NASA, Space Science, and Western Europe

.^Although the Space Act of 1958 specifically mandated NASA to promote international collaboration, it was up to officials in the new organization to define the terms and conditions under which they would work with partners, most of whom had little or no experience in the domain. Chapter 1 described the parameters that Frutkin believed were essential if international collabora­tion was to be a success.1 He was emphatic that those who wished to work with NASA had to come to the table with their own scientific ideas, their money to fund them, an industrial capacity able to produce the hardware, and with official support for their program. In the late 1950s very few countries were in any posi­tion to meet these demands. In the context of the widespread interest in space at the time, this meant that scientists, industries, and national administrations had to come up with experiments, payloads, adequate funding, and an institutional home for space before they could exploit the opportunities that NASA offered. In short, NASA played a major role in kick-starting and orienting incipient space programs in many friendly countries.

A significant step toward international collaboration in space science was taken about six months after the Space Act was signed into law. It was announced at the second meeting of the Committee on Space Research (COSPAR). COSPAR was set up by the International Committee of Scientific Unions to maintain the momentum of the IGY.2 At the meeting in The Hague in March 1959 the American delegate to the committee, Richard Porter, made a formal offer of international cooperation on behalf of the United States. NASA’s offer, con­veyed by Porter, was that the United States would support the work of COSPAR by launching “worthy experiments proposed by scientists of other countries,” either as “single experiments as part of a larger payload, or groups of experi­ments comprising complete payloads.”3 In the former case the proposer would be “invited to work in a United States laboratory on the construction, calibra­tion, and installation of the necessary equipment in a U. S. research vehicle.” If that was not possible, a US scientist could help the originator bring the payload to fruition or, less desirably, the investigator abroad could simply provide the payload as a “black box” for installation. Entire payloads, which could weigh anywhere from 100 to 300 pounds and be placed in orbits ranging from 200 to 2,000 miles, would be accepted if recommended by COSPAR. In such cases

the United States was willing to “advise on the feasibility of proposed experi­ments, the design and construction of the payload package, and the necessary pre-flight environmental testing.” NASA also offered substantial funding for resident research associate positions in both experimental and theoretical space research.

This offer had an electrifying impact on those present. As Frutkin writes, “[T]he future of international cooperation in space exploration was raised at a stroke from the token to the real.”4 COSPAR emerged as an essential forum bringing together “precisely those individuals and national agencies best situated to motivate a positive response from their governments,” so facilitating bilateral and multilateral programs. NASA’s prestige and desirability as an international partner of choice was also confirmed at The Hague.

European space scientists were quick to respond to NASA’s offer, and remain unanimous in their praise for the help that NASA provided them, particularly in the 1960s. Reimar Lust, who was a leading figure in the European space effort for many years, spoke for many when he gave the Fulbright Fortieth Anniversary lecture in Washington in April 1987. “That the Europe of today can be seen as an autonomous, real and reliable partner of the United States in various fields of science and technology,” said Lust, “is thanks to the immensely unselfish help given to it by the United States.”5 This chapter fleshes out that remark by describing the crucial role that the agency and the US administration played in kick-starting the space programs in the “big four” European countries: Britain, France, Italy, and West Germany. This country-based approach is followed by a brief description of Europe’s contribution to the Hubble Space Telescope and a survey of two major projects undertaken between NASA and the European Space Agency (ESA). The first, the International Solar Polar Mission, is interesting for the light it throws on the misunderstandings that can arise in international col­laboration when partners are constrained by different funding mechanisms for space projects. The second, the Cassini-Huygens planetary mission to Saturn and Titan, is a prime example of a successful joint venture of immense cost, complexity, and scientific interest.

The tapestry that weaves together NASA and Western Europe in space science has hundreds of threads and tens of knots, and it grows ever richer. This chapter can do no more than highlight some salient features. Some readers may have preferred an account that chose to be broader rather than to probe deeper. They are referred to a National Academies publication that surveyed about a dozen col­laborative projects between the United States and Europe in selected domains of space science, and that drew lessons for future collaboration from them.6

The United Kingdom

In October 1957 Harrie Massey, the leader of the British space science com­munity, was at a reception at the Soviet Embassy in Washington, DC, when the launch of Sputnik was announced.7 He was taken completely by surprise. In fact 18 months earlier the British IGY Committee had concluded that American and Soviet plans to launch satellites were not likely to succeed, and that even if they did, they were not likely to be of much scientific interest. This is not to say that space research was entirely neglected in the country. On the contrary, the Royal

Society and the Ministry of Supply—responsible for the country’s guided missile program—supported the development of a sounding rocket program for upper atmosphere research. After several test flights of their own Skylark, launched from the Anglo-Australian rocket range in Woomera, an experimental program got under way just after Sputnik II orbited the earth.8 The excitement of exploit­ing the new device, the conviction that any useful scientific data beyond the atmosphere would be freely available to all, and of course the cost led British scientists and policymakers to remain aloof at first from embarking on a satellite – based research program.

Two main factors inspired a change of thinking. One was internal pressure from leading figures such as Bernard Lovell, the director at Jodrell Bank, whose giant radio-telescope had tracked the trajectory of Sputnik over British soil.9 Lovell and some sections of the government, notably the Foreign Office, argued that the United Kingdom would be “classed as an underdeveloped country” if she did not launch her own satellite.10 Then there was the wish to improve relations with the United States. The launch of the Sputniks transformed the parameters of scientific and technological collaboration between the two nations. For a decade the British had resented the constraints imposed on scientific and technological exchange by Washington with one of its most faithful allies, par­ticularly in sensitive areas.11 A few days after Sputnik II was launched the min­ister of defense told Parliament that the Soviet satellites had “helped precipitate closer collaboration with the United States” and remarked that this new impetus “offers new prospects which we dared not hope for a few months ago.” The country’s crash program to develop a hydrogen bomb was given a major boost.12 Cooperation in space science also moved center stage. In September 1958, six months before NASA’s offer at COSPAR, American officials offered to launch a British payload on an American satellite more-or-less free of charge. In October the administration released a report praising British achievements and extolling the importance of international collaboration in space. The State Department hoped that Britain could quickly launch a payload into space, so becoming the first nation after the superpowers to do so, denying the communist bloc another space first.

The British community was in no position to meet a tight deadline: the use of the Skylark sounding rocket still defined the limits of its space ambitions. However, the new opportunities for UK-US cooperation led the Royal Society and the Ministry of Supply to reconsider a satellite program. Massey master­minded two major policy statements in October 1958 in which he made a strong plea for an autonomous British program; he was even opposed to launching a British satellite with an American rocket, as this would involve “an obvious loss of prestige.” This national approach was quickly undermined, both for lack of domestic support and by NASA’s offer at COSPAR in March 1959. Six weeks after Porter made his statement at The Hague the British National Committee on Space Research, chaired by Massey, had established working groups to define experiments that could be launched by NASA.

In June 1959 Massey led a cohort of British scientists armed with 11 experi­ment proposals on a trip to NASA.13 They were warmly received. A provisional agreement was reached for using a Scout rocket to launch three satellites at roughly annual intervals.14 There would be no exchange of funds and clean interfaces. The scientific instruments would have to be tested using sounding rockets, preferably British but if need be also American. The first launches would probably be from Wallops Island and if the launch failed every experiment would be launched a second time. NASA would provide the body of the first satel­lite and auxiliary services such as power supplies and telemetry: Britain would gradually assume responsibility for the entire satellite. The agency’s tracking and telemetry network, possibly supplemented by British facilities, would be avail­able. For the first satellite NASA also offered to receive the telemetry tapes from the ground stations, catalog and edit them, and compress them into digital form before sending them to the United Kingdom for further analysis. NASA also provided equipment to have a quick look at the first data received from the satel­lite so that experimenters could gauge if their instruments were performing as hoped. The entire process of data reception and analysis would be handed over to the British teams after this first “tutorial.”

The design of the satellite required close collaboration between teams on both sides of the Atlantic. The performance characteristics of the Scout rocket had still not been fixed early in 1960: payload capacity and orbit capability were in flux, and temperature and vibration conditions at launch were only vaguely known. As Massey and Robins explain, the scope for mishap was immense. NASA had to design “the satellite structure, power supplies, data storage devices and encoders, and telemetry transmitters.” Groups in Britain, for their part, “would design the instrument sensors, which would interlock and interact with practically every aspect of the NASA design activities.”15 They had chosen their seven experiments by December 1959 by drawing as much as possible on the experience gained with Skylark. This favored instruments that studied the high altitude ionosphere.

To manage the project a joint US/UK working group, which met every three months, was established. By the end of 1960 a number of major difficul­ties still loomed on the horizon. Data encoding and transmission was proving more demanding than anticipated. Mechanically complex external paddles were needed to support the solar power cells. For safety reasons the maximum launch inclination of the Scout from Wallops Island was 52°, somewhat less than the British scientists had planned for.

The restraint on launch inclination was lifted during the course of 1961, when it became clear that the Scout would not be available early in 1962, as planned. NASA accepted the additional cost of launching with the already developed and reliable Thor-Delta rocket from Cape Canaveral. The British were more than willing to oblige, and took advantage of the enhanced telemetry coverage by enrolling radio stations in Singapore, Port Stanley in the Falkland islands, and on a Royal Navy ship off the coast of Tristan da Cunha.

The first launch of the satellite, on April 10, 1962, was aborted due to a fault in the fuel system of the rocket. A few weeks later, on April 26, 1962, Britain’s first scientific payload was successfully lofted into space on board a satellite bap­tized Ariel 1. Its capacity was degraded unexpectedly three months later by a high-altitude test of a hydrogen bomb that temporarily perturbed the opera­tion of its instruments and permanently damaged the solar cells providing elec­tric power. Ariel 2 (launched from Wallops Island in March 1964) and Ariel 3 (launched from the Western Test Range in May 1967) followed, with the United

Kingdom taking increasing responsibility for the engineering design, construc­tion, and testing of the satellite itself, as well as for data handling and analysis.

As was mentioned earlier, NASA originally hoped that, in the context of Cold War rivalry, a British satellite might secure a space first for the free world. This was not to be. On September 29, 1962, Canada’s Alouette 1 was successfully orbited by a Thor-Agena rocket.16 NASA provided the launch vehicle, launch facilities, and a worldwide network of ground stations. The satellite was designed and built by the Defense Research Telecommunications Establishment (DTRE) in Ottawa. The project was intended to help Canada gain a space capability, to acquire new data for the engineering of high-frequency communication links, and to enhance the DTRE’s considerable in-house expertise on the effects of the ionosphere on the scattering and deflection of radar beams. Alouette 1 was the first successfully launched satellite to be developed indigenously by a country other than the United States or the Soviet Union.