Hipparcos Touches All of Astronomy
Astrometry may be the “Cinderella” of modern astronomy, but astronomers in all fields are continually reminded that everything starts with mapping brightness and position. Hipparcos leveraged historical measurements by providing the most accurate reference frame.46 With the invention of the photographic plate in the midnineteenth century, comparing photographs of star positions from different eras could in principle reveal star motions, but it’s usually unclear which set of plates has the largest errors. With Hipparcos as the rock-steady “gold standard,” astronomers gleaned new insights from century-old data.
The hundred or more observations that the satellite made of each star allowed it to detect variability. Over 12,000 variable stars were found in the database, about 10 percent of all the stars studied, two-thirds of which were previously unknown.47 The observation of the variables was coordinated with a network of amateur astronomers, who filled in with data when a star was temporarily out of the satellite’s viewing zone. Hipparcos was also able to resolve or distinguish over 24,000 double and multiple star systems.48 Binary stars were actually a headache for the science team, because they mimicked problems in the photometry and a faint companion could throw off the position of the brighter star in a pair if the two images were not well separated.
A sampling of projects will give a sense of the dizzying range of investigations enabled by the Hipparcos data. Galactic archaeology is a good example. Hipparcos data showed that some of the stars in the neighborhood of the Sun are part of a disk that’s ten times thicker than the disk where most of the Milky Way’s star formation takes place.49 Differences in the heavy element abundance in the two components are consistent with a model where the Milky Way was assembled from smaller galaxies over billions of years.50 Ten percent of the stars in the spherical halo as well as some in the “thick” disk seem to come from a single “invader” galaxy that was disrupted soon after the Milky Way formed. Also, the fine view of stellar motions provided by Hipparcos allows astronomers to turn back the clock and trace the Sun’s passage around the galaxy and in and out of the galactic disk over the past 500 million years. During that time the Sun has passed through spiral arms four times, each corresponding to an extended cold spell in the climate history of the Earth. It is speculated that exposure to high cosmic ray flux in the spiral arms leads to more cloud cover and longer Ice Ages.51
Hipparcos data were used to show that the dim companions in some stellar systems are brown dwarfs. These elusive objects are gas balls less than 8 percent of the mass of the Sun; too cool to shine by nuclear fusion, they emit a feeble infrared glow and slowly contract as they leak their energy into space. In 1991, a star being observed by Hipparcos dimmed slightly on five occasions due to the shadow of a giant planet passing in front of it. This was four years before Mayor and Quleoz stunned the world with their discovery of the first planet beyond the Solar System. But nobody was looking for such signals in the Hipparcos data, so the eclipses remained undetected until 1999.52 Since then additional exoplanets have been dug out of the database.
Hipparcos also produced a beautiful confirmation of general relativity (we earlier described a test of relativity by Cassini). Einstein’s theory states that mass bends light, and it was first confirmed in 1919 by observations of the deflection of starlight as it grazed the limb of the Sun while observed during an eclipse. General relativistic bending is 1.7 arc seconds at the limb of the Sun, and it declines with the projected distance from the Sun’s gravity but is still a detectable 0.004 arc seconds at right angles to the sight line toward the Sun.53 This subtle measurement shows that the paradigm of curved space applies everywhere. The curvature is so slight that it doesn’t negate the use of Euclidean triangles to measure distances. To test general relativity, while firming up measurements of the size and expansion rate of the universe, is quite an achievement for a small and often-overlooked space mission.