And back to Venus yet again

TIMELINE: 1982-1983

The final missions in the Soviet Venera series were launched in June 1983. Having achieved most of their objectives with the Venera landers, these two spacecraft were outfitted with large radar antennas replacing the entry system and sent to Venus as orbital radar mappers. Both were successful, with their radars discerning the surface through the ubiquitous clouds to map from 30"N to the north pole with a resolution of about 2 km.

Launch date

1982

No missions

1983

2 Jun Venera 15 orbiter Successful radar mapper

7 Jun Venera 16 orbiter Successful radar mapper

PIERCING TIIE CLOUDY VEIL OF VENUS: 1983

Campaign objectives:

After six consecutive successes of their heavy Venus landers starting with Venera 9, the Soviets decided to send radar imaging orbiters in the 1983 opportunity instead of more landers. In 1978 the US Pioneer 12 orbiter had obtained radio altimetry data of the entire planet at the very low resolution of 150 km. and operated the altimeter in a side-looking mode to obtain a narrow equatorial strip of topography at a resolution

W. T. Huntress and M. Y. Marov, Soviet Robots in the Solar System: Mission Technologies and Discoveries, Springer Praxis Hooks 1, DOl 10.1007/978-1-4419-7898-1 17,

© Springer Science+Business Media, LLC 2011 of 30 km. This data was used to target the Venera 13 and 14 landers in 1981. The 1983 Venera radar or hi tors were intended to use hi sialic radar techniques ю improve the resolution to 2 km or better, albeit only over about 25% of the planet.

Spacecraft launched

First spacecraft:

Venera 15 (4V-2 No.860)

Mission Type:

Venus Or biter

Country/ Builder:

USSR NPO-Lavochkin

Launch Vehicle:

Proton-K

Launch Date: Time:

June 2, 1983 at 02:38:39 UT (Baikonur)

Encounter Date! Time:

October 10, 1983

Mission End:

March 1985

Out come:

Successful.

Second spacecraft:

Venera 16 (4V-2 No.861)

Mission Type:

Venus Or biter

Соті try j Builder:

USSR NPO-Lavochkin

Launch Vehicle:

Proton-K

Launch Date: Time:

June 7, 1983 at 02:32:00 UT (Baikonur)

Encoun ter Date/ 7 ime:

October 14. 1983

Mission End:

May 28. 1985

Outcome:

Successful.

Venus had become more or less a ”Red ‘ planet, left almost exclusively to Soviet exploration. After the Mariner 5 flyby in 1967 it was over a decade before the US revisited the planet, and the two small Pioneers in 1978 were primarily focused on the ionosphere and atmosphere. But at that same time the US was also developing a proposal for a Venus Orbiting Imaging Radar (VOIR) mission. NPO-Lavochkin had been working on a Venus radar mapper since 1976 and, after having pioneered local surface imaging, the Soviets wanted to conduct their radar mapping mission before the Americans. As events transpired, they did not have to compete, since VOIR was canceled in 1981 and replaced by a simpler, less costly mission named Magellan that was noi launched until 1989. In essence all that NPO-Lavochkin had to do was to replace the entry system of its spacecraft with a side-looking radar to obtain imagery and electrical properties of the surface of the planet, and to add a radio altimeter to measure the topography on the ground track. But modifying the spacecraft to carry the radar was not without challenge.

Rumors of a Soviet Venus radar mapping mission began to circulate in the US in 1979, as NASA was trying to obtain funding for its VOIR mission. Familiar with the heavy nuclear-powered RORSAT orbiting radars the Soviets used to track Western navies, most observers in the IJS did not believe they had the technology to build a lightweight low-power synthetic aperture radar. It was indeed a struggle, particularly the data storage and computing requirements, and the launch had to be slipped from 1981 to 1983, but ultimately it performed rather well.

Spacecraft:

Venera 15 and 16 were the first in this series of carrier vehicles to be modified in a significant way since Venera 9. The bus was lengthened by 1 meter to accommodate the 1,300 kg of propellant needed to put such a heavy craft into orbit around Venus. The load of nitrogen for the attitude control system was increased from 36 to 114 kg to permit the large number of attitude changes that the orbital mission would entail. Two more solar panels were added outboard of the standard pair to provide the extra power to operate the radar system. The parabolic antenna was enlarged by 1 meter to a diameter of 2.6 meters to increase the bandwidth from 6 to 108 kbits/s and a new 5 cm band telemetry system was introduced to communicate with the 64 and 70 meter ground stations. The spacecraft were identical, and consisted of a cylinder 5 meters long and 1.1 meters in diameter. A 1.4 x 6.0 meter parabolic panel antenna for the synthetic aperture radar (SAR) was installed at the top, in place of the entry system. The entire SAR system weighed 300 kg. A 1 meter diameter parabolic dish antenna was mounted nearby for the radio altimeter. The electrical axis ol’the radio altimeter antenna was aligned with the long axis of the spacecraft, and the SAR was angled 10 degrees off this axis. During imaging, the radio altimeter would be lined up with the local vertical and the SAR would look off’ to the side by 10 degrees.

Launch mass: 5,250 kg (Venera 15) 5,300 kg (Venera 16)

Fuel mass: 2,443 kg (Venera 15) 2,520 kg (Venera 16)

image207

Figure 17.T Venera 15 during tests at Lavochkin.

image208

Figure 17.2 Venera 15 museum model. SAR tilted at 10 degrees to the long axis on top of the SAR/Altimeter instrument compartment above cylindrical propellant tank.

Payload:

1. Polyus-V synthetic aperture radar (SAR) operating at a wavelength of 8 an

2. Omega radiometric altimeter

3. Thermal infrared (6 to 35 microns) Fourier emission spectrometer (IFSE, DDR-USSR)

4. Cosmic ray detectors (6)

5. Solar plasma detectors

6. Magnetometer (Austria)

7. Radio occultation experiment

All of the components of the SAR and radio altimeter were shared except for the antennas. The electronics cycled the 80 W traveling wave tube oscillator between the antennas every 0.3 seconds. An onboard computer controlled their sequencing and operation. The SAR antenna would illuminate the surface over 3.9 milliseconds with 20 cycles of 127 phase shifts for cross-track encoding. Spacecraft motion over that same interval swept out a 70 meter virtual antenna. After each transmission, the antenna was switched to the receiver, which digitized the magnitude and phase of the reflected radar pulses and stored the data as 2,540 complex numbers in a solid-state memory buffer. To keep up with the radar illumination cycle of 0.3 seconds, the data were read out alternately onto two tape recorders to complete a period of 16 minutes

image209

figure 17.3 Venera IS SAR strip taken during a single periapsis pass (from Don Mitchell).

ol mapping during a periapsis pass. Each such pass produced about 3,200 return images to compose a data strip approximately 120 x 7,500 km. Once the data were received on Earth, each individual 3.9 millisecond return was divided by time delay mto 127 ranges across-track and 31 ranges along-track and then processed to correct for atmospheric, geometric, and orbital effects. The individual return images for a pass were then assembled to yield, an image strip representing the slope, roughness, and emissivity of the surface of Venus.

During altimetry, the antenna would transmit a code sequence of 31 pulses, each of 1.54 microseconds duration. After transmission, the antenna was switched to the receiver, which recorded the reflection of the pulses from the surface over a period of 0.67 millisecond. The oval footprint of the altimeter radio beam was 40 km cross-track and 70 km along-track. After onboard processing of the return waveform, the data were stored on the tape recorder for later transmission to Earth, which further processed the data to correct for atmospheric, geometric, and orbital effects to yield altitudes. A low resolution mode was used until the orbital elements were precisely determined, and then it was switched to a high resolution mode. In combination with Doppler analysis, the high resolution mode reduced the footprint to 10 x 40 km with an error of about 1 km. The vertical accuracy was about 50 meters.

It was also decided to include an infrared Fourier-transform spectrometer supplied by East Germany. This weighed 35 kg and was intended to provide a higher spectral resolution than the infrared radiometer operated by the Pioneer 12 orbiter. ft divided the spectrum into a continuous set of 256 channels over the range 6 to 35 microns. It had a field of view of 100 x 100 km, and provided 60 complete spectra along each periapsis pass. The objectives were to obtain atmospheric temperature profiles from the 15 micron carbon dioxide band in the 90 to 65 km altitude range, the temperature of the upper cloud deck, the abundances of aerosols, sulfur dioxide and water vapor in the atmosphere, and data on the thermal structure and dynamics of the clouds and atmosphere.

The cosmic ray and solar wind experiments were similar to those flown on every Venus mission since Venera 1.

Mission description:

Venera 15 was launched on June 2. 1983, and conducted midcourse corrections on June 10 and October 1 before entering orbit around Venus on October 10. Venera 16 was launched on June 7, conducted midcourse corrections on June 15 and October 5. and entered orbit on October 14. Their orbital planes were inclined about 4 degrees relative to one another, so that any area that was missed by one spacecraft should be able to be imaged by the other. Venera 15 made an orbital trim on October 17, and Venera 16 did so on October 22. Each operating orbit was inclined at 87.5 degrees to the equator, with the periapsis at 1,000 km and the apoapsis at — 65,000 km and a period of 24 hours. The periapsis was positioned at about at 62 N and each periapsis passage would image the surface on a 70-degree arc. Both spacecraft began science operations on November 11. Small burns w’ere made from time to time to preserve the periapsis. accommodate high gain antenna position changes as the Sun-vehicle – Earth angle decreased, and maintain the 3 hour interval between the periapses of the two spacecraft.

Mapping and altimetry would typically begin at 80"N on the inbound side of the pole and continue over the pole down to 30 N on the retreating side. Radar imaging w as conducted continuously w ith a best resolution of about 1 km. The data collected on each 16 minute periapsis pass was stored on the tape recorders, then replayed to Earth during a daily 100 minute communications window prior to the next periapsis. During each 24 hour interval Venus would rotate on its axis by 1.48 degrees, and so successive mapping passes partially overlapped one another. At that rate. 8 months was required to cover all longitudes. The 24 hour orbit was necessary to enable the spacecraft downloads to be synchronized with the receiving stations in the USSR. Several orbital corrections w ere made during the mission to maintain the period and shape of each orbit. In June 1984. Venus went through superior conjunction and no transmissions were possible while it passed behind the Sun as seen from Earth. This provided an opportunity to conduct radio occultation experiments to study the solar and interplanetary plasma. After conjunction. Venera 16 rotated its orbit backwards 20 degrees relative to its partner to map areas missed prior to superior conjunction, and mapping was concluded shortly thereafter, on July 10.

Between them, the two spacecraft were able to image all of the planet from 30: N to the north pole, or about 25% overall. The resolution of 1 to 2 km w;as similar to w hat could be achieved by the 300 meter Arccibo radio telescope dish operating as a radar, but it w? as limited to equatorial latitudes and could not get the accompanying altimetry.

Venera 15 reportedly exhausted its supply of attitude control gas in March 1985. but Venera 16 continued to transmit data from its other instruments until May 28 of that year. No attempts w ere made to change orbits for higher resolution or increased coverage.

Results:

Together, the two spacecraft imaged from 30°N to the north pole at a resolution of 1 to 2 km. The primary product consisted of 27 radar mosaics at a scale of 1:5,000,000 of the northern 25% of the planet. The results confirmed that the highest elevations, meaning those which stand more than 4 km above the plains, have greatly enhanced radar reflectivity.

The radar experiments produced major discoveries about the surface of the planet, imaging new types of terrain that included:

Coronae large circular or oval features with deep concentric rings

Domes flat, nearly circular raised features some with central calderas

Arachnoids – collapsed domes with radial cracks

Tessera – large regions of linear ridges and valleys

Prior to Venera 15 and 16, the coronae glimpsed by Arecibo had been thought to be impact features filled with lava. About 30 coronae and 80 arachnoids were in the area mapped. As no evidence of plate lectonics was evident, the coronae, domes and arachnoids were all postulated lo be surface expressions of mantle plumes heating an immobile crust. There wjere no direct terrestrial analogs. The tessera appeared to be the oldest crustal regions on the planet, and were often overlapped by lava flows.

Even if large ohjects that penetrate the thick atmosphere are destroyed before they can reach the ground, they can create a shock wave that leaves an impression on the surface. There were about 150 craters in the area surveyed. Analysis of the cratering data led to a very young age of 750 + 250 million years, consistent with the idea of catastrophic resurfacing making the tessera, and large scale ‘blistering’ over mantle plumes between resurfacing events.

image210

Figure 17.4 Venera 15 and 16 global imaging at about 1 km resolution. The elevated Lakshmi planum is at upper right with Maxwell Montes (from Don Mitchell).

image211

Figure 17.5 Landforms found by Venera 15 and Venera 16. From upper left clockwise: Anahit and Pomona Coronas, Fortuna Tessera, Arachnoids in Bereghinya, and Duncan crater.

The altimeter produced extensive data on topography in the northern hemisphere. In combination with the radar data, scientists w’ere able to produce detailed maps of the surface.

The infrared spectrometer on Venera 16 malfunctioned, but the one on Venera 15 worked in orbit for 2 months before it too failed. The spectra clearly resolved carbon dioxide, water vapor, sulfur dioxide, and sulfuric acid aerosol. This data was strong confirmation that the particles in the upper cloud layer were a 75 to 85% solution of sulfuric acid. The aerosol distribution and mixing ratios for sulfur dioxide and water vapor were determined in the altitude range 105 to 60 km. The thermal structure and optical properties of the atmosphere were also determined in this altitude range. The clouds ranged from 70 to 47 km, but in the polar region the clouds were 5 to 8 km lower and the air above 60 km was warmer than in equatorial regions. The average surface temperature was measured at 500°C. but some warmer spots were detected along with some cooler regions. There were no features in Ihe spectrum to suggest the presence of organic compounds.

The two orbiters produced 176 radio occultation profiles between October 1983 and September 1984.

image212

Figure 17.6 Venera 15 and Venera 16 altimeter data. Lakshmi planum at left (from Don Mitchell).

image213

Figure 17.7 Venera 15 and Venera 16 cartography of Lakshmi planum with Maxwell Montes and caldera at right (from Don Mitchell).