Full-scale test firings

By the middle of 1980 preparations had been completed for the long-awaited inaugural test firing of a complete RD-170. Mounted on Energomash’s test-firing stand nr. 2, the engine was ignited on 25 August 1980, but shut down just 4.4 seconds later. It was only the first in a long string of setbacks for the RD-170/171. The next 15 test firings were also less than satisfactory, leading to a decision to perform the 17th test firing at a lower thrust of 600 tons. This resulted in a first successful, full-duration 150-second test firing of the RD-170 on 9 June 1981.

Subsequent test firings at the same thrust rate also produced satisfactory results, giving Energomash engineers enough confidence to move on to ground tests of the nearly identical RD-171 integrated with a Zenit first stage. These tests were carried out at the IS-102 test stand of NIIkhimmash, originally used in the 1950s for testing the first stage of the R-7 missile and later the scene of test firings of the Proton first stage and the second, third, and fourth stages of the N-1. The engine earmarked for the test (serial nr. 18) had already undergone a successful test firing at Energomash’s facilities in September 1981. Later analysis did show that a turbopump rotorblade had been damaged by particles that had somehow entered the turbopump assembly, but this was considered benign enough to press on with the test firing of the Zenit first stage on 26 June 1982. To the amazement of onlookers, the test ended in disaster near the end of its scheduled 6-second duration, when the turbopump assembly burnt through and caused a massive explosion that completely destroyed the stage and the entire test stand.

The disaster raised serious questions about the fundamental design of the RD-170/171, the more so because the test had been performed at only 600 tons of thrust rather than the nominal 740 tons. It led to the creation of an interdepartmental commission to look into the status of the RD-170 development program and consider

Energomash engine test-firing stand (source: NPO Energomash).

possible alternatives for powering the Zenit first stage and Energiya’s strap-on boosters. Headed by Valentin Likhushin, the head of Nil TP, the commission included such luminaries of the Soviet rocket industry as Arkhip Lyulka, Nikolay Kuznetsov, and also Valentin Glushko himself.

One idea, proposed by I. A. Klepikov at Energomash, was to equip each combus­tion chamber with its own, smaller turbopump assembly, transforming the RD-170 into four engines with 185 tons thrust each (hence their designation MD-185, with the “M” standing for “modular’’, because the idea was to use the engine on a variety of rockets). Actually, an order to study such an engine had already come from the Minister of General Machine Building Sergey Afanasyev as early as 11 October 1980. Wary of witnessing a repeat of the N-1 fiasco, Afanasyev had ordered to set up a complete department within Energomash to design such an engine in order to safe­guard against any major development problems with the RD-170/171. It was felt that the 2UKS experimental engine, successfully tested in 1977-1978, could serve as a prototype for the MD-185.

Another option was to use the NK-33 engines developed by the Kuznetsov design bureau (under the Ministry of the Aviation Industry) for a modified version of the N-1 rocket. Although the N-1 had been canceled before the NK-33 engines ever had a chance to fly, forty of these reusable engines had undergone an extensive series of test firings up to 1977, proving their reliability. By making small modifications to the turbopumps, Kuznetsov’s engineers had managed to uprate the NK-33’s thrust from about 170 tons to just over 200 tons, meaning that four would be sufficient to replace the RD-170. Energiya’s chief designer Boris Gubanov flew to Kuznetsov’s plant in Kuybyshev, where he was shown more than 90 such engines lying in storage.

The most radical alternative studied was to replace the Blok-A strap-ons with solid-fuel boosters. That task was assigned to NPO Iskra in Perm (chief designer Lev N. Lavrov), an organization specialized in solid-fuel motors that had already built several small solid-fuel systems for Energiya-Buran. NPO Iskra devised a plan for a 44.92 m high booster consisting of seven segments. Weighing 520 tons (460 tons of which was propellant), the booster would produce an average thrust of 1,050 tons (specific impulse 263 s) and operate for 138 seconds before separating from the core stage.

In the end, none of the three proposals was accepted. Although the MD-185 was probably the least radical alternative, research showed that it would not solve the turbopump burn-through problems as the temperature of the generator gas would be virtually the same as in the RD-170/171. A major problem with both the MD-185 and NK-33 was that they increased the total number of engines on Energiya from eight to twenty, leaving more room for failure.

One can also safely assume that Glushko had second thoughts about using the NK-33 engines. After all his efforts to erase the N-1 from history, it is hard to imagine he would have accepted using engines that had originally been built for this rocket. What’s more, in 1977 Glushko had secured a decision from the Council of Ministers to ban all work on powerful liquid-fuel rocket engines not only at Kuznetsov’s design bureau, but at any organization under the Ministry of the Aviation Industry. Understandably, Kuznetsov was not about to come to Glushko’s rescue just like that.

RD-171 in test stand (source: NPO Energomash).

One of the conditions he laid down for participating in the Energiya program was that his team be officially rehabilitated after the abrupt and humiliating cancellation of its efforts several years earlier.

It was even easier to find arguments against NPO Iskra’s solid rocket motors. Aside from the safety and ecological concerns inherent in solid-fuel rockets, the Soviet Union had no experience in building solid rocket boosters of this size. More­over, they would not have been reusable and it would have been difficult to operate them in the temperature extremes of Baykonur. It would have taken an estimated 8 years to get them ready for flight.

In fact, any of the three alternative proposals would probably have delayed the first flight of Energiya by many years and would only have added to the already soaring costs of the program. In September 1982 the interdepartmental commission decided to continue test firings of improved versions of the RD-170/171 and at the same time continue research work on the MD-185. The official investigation into the June 1982 accident had concluded that it was probably the direct result of the engine being tested in a vertical position (as opposed to the near-horizontal position for the

Energomash tests). However, Energomash engineers disagreed and believed it had been caused either by aluminum particles entering the turbopump assembly from the propellant tanks or by high vibrations of the turbopump assembly.

Among the measures taken to prevent a repeat of the accident were the instal­lation of filters to prevent particles from entering the turbopump assembly and the strengthening of certain components of the turbopump. Those efforts paid off with the first successful full-duration 142-second test firing of the RD-170 at nominal thrust (740 tons) on 31 May 1983, which by many was considered a make-or-break test for the engine. In the following months, the engine performed better and better, clearing the path for another test of the RD-171 as part of a Zenit first stage. Bearing in mind the disastrous outcome of the first such test, a commission was set up to decide if it could proceed. In October 1984 the commission gave a negative recom­mendation (even KB Yuzhnoye chief Vladimir Utkin), but that was overruled by the new Minister of General Machine Building Oleg Baklanov, who had replaced Afanasyev in the spring of 1983 and proved to be a more avid supporter of the RD-170 than his predecessor. In the end, the Zenit first stage operated flawlessly in a test firing at the refurbished IS-102 test stand of NIIkhimmash on 1 December 1984, repeating that performance at the end of the same month.