefits of its work in this field with other nations “as this program proceeds and fulfills its promise.” In accor­dance with UN General Assembly resolution 2600 (XXIV), NASA concentrated on actions to inform the international community about the evolving American program, to offer orientation and training, and to mount aircraft-based pro­grams in preparation for the later use of satellite data.57

After this UN meeting Vikram Sarabhai constituted a small group at the space physics division of the Space Science and Technology Centre (SSTC) in Trivandrum to develop remote sensing. This small group was later moved to the Physical Research Laboratory, PRL, in Ahmedabad. It was expanded and later moved to Space Applications Centre, SAC, located in Ahmedabad under the eminent meteorologist and father of remote sensing in India, P. R. Pisharoty.58

The first interdepartmental meeting was convened by ISRO in December 1969 for acquainting the policymakers and departmental chiefs about the potentialities of remote sensing for earth resources surveys. About 40 members representing vari­ous organizations attended this meeting59 and several members of parliament and a number of Indian policymakers in the government attended for part of the time. As a result of this, it was decided to conduct a small remote sensing project for the early detection of the blight disease, which affected the coconut plantations. This wilt disease devastated coconut plantations in the Travancore-Cochin area of the Kerala state in Southern India. It affected about one hundred thousand acres of coconut plantations and was estimated to cause an annual loss of about $2 million. Hence any method of early detection was of great economic value to the state of Kerala. It was decided to carry out an aircraft survey for this purpose. It was also decided to conduct this work with minimum expenditure by utilizing the existing facilities and manpower of the ISRO. Coincidentally, ISRO’s Thumba Equatorial Rocket Launching Station was also situated in this locality and the detection of coconut wilt disease using an aerial remote sensing technique was taken up as a good oppor­tunity for justifying the usefulness of a space research program to the nation.

ISRO communicated this interest to NASA and their request was forwarded to Edwin Henry Roberts, an expert scientist in agriculture and forestry remote sensing at the University of California, Berkeley.60 Roberts suggested it was pos­sible to identify diseased trees through aerial remote sensing at an early phase of the disease. Further, at ISRO’s request, NASA arranged to send one scientist from Roberts’s lab in early 1970, to help in taking the necessary photographs. The pro­gram was accommodated in the existing agreement for the conduct of scientific experiments between two space research agencies of India and the U. S.

As a collaborative effort between India and NASA, two 70-mm Hasselblad cameras and films were loaned to India. The helicopter was given to TERLS by the Hydro Meteorological Services (HMS) of the USSR, an agency that collabo­rated with ISRO on scientific work in rocket meteorology and upper atmosphere studies. It took photographs from a height of about one thousand feet using Kodak infrared films and panchromatic black-and-white films using different color filters. A total of about four hundred infrared false color (these images are produced by coloring the invisible portion of the electromagnetic spectrum) and black-and-white pictures were taken over a period of five days. Most of the pho­tographs showed very fine details and were found to contain very valuable infor­mation. The photographic results confirmed that the disease could be detected by the new technique even before visual symptoms appeared.

The success of the aforementioned program led ISRO to plan a continuing future program. As a second step, ISRO took up the project to complete an infra­red scanner for aircraft use. The infrared scanner was constructed in France at the laboratories of CNES by an Indian scientist and an engineer in collaboration with a French group. It was used for the thermal mapping of oceans and land areas from an aircraft platform. Many scientists were sent to American institutions along with P. R. Pisharoty to learn the benefits of using remote sensing technology.

To convince the Indian bureaucracy, a test was conducted to show how remote sensing technologies could be used for addressing agricultural prob­lems that were faced by India. In 1973 user agencies participated in a seminar on remote sensing, and specially prepared papers were presented on the role of space technology in various application areas to convince the user depart­ments of their importance. Such efforts not only promoted the applications, but also established a healthy trend where the user agencies defined the sensor needs for the satellite, a key factor in the success of the program. To introduce remote sensing technology for applications in various fields the National Remote Sensing Agency, NRSA, was set up in 1975 under the Department of Science and Technology, which became the nucleus of Indian remote sensing. It was involved in the training and education of scientists.

Six years after NASA had launched Landsat 1 (ERTS-1) in 1972, NRSA nego­tiated a deal to receive Landsat data directly in India by setting up a receiving station. The governments of the United States and India signed a memorandum of understanding, which covered the services to be offered to India and the terms of payment to the United States. NRSA sent its engineers for training to the United States in order to help set up a Landsat receiving station in Hyderabad, located in the state of Andhra Pradesh, which was commissioned in 1979. The station was expanded in later years to receive data from the French SPOT, the European Remote Sensing Satellite (ERS-1), and the US NOAA meteorological satellites, Canada’s Radarsat, and India’s own Indian Remote Sensing, IRS, series of satellites. The follow-on second generation IRS satellites, IRS-1C and IRS-1D, with better spectral and spatial resolution, stereo viewing and on-board recording capabilities further added to the country’s remote sensing ability.