ALMAZ
The Almaz orbital complex had four major segments:
• the manned spacecraft which formed the re-entry vehicle (VA);
• the working compartment;
• the compartment with the apparatus for taking long-focus photographs; and
• the propulsion module.
As with the American MOL, in its original design the Almaz was to be launched with its crew riding in a spacecraft on top. This eliminated the task of developing a rendezvous and docking system. However, further analysis led to a revision of this concept. In particular, because the presence of the heavy manned spacecraft would
reduce the mass of the space station, and hence the amount of scientific and military equipment that it could carry, in 1967 the State Commission endorsed a two-launch option in which the space station and the manned spacecraft would be autonomous vehicles. This would not only enable the station to grow in mass to exploit the 20- tonne payload capacity of the Proton, it would also allow the station to be operated by a series of crews. Furthermore, because the crew was to be launched by a Proton, it was decided to mate the re-entry vehicle to a Functional-Cargo Block (FGB)[5] to produce the 20-tonne Transport and Supply Ship (TKS)[6] which would dock with the station to deliver a crew together with the cargo required for their tour of duty. The crews would be exchanged at intervals of two or three months, and the station would have an operational life of up to two years, being unoccupied only during the short intervals between one crew departing and the next one arriving. This revision would make more efficient use of the hardware than the original plan.
On board Almaz, the crew would use equipment that could be precisely aimed to study military targets on Earth, including camouflaged and mobile ones. In addition, it would be possible to undertake scientific and ecological monitoring, including the early detection of bushfires and the spread of pollution by rivers to the oceans. The equipment was state of the art for that time. The primary optical instrument was a photographic camera that used a mirror with a diameter of almost 2 metres and a focal length of 10 metres.[7] In fact, the design was so complex that it took 3 months to negotiate with Zenith, the Krasnodar firm assigned the task of manufacturing it, precisely how the system was to operate. When the design was judged too complex to be built within the specified 18-month period, it was decided to produce a simpler apparatus, which was named Agat (‘Agate’).
The crew would work around the clock. During one shift, two cosmonauts would work while the third rested. One of the two active cosmonauts would work full-time, with the other providing assistance during breaks from the physical exercise regime. They would rotate shifts every 8 hours. One of the serious issues was logistics, not only to sustain the crew but also to operate the camera, which would require a lot of film. In effect, the long-term use of the Almaz was dependent on the cargo capacity of the TKS. In order to maximise the operational life of the station, the docked TKS was to be responsible for controlling the attitude of the orbital complex.
The station and the re-entry vehicle of the TKS were developed at TsKBM under Chelomey’s leadership, and the FGB was designed by Branch No. 1 in Fili, which was often referred to as TsKBM(F).
In fact, this was not Chelomey’s first attempt to develop a spacecraft for manned use. In the mid-1960s he conceived the LK-1 for a circumlunar mission. This was to be a Gemini-shaped spacecraft that would be launched by Proton and carry two cosmonauts on a trajectory around the back of the Moon and straight back to Earth. But Chelomey had seen this merely as a precursor to a programme to beat the
Two versions of the Almaz station. Left: the original project with the TKS resupply ship showing the station (5); the functional cargo block of the TKS (3); re-entry vehicles (1, TKS and 7, station – original concept only); solar panels (2, TKS and 4, station); and a radio-locator (6). Right: the version that used a Soyuz ferry showing the Soyuz (1); and the station (2). (Copyright Igor Afanasyev) |
Americans to a lunar landing. Although during Khrushchov’s time the official effort for this goal was Korolev’s development of the N1 rocket for the programme that became known as N1-L3, Chelomey sought funds for a massive new rocket for his LK-700 programme in which a spacecraft of his own design would make the lunar landing. When the LK-1 was cancelled in a favour of using the Proton to launch the L1 spacecraft designed by Korolev-Mishin, and work on the LK-700 ceased, Almaz became Chelomey’s main project and he incorporated in it all the lessons which he had learned from developing military and scientific satellites, the Proton rocket, and the preliminary design work on the LK-1 and LK-700 projects.
At launch, the mass of the Almaz station was 18.9 tonnes. It was 11.61 metres in length, had a maximum diameter of 4.15 metres, and a usable volume of the order of 90 cubic metres. The hermetic section was in the form of a stepped cylinder, with the crew compartment in ‘front’ of, and adjoining, the wider working compartment. At the rear of the working compartment was an unpressurised section housing the propulsion system, through which ran a small transfer tunnel leading to the passive portion of the docking system.
The crew compartment was 3.8 metres in length and 2.9 metres in diameter. A variety of apparatus was mounted on its exterior, including the antennas for the Igla rendezvous system, solar orientation sensors, a television camera, a laser device and an infrared sensor. At lift-off, this section was protected by an aerodynamic shroud that was jettisoned once the vehicle was above the atmosphere. This compartment had the OD-4 optical port and the POU-II apparatus to take panoramic images with a resolution of 8 metres, the Kolos-5D water tanks and a mechanism to measure the body mass of the weightless cosmonauts. In order to minimise the use of propellant, and thereby maximise the operational life of the station, this compartment housed a system that used electrically driven gyroscopes to control the orientation of the craft. In effect, this compartment was a ‘room’ in which the cosmonauts could take meals,
do physical exercise using a treadmill, perform medical examinations and rest while off duty. There was a small table with a food warmer. Around the table were small chairs and food stores. Above the table were the controls for the station’s guidance system. Beneath the table there were removable panels providing access to medical equipment, medicines, clothes, the cosmonauts’ personal items, a tape player with audiocassettes and a radio receiver.
The narrow cylinder of the crew compartment was attached by a 1.2-metre-long conical frustum to the working compartment. This was 4.15 metres in diameter and 4.1 metres in length, and it contained the station’s primary apparatus. The protective covers for the windows and external equipment were to be discarded in orbit. There were 14 cameras and optical devices. The rear part of the compartment was almost fully occupied by the Agat-1 apparatus and the OPS guidance system. The core of the Agat-1 was an optical telescope for monitoring objects on land, at sea and in the air. It used a telescope in a hermetic conical section that viewed through an aperture in the ‘floor’, with the imagers installed on top, almost at ceiling level. There was equipment to process images, and to enable the crew to study them. Important data could be coded and sent to the Flight Control Centre (TsUP) by the Biryuza radio transmitter, which used antennas located at the rear of the station. If a more detailed analysis was required, the imagery could be returned to Earth by a special capsule that was accessible from the transfer compartment.[8] A cosmonaut could place film and video into it using a mechanical manipulator. Once released, the capsule would automatically perform re-entry and land by parachute. With mass of 360 kg, it could accommodate 120 kg of film or 2 km of recording tape. The transfer compartment also contained two EVA suits, and could be hermetically isolated from the working compartment to serve as an airlock to enable cosmonauts to work outside the station.
The propulsion system had two rocket engines, each of which had a thrust of 400 kilogram-second, four correction engines with a thrust of 40 kilogram-second, and 28 smaller engines with thrusts of 20 kilogram-second and 1.2 kilogram-second to provide respectively ‘rough’ and ‘fine’ control over the station’s stabilisation. Most of the engines were positioned around the axial transfer compartment. An unfolding solar panel was mounted on each side of the transfer compartment. With a total area of 52 square metres, their solar transducers were capable of providing a maximum electrical output of 3.12 kVA.[9]
The intention was to build the entire Almaz system, comprising the Proton rocket, the OPS station and the TKS spacecraft, in the M. V. Khrunichev Machine Building Plant (ZIKh) in Fili, which was then under Chelomey’s control, and to initiate flight operations in 1969. But because the systems were required to operate reliably for up to two years with minimal maintenance this made Almaz extremely sophisticated for its time, and despite their early work on the LK-1 the TsKBM engineers did not have the experience of systems for manned spacecraft that had been gained by their
TsKBEM rivals. As a result, the programme soon fell behind schedule, making the first operational flight in 1969 impracticable. Although by 1970 the cores of ten stations had been assembled – eight for testing and training, and two for flight – the real challenge for Chelomey’s designers was the TKS spacecraft.
In the meantime, in September 1966 the ‘Almaz Group’ of military cosmonauts started to train at the Cosmonaut Training Centre (TsPK) in Zvyozdniy Gorodok (Star Town) near Moscow to operate the first Soviet space station. By the end of 1971 there were 28 cosmonauts in training for Almaz, making this the largest group ever formed for one space programme.