The Post-Apollo Program
Soon after taking the oath of office in January 1969 President Nixon established a Space Task Group (STG) chaired by Vice President Spiro Agnew. Its three other members were NASA administrator Tom Paine, Lee A DuBridge, the president’s science adviser, and Robert C. Seamans, the secretary of the Air Force and former deputy administrator of NASA. The STG’s aim was to find ways of making cuts in the space program, and to come up with a “coordinated program and budget proposal” that factored in “international implications and cooperation.”4 It submitted its report to the president on September 15, 1969, and met the press two days later.5
The STG proposed three alternatives programs having different budgetary levels. All shared the same goal, “and I emphasize the word ‘goal,’” said Agnew, “and not a commitment—a manned landing on Mars before the end of the century.” Each offered a different path to that goal depending on how quickly it was achieved.6 At the core of the STG’s program lay an orbiting space station and a space transportation system. The station, envisaged for the mid-1970s, would be initially designed to house 6-12 astronauts. It could be expanded by the subsequent addition of modules to accommodate 50-100 people. Paine emphasized that since “a substantial reduction in the cost of space transportation [was] essential. . . a new and truly low-cost space transportation system [was] an integral part of the space station concept.”7 Three components were foreseen for this system: a reusable space shuttle that could access low-earth orbit from a terrestrial launch pad, reusable space tugs to move people and equipment from the shuttle’s cargo bay to various other orbits as well as onto the moon, and, third, a reusable nuclear engine, derived from the Nerva project then well under way.8
The original shuttle concept made maximum use of existing aeronautical technology.9 As described by Paine, the shuttle, which would hopefully make its maiden flight in about 1976 or 1977, would “look like one of these giant new 747 intercontinental jets, but instead of being on the airstrip horizontally for a takeoff it will take off vertically, so it will be racked up sitting on its tail. Instead of having jet engines slung under its wings,” the NASA administrator went on, “it will have rocket engines, of the type that power our Saturn 5 rockets, clustered in the tail.” The second “orbiter stage,” mounted on the nose of this “booster stage,” would also be a spacecraft with wings “about the size, weight and appearance of a big transcontinental Boeing 707.” Both were fully reusable, had a crew of two (plus passengers in the orbiter), and would be piloted back to earth at the end of their missions, where they would land horizontally, like airliners. It was hoped that the reusability of the space transport system could reduce the cost of injecting one pound of payload into orbit by at least an order of magnitude, from some $500 with a Saturn launch vehicle in the 1960s, to something below $50 per pound of payload in orbit in the 1970s. Seamans was quick to emphasize that the Department of Defense (DoD) was particularly attracted by this feature.10
While DoD support was obviously an asset in Congress it had important technological implications. Apart from requiring a large payload bay and extremely powerful motors, the DoD insisted on a high cross-range capability (on the order of 1,250 nautical miles) for the orbiter.11 The Air Force wanted the shuttle to be able to recover an orbiting payload and return to the Vandenberg Air Force Base in Southern California after a single 110-minute shuttle orbit. The landing strip would have moved about 1,250 miles east as the earth rotated during this time. The operational flexibility required by these kinds of missions required sacrificing payload weight for the added weight of the Thermal Protection System (TPS) that would be needed to protect the orbiter in the hypersonic maneuvers called for. It also required NASA to replace a straight-wing configuration with a delta-wing.12
What of international collaboration? The STG identified it as one of the five principal program objectives of the post-Apollo program. During the month prior to the release of its report the Nixon administration issued two National Security Study Memoranda, NSSM 71 and NSSM 72, signed by the national security adviser, Henry Kissinger. NSSM 71, dated August 14, 1969, established an interagency committee to review policies “governing the access by foreign countries to certain advanced technologies vital to our national security.” It had to “give full consideration” to the administration’s commitment “to international cooperation in the peaceful application of nuclear and space technologies and to the necessity for the free exchange of scientific knowledge when national security is not impaired.”13 NSSM 72, dated September 4, 1969, called for the creation of a small ad hoc group on International Space Cooperation to report on possibilities for cooperation “with friendly countries as well as the Soviet Union.”14
In a letter to the president in August 1969 Paine welcomed the policy review authorized by NSSM 71, which he hoped would “clear away unnecessary restrictions which could seriously obstruct the increased international activity” Nixon had called for.15 He saw possibilities for collaborating in planetary exploration with the Soviet Union, and for closer collaboration with Japan, Australia, and Canada. But it was Western Europe that particularly interested him. The possible scope of cooperation reflected NASA’s judgment of where European scientific and technological strengths lay, and what they could afford. The emphasis was placed on applications satellites, planetary missions (along with the Soviets), and the inclusion of foreign astronauts in post-Apollo manned flight programs.16 The State Department echoed these sentiments.17 Indeed, at this stage of planning, no one saw much scope for Europe doing more than being involved in science and applications, and in using the space station and the space transportation system. Participation in hardware development as such was not seriously considered.