"Marooned&quot

There are some things you just don’t want to hear in space. Among them: “There goes one of our thrusters floating by.”

The launch of the second crew of Skylab was something of a rarity in the history of human spaceflight. While it’s not uncommon for space launches to be delayed, scrubbed, and otherwise pushed back, the launch of the SL-3 Saturn IB was actually pushed forward. Though it had originally been sched­uled for 17 August 1973, concerns over the condition of the parasol installed by the first crew and the station’s “attitude-measuring” gyroscopes led to a decision to launch the second crew sooner so that the unmanned period could be shortened, and they could assume their role as Skylab’s caretak­ers more promptly. On 2 July the crew was told that they would be leaving earlier than planned and had less than four weeks to prepare for being away from the planet for a couple of months. Launch would be 28 July.

For rookie astronauts Garriott and Lousma, the moment they had long awaited had finally arrived. After seven to eight years of training and simu­lations, the two, along with veteran Bean, were about to be on their way to space. Jack Lousma was struck by the way the Saturn IB looked as the crew arrived at the pad. “It was dark when we got out there,” Lousma said. “I remember seeing it steaming away, and the oxygen venting, and the search­lights.” He remembered thinking to himself, “It’s just like 2001.” (“Which was then almost thirty years away, but it’s history now,” he added.) It was at that point that he realized that he was finally doing this for real; after all those years, the simulations were over. “At least they looked serious about it.”

There are a few special moments that somehow get placed into memory bank for the rest of one’s life. Since the science pilot lies in the middle couch for launch, he was the last to board so that he wasn’t in the way of the other two crewmembers as they got into their couches for launch. The ground crew

would first assist the commander into the left couch and get him all strapped in and connected up—a tradition that can still be seen today on television in preparation for each Shuttle launch. Then, after the commander, it was done again for the pilot in the right couch. At these times the science pilot was left standing on the walkway for some five minutes all by himself with his private thoughts some 380 feet above the ground, and looking out over the entire launch complex. “There was a long training period leading up to this moment,” Garriott recalled. “A fiery rocket would soon take our speed from zero to over five miles a second in less than ten minutes. Yes, it was probably the most dangerous ten minutes of the entire mission for us — and probably of our entire lives, for that matter—but we had planned for it for years, and we knew the options for escape if that should become necessary. Were we scared? I would say ‘no,’ but we knew the risks and had a healthy regard for the potential for disaster. Yet it was a very pleasant and introspec­tive few minutes, which I have remembered for decades. Only more recent­ly have I learned how other crewmen, and especially the other two science pilots, still recall and treasure these few moments waiting on the walkway.” If Lousma was at all scared at that point, he handled the pressure well—“I fell asleep on the launch pad,” he recalled.

Finally the countdown reached zero, and the wait was over. The SL-3 Sat­urn IB cleared the pad, and the crew was on their way into orbit. “One of the things I remember distinctly about launch was we had to get rid of the launch escape tower,” Lousma said. After the spacecraft reached an altitude where the launch escape tower was no longer needed for an abort situation, its motor was fired to separate the tower and its shroud from the Command Module. “When we did, that uncovered all the windows. After climbing to a considerable attitude, the escape tower took off like a scalded eagle. You could see a lot more.”

His first experience with staging, when one stage of the rocket burns out and separates and the next fires, is another memory that has stayed with him. “The engine shut down, and we had to coast for a little bit,” he said. “The separation of the first stage was memorable for me. A shaped charge cut the [launch vehicle] cylinder all around like a cookie cutter, with a kind of bang, and all this debris was floating around out there in a circle. It was spectacular in that it was just, bang, and all of this stuff went in a sort of disc configuration out around us.”

Garriott recalled the experience of reaching orbit as being exhilarating. “From pressed against our couch at several times our weight to floating in our harness in a fraction of a second. We were feeling great, literally ‘on top of the world,’ cruising along—well, coasting along—on our planned trajecto­ry to reach a Skylab rendezvous in a few more hours. Long-duration weight­lessness was new for Jack and myself, but it was not uncomfortable—at least not yet!—and we certainly were enjoying the view.”

Unfortunately just as with the sl-i launch of the Skylab’s Saturn v less than three months earlier, the beautiful launch was marred by malfunction. “I was in the center couch and Jack was on my right with a small window near his seat,” Garriott said. “He suddenly announced, ‘Owen, there goes one of our thrusters floating by the window!’”

And indeed the object Lousma had seen float by was a dead ringer for a nozzle from one of the Service Module’s quad thrusters. “I remember report­ing it and thinking this was odd,” Lousma said. “It was a conical shape just like a thruster, so it looked like a thruster bell, like a thruster nozzle. I don’t think that I quite deduced the implications of that at the time because we were so busy with the rendezvous procedures. We were moving onward, noticed that, reported it, went on to the next thing.”

While primary thrust for the Apollo spacecraft was provided by the one large service propulsion engine at the rear of the vehicle, directional con­trol was the job of the four smaller quad units, positioned on the outside of the Service Module, near the Command Module. Each quad unit consist­ed of four engine nozzles arranged in the shape of a plus sign with one noz­zle pointed toward the fore of the spacecraft, another toward the aft, and two more at right angles from those. The four quad units were positioned around the Service Module at ninety-degree angles from one another. From the crew’s perspective, there was one on the left of the craft; one on the right; one at the top, one at the bottom.

“With a quick look out the window, we agreed it certainly looked like a thruster, but we hardly believed it to be literally true,” Garriott said. Bean recalled the sighting being followed quickly by a thruster low-temperature master alarm. Added Garriott, “We promptly realized that there must have been a small propellant leak [oxidizer or fuel, meaning nitrogen tetroxide or hydrazine] which slowly crawled around the inside surface of the thrust­er and froze into ice in the shape of the metal thruster exhaust cone. Then when that thruster was fired the next time, even briefly, it must have shak­en the ice loose and it slowly floated by Jack’s window.”

With that interpretation, Bean checked with the ground for confirma­tion and had to turn off the propellants to that quad of four thrusters. With that one quad shut down the spacecraft had three more quads still work­ing fine. This had never happened before in spaceflight and was going to make the rendezvous difficult to pull off. There are no “time outs” in space to fix a problem.

Soon enough the crew began to close in on their target—first just a bright dot in the navigational telescope that grew brighter and began to take form as they got closer. Garriott’s excitement increased at seeing his new home growing larger as the Apollo craft approached it. “Soon we were close enough to see the Skylab with the darkness of space as the background for viewing,” he recalled. “Then the solar panels of the atm and one wing of the work­shop solar array could be resolved visually and even the orange parasol set by the first crew came into sight.”

“Before the boarding, however, we had to complete a successful rendezvous and docking in a crippled spacecraft,” he added. Rendezvous required the Apollo spacecraft to arrive in the near vicinity of the Skylab within 330 feet or so and match its velocity with that of the station. The commander had a schedule of quad thruster firings that had to be carefully executed to slowly match his speed to that of Skylab so that they would arrive on station with no relative motion. “Otherwise the crew might arrive at the Skylab rendez­vous point with too much speed, or even worse, possibly collide with Skylab in a terrible catastrophe,” Garriott recalled. “This actually happened dur­ing the manual rendezvous of a Progress vehicle at the Russian space station Mir some years later, with nearly catastrophic results. It should never hap­pen in normal circumstances, but ours was not normal. We had lost one set of quad thrusters and that meant less than full force was available—tech­nically, reduced ‘authority’—from the control system. But equally trouble­some, this failure also produced an asymmetric thrust since nothing com­pensated for the one lost quad on one side of the csm. Any translation such as braking to slow down produced unwanted rotation, and then rotational correction to bring the spacecraft back to the desired pointing direction, or attitude, produced unwanted translation!”

Also every time Bean used the thrusters to slow down, he had to fire them

"Marooned&quot

30. The Service Module thruster quads are visible in this picture of the SL-4 Apollo spacecraft docked with Skylab.

for a longer period than scheduled to compensate for the reduced authority. This sequence—slow down, correct pointing direction, slow some more—was repeated many times during the rendezvous phase, and it all had to be done with precision to complete a successful rendezvous.

As the Apollo craft zoomed along at almost five miles per second around the Earth, its velocity relative to Skylab was only a few feet per second and this had to be slowly reduced to zero at the rendezvous point. Alan Bean said, “Back in the simulator, Owen, Jack, and I were really good at rendez­vous. We never missed a rendezvous in all our training time. They gave us failures by the zillions; we didn’t blink—we’d rendezvous. During our training cycle they gave us all the failures they could think of. Because they knew we were hot and could do this stuff. We never missed one. So lo and

behold, we get up in space, and I remember Jack saying a quad just floated by the window. We thought, ‘That can’t happen. A whole quad just can’t let go.’ About that time the master alarm came on for a low temperature of that quad. We quickly realized that it might have been a chunk of fuel or oxidizer ice shaped like the inside of the thruster and that’s what Jack saw as we fired the thruster.

“We realized we were lucky we didn’t have some sort of explosion and blow that leaky quad thruster right off and really have a problem. But it didn’t. So then we had to isolate that quad and not use it again. We’d nev­er done that in all our rendezvous training.

“We went through the failure mode checklist to isolate a quad. We went to the book; I had Jack read it to me. We had circuit breakers for each thrust­er; throw that one, not that one, and that one. It really incapacitated us a lot. The main effect we had was any time I did anything, we went off atti­tude in the other axes.

“Meanwhile we are coming up on burns [more thruster firings], tracking and all that other stuff needed to successfully complete the rendezvous. But still whenever I tried to brake, we went off in yaw. That was the big prob­lem. And the amount of braking wasn’t the same as with all four thrusters available; it was a lot less. That’s where Owen and I got into a discussion that I often remember.”

Garriott’s job at this time was to help Bean make sure the spacecraft was on the defined trajectory to arrive on station at the rendezvous point with zero relative velocity. In other words he was keeping an eye on how quickly they were “slowing” as they approached Skylab. “My advice to Al on the nec­essary braking or deceleration required would have been greatly facilitated if we had only had a range-rate measuring device on board,” he said. “But in 1973 these had not yet been developed. We had to estimate our ‘range rate,’ or the rate at which our distance from Skylab was decreasing, by taking two range measurements from our onboard radar transponder at two different times and then dividing the range difference by the time difference. Not the most accurate technique, but we had practiced as best we could. As we began to close, it became clear to me that the standard deceleration protocol, which Al was attempting to follow, was not slowing us down enough.”

Lousma, who had been concurrently running the same calculations during the initial portion of the approach, was reduced almost to bystander status during the final phase. “I had to make his backup calculations on the closure rate,” he said. “I was sitting there with this little HP calculator and punch­ing all those numbers in, going through this formula and backing up what the ground saw and what we saw in the spacecraft. There had to be a third vote and that was me. I never enjoyed making that calculation. You had to get it right. If you missed one keystroke, you had to start all over again and it was a long one. But that kept me busy. It kept me from bothering every­one else and being worried.”

Bean was doing the best he could to balance the competing concerns of attitude and velocity. “One of the worst things you could ever do was slow down too much,” Bean said. “Because then you had to use fuel to get clos­ing again, all the timing’s off, you came into daylight too soon—all these things were going on in my mind at that time, really zipping. I remember thinking I’d braked enough. We didn’t have range rate; we had range only. Owen could use the ranges and times and estimate range rate. He’s a great ‘back of the envelope’ guy, and he would look at the ranges and make a rec­ommendation. I remember braking and braking. When we did midcourse corrections, you only did them with the quad thrusters, we did not do it with the main engine. That’s where the problem was.

“Anyway, I braked and braked, but I didn’t know for sure what our range rate was. Owen was giving me recommendations, which was good, which we did in training. ‘You need to brake a little more.’ I remember Owen kept saying, ‘We’re closing too fast; you’ve got to brake some more.’ Finally after braking for what I thought was at least twice as much as we had ever braked in training, I said, ‘No, we’ve braked enough.’ Owen studied the comput­er range and said again ‘Alan, we are closing too fast; you’ve got to brake some more.’ ‘No, we’ve braked enough,’ I replied. I was concerned that our closure rate might be too little at this distance to complete the rendezvous. As I looked out my window Skylab seemed very small and far away; at least that is what I thought.

“During training Owen always stayed in the middle seat next to me during the braking phase of the rendezvous, right in front of the computer. Now all of a sudden Owen released his restraints and floated out of his couch down into the lower equipment bay. To say this caught my attention would be an understatement. He’d never done that before when we had a difference of opinion. I’d better rethink my decision, because Owen makes a lot fewer mistakes than I do. And when he believes this strongly but doesn’t want to argue with the commander, I’d be wise to listen up and so I did.

“Then I began to actually see that we were really closing. If Owen had not said that, we’d have zipped right by. I can remember Jack saying when we got closer, ‘Don’t hit it!’ That was on my mind too, but I was keeping it where I could see it. You can’t maneuver relative to an object unless you can see the object; I had to keep Skylab in the window and keep moving towards it. I had to keep moving along this ‘line of sight.’ It was not the pre­cise maneuver we had planned and practiced but I knew we weren’t going to hit Skylab, because I wasn’t going to let us hit it.

“I was also concerned that if we went by Skylab, Mission Control would tell us to wait and re-rendezvous. And that uses more fuel. That would be real embarrassing, even though we did have this failure. I would say that I had the highest heart rate I ever had during my two spaceflights, no doubt about it, more than landing on the moon. So then as we get close, I could see we might be able to stop, maybe, but for sure we weren’t going to hit it, and we actually stopped right underneath Skylab. Our best efforts and skills were tested. It was difficult, but it turned out okay; we did it.

“I’ve heard Kenny Kleinknecht [the project manager at jsc] and others congratulate us for doing it. The quad failure was a big one. They didn’t even give us that in training, so we had never, ever practiced that. Looking back on it now, as a crew we did a really good job. But the hero was Owen. If he had not said what he did, I would have sped past Skylab, and we would have had to re-rendezvous.”

After rendezvous the crew was to make one fly-around inspection of the whole Skylab at a relatively close distance, less than three hundred feet, to inspect the Skylab exterior. This too was complicated with one quad thrust­er inhibited. With considerable skill, Bean drove around their new home to be, being careful to not get too close, where the thruster jets might blow away the orange parasol deployed by the first crew, which was keeping the Skylab relatively cool.

Garriott kept a memento of that incident for years afterwards: “We had no general-purpose computers available in Apollo, only the special-purpose computers for navigation and other functions,” he said. “So before flight I obtained a HP-35 hand-held calculator to assist me in tracking our motion around the Skylab. We still had to estimate our range and range rate by eye, but we measured angles with the Apollo ‘attitude ball,’ and I entered the numbers into the calculator. The HP-35 was quite helpful with a small program I had written manually and entered into the calculator on a small magnetic strip.

“When I resigned from NASA some thirteen years later, I still had this now ancient calculator in my possession. Technology was now leaps and bounds ahead of this old ‘antique.’ But I listed all the government property in my possession at that time, including the HP-35, with a request to pay for and retain it personally. Naturally, this was more than government bureaucra­cy could manage, so I had to turn it in, after which it was probably junked some years later and lost to posterity as a potentially interesting artifact.”

The crewmembers in orbit were not the only ones having somewhat of a bad day. Lousma’s wife, Gratia, had returned home on the launch day, 28 July. That same evening after she had seen Jack depart on his adventurous rendezvous with Skylab, she was back home mucking out her horse stalls, even as a heavy downpour of rain threatened to flood their home near a creek in Friendswood. With three small children at home, she had to worry about the possibility of having their car submerged, so she drove it to higher ground and then walked back home in the heavy rain. Finally she just stopped and sat down in the middle of the road and had to laugh at the contrasting situ­ation, from celebrity to soaking stable hand, all within a few hours. (Coin­cidentally, Joe Kerwin’s wife, Lee, had a similar experience with flooding in a thunderstorm not long after her husband’s launch.)

The crew had managed to rendezvous with Skylab successfully and dock safely with their new home. By Mission Day 6, things were beginning to look up. The challenge of rendezvous was several days in the past, and after initial difficulties adjusting to life aboard the station, the crew was feeling better. Life on Skylab was beginning to fall into its routine for the second crew. But the problems with the Command Module’s thrusters were not over yet.

“When we awoke that morning we were getting right to work,” Garriott said. “I was checking my weight (body mass) in the slowly oscillating chair, the time period of the oscillation measuring the mass. Al might have been getting our eva hardware ready, while Jack was getting out the prepackaged breakfasts for all three of us.

“Jack happened to look out the wardroom window where he saw a very unusual sight and called me over to look. It was the first of a good many beautiful auroras we would see, in this case near New Zealand. We admired the long folded sheets of green ‘curtains,’ whose slow motion was notice­able with careful observation. It was sometimes tinged with red at higher altitudes, caused by a different chemical reaction in the high atmosphere about ninety kilometers, or about fifty-five miles or more, above the Earth’s surface but still more than three hundred kilometers beneath our Skylab perch in space—a most unique opportunity to view. I was just about to call the ground, half a world away, when a ‘snow storm’ came blowing by our wardroom window.”

Since a real snowstorm never occurs in space, the crew immediately knew that something was leaking from Skylab somewhere. Judging that the leak was probably from the Apollo spacecraft docked to the far end of the sta­tion, Lousma and Bean zoomed off through the workshop, the airlock, and the Multiple Docking Adapter to the Command Module in a matter of sec­onds, where they confirmed that another of their spacecraft’s quad thrust­ers had sprung a leak, even though all valves were turned off. With guid­ance from the ground, the systems were reconfigured so that all propellants to both of the leaking quads were completely cut off.

“I remember seeing that—shower spray was what it looked like—glistening in the sunlight,” Lousma said. “Shortly thereafter, the low-pressure alarms went off. Al hustled for the Command Module and shut everything off.

“I think for me that was probably the low point of the mission because it threatened our ability to get our job done, and I wasn’t willing to come home,” Lousma said. “I’ve never been afraid of space, but that was a fear that I had—losing the mission—more than anything else.”

Bean recalled that the crew got a call from Johnson center director Chris Kraft to discuss how to proceed. They told him that, despite the problems, they wanted to stay and complete their mission. “We were concerned that they were going to make us undock and come home, which we didn’t want to do, naturally,” he said.

Only two of the four quad thrusters were now usable and an extended debate was initiated, especially on the ground. There were two vital ques­tions that had to be faced. Could the crew maneuver home safely in a Com­mand Module with only half of its quad thrusters functioning? And more importantly was the problem isolated to only those two thrusters? With those were several related issues. The precise cause of the problems had to be identified. It had to be determined whether the two failures were con­nected. The likelihood of another failure had to be examined.

These in turn raised more questions: Could the crew successfully reenter with only one usable quad if there was another failure? Should they come home right away before there were any more failures? Was it possible to mount a rescue mission for the crew? Could a Command Module be reconfigured in time to allow one or two crewmen to come up to Skylab then return with three more passengers? Most of the answers had to be worked out on the ground with the large assembly of talented engineers and flight controllers. Of course the astronauts on orbit were very much interested in their think­ing, and wanted to participate in the decision making as well.

“Basically, we felt secure,” Garriott recalled. “Skylab was working well. There was plenty of food and water for many months. The only issue for us was a successful return to Earth. We had worked so long and hard to get here, we certainly didn’t want to come home now.”

But with so much uncertainty about the situation, work began on plan­ning a rescue mission that if necessary could bring the Skylab II crew home safely.

To some, the situation no doubt seemed to eerily echo a movie that had come out only four years earlier. In 1969 Columbia Pictures had released the space thriller, Marooned, based on a novel by Martin Caidin and star­ring Gregory Peck, Richard Crenna, David Janssen, and Gene Hackman. While the original version of Caidin’s novel was set at the end of the Mercu­ry program, the story was updated for the movie version, which focused on a crew of three astronauts that had just completed a long-duration mission on an s-iVB—based orbital workshop. As they prepared for reentry, however, their thruster system malfunctioned, leaving them unable to come home. In hopes of bringing the crew home safely, a daring long-shot rescue mis­sion was mounted. As in Marooned the thruster problems encountered by the crew on orbit sparked work on the ground to prepare a rescue mission. However, the real-life effort was not the daring desperation ploy of the fic­tional version. In fact planning for the possibility of a rescue mission had begun years earlier.

The first step toward the rescue mission was formalized with George Muel­ler’s flipchart sketch of a rough version of what would eventually become

Skylab, which led to the creation of the Multiple Docking Adapter with its spare radial docking port. Unused during normal operations, the adapt­er provided means for two Command Modules to dock with the station simultaneously should there ever be such a need, among which was a rescue mission. If, for whatever reason, it appeared that a crew would be unable to return in the Apollo spacecraft they flew into orbit, a second Command Module would be able to dock with the station at the unused radial port. Plans then called for the disabled capsule to be jettisoned before the Sky – lab crew left on the rescue vehicle, freeing up the axial port to be used by the next crew. Until the rescue crew arrived, however, the disabled vehi­cle would be left attached to Skylab so that its communications equipment could still be used.

The next step in making a rescue mission possible was to modify a space­craft to be able to carry more crewmen than the three in a standard Apollo Command Module. Without the technology for autonomous rendezvous and docking, the rescue craft would have to be launched manned, and each seat filled on the way up would be one less available for the ride back. Since there were three astronauts in the Skylab 11 crew, a standard Apollo capsule would not be able to bring them all home.

Ironically, Jack Lousma and Alan Bean, members of the very crew for whom the rescue mission was being planned, had played an important role in the design of the rescue-mission spacecraft. By late 1971 work on the res­cue vehicle configuration was well underway, and testing had begun on some of the modifications. “Alan and I had worked on the configuration for the Command Module for five-man reentry,” Lousma said, explaining that the two of them were picked to provide operator input on the design of the spacecraft not because they seemed like they might need to be rescued but rather because it was thought they could well be the first people that might have to fly it in the event that a rescue mission was needed to bring the first crew of Skylab home.”

The pair, Lousma said, spent a considerable amount of time at Rock­well, going through the same sort of design reviews for the modified Apol­lo that would have been needed for any new spacecraft. “We configured it such that there would be two couches on the floor underneath the main couches, one on each side of the package between us, which was going to be the critical experimental data,” Lousma said. “Three people would come

"Marooned&quot

Зі. Modifications would have allowed the rescue Command Module to carry two additional astronauts behind the three standard couches.

down in the main couches, and two would be in the couches under the left or right seat.

“They had couches that fastened to the inside of the heat shield. It was like a molded seat you might lay in on the beach. It probably just had some tack-down, tie-down, or fasten-down points. So when Pete went up, that configuration was already confirmed.”

The biggest concern, he said, involved the potential “stroking” of the upper deck of couches. Those couches, the three that were standard on an Apollo Command Module, were designed to stroke, or have their supports compress like an automobile shock absorber, in the event of a hard landing. While usually unnecessary for a water landing, the stroking was an addi­tional safety feature included in the event that for some reason a crew had to make an unplanned landing on hard ground. If that happened, the supports would absorb some of the force, ideally preventing injury to the crew. For the rescue mission, the concern was that a couch that stroked would drop onto the astronaut in the couch below. However since no couch had ever stroked during the Apollo flight program, the risk was considered minimal.

The addition of the two additional couches came at the sacrifice of a sub­stantial amount of stowage space in the lower equipment bay, so bringing the crew home from Skylab in the rescue vehicle would mean that they would have to leave behind much of what they would have otherwise brought back with them, including results of experiments conducted during their stay.

Between the two crewmembers was a stowage area that would be reserved for the highest-priority items to be returned to Earth, and any leftover space in the lower area would also be filled for the trip home. “There was a priority list of what we wanted to bring back because we couldn’t bring it all back,” Lousma said. “Otherwise, the whole bottom was filled with bring back. Whatever they thought was the most important would come back there.”

“Ironically,” Bean said, “the highest priority items in premission plan­ning were the frozen urine samples and dried fecal samples. They would then be studied to ensure it was safe for the next crews to stay even longer in space.”

With nothing they could do about the thruster situation for now, the crewmembers on orbit moved ahead with life aboard Skylab. Meanwhile, on the ground, two astronauts learned that they were being called up for prime crew duty for the rescue mission. Commander Vance Brand, science pilot Bill Lenoir, and pilot Don Lind were the backup crew for both the sec­ond and third manned Skylab missions. All three men were unflown rook­ies. The two pilot astronauts, Brand and Lind, had joined the corps as mem­bers of the fifth group of astronauts selected, while Lenoir was a member of the sixth group, the second class of scientist astronauts. In addition to their backup crew duties, Brand and Lind had also been assigned as crewmembers for the theoretical contingency Skylab rescue mission. Those duties consist­ed mainly of providing crew input on the planning. They were involved, for example, in testing procedures for use of the modified vehicle. In essence they were the prime crew for a flight that did not exist.

With the problems being experienced on orbit, however, that mission changed from theoretical to imminent. “I don’t remember the exact time that I found out,” Brand said. “Of course you know that the backup crew included three guys, and if you had a rescue, there’s really only room for two crewmen going up so that five could come down. Fairly early on, without much delay Don Lind and I found out that we would be the rescue crew. We were pretty enthusiastic because we hadn’t flown in a spaceship.”

“I suspect that Bill was disappointed that it wasn’t him, but Don was elat­ed of course,” Brand said, adding that all of the members of the crew had trained for each role and that any of them would have been qualified for any role. (Lind, in fact, went on to make the switch for his Shuttle mission from pilot to mission specialist.) “I was not in the discussion that selected

the crew. We just found out. Both were capable of doing that job. Bill was a scientist but also an excellent engineer and pilot. Everybody cross-trained for everything.”

Once they were assigned to the rescue crew, Brand and Lind hit the ground running preparing for the mission as did many engineers, flight control­lers, and others throughout the agency and its contractors. “We had about a month to get ready,” Brand said. “I know that we decided very quickly after they had the two thruster quad failures. Everybody felt really under the gun. The hardware was being prepared at the Cape in a typical fash­ion. The agency—but mostly jsc, really—was responding to have every­thing ready in a month. We were completely serious about this. If anybody was thinking about the alternative, which is what really happened later, that they were able to deorbit, we weren’t thinking about that. We very much [believed] we were going up to rescue them.”

Several tasks were occurring simultaneously involving several different groups. “You will recall the effort that was mounted when the first manned mission encountered a damaged Skylab and the parasol and all that,” Brand said. “Well this was, while not quite that big, on the same order. It was very significant. Everybody was pulling together.”

Engineers were preparing the modifications that would allow Apollo Command and Service Module CSM-119 to be used to carry its two pilots and the three Skylab astronauts safely home from orbit and rapidly ready­ing the Saturn IB to launch it. “The Cape had accelerated their preparation of the SL-4 vehicle, and all of the stuff that was to configure it for a rescue was in place,” flight director Phil Shaffer noted. “So I think we could have gone fairly quickly.” In addition engineers on the ground were also working to figure out exactly what had caused the thruster problems in orbit. Rela­tively quickly they came to the conclusion that the two leaks were isolated incidents with little chance of the other two quads failing.

Brand and Lind spent long hours in simulators not only training for the specific requirements of this unusual mission but also making dry runs on the ground to make sure that everything would work as planned. In addi­tion, they were providing crew input to the other groups as they worked on different aspects of the mission. “We were involved in not only training but the planning, certification and verification, and stowage and that the couch [redesign] would work. We were just involved in a lot of the general

"Marooned&quot

32. Vance Brand (left) and Don Lind in the official rescue crew portrait.

planning on how you would do this, which made it especially interesting,” Brand said, adding that the numerous obligations kept him and Lind quite busy during that time. “Those were very long days.”

Any fear that the crew in orbit had that their mission might be brought to an abrupt end after the second thruster failure was allayed fairly quickly. A few days after the failure, they were told that the rescue flight could not come and get them for at least a month, meaning that there was little point in not letting them finish out the full duration of their mission.

“Probably the long pole in the tent was getting the vehicle ready to go at the Cape, the Saturn IB and the integrated stack,” Brand said. “I recall seeing a launch preparations schedule. I think we would have been lucky to be off thirty days after that. But we were talking about that, aiming for that.” Though the purpose of the mission was unique in NASA’s history, its actual

flight profile was not that unusual. The launch, rendezvous, and docking portions would be very much like the last two flights to Skylab. (Hopefully much more by the book than the last one.) “It was pretty much a standard rendezvous,” Brand said. “They had two docking ports, and we would have just used the unused one.”

The time spent on orbit would have been relatively straightforward. “Not much more than required,” Brand said. “We would have to make sure cer­tain things were brought back. The primary thing was just getting the peo­ple back.” Likewise the return to Earth would have been fairly standard despite weight that normally would have been cargo instead being extra crew. “Because of all the similarities with rendezvous, etc., there wasn’t so much risk,” Brand said. “I guess you would have to say that looking at the overall thing, the main risk is just in chartering another mission. There’s always a risk with any mission because you could lose an engine or something.

“Of course, the other risk is anytime you do things in a hurry, there’s always a chance you might have overlooked something, though we didn’t think we did. And we probably both would have had a little more to do in flight because there were two crewmen instead of three.” About a month after work began on the rescue mission, the agency was adequately confi­dent that it could be flown successfully. “They got a long way,” Brand said. “We had hardware.”

There were a few interesting points about the reconfigured spacecraft, though, according to Don Lind: “One of the funniest things was when they had to reconfigure a Command Module with five seats, and we had to run all the tests and so forth. Well, a Command Module has two stable con­figurations [when floating in the water], one in the normal point-up posi­tion, which they call Stable i. But it would also float in good stability with the cone pointing straight down. That puts the seats not exactly strapped to the ceiling, but in a very strange position very high up on the wall as it starts to curve into the ceiling.

“So we had to test this. We took a test crew that was going to be rescued. Vance and I had some experience with this thing in Stable 2 with just the two of us. I realized out in the ocean with the waves pitching and rocking back and forth, it was incredibly difficult to tell which direction was down. So when we did this with five crewmembers, I was briefing the other three, and I said, ‘You won’t be able to tell which way is down, so when I tell you to unstrap, be sure you’re hanging on to something because you may feel like you’re falling straight up.’ Everybody looked at me like, ‘Oh, come on, Lind, how dumb do you think we are?’

“Well, it turned out when we got in Stable 2 that Bill Lenoir was the first one to unstrap. And as he did so, he just opened the seat buckle and fell up and slammed against the bulkhead. He looked at me like ‘Lind, if you say anything, I’ll get you.’ Of course, the other two were hanging on when they unbuckled. So there were interesting little light notes even as we were get­ting ready to fly.”

For Brand and Lind, however, helping to successfully plan the rescue mis­sion did not mean that it was time to relax. Instead they were given a new task and had to shift gears and start again. More long hours in the simula­tor awaited.

Having proven that a rescue mission could be flown, the agency began looking into whether it could be avoided. Brand and Lind worked with a team analyzing how well a Command and Service Module could maneu­ver without the two thrusters that had failed to see whether it could make a safe return, thereby avoiding the rescue mission.

“Near the end of our preparation period, management said, ‘Well, we believe we can do this, now let’s set about to see how we can get them down without expending the resources for a rescue mission,’” Brand said. “So just overnight we changed goals.

“We got the simulator adapted to the changed situation,” he said. “I spent a lot of time in the simulator on that. I must say in all of my work on the ground in the space program that was probably the most interesting time that I can remember. That whole exercise was very satisfying.”

However, the short-deadline nature of the work definitely could be a challenge to proper coordination. “I found out one piece of information that I thought was critical just when I was walking down the hall at work,” Brand said. “I spoke to the Draper representative, and he said, ‘Oh, by the way. . .’

“He said, ‘You know that when the crew up there gets ready to deorbit and they have to use plus-x, if you don’t hold full left тне [translation hand con­troller] , that might surprise them. They might go out of control and mess up the flight.’ So it was built into the procedure. I mentioned that at some point to Alan Bean, and got the information up to him. And I thought, ‘Gosh, why didn’t we know that?’ Maybe it was before we had an opportunity to simu­late that, because I’m sure we would have found it out in simulation.”

Despite the significant amount of fuel that had been lost during the leaks, running out of fuel was not something they needed to worry about. The Command and Service Module, after all, had been designed for going to the moon, and flights in low Earth orbit used only a fraction of its capabili­ty. The powerful primary Service Propulsion System main engine had to be capable of making the trans-Earth injection burn that pushed a spacecraft out of lunar orbit and back toward its home planet, and it stocked plenty of fuel for making that burn. The Service Module’s Reaction Control System may have lost a lot of its fuel, but the main engine had plenty to spare.

Two reentry procedures were developed. The first assumed that the two remaining good Service Module thrusters would be usable. It involved pilot­ing the spacecraft more or less as had been done during the rendezvous and docking, compensating for the missing quads.

The second procedure was even more creative and would not have used the propulsion systems in the Service Module at all. Instead, the entire reentry would have been handled with the smaller Reaction Control System (rcs) thrusters on the Command Module. Combined, those rcs thrusters could have generated enough thrust for the retroburn that would slow the space­craft down and bring it out of orbit—but just barely enough.

“We had a procedure to do it,” Brand said. “These thrusters were only designed to give you attitude control, so you had to figure out a way to beat the system to get translation out of it. I think it involved having two Com­mand Module hand controllers going in opposite directions at the same time, to actually get translation.”

The Command Module would have had just barely enough fuel. “I don’t think there was much room to waste any, but there would have been enough left after that to control the attitude of the spacecraft [during reentry]. Some­where I still have those handwritten procedures, copies of them, and they were rather bizarre.”

Flight director Phil Shaffer explained: “The solution to the attitude control problem turned out to be putting the cg [center of gravity] of the csm in the right place. When you translated fore and aft, it would rotate the spacecraft around where the real cg was. Once we figured out we had enough stuff on board to place the cg where we wanted it, then it became just a procedure,

which Vance did a wonderful job of working out in the simulator.” In par­ticular, Shaffer said, Brand and Lind had to put in a good bit of time fig­uring out how much burn it was going to take to get the desired reaction. “So it really worked,” he said. “Vance was the hero of the rescue team. Lat­er Alan told us that the heads-up on the тне duty cycle requirements had been extremely helpful.”

While the rescue crew was hard at work on the ground putting the proce­dures together, the crew in orbit was becoming anxious about when exactly they would see those procedures. While they had hoped that it would not be necessary to send up a rescue mission that would end their stay on Sky – lab prematurely, they were now eager to see that the ground had in fact fig­ured out a way for them to come home safely.

“Alan was understandably impatient,” Brand said. “It was, ‘When are you going to get those up here?’ And, just as in the case of Apollo 13, the people who were simulating these were just wanting to be 99.9 percent sure that everything was ok. So we put Alan off a little bit.”

Lind said that while the rescue crew task of figuring out how to retrieve the on-orbit astronauts and the backup crew task of figuring out if the wound­ed spacecraft could make it safely home were both very challenging, they were very different experiences for him. The latter he described as “purely a technical question—do you have the capability to control the Service Mod­ule during reentry in all the modes and all the reasonable failure modes? So it’s just a mechanical question about can this vehicle survive under any rea­sonable circumstances in the configuration it has.”

The issues involved in the rescue crew mission, he said, were more var­ied. There were the technical questions of configuring and operating the rescue spacecraft, but there were other logistical concerns not involved in the backup crew work. One of the biggest of those questions that he was involved in, he said, was figuring out what exactly besides the crew would be brought back. “When you put five guys in that Command Module, it’s rather intimate to start with,” even before the process of loading scientific cargo begins, he explained.

For Brand and Lind the work was accompanied by mixed emotions. After years of waiting, they had finally been assigned a spaceflight. They had done the training and simulations to prove that the mission could be carried out and that they were fully prepared to fly it. Next, though, they were given a

task that could cost them their spaceflight. If they succeeded in proving that the crippled Command and Service Module docked at Skylab could carry its crew home safely, then they would also prove that there was no need for the two of them to fly to rescue them.

“It was kind of a two-edged sword,” Brand said. “In a way, we had so focused on [the rescue mission] that it was a little disappointing that we wouldn’t get to do it. But on the other hand, we understood completely, and we set about working as hard as we could in traditional backup crew mode to help do the flight plan and preprocedures and everything so we could get them down on their own.” He said the disappointment of losing the flight was tempered by the knowledge that NASA was making the right decision by not flying the rescue mission. But it was still a bittersweet experience.

“We would jump at any chance to fly. You know, being an astronaut is a lot like being on a roller coaster. You have these high highs and low lows, dis­appointing events coinciding with the low lows and maybe getting assigned to something and just being top of the world, and so it cycles.”

“It’s hard to describe our feelings,” Don Lind said, “We were the back­up crew, and we needed to work out the procedures with the quads so that they could safely come home. You’re really dedicated; you really feel not just a professional obligation but also a personal obligation to the fellows on the crew that you know so well to do that job very well. So we did the very best job we could and were able to convince management that we had enough redundancy to safely bring the guys home with the quad problems.

“But we were also the rescue crew. And if we hadn’t been so efficient as the backup crew, we would have flown on a mission. After the whole thing’s done, you say, ‘You know, we’re good guys, but boy, are we stupid guys.’ “When you’re in that kind of situation, and many of us in the space pro­gram had been in the military, so when things really count, you simply knuck­le down and work very efficiently. Sure I had to get home and see my family occasionally, and yeah, you require sleep and that sort of thing. Your main emphasis is we’ve got to get this job done in a very limited time; we’ve got to work very efficiently. You obviously don’t take a day off to go play golf; that’s just not in the priorities. You have to relax a little bit, but you have to get the job done, so if you have to get up early in the morning to get in the simulator, you get up early in the morning and get in the simulator.

“You never really hope that anybody has any problems; you just don’t allow yourself those thoughts. But it was a long time before I flew. I was there for nineteen years before I flew. I had been in a group that was being trained to go to the moon, and I thoroughly expected to be the second scientist on the moon. Jack Schmitt was obviously going to fly the first because he had the whole geological community behind him, but I was obviously going to be the second one. And by darn they lowered the budget and canceled the last three flights, and only twelve guys walked on the moon, so big disap­pointment. [Official flight rosters were not made for these missions, and only Deke Slayton knew whom he would have assigned.]

“Then it happened again in Skylab because Vance and I had been the res­cue crew, and Vance and I and Lenoir had been the backup crew on the last two missions. It was completely obvious to everybody that when they flew the second Skylab [workshop], which was already built and paid for, that we were going to be the prime crew. Of course, then they lowered the bud­get, and they cut the second Skylab in half with a welding torch. And it’s now in the Smithsonian museum as the most expensive museum display in the world. Those things are professionally frustrating, but hey, that’s part of life. After a while, you quit whimpering and press on.”

Despite working themselves out of a spaceflight on the Skylab rescue mis­sion, both men would go on to eventually make their way into space. For Brand the wait was relatively short compared to the other astronauts still unflown at the time—a “mere” two years. Along with Tom Stafford and Deke Slayton, Brand flew the Apollo-Soyuz Test Project, the first joint U. S.- Soviet space mission. Stafford, the flight’s commander, was a veteran astro­naut who had flown most recently on the 1969 Apollo 10 mission that had tested the Lunar Module in orbit around the moon. Slayton was both the astronaut corps’ senior member and like Brand an unflown rookie, having been selected as one of the original seven Mercury astronauts but disqual­ified from flight status due to a heart condition. The astp crew launched on the final flight of the Saturn rocket and the Apollo Command Module and docked with a Soviet Soyuz crew in orbit. (Interestingly, the story of Marooned, with its depiction of an international cooperation rescue mis­sion, has been cited as a factor that helped inspire astp.)

When asked which mission he would have preferred to fly given a choice Brand said, “For the sake of [the Skylab 11 crew], I guess I would have picked astp, but if needed, I would have been very enthusiastic about a rescue mission.

It’d be something that, the rest of your life, would really stand out.”

Lind, on the other hand, would not fly for twelve years after the rescue mission he missed out on, a total of nineteen years after he joined the astro­naut corps. Though originally brought into the corps as a pilot astronaut, Lind, who had worked as a NASA space physicist prior to his selection, flew as the lead mission specialist on the 51-B mission of Challenger in 1985, the second Spacelab flight.

Looking back, he said the wait was well worth it. “Oh, yes, absolutely. Because the nineteen years was not just standing in line waiting,” he said. “For example, I had a [position] in the Apollo program that was very, very satisfying.” Lind explained that he was involved in the development of the lunar laser ranging experiment, which involved reflecting lasers off mirrors placed on the lunar surface to make precise distance measurements between the Earth and the moon. He said that his contributions helped make the ranging mirrors the only Apollo experiment still used over thirty-five years after the “corner reflectors” were left behind. “There were some very inter­esting, satisfying experiences going along, even when I spent six and a half years training for two missions that didn’t ever fly.”