Component tests
One of the main motives for the choice of a four-chamber rather than a singlechamber LOX/kerosene engine in 1973 was the possibility to test major components of the engine (primarily the combustion chamber) individually and only later to assemble them for test firings of the complete engine. This followed from the negative experience with the single-chamber 640-ton thrust hypergolic RD-270 engine for Chelomey’s UR-700 rocket, where engineers had moved to all-up tests straightaway. All the 27 test firings carried out in 1967-1969 had ended in some kind of failure before work on the engine was discontinued.
The component tests were conducted between 1974 and 1980 using test models known as “oxygen installations” (UK). Most of these were built on the basis of blueprints and components developed in the early 1970s for the RD-268, a 100-ton thrust engine burning unsymmetrical dimethyl hydrazine (UDMH) and nitrogen tetroxide (N2O4). This was possible because UDMH/N2O4 engines use virtually the same ratio of propellants as LOX/kerosene engines. It did require the use of new materials compatible with LOX/kerosene and modifications to two test firing stands of Energomash on the banks of the Khimka river in the northwest outskirts of Moscow. These were completed in the first eight months of 1974.
The first two of these test models (1UK and 2UK) were essentially 100-ton thrust experimental model engines to test various aspects of the RD-170, such as the ignition sequence, mixing of the propellants in the combustion chamber and gas generator, cooling of the combustion chamber, and the use of reusable materials. A modified version known as 1UKS burned recycled oxidizer gas produced in a gas generator, as was the case for the RD-170. Between August 1974 and November 1977 as many as 346 test firings of these three types of engines were conducted lasting a total of 19,658 seconds.
The next series of tests involved an installation called 3UK, designed to test the RD-170’s gas generator. This consisted of a full-size gas generator, two turbopumps, and a mock-up combustion chamber, making it possible to simulate the pressure, propellant expenditure, and temperature in the gas generator at levels between 30 and 80 percent of nominal values. The tests were conducted between June 1976 and September 1978. A total of 77 3UK installations underwent 132 test firings lasting a total of 5,193 seconds. About 60 mixing heads were tested, with two being chosen for test firings of complete RD-170 engines.
Also built were experimental engines called 2UKS that closely imitated the operating conditions of the RD-170’s combustion chamber, but inherited their turbopumps from earlier designs. Therefore, the chamber developed only 80 percent of the nominal thrust at a pressure of 200 rather than 250 atmospheres. Also tested was the gimbaling system and several of the engine’s automatic systems. A total of 42 2UKS engines accumulated about 6,000 seconds of burn time in 68 tests from May 1977 until June 1978. Interestingly, the 2UKS served as the basis for the development of the 85-ton thrust RD-120, which would later power the second stage of the Zenit rocket.
Finally, Energomash engineers built the 6UK, which essentially was a real RD-170 without a combustion chamber, the main purpose being to test the turbopump assembly. The installation underwent 31 tests between June 1978 and December 1980. The tests revealed that the turbopump was susceptible to burn – throughs and vibrations. Although as many as 23 6UK installations were used, they accumulated just 280 seconds of testing time. Since the 6UK was nearly as expensive as a complete RD-170/171, the test program was limited and the problems with the turbopump assembly were not debugged by the time the full-scale RD-170 test firings got underway. Therefore, the 6UK was much less effective in paving the way to those test firings than the other UK installations, setting the stage for a major crisis in the Energiya program in the early 1980s.