Systems Management and Its Promoters

Four social groups developed and spread systems management: military offi­cers, scientists, engineers, and managers. All the groups promoted aspects of systems management that were congenial to their objectives and fought those that were not. For example, the military’s conception of ‘‘concurrency’’ ran counter in a number of ways to the managerial idea of ‘‘phased plan­ning,’’ while the scientific conception of ‘‘systems analysis’’ differed from the engineering notion of ‘‘systems engineering.’’ Academic working groups pro­moted by scientists and engineers conflicted with hierarchical structures found in the military and industry, and the working groups’ informal meth­ods frustrated attempts at hierarchical control through formal processes. The winners of these bureaucratic fights imposed new structures and processes that promoted their conceptions and power within and across organizations.

In the early 1950s, the prestige of scientists and the exigencies of the Cold War gave scientists and military officers the advantage in bureaucratic com­petition. Military leaders successfully harnessed scientific expertise through their lavish support of scientists, including the development of new labora­tories and research institutions. Scientists in turn provided the military with technical and political support to develop new weapons.18 The alliance of these two groups led to the dominance of the policy of concurrency in the 1950s.19

To the air force, concurrency meant conducting research and development in parallel with the manufacturing, testing, and production of a weapon. More generally, it referred to any parallel process or approach. Concurrency met the needs of military officers because of their tendency to emphasize external threats, which in turn required them to respond to those threats. Put differ­ently, for military officers to acquire significant power in a civilian society, the society must believe in a credible threat that must be countered by mili­tary force. If the threat is credible, then military leaders must quickly develop countermeasures. If they do not, outsiders could conclude that a threat does not exist and could reduce the military’s resources. For the armed forces, ex­ternal threats, rapid technological development, and their own power and re­sources went hand in hand.

Scientists also liked concurrency, because they specialized in the rapid cre­ation of novel ‘‘wonder weapons’’ such as radar and nuclear weapons. Even when scientists had little to do with major technological advances, as in the case of jet and rocket propulsion, society often deemed the engineers ‘‘rocket scientists.’’ Scientists did little to discourage this misconception. They gained prestige from technical expertise and acquired power when others deemed technical expertise critical. Scientists predicted and fostered novelty because discovery of new natural laws and behaviors was their business. Novelty re­quired scientific expertise, whereas ‘‘mundane’’ developments could be left to engineers.

While the Cold War was tangibly hot in the late 1940s and 1950s, American leaders supported the search for wonder weapons to counter the Communist threat. Although very expensive, nuclear weapons were far less expensive than maintaining millions of troops in Europe, and they typified American prefer­ences for technological solutions.20 Military officers allied with scientists used this climate to rapidly drive technological development.

By 1959, however, Congress began to question the military’s methods be­cause these weapons cost far more than predicted and did not seem to work.21 Embarrassing rocket explosions and air-defense system failures spurred criti­cal scrutiny. Although Sputnik and the Cuban Missile Crisis dampened criti­cism somewhat, military officers had a difficult time explaining the apparent ineffectiveness of the new systems. Missiles that failed more than half the time were neither efficient military deterrents nor effective deterrents of congres­sional investigations. The military needed better cost control and technical reliability in its missile programs. Military officers and scientists were not par­ticularly adept in these matters. However, managers and engineers were.

Engineers can be divided into two types: researchers and designers. Engi­neering researchers are similar to scientists, except that their quest involves technological novelty instead of ‘‘natural’’ novelty. They work in academia, government, and industrial laboratories and have norms involving the pub­lication of papers, the development of new technologies and processes, and the diffusion of knowledge. By contrast, engineering designers spend most of their time designing, building, and testing artifacts. Depending upon the product, the success criteria involve cost, reliability, and performance. Design engineers have little time for publication and claim expertise through product success.

Even more than design engineers, managers pay explicit heed to cost con­siderations. They are experts in the effective use of human and material resources to accomplish organizational objectives. Managers measure their power from the size and funding of their organizations, so they have conflict­ing desires to use resources efficiently, which decreases organizational size, and to make their organizations grow so as to acquire more power. Ideally, managers efficiently achieve objectives, then gain more power by acquiring other organizations or tasks. Managers, like engineers, lose credibility if their end products fail.

As ballistic missiles and air-defense systems failed in the late 1950s, mili­tary officers and aerospace industry leaders had to heed congressional calls for greater reliability and more predictable cost. In consequence, managerial and engineering design considerations came to have relatively more weight in technology development than military and scientific considerations. Man­agers responded by applying extensive cost-accounting practices, while engi­neers performed more rigorous testing and analysis. The result was not a ‘‘low cost’’ design but a more reliable product whose cost was high but pre­dictable. Engineers gained credibility through successful missile performance, and managers gained credibility through successful prediction of cost. Be­cause of the high priority given to and the visibility of space programs, con­gressional leaders in the 1960s did not mind high costs, but they would not tolerate unpredictable costs or spectacular failures.

Systems management was the result of these conflicting interests and ob­jectives. It was (and is) a melange of techniques representing the interests of each contributing group. We can define systems management as a set of orga­nizational structures and processes to rapidly produce a novel but dependable technological artifact within a predictable budget. In this definition, each group appears. Military officers demanded rapid progress. Scientists desired novelty. Engineers wanted a dependable product. Managers sought predictable costs. Only through successful collaboration could these goals be attained. To suc­ceed in the Cold War missile and space race, systems management would also have to encompass techniques that could meet the extreme requirements of rocketry and space flight.