SOVIET SPACE PROGRAMME BEFORE SPUTNIK
The Soviet space programme before Sputnik was the coming together of a number of diverse bodies, people, institutes and traditions. Going to the moon, Earth’s nearest celestial neighbour, had always been a part of this idea.
The Soviet space programme actually stretched back into Tsarist times. Its chief visionary was a deaf schoolteacher, Konstantin Tsiolkovsky (1857-1935). He was a remarkable man who carried out space experiments in his home, drew designs for interstellar spacecraft, calculated rocket trajectories (Tsiolkovsky’s formula is still taught in mathematics) and wrote science fiction about the exploration of the solar system. Rocketry was little encouraged under the tsars – indeed, another early designer, Nikolai Kibalchich, was executed in 1881 for turning his knowledge of explosives to use in an assassination plot.
The 1920s became the golden age of theoretical Soviet cosmonautics. Popular societies blossomed, exhibitions were held, science fiction was published, an encyclopaedia of space travel issued. It was rich in theoretical, practical and popular work. Friedrich Tsander and Alexander Shargei (AKA Yuri Kondratyuk) outlined how spacecraft could fly to the moon and Mars. Popular societies were set up to popularize space travel and exhibitions were held. In St Petersburg, the Gas Dynamics Laboratory (GDL) was set up in the old St Peter and Paul Fortress. It attracted the brightest Russian chemical engineer of the century, Valentin Glushko and here the first static Russian rocket engines were developed. Glushko, born 20th August 1908 (os), was a precocious young engineer who had built a toy rocket at age 13, corresponded with Tsiolkovsky in 1923 and wrote his own first contributions on spaceflight in 1924. He joined the original rocket engine design bureau in Russia, the Gas Dynamics Laboratory, in 1925 and was given his own subdivision in 1929, when he was just over 20 years old. The following year, Glushko began his first experiments with nitric acid fuels and developed new ways of insulating rocket engines through exotic materials like zirconium. 1931 found him working on self-igniting fuels, swivelling (gimballing) engines and high-speed turbine pumps.
Alexander Shargei addressed some of the key questions of lunar missions in The conquest of interplanetary space (1929). He put forward the notion that, in landing on the moon or planets, the landing stage should be left behind and used as a launching
Valentin Glushko, chief designer |
pad for the returning spacecraft. He suggested that it would be more economical to land on a moon or planet from an orbit, rather than by a direct descent. He outlined how explorers from the moon and planets could return by using the Earth’s atmosphere to break their speed through reentry. In 1930, the elderly Konstantin Tsiol – kovsky was advisor to a film called Kosmicheskoye putechestviye (Space journey), a Mosfilm spectacular in which spacesuited Soviet cosmonauts travelled weightless to the moon (the actors were suspended on wires to simulate zero gravity) and then walked its surface.
This flourishing of theory, practice and literature came to an abrupt and grotesque end in 1936 with the start of the great purges. The head of the army’s rocket programme, Marshal Tukhachevsky, was seized, charged with treason and shot, all within a matter of hours. Sergei Korolev was sent off to the gulag and Glushko was put under arrest for six years. The leaders of GDL, Langemaak and Kleimenov, were shot. Most other engineers were put under house arrest and very few escaped the wrath of Stalin in some shape or form (lucky Tikhonravov was one of them). The amateur societies were closed down. Fortunate was Tsiolkovsky not to see all this, for he died in old age in 1935.
The survivors of the Gulags were let out – or kept under a relaxed form of arrest – to contribute to the war effort. Rocketeers now put their talents to work in aircraft design to win the war against Germany. Their real shock came in 1944 when they learned of the progress made by Germany in rocket design. Mikhail Tikhonravov was one of a team of Russian scientists to visit Poland in August 1944 behind then rapidly retreating German lines. They went there on foot of intelligence reports sent to Britain which indicated that Germany was developing a rocket weapon. Following the RAF attack on the main German launch site at Peenemunde, Germany had moved testing to an experimental station in Debica, Poland, near the city of Krakow. Polish agents had found the launch and impact sites there and had managed to salvage the remains of the rocket, including, crucially, the engine. British prime minister Winston Churchill asked Stalin to facilitate access by British experts to the site, though this meant of course that Stalin’s experts would benefit equally from what they found. They found that Germany had stolen a march on them all and under the guidance of their chief designer, Wernher von Braun, had launched the world’s first real ballistic rocket, the A-4, on 3rd October 1942. A month after Tikhonravov’s visit to Poland, the first A-4s were fired as a military weapon. Over 1944-5, the A-4, renamed the V-2, was used to bombard London and Antwerp. The Germans had also moved ahead with sophisticated guided missiles (like the Schmetterling) and anti-aircraft missiles (like the Wasserfall) and were far advanced in a range of related technologies. In early 1945, the Red Army swept into the development centre of the A-4, the Baltic launch site of Peenemunde.