The Demonstration Flights

With the return of Columbia and its crew at the end of STS-i, the first flight was a success, but the shuttle demonstration flight-test program was still just getting started. Even before sts-1 had launched, preparations for sts – 2 were already under way. The mission would build on the success of the first and test additional orbiter systems.

sTs-2

Crew: Commander Joe Engle, Pilot Dick Truly

Orbiter: Columbia

Launched: 12 November 1981

Landed: 14 November 1981

Mission: Test of orbiter systems

sTs-1 had been a grand experiment, the first time a new nasa human launch vehicle made its maiden flight with a crew aboard. Because of that, the mission profile was kept relatively simple and straightforward to de­crease risk. Before the shuttle could become operational, however, many more of its capabilities would have to be tested and demonstrated. In that respect, the mission of sts-2 began long before launch.

“One of the things I remember back then on sts-2,” recalled astronaut Mike Hawley,

when they mate the shuttle to the solid rocket motor on the external tank in the Vehicle Assembly Building [vab, at Kennedy Space Center in Florida], they do something called the shuttle interface test,. . . making sure the cables are hooked up right and the hydraulic lines are hooked up properly and the orbiter and the solids and all ofthat functions as a unit before they take it to the pad. In those days we manned that test with astronauts, and for sts-2 the astronauts that manned it were me and Ellison Onizuka. We were in the Columbia in the middle ofthe night hanging on the side ofthe ET [external tank] in the vab going through this test.

Part of the test, Hawley explained, involved making sure that the or – biter’s flight control systems were working properly, including the moving flight control surfaces, the displays, and the software.

It turns out when you do part of this test and you bypass a surface in the flight control system, it shakes the vehicle and there’s this big bang that happens. Well, nobody told me that, and Ellison and I are sitting in the vehicle going through this test, and I forget which one of us threw the switch, but. . . there’s this “bang!” and the whole vehicle shakes. We’re going, “Uh-oh, I think we broke it. ” But that was actually normal. I took delight years later in knowing that was going to happen and not telling other people, so that they would have the same fun of experiencing what it’s like to think you broke the orbiter. . . . That was a lot of fun. Except for flying, that was probably the most fun I ever had, was working the Cape job.

In contrast to STS-i, commanded by NASA’s senior member of the astro­naut corps, sts-2 was the only demonstration flight to be commanded by a “rookie” astronaut—Joe Engle, who had earned air force astronaut wings on a suborbital spaceflight on the x-15 rocket plane.

Engle’s path to becoming the shuttle’s first NASA-unflown commander began about a decade earlier, when he lost out on a chance to walk on the moon. Engle had been assigned to the crew of Apollo 17, alongside com­mander Gene Cernan and command module pilot Ron Evans. However, pressure to make sure that geologist-astronaut Harrison Schmitt made it to the moon cost Engle his slot as the Apollo 17 Lunar Module pilot. When Engle was informed that he was being removed from the mission, Deke Slayton discussed with him options for his next assignment.

“I wouldn’t say I was able to select, but Deke was very, very good about it and asked me, in a one-to-one conversation, not promising that I would be assigned to a Skylab or not promising I would be assigned to the Apollo – Soyuz mission, but implying that if I were interested in that, he would sure consider that very heavily,” Engle recalled.

He also indicated that the Space Shuttle looked like it was going to be funded and looked like it was going to be a real program. At the time, I think I respond­ed something to the effect that it had a stick and rudder and wings and was an airplane and was kind of more the kind of vehicle that I felt I could contribute more to. And Deke concurred with that. He said, “That was my opinion, but if you want to fly sooner than that, I was ready to help out. ” I think Deke was happy that I had indicated I would just as soon wait for the Space Shuttle and be part of the early testing on that program.

The decision meant that Engle was involved in the very beginnings of the shuttle program, even before the contractors and final design for the vehicle had been selected.

Rockwell and McDonnell Douglas and Grumman were three ofthe primary com­petitors initially and had different design concepts for the shuttle, all pretty much the same, but they were significantly different in shape and in configuration for launch, using different types of boosters and things. I was part ofthat selection pro­cess only as an engineer and a pilot and assessing a very small part ofthe data that went into the final selection. But it was interesting. It was very, very interesting, and it, fortunately, allowed me to pull on some ofthe experience that I had gotten at Edwards in flight-testing, in trying to assess what might be the most reasonable approach to either flying initial flights, data-gathering and things ofthat nature.

Engle and sts-2 pilot Richard Truly served as the backup crew for sts-1 and trained for that mission alongside Crippen and Young. Not long after the first mission was complete, a ceremony was held in which Engle and Truly were presented with a “key”—made of cardboard—to Columbia. “I think the hope was that would be a traditional handover of the vehicle to the next crew,” Engle recalled.

It was a fun thing to do. In fact, I think it was done at a pilots’ meeting one time, as I recall. John and Crip handed Dick and I the key, and I think there were so many comments about buying a used car from Crip and John that it became more ofa joke than a serious tradition, and I don’t recall that it really lasted very long. I think it turned from cardboard into plywood, and I don’t recall that it was done very long after that. Plus, once we got the next vehicles, Discovery, Chal­lenger, on line, it lost some significance as well. You weren’t really sure which ve­hicle you were going to fly after that, so you didn’t know who to give the key to.

In the wake of the tile loss on the first shuttle mission, a renewed effort was made to develop contingencies to deal with future problems and, ac­cording to Engle, additional progress was made.

Probably the biggest change that occurred was more emphasis on being able to make a repair for a tile that might have come off during flight. John and Crip lost a number of tiles on STS-1. Fortunately, none were in the critical underside, where the maximum heat is. Most of them were on the OMSpod and on the top of the vehicle. But the inherent cause of those tiles coming loose and separating was not really understood, and on sts-2 we were prepared to at least try to fill some of those voids with RSI [Reusable Surface Insulation], the rubbery mate­rial that bonds the tile to the surface itself. So in our training, we began to fold in eva training, using materials and tools to fill in those voids.

Exactly seven months after the launch of STS-1, the launch date for the second Space Shuttle mission arrived. Sitting on the launchpad, Engle was in a distinctive position—on his first nasa launch, he would be returning to space. It would, however, be a very different experience from his last; he was actually going to stay in orbit versus just briefly skimming space, as he had in the x-15. In fact, he said, while his thoughts on the launchpad did briefly touch on his previous flights on the x-15, space wasn’t the place he was thinking about returning to. Instead, he was already thinking ahead to the end of the mission.

As I recall, the only conscious recollection to the X-15 was that at the end of the flight we would be going back to Edwards and landing on the dry lake bed. And I think, for all of the training and all of the good simulation that we re­ceived, that’s where I felt the most comfortable, the most at home, going back to Edwards. And at the end of the flight, when we rolled out on final approach going into the dry lake bed, that turned out to really be the case. It was a de­manding mission and there were a lot of strange things that went on during our first flight, but when we got back into the landing pattern, it just felt like I was back at Edwards again, ready to land another airplane.

According to Engle, the launch was very much like it had been in the simulators. However, even though the first shuttle mission had provided real-world data on what an actual flight would be like, there were still, at the time the sts-2 crew was training, ways in which the simulators still did not fully capture the details of the ascent. The thing that most surprised him during launch was “the loud explosion and fireball when the solid rocket boosters were ejected. That was not really simulated very well in the sim-

The Demonstration Flights

17. An aerial view of the launch of Columbia on the second Space Shuttle mission, sts-2. Photo taken by astronaut John Young aboard nasas Shuttle Training Aircraft. Courtesy nasa.

ulator, because I don’t think anybody really anticipated it would be quite as impressive a show as that. I don’t remember that [John and Crip] men­tioned it to us, but that caught our attention, and I think we did pass that on in briefings to the rest of the troops, not just to [the sts-3 crew], but to everyone else who was flying downstream.”

If the launch was relatively nominal, things changed quickly after that. Two and a half hours into flight, Columbia had a fuel cell failure, which, under mission rules, required an early return to Earth—cutting the mission from 125 hours to 54. “We were disappointed,” Engle said.

As I recall, we kind of tried to hint that we probably didn’t need to come back, we still had two fuel cells going, but at the time, it was the correct decision, be­

cause there was no really depth of knowledge as to why that fuel cell failed, and there was no way of telling that it was not a generic failure, that the other two might follow. And, of course, without fuel cells, without electricity, the vehicle is not controllable. So we understood and we accepted. We knew the ground rules; we knew the flight rules that dictated that if you lost a fuel cell, that it would be a minimum-time mission. We had really prepared and trained hard and had a full scenario of objectives that we wanted to complete on the mission. Of course, everybody wants to complete everything.

In fact, according to Engle, the only real disappointment he and Truly felt at the time was that, after investing so much training time into preparing for the mission goals, they weren’t going to have the time to fully accomplish them. “I don’t think we consciously thought, ‘Well, we’re not going to have five days to look at the Earth.’ I don’t think that really entered our minds right then, because we were more focused on how we are going to get all this stuff done.”

Rather than accept defeat, Engle and Truly managed to get enough work done even in the shortened duration that the mission objectives were de­clared 90 percent complete at the end of the flight. “We were able to do it because we had trained enough to know precisely what all had to be done, and we prioritized things as much as we could,” Engle explained.

Fortunately, we didn’t have tdrss [Tracking and Data Relay Satellite System] at the time. We only had the ground stations, so we didn’t have continuous voice communication with Mission Control, and Mission Control didn’t have continuous data downlink from the vehicle either, only when we’d fly over the ground stations. So when our sleep cycle was approaching, we did, in fact, pow­er down some of the systems and we did tell Mission Control goodnight, but as soon as we went los, loss of signal, from the ground station, then we got busy and scrambled and cranked up the remote manipulator arm and ran through the sequence of tests for the arm, ran through as much of the other data that we could, got as much done as we could during the night. We didn’t sleep that night; we stayed up all night. Then the next morning, when the wakeup call came from the ground, why, we tried to pretend like we were sleepy and just waking up.

After the flight, I remember Don Puddy saying, “Well, we knew you guys were awake, because when you’d pass over the ground station, we could see you were drawing more power than you should have been if you were asleep. ” But that was about the only insight they had into it.

The first use of the robot arm was one of the major ways that STS-2 moved forward from sts-1 in testing out the vehicle. “From the beginning we had the rms, the remote manipulator system, the arm, manifested on our flight, and that was a major test article and test procedure to perform, to actually take the arm, to de-berth the arm and take it out through ma­neuvers and attach it to different places in the payload to demonstrate that it would work in zero gravity and work throughout its envelope. Dick be­came the primary rms-responsible crew member and did a magnificent job in working with the arm people.”

The premission training for testing the arm included working with its camera and figuring out what sort of angles it could capture. Truly learned that the arm could be maneuvered so that the camera pointed through the cabin windows of the orbiter. Once they were in orbit, Truly took advan­tage of this discovery by getting shots of himself and Engle in the cabin, with Truly displaying a sign reading “Hi, Mom.”

Sally Ride, who was heavily involved in the training for the arm, also worked with the crew to help develop a plan for Earth observations dur­ing the mission. “They were both very, very interested in observing Earth while they were in space, but they weren’t carrying instruments other than their eyes and their cameras,” Ride said.

They wanted to have a good understanding of what they would be seeing, what they should look for, and what scientists wanted them to look for. The crew had to learn how to recognize the things that scientists were interested in: wave patterns on the surface ofthe ocean, rift valleys, large volcanoes, a variety ofdifferentgeological features on the ground. I spent quite a bit oftime with the scientists, as a liaison be­tween the scientists and the astronauts who were going to be taking the pictures, to try to understand what the scientists had observed and then to help the astronauts understand how to recognize features of interest and what sort of pictures to take.

During the flight, not only was the crew staying extra busy to make up for the lost time, but CapCom Terry Hart recalled an incident in which the ground unintentionally made additional, unnecessary work for the crew.

It turned out that President Reagan was visiting Mission Control during the sts-2, and it was just [over eight months] after he had been shot. . . . This was one of his first public events since recovering ffrom that. Of course, everyone was very excited about that, and it turned out he was coming in on our shift. . . . Mission Control was kind of all excited about the president coming and every­thing. He came in, and I was just amazed how large a man he was. I guess TV doesn’t make people look as large as they sometimes are. And I was on comm, so I was actually the one talking to the crew at that time when he came in. So I had the chance then to give him my seat and show him how to use the radios, and then I actually introduced him to the crew. I said something to the effect that, “Columbia, this is Houston. We have a visiting CapCom here today. ” I said, “I guess you could call him CapCom One. ” And then the president smiled and he sat down and had a nice conversation for a few minutes with the crew.

While the event was a success and an exciting opportunity for the astronauts, Mission Control, and the president, Hart recalled that it was later discovered that a miscommunication had caused an unintended downside to the uplink.

We didn’t realize we had not communicated properly to the crew, and the crew thought this was going to be a video downlink opportunity for them. . . . They had set up TV cameras inside the shuttle to show themselves to Mission Control while they were talking to the president, when the plan was only to have an audio call with the president, because the particular ground station they were over at that time didn’t have video downlink. We had wasted about an hour or two of the crew’s time, so we kind of felt bad about that.

We didn’t learn about that until after. .. . It all worked out and everything, but it just shows you how important it is to communicate effectively with the crews and to work together as a team and all. And of course, most of the crews, the astronauts, they’re all troopers. They want to do their very best, and if Mis­sion Control is not careful, you’ll let them overwork themselves.

The extra time the crew members gained by not sleeping at night allowed them to be more productive, but the lost sleep, and a side-effect problem related to the failed fuel cell, caught up with them as the mission neared its end. The membrane that failed on the fuel cell allowed excess hydrogen to get into the supply of drinking water. “So we had very bubbly water,” Truly said.

Whenever we’d go to take a drink, .. . a large percentage of the volume was hy­drogen bubbles in the water, and they didn’tfloat to the top like bubbles would in a glass here and get rid of themselves, because in zero gravity they don’t; they just stay in solution. We had no way to separate those out, so the water that we

The Demonstration Flights

i8. From the Mission Control room at Johnson Space Center, President Ronald Reagan talks to Joe Engle and Richard Truly, the crew of sts-2. Courtesy nasa.

would drink had an awful lot of hydrogen in it, and once you got that into your system, it’s the same way as when you drink a Coke real fast and it’s still bub­bly; you want to belch and get rid of that gas. That was the natural physiologi­cal reaction, but anytime you did that, of course, you would regurgitate water. It wasn’t a nice thing, so we didn’t drink any water. So we were dehydrated as well; tired and dehydrated when it was time to come back in.

In addition to the strained physical condition of the crew, other factors were complicating the return to Earth. The winds at Edwards Air Force Base were very high a couple of orbits before entry, when the crew was making the entry preparations, leading to discussion as to whether it would be nec­essary to divert to an alternate landing site.

Even under the best of circumstances, sts-2’s reentry would have had a bit more pressure built into it—another of the test objectives for the sec­ond shuttle mission was to gain data about how the shuttle could maneu­ver during reentry and what it was capable of doing. The standard entry profile was to be abandoned, and about thirty different maneuvers were to be flown to see how the shuttle handled them. In order to accomplish this, the autopilot was turned off, making Engle the only commander to have flown the complete reentry and landing manually.

“Getting that data to verify and confirm the capabilities of the vehicle was something that we wanted very much to do and, quite honestly, not everyone at nasa thought it was all that important,” Engle recalled.

There was an element in the engineering community that felt that we could al­ways fly it with the variables and the unknowns just as they were from wind tunnel data. . . . Then there was the other school, which I will readily admit that I was one of, that felt you just don’t know when you may have a payload you weren’t able to deploy, so you have maybe the cg [center of gravity] not in the optimum place and you can’t do anything about it, and just how much ma­neuvering will you be able to do with that vehicle in that condition? How much control authority is really out there on the elevons? And how much cross range do you really have if you need to come down on an orbit that is not the one that you really intended to come down on? So it was something that, like in any­thing, there was good, healthy discussions on, and ultimately the data showed that, yes, it was really worthwhile to get.

(In fact, after sts-2, maneuvers that Engle tested by flying manually were programmed into the shuttle’s flight control software so that they could be performed by the autopilot if needed in the future.)

And so, with a variety of factors working against them, the crew mem­bers began the challenging reentry. “We had a vehicle with a fuel cell that had to be shut down, so we were down to less than optimum amount of electrical power available,” Engle recalled.

The winds were coming up at Edwards. We hadn’t had any sleep the night before, and we were dehydrated as could be. And just before we started to prepare for the entry, Dick decided he was not going to take any chances of getting motion sickness on the flight, because the entry was demanding. . . . He had replaced his scopolamine patch [for motion sickness] and put on a fresh one. The atmo­sphere was dry in the orbiter and we both were rubbing our eyes. We weren’t aware that the stuffthat’s in a scopolamine patch dilates your eyes. So we got in our seats and got strapped in, got ready for entry, and I’d pitched around and was about ready for the first maneuver and said, “Okay, Dick, let me make sure we got the first one right, ” and I read off the conditions. I didn’t hear anything back, and I looked over and Dick had the checklist and he was going back and forth and he said, “Joe Henry, I cant see a damn thing. ” So I thought, “This is going to be a pretty good, interesting entry. We got a fuel cell down. We got a broke bird. We got winds coming up at Edwards. We got no sleep. We’re thirsty and we’re dehydrated, and now my plt’s [pilot’s] gone blind."Fortunately, Dick was able to read enough of the stuff, and I had memorized those maneuvers. That was part of the benefits of the delay of the launch was that it gave us more time to practice, and those maneuvers were intuitive to me at the time. They were just like they were bred into me.

As the reentry progressed, Engle recalled, it felt like everything went into slow motion as he waited to execute one maneuver after another. And then, with the winds having cooperated enough to prevent Columbia from hav­ing to divert to another site, it was time for the former x-15 pilot’s trium­phant return to Edwards.

When we did get back over Edwards and lined up on the runway, as I men­tioned before, I think one of the greatest feelings that I’ve had in the space pro­gram since I got here was rolling out on final and seeing the dry lake bed out there, because I’d spent so much time out there, and I dearly love Edwards and the people out there. In fact, I recall when Dick and I spent numerous week­ends practicing landings at Edwards, I would go down to the flight line and talk with guys. . . and go up to the flight control tower and talk with the peo­ple up there, and we would laugh and joke with them. I remember the tower operator said, “Well, give me a call on final. I’ll clear you." Of course, that was not a normal thing to do, because we were talking with the CapCom here at Houston throughout the flight. But I rolled out on final, and it was just kind of an instinctive thing. I called and I said, “Eddy Tower, it’s Columbia roll­ing out on high final. I’ll call the gear on the flare." And he popped right back and just very professional voice, said, “Roger, Columbia, you’re cleared num­ber one. Call your gear." It caused some folks in Mission Control to ask, “Who was that? What was that other chatter on the channel?" because nobody else is supposed to be on. But to me it was really a neat thing, really a gratifying thing, and the guys in the tower, Edwards folks, just really loved it, to be part of it.

According to Engle, the landing was very much like his experiences with Enterprise during the approach and landing tests.

From an airplane-handling-qualities standpoint, I was very, very pushed to find any difference between Enterprise and the two orbital vehicles, Columbia

and Discovery, other than the fact that Enterprise was much lighter weight and, therefore, performance-wise, you had to fly a steeper profile and the air­speed bled off quicker in the approach and landing. But as far as the response of the vehicle, the airplane was optimized to respond to what pilots tend to like in the way of vehicle response. . . . There were some things that would have been nice to have had different on the orbiter, . . . and that is the hand con­troller itself. It’s not optimized for landing a vehicle. It really is a derivative of the Apollo rotational hand controller, which was designed for and optimized for operation in space, and since that’s where the shuttle lives most of the time, it leans toward optimizing space operations, rendezvous and docking and those types of maneuvers.

Despite the change in schedule caused by the shortening of the mission, more than two hundred thousand people showed up to watch the landing. After the vehicle touched down, Engle conducted a traditional pilot’s in­spection of his vehicle.

I think every pilot, out of just habit, gets out of his airplane and walks around it to give it a postflight check. It’s really required when you’re an operational pilot, and I think you’re curious just to make sure that the bird’s okay. And of course, after a reentry like that, you’re very curious to know what it looks like. You figure it’s got to look scorched after an entry like that, with all the heat and the fire that you saw during entry. Additionally, of course, we were interested at that time to see if the tiles were intact. . . . We lost a couple of tiles, as I re­call, but they were not on the bottom surface. They had perfected the bonding on those tiles first, because they were the most critical, and they did a very good job on that. But we walked around, kicked the tires, did the regular pilot thing.

STS-3

Crew: Commander Jack Lousma, Pilot Gordon Fullerton

Orbiter: Columbia

Launched: 22 March 1982

Landed: 30 March 1982

Mission: Test of orbiter systems

The mission that flew after sts-2 could have been a very different one, had the shuttle been ready sooner or the sun been quieter, according to as­

tronaut Fred Haise. The Apollo 13 veteran had initially been named as com­mander of the mission, with Skylab II astronaut Jack Lousma as his pilot. The purpose of the mission would have been to revisit the Skylab space sta­tion, abandoned in orbit since its third and final crew departed in February 1974. At a minimum, the mission would have recovered a “time capsule” the final Skylab crew had left behind to study the effects of long-term exposure to the orbital environment. There were also discussions about using the shut­tle mission to better prepare the aging Skylab for its eventual de-orbit. Un­fortunately, delays with the shuttle pushed the mission backward, and an ex­pansion of Earth’s atmosphere caused by higher than predicted solar activity pushed the end of Skylab forward. “And what happened, obviously was there was a miscalculation, I guess, on the solar effect on our atmosphere, which was raised, causing more drag,” Haise said. “So the Skylab [predicted time] for reentering was moving to the left in schedule, and our flight schedule was going to the right. So at a point, they crossed, and that mission went away.”

Haise and Lousma trained for several months for the mission, and when the Skylab rendezvous became impossible, Haise decided to reevaluate his future plans. Given his own experience and the number of newer astro­nauts still waiting for a flight, he decided to leave NASA and take a man­agement position with Grumman Aerospace Corporation. “I just felt it was the right time to start my next career. And so I left the program in ’79 for that purpose.”

Haise’s departure meant changes for astronaut Gordon Fullerton, who recalled that at one point during shifting crew assignment discussions, he had actually been scheduled to fly with Haise on the second shuttle mis­sion. “For a while I was going to fly with Fred. Then Fred decided he wasn’t going to stick it out,” Fullerton explained. “So then I ended with Vance [Brand] for a little while, and then finally with Jack Lousma, which was great. Jack’s a great guy, [a] very capable guy and a great guy to work with, and so I couldn’t have done better to have a partner to fly with.”

Recalled astronaut Pinky Nelson of the pair:

Jack and Gordo were black and white. I mean, they were the yin and yang of the space program, basically. Jack is your basic great pilot, kind of “Let’s go do this stuff," and Gordo is probably the second-most-detail-oriented person I’ve ever seen. Gordo at least knew he was that way and had some perspective on it, but there were things he could not let go. So he knew everything, basically. He knew all the details and really worked hard at making sure that everything was in place, while Jack looked after the big picture kind ofstuff. They were a good team.

The shuttle was very much still a developmental vehicle when Lousma and Fullerton prepared for and flew sts-3. “When we flew sts-3, we had [a big book] called Program Notes, which were known flaws in the software,” Fullerton explained. “There was one subsystem that, when it was turned on, the feedback on the displays said ‘off,’ because they’d gotten the polarity wrong. . . which they knew and they knew how to fix it, but we didn’t fix it. We flew it that way, knowing that ‘off meant ‘on’ for this subsystem. The crew had to train and keep all this in mind, because to fix it means you’d have to revalidate the whole software load again, and there wasn’t time to do that.”

The big issue preventing the changes being made was time. The prob­lems had been identified before the first launch, but continuing to work on them would have continued to delay the program. “They had to call a halt and live with some real things you wouldn’t live with if you’d bought a new car. That’s all part of the challenge and excitement and satisfaction that comes with being involved with something brand new.”

While Fullerton was largely confident in the vehicle despite the prob­lems, his only concern was the fact that the simulators were programmed assuming that the orbiter was working nominally. If a failure occurred in a system with a “program note,” resolving it wouldn’t necessarily look quite like it did in simulation.

It’s really a complex vehicle. It really is. . . . If everything works like normal, it’s all a piece ofcake. It’s when something breaks that you worry about, and the big challenge is to get to a point where you feel like you’ve got a handle on it. So was I ready to not show up on the launch date? No, not at all. Was I quaking in my boots? No. Was I intense about the whole thing? Yes, mostly because I am wor­ried about my part of this. Especially for pilots, it’s the launch phase [you worry about], because while it’s short and concentrated, ifanythinggoes wrong, the or­biter only takes care of the first failure. The second failure is pretty much left to the crew, generally, and so you worry about being ready to recognize a problem and do the right thing. You feel like the whole world’s watching you when that failure occurs because of the manual action you’ve got to take to save the day. So it’s that kind of pressure, pressure of performance, rather than fear or anything.

Lousma and Fullerton’s flight built on the accomplishments of STS-2 in further testing the capabilities of the shuttle’s Canadarm remote manipula­tor system. On sts-2, Truly had run the arm through a series of maneuvers without any added loads. On STS-3, Fullerton would take the next step by using the arm to grapple an object, lift it, move it, and then return it to place. Fullerton and Lousma paid particular attention to their physical condition during the mission, after the problems suffered by the sts-2 crew. “Jack and I worried about it a lot,” Fullerton admitted. “One thing that we did do, that I don’t think they did, is we had a g-suit, like they wear in the F-18, ex­cept that for entry you could pump up the g-suit and just keep it that way, and so that helped you keep your blood flow up near your head. . . . There was some controversy about whether you ought to pump them up or not, among individuals. We said, ‘We’re going to pump them up.’”

Another physical concern the crew worked to mitigate was orbital mo­tion sickness. Fullerton noted that they looked into whether they could use NASA’s T-38 astronaut jets to decrease problems with nausea in space.

We’re not sure there’s a direct correlation to flying airplanes and sickness. I know if you go up and do a lot of aerobatics day after day, you get to be much more tolerant of it. So Jack and I, we scheduled T-]8s every chance we got in the last couple of weeks before we went down there, and I flew literally hundreds of ai­leron rolls. . . . If I did roll after roll after roll, I could make myself sick, and I did that, and I got to the point where it took hundreds of them to make me sick. But I did that figuring, I don’t know if this helps, but I have the oppor­tunity, I’ll do it.

The results were pretty much the same on both of Fullerton’s flights.

For the first day or so, I didn’t ever throw up or anything. I never got disorient­ed, butIfeltkindoffifty-fify, you know. Yourepretty happy tojustfloataround and relax rather than keep charging. And into the second day, this is really fun and great, and you feel 100 percent. So whether the aileron rolls helped or not, I’m not sure, but it was relatively easy. Of course, everybody has their acclima­tion problems. That’s pretty consistent through the population. It takes about twenty-four hours to get to feel normal, at varying levels of discomfort. Most ev­erybody can hang in there and do their stuff, even though they don’t feel good. A few are pretty well debilitated.

Pinky Nelson, who was a CapCom for STS-3, found it fascinating to ob­serve a two-man team doing all the tasks necessary to fly the vehicle and also conduct mission objectives. “Flying the Space Shuttle with two people was a nontrivial job. It was a full-time job to keep that thing going with just two people and carry out some kind of a mission. I don’t know how they did it, actually. I don’t think I’d want to fly in the shuttle with just one other person.”

Working as CapCom during that time was a challenge, Nelson explained, because the Tracking and Data Relay Satellite System didn’t exist yet and the only opportunity to communicate with the astronauts was when the shuttle was over ground communications stations.

The time that you could communicate was very limited. You’d get a three-minute pass over Hawaii and a two-minute pass over Botswana or something, so you had to plan. Unlike now, when you can talk pretty much anytime, you had to plan very carefully and prioritize what you were going to say. The data came down in spurts, so the folks in the back rooms had to really plan for looking at their data and analyzing it and being able to make decisions based on spurts of data rather than continuous data. So it was kind of a different way to operate.

According to Nelson, there were some particular tricks to the art of be­ing a good CapCom. One had to learn to speak succinctly and precisely and to stick to language that the astronauts were used to hearing from sim­ulations. Another vital skill was listening to the tone of voice of the crew.

When you went aos, acquisition of signal, over a site, you would call up and say, “Columbia, Houston through Hawaii for two and a half," or something like that, and then you could just tell by the tone of their voice in the answer whether they were up to their ears or whether they were ready to listen. So there was a lot of judgment that had to be made, just in terms of, you always have a pile of stuff to get up. How much of this should I attempt to get up? What has to go up? Do I need to listen instead of talk? I found that to be just an interest­ing experience, a challenging job, and I really liked it. There were a few run – ins. I remember Neil Hutchinson, the flight director, was trying to get me to get a message up and I just wouldn’t do it, because I knew that they just weren’t ready to act on it, and it was important but wasn’t critical or anything. And Neil was ready to kill me, and I just kind of sat there and just said, “No. They’re busy. They don’t need to do this now. " So that was fun.

Unlike STS-2, which was shortened by the fuel cell problem, Lousma and Fullerton’s mission was actually lengthened by a day because of adverse weather at the landing site, Fullerton recalled.

“Wow!” We cheered. “Great!" because we really had a busy time with just two people. This was an engineering test flight, and we had a flight plan full of stuff… so there was always something that you were watching the clock on…. We did have sleep periods, which we would use for window gazing, . . . be­cause you don’t need as much sleep as they were scheduling. But when they said, “Wave off,” I remembered getting in the recycle book, going through the pages, shutting down some of the computers, opening the doors again, and I got all the way down, all of the sudden, I turned the page, and there was nothing on it, and there was this realization, hey, this is free time, and it was terrific. We got out of the suits, and then we got something to eat and watched the world, and I wouldn’t have had it any other way, if it had been my choice.

When the time for landing came the next day, the plan called for an ear­ly morning touchdown, meaning that the main part of the reentry would be at night. “We could see this glow from the ionization really bright out there,” Fullerton said.

In fact, we had lost a couple of tiles on launch. We knew that because we’d looked out and had seen the holes in front of the windshield, and we looked at it with an arm camera. They said, “Not to worry. It’s cool up on top there. ” We didn’t know how many we’d lost from the bottom, but wasn’t any use worrying about that. And then to see all this glow right there where the missing tiles were gave us pause to think about it. Again, there was no point in worrying about it, noth­ing you can do. [There was] the spectacular light show through entry. Then the sun came up, which washes all that out, as it’s dying out anyway.

They were pushing at that time to go full-auto land, and so. .. we stayed in automatic all the way down through the pullout of the dive, and then [Lous­ma] only got the feel of the airplane the last couple of seconds before touchdown, which, in retrospect, everybody agreed was dumb, and now people fly from the time they go to subsonic at a minimum to get the feel of the airplane all the way down. He only got the last second, and then we landed a bit fast and. . . there was a kind of a wheelie that Jack did. Again, it pointed out another flaw or room for improvement in the software. The gains between the stick and the elevons that were good for flying up in the air were not good when the main wheels were on the ground, and he thought he had ballooned. He kind of plant­ed it down but then came back on the stick, and the nose came up. So what? It didn’t take off again, and we came down and rolled to a stop. A lot of people thought this was a terrible thing.

The landing at White Sands would leave a lasting mark on Columbia. According to astronaut Charlie Bolden, “I flew it several flights later, on my first flight, and when we got on orbit there was still gypsum coming out of everything. . . . It was just unreal what it had done.” Astronaut Mike Lounge noted, “I’m told that many years later, picking up pieces from East Texas of Columbia [after the loss of the vehicle on the STS-107 mission], they were finding gypsum from White Sands.”

STS-4

Crew: Commander T. K. Mattingly, Pilot Hank Hartsfield

Orbiter: Columbia

Launched: 27 June 1982

Landed: 4 July 1982

Mission: Test of orbiter systems

When the crews were chosen for each of the planned demonstration flights, Hank Hartsfield recalled, the astronauts were assigned originally not to a particular mission, but only to crews designated with a letter, A through F. “Ken [Mattingly] and I were in E crew. . . . No one knew ex­actly how this was going to work. All we knew was that Young and Crip – pen were A, and Engle and Truly were B. We knew John was first, and they were being backed up by Engle and Truly. But after that, we weren’t quite sure what was happening. . . . Ken and I wondered, ‘What are we going to fly?’ . . . It was kind of a strange thing. Lousma and Fullerton were train­ing. Eventually we figured out they were going to be [sTS-3].”

Eager to figure out who was doing what, the astronauts in the remain­ing crews began paying close attention to what sort of training each was do­ing, looking for subtle clues. “We got this call. . . that we should go to St. Louis or wherever [the STS-3 crew members] were training; that Ken and I should go up there and start getting this training. It was kind of funny, be­cause it scared them. Lousma made a panicked call back to Houston, said, ‘What’s going on? Are we being replaced?’ Because nobody bothered to tell anybody what was going on.”

As it turned out, Hartsfield explained, he and Mattingly were sent to train alongside the STS-3 crew so that they could be trained as a backup for the STS-2 crew while Lousma and Fullerton were preparing for their own mis­sion. Hartsfield and Mattingly served as a backup for the third flight as well.

Then we flew [sts-]4. It was kind of a funny way the crews were labeled. . . . The D crew flew five, and we flew four, . . . the last of the two-person flights. It was a little bit confusing as to the way the crews were announced, . .. but it all sorted out, and I think sorted out fairly. Everybody got to fly, and nobody got kicked off a flight, you know. For some of us who had waited so many years— the seven of us that came from the MOL program, from the time we were picked for the space program till the time we flew was around sixteen years with the air force and a long time at Houston—it was a long wait. At that point, you didn’t want to see anything get in your way. When the crew confusion started going on, “Well, I hope I’m not losing my place, I’ve waited too long. " But ev­erybody got to fly, so it was a good deal.

STS-4 commander Ken Mattingly recalled talking with Deke Slay­ton after the Apollo 16 flight about what he wanted to do next. The two shared a relatively unique fascination with the shuttle program from a flight engineering perspective. “We both recognized that I enjoyed the engineering side of the flying, perhaps more than a lot of the guys. So the idea of trying to get in on an early flight test was what every pilot wants to do anyhow. The idea of being in a group that was going to be downsized and have an opportunity to participate in the first flights and maybe even compete for the first flight, that was all the motivation any­body could ever want.”

While Mattingly was not surprised when the first flight went to his Apollo 16 commander and the corps’ senior flight-status astronaut, John Young, he was disappointed that he had to wait until the last development mission to get to fly. The rationale, he explained, was that his expertise was needed in different ways—because his flight opportunity was delayed, Mattingly was available to back up the second and third crews should something go wrong, and then, on the fourth flight, he could complete any tasks that hadn’t been accomplished by the first three crews. “That was the logic. It was kind of

fun to be part of those missions, but. . . Hank and I were kind of hoping we could [fly] earlier. But it really did turn out to have a lot of benefits for us, because we did pick up a lot of experience we would not have had and were able to do some other activities that [we] wouldn’t have had time to go do if we’d been scrambling just to get up and down.”

Although Mattingly and the rookie astronaut Hartsfield had never flown together before, their assignment to STS-4 was a reunion of sorts: Harts­field had served as CapCom during Mattingly’s Apollo flight to the moon.

In [Apollo] 16, Hank and I had developed a better-than-average rapport, I think, because in lunar orbit, Hank ran the show and all the flight plan from the ground. I told him, “You only get to go to the moon once, so I don’t want to miss a minute of looking out the window. So you run the spacecraft, and I’ll look and tell you about it." And he really did a magnificent job on that, and as a result, we got a lot of stuff done that we wouldn’t have otherwise. So on sts – 4, it was kind offun to go back to working together that way, and we were still trying to see how much we could cram into this thing.

Hartsfield added that not only did the two astronauts get along well, they had a unique commonality. “We both went to Auburn. I think it’s the only time the entire crew went to the same university in the spaceflight business. We used to take a lot of ribbing from the University of Alabama folks, say­ing the only reason they put two Auburn guys on one flight, that way we’d only mess up one. So we had to take a lot of ribbing, but it was a lot of fun.”

STS-4 CapCom Pinky Nelson described having an interesting work­ing relationship with the STS-4 commander. “T. K. Mattingly is probably the most technically capable person who has ever been an astronaut, just in terms of his capacity to stuff things between his ears,” Nelson voiced.

He knew absolutely everything, and had to know everything, and was fanatical about tracking everything, and drove me nuts, because I don’t work that way. I tend to work in a way where you take in a lot of information, but you have a filter. You say, okay, this is important, this might be important, this is probably not important, and you prioritize things, where T. K. works that everything is on the top line. He’s able to work that way just because of his incredible capac­ity, and I wasn’t, so he and I had kind of an odd relationship. If I didn’t see the point of having to do something, I wouldn’t do it, basically.

Despite their differences, Mattingly and Nelson had enough in common, and enough willingness to coexist where they were different, that they ac­tually had a decent working relationship.

T K. and I really got along. We were able to communicate fairly well because we had the same kind ofstyle ofno extra words kind of communication. But, boy, he was a hard taskmaster, I thought. He just didn’t see the forest, but he saw every tree, and he expected everybody else to do that, and they just couldn’t. He really wore some people down. That kind of thing doesn’t bother me so much. I was able to just kind ofignore it and say, “Okay, I’m going to catch some flak for this, but I deserve it. I don’t care. I’m not going to do it anyway."… Some newspaper article about the mission called me the “laconic and taciturn CapCom. "That was great.

When launch day came, Hartsfield was excited that, after sixteen years in the air force and nasa astronaut corps, he was finally going to fly.

To me, it was kind of an emotional thing. I remember when we were going out to the pad in the van, and just before we got up to the pad to get out and go to get in the bird, it just sort ofhit me, and I said, . . . “Ken, I can’t believe it. I think we’ll really get to do this." It hit me emotionally, because tears started welling up in my eyes. You know, I had to wipe my eyes. It just, to me, was an emotional thought, after all that time, I was finally going to get to fly, it appeared. And I did.

Mattingly’s perspective on the ascent was different from that of many of his peers, as he was one of only a few astronauts who could compare launch on the large Saturn V rocket and the Space Shuttle. Many shuttle astronauts have commented on the power and vibration of the solid rockets during the first two minutes of flight; Mattingly, on the other hand, noted how relatively smooth the launch was. “Compared to the Saturn, the shuttle is like electric propulsion; it doesn’t make any noise, it doesn’t shake and rattle, it just goes. It’s just nothing like the Saturn, or, as I understand, the Gemini or the Titan.”

Hartsfield recalled that the launch was not without complications, due to a hailstorm the night before.

About nine o’clock that night, after the storm passed over and it quit raining, we went out to the pad with a lot of other people to look at the orbiter. And the black tiles all had little white specks all over where they’d been pelted with the hail. So Ken and I went back to the crew quarters thinking, “Shit, we ain’t go-

ing nowhere tomorrow.” So we were real down. And we went to bed and couldn’t believe it the next morning when these guys were hammering [on] the door, say­ing, “Come on, get up, guys, we’re going.” We said, “What, we’re going?" “Yeah, they cleared it.” They flew some guy from Houston in a T-38 down there, one of these tile experts, and he went out and walked around and decided that it was okay to go, that the tiles weren’t damaged that badly.

The next day it was discovered that there was a side effect of the damage that the expert had failed to anticipate. During launch, controllers noticed that the vehicle was not getting the performance it should for the amount of fuel being used. It turned out the hail had damaged the waterproof coat­ing of the tiles, and they’d absorbed water during the storm. “They calculat­ed later that we’d carried about two thousand pounds of water with us that had soaked into the tiles,” Hartsfield explained. “So all this flight planning that we’d worked on for so long and had down pat went out. . . the window. We spent seventy-two hours with the belly to the sun trying to bake out the tiles. Because they were concerned that if you had water in those tiles and then got entry heating, they didn’t know whether you might get some steam or something generated and blow the tiles out or crack them or something.”

With the excitement and drama of launch done, the arrival in orbit was a moment of wonder even for veteran astronaut Mattingly.

The most magical thing was, after working on this device for ten years, you got on orbit and. . . we opened the payload bay doors for the first time towards the Earth. So all of a sudden, it was like you pulled the shades back on a bay window, and the Earth appeared. We got on orbit, and this thing worked. And I just couldn’t get over the fact that. . . people that I knew, that were friends, had built and conceived this whole thing, and it works. It’s just magic. It does all of these things that we dreamed of, but the visuals are better than the simu­lator now. So we just had a wonderful time of it.

Flying around the Earth is just so spectacular. I don’t care how long you’re up there, I can’t imagine anyone ever getting tired of it. It’s just beautiful, and the orbiter with these big windows, it is just wonderful. Hank would say, “You know, we probably ought to get some sleep here. ” I’d say, “Yeah, yeah, yeah. You’re right. We’ve got another day’s work tomorrow. ”. . . So all the kids are in bed, and now you can look out the window. I told the ground I went to sleep so they wont bother me, and I’d sit there, having a wonderful time.

When he finally got tired enough to stop looking out the window and try to get some sleep, Mattingly decided to see what it would be like to sleep freely, instead of hanging from a wall in his sleeping bag. Since Harts – field was sleeping on the mid-deck, Mattingly had the flight deck to him­self, and he decided to try just lying down on the floor.

I worked at getting all steady and not moving and stopped right behind the two seats that had a little space over the hatches that come up from the mid-deck and in between the aft control panel and the back of the ejection seats, which there’s a lot more room today since they took the ejection seats out. So it was a place probably two feet wide, maybe two and a half. I got all stable in there. “Ah, this is nice. Go to sleep." Well, the next thing I know, there’s something on my nose, and it’s a window, and god-dang I was sure I had gotten stable. So I went back and set up again, not moving, did it again, ended up with my nose in the window, in the overhead window. That bothered me. I finally put a Vel­cro strap over me just to keep me from floating up. I just thought that was really curious. So the next morning I was telling Hank about it, and he said, “Well, I didn’t have any trouble. I just was floating in the middle ofthe mid-deck. "Hmm.

Hartsfield pointed out that during the sleep shift the orbiter had been carrying out passive thermal control maneuvers. In order to better under­stand the thermal characteristics of the vehicle, flight controllers would change its orientation to expose different parts of it to sunlight for periods of time, taking advantage of instrumentation that wouldn’t be used after this last development flight.

“[Hartsfield] says, ‘You know, I was almost on the center of rotation, and you were up here. This is centrifugal force,’” Mattingly recalled.

I said, “Oh, come on, Hank. What was it,. .. five revolutions an hour, or some gosh-awful thing? . . . That cant be." He said, “Well, we’ve got another one scheduled for tonight. Let’s try it both ways. " We tried it, and sure enough, every time. If this thing was rotating at this really slow rate, there’s no other force; these little forces become important. And after we stopped, he says, “Try it again." I did, and sure enough, no problem. So this is kind of added to some ofthe little micro physics things that you see in space that are so interesting.

In addition to the standard tests of the orbiter systems, STS-4 was the first shuttle flight to include a classified military experiment. In order to preserve secrecy, the experiment had its own classified checklist with coded section names that could be discussed over the unsecure communications channel. The experiment itself was kept in a padlocked locker. While the shuttle was in orbit, the crew members could leave it unlocked, but once the experiment was completed, they had to stow it and lock it back up to keep it secure after landing. Hartsfield recalled that about thirty minutes after they finished the experiment and locked it away, they got a call from the military flight control for the experiment.

The CapCom came on, the military guy, and says he wanted me to do Tab November. Ken said, “What’s Tab November?" I said, “I ain’t got the foggiest idea. I’m going to have to get the checklist out to see." So I got the padlock off and got the drawer and dug down and got the checklist out and went to Tab November, and it says, “Put everything away and secure it." Ken and I real­ly laughed about it. It was just aggravating to have to undo all that, because that locker, the stuff we had just barely fit in there, so it was really a stowage issue here. If there’s one thing you learn in zero g—things are always neat­ly packed [before flight] and you get it up there, and once you pull it out, it doesn’t always go back in, because it expands or does something in zero g and it doesn’t fit very well.

Like the first three flights, sts-4 involved experiments to test the capa­bilities and tolerances of the orbiter. One particular experiment, testing the thermal tolerances of the payload bay doors, resulted in a tense moment for the crew. In the experiment, the orbiter was kept in a position to expose the doors to the sun for three days.

“After seventy-two hours to the sun, it came time to cycle the payload bay doors,” Hartsfield said.

We brought the port door down. We’re looking out, and the door comes down. And all of a sudden, the left collar of that thing hits the bulkhead and the door just warps. And by the time I got it stopped, it’s already done. And we tried to call the ground and say we’ve got a problem here, but about that time, we went los. [On the ground] they’re panicked. They see what’s happened, that the door is hung up on the bulkhead or something, and the door’s warped. And you know, [jsc director Chris] Kraft was not a flight director, but he sat in the back watching everything. “Tell ’em to open the door. Tell ’em to reopen the door! Tell ’em to open the goddamn door!" They tell me he was just getting fu­rious. . . . And they couldn’t get it to us. So Ken and I were saying, “Holy shit, that door is really bent."

Hartsfield and Mattingly wondered if the door was broken, which would create a catastrophic situation. During entry and landing, the structural in­tegrity of the orbiter required the doors to be closed and all but one set of the latches to be latched. “So we were wondering if we’d broken something and weren’t going to able to latch the doors back up to come home. Well, as soon as we got AOS again, they told us to open the door, and I started driv­ing it, and it all of a sudden—boing—the door vibrated and it went back to its normal shape. And we went, ‘Whew.’ . . . Thank God it’s a compos­ite material, so it does have some kind of resiliency to keep its shape once you take the load off of it.”

While earlier flights had landed in the dry lake bed at Edwards or at White Sands, STS-4 would be another stepping stone for the shuttle pro­gram by being the first to return from space on an aircraft runway, and Mattingly was hoping to avoid a repeat of Haise’s infamous bounce land­ing of Enterprise. “Our job, like Freddo’s, was to plan to make the first concrete runway landing. You know, as much as we trained for that thing, I just had this image of doing Freddo’s trick all over again. It was, you know, bad karma or something. Oh, that bothered me. I could think of nothing else.”

Mattingly had promised Hartsfield that he would let the pilot fly a part of the entry so that he could say he had actually flown the orbiter, normal­ly the sole privilege of the commander. “When we did come in and got out at Edwards and came around,” Mattingly said,

we got on the heading alignment circle and I was tracking it, and I turned to look at Hank, and I was about to say, “Well, okay, here, you take it for a bit now,". .. and all of a sudden my gyros tumbled and I just had one of the worse cases ofvertigo I’ve ever had…. It was just really overwhelming. I went back and started focusing on the eight ball and looking at the displays, and Hank says, “Are you going to let me fly?" And I said, “No, no. I can’t talk about it now." And we came around and did our thing, and I was still having this vestibular sensation that was unusual, but once we got on the glide slope it seemed like. . . normal.

As they neared the runway, Mattingly said because he felt a little off, they were a little slow going through procedures leading up to the flair point, and they ended up flying under the standard approach.

I knew we were under the standard final approach glide slope, but now I wanted to get down and try to make a good landing with it…. So he’s calling offairspeeds and altitude, and I’m just staring at the horizon and I’m hawking it, and I have no idea what it’s going to feel like to land. When I would shoot touch-and-gos in the [KC-135 aircraft], there was never any doubt when we landed. You could al­ways tell. So I was expecting bang, crash, squeak, something. Then nothing and nothing. Then finally Hank says, “You’d better put the nose down. ” “Oh, ” I said, “all right. ” So I put it down, and I was sure we were still in the air. I thought, “Oh, God, he’s right. We cant be very far off the ground. ” Sure enough, we were on the ground and neither one ofus knew it. I’ve never been able to do that again in any airplane. Never did it before. According to pictures, it looks like we must have landed at maybe 350 feet down the runway, and we didn’t mean to.

During planning for the flight, it was made very clear that even after the orbiter was safely stopped on the ground, there would still be one impor­tant mission objective for the astronauts—a proper patriotic performance. “We knew that they had hyped up the sts-4 mission so that they want­ed to make sure that we landed on the Fourth of July,” Mattingly noted.

It was no uncertain terms that we were going to land on the Fourth of July, no matter what day we took off Even if it was the fifth, we were going to land on the Fourth. That meant, if you didn’t do any of your test mission, that’s okay, as long as you just land on the Fourth, because the president is going to be there. . . . The administrator met us for lunch the day before flight, and as he walked out, he said, “Oh, by the way. . . you know, with the president going to be there and all, you might give a couple of minutes’ thought on something that’d be appropriate to say, like A small step for man, ’ or something like that, ” and he left. Hank and I looked at each other and he says, “He wants us to come up with this?” And we had a good time. We never came up with something we could say, but we came up with a whole lot of humor that we didn’t dare say.

After landing, the crew members prepared for their moment in the spot­light. Anticipating that the president might want to come aboard the shuttle, Mattingly recalled, they put up a handwritten sign that read, “Welcome to

Columbia. Thirty minutes ago, this was in space.” The astronauts took off their helmets and started to get out of their seats, a task Mattingly found surprisingly difficult after having adjusted to a microgravity environment.

I said, “I am not going to have somebody come up here and pull me out of this chair. . . . I don’t know what it is, but I’m going to give every ounce of strength I’ve got and get up under my own. ” So I. . . pushed, and I hit my head on the overhead so hard, the blood was coming out. Goddamn. It was terrible. Oh, did I have a headache. And Hank said something like, “That’s very graceful. ” So now I really did have something to worry about. . . . Hank’s got some of the funniest stories he could tell about this stuff. So we got ourselves down there, and we’re walking around, and Hank said, “Well, let’s see, if you do it like you did getting out of your chair, you’ll go down the stairs and you’re going to fall down, so you need to have something to say. ” He says, “Why don’t you just look up at the president and say, ‘Mr. President, those are beautiful shoes. ’ Think you can get that right?” He was merciless.